Lecture
Module 12: Disturbance Ecology

J. Boone Kauffman
Department of Fisheries and Wildlife
Oregon State University

Learning Objectives

Upon completion of this module, the participant will be able to:

1. Describe the major types of ecological disturbances and how they influence site potential, productivity, and sustainability.
2. Describe the role of disturbance in ecosystem structure and function.
3. Describe the difference between ecological disturbances and perturbations.
4. Describe how perturbations and disruption of natural disturbance regimes influence ecosystems.
5. Describe resource management and ecosystem restoration options using disturbance.

Lecture Outline

Disturbance
 Definition
 Types
 Spatial and temporal considerations
 Ecosystem wide effects
Perturbation
 Stress
 Disturbance regimes
 Fire
 Flood
Disturbance and land management
Consequences of altered disturbance regimes
Ecological restoration

The closer an ecosystem is managed in harmony with those processes in which it evolved, the more successful that management strategy will be.

James Lotan 1981
Exercises

Quantification/description of disturbances or perturbations and ecosystem adaptations.

Go to a field, forest, wetland complex, grassland, shrubland, woodland, or floodplain. Hike through the area observing and recording as much of the natural history as you can. Pay particular attention to those features that may tell you something of the perturbation or disturbance history of the area. NOTE: If a field trip is not possible, trainers should have a packet of aerial photos and current on-the-ground landscape photos available for students to use to complete this exercise. The following link can be used to obtain aerial photographs and other landscape information.

http://edcwww.cr.usgs.gov/Webglis/glisbin/finder_main.pl?dataset_name=NAPP

Look for the following characteristics of the site, either as you walk through it or view photos of it:

- Age structure of vegetation
- Fire scars or evidence of other disturbances, such as blow-down
- Evidence of and extent of soil compaction
- Plant species composition - plant adaptations, successional status.
- Presence of snags, dead shrubs, dead or downed wood, etc.

Evaluate the following:

1. Ecosystem patch dynamics
 - Patch size and vegetation composition, age class, and structure. Are there multiple or single age classes? Hike through a sizable area of at least 3 acres (or study a large area using aerial photos).
 - Connectivity of vegetation

2. Species composition
• Overstory and understory plant species- how many species are present? Are there any ex-
 otic species present? What is the percentage of exotic species relevant to native species?

• Describe any plant adaptations to the disturbance (fire, flood, etc.) or perturbation.

• List any wildlife and insects present

3. Physical attributes of the site

 • Determine slope, aspect topography, position on the slope and how the vegetation
 varies.

4. Apparent and recent past disturbances

 Fire, wind, disease, herbivory, humans- how do these interact? Can you determine the
 long-term effects of altering natural disturbance patterns in this area?

Describe the area that you visited using the relevant information collected above.

• What is the current and historical disturbance regime?
• Describe what you saw, and make interpretations of your observations of disturbances.

• How have current and past disturbances influenced vegetation structure and species composition?

• How have human activities directly and indirectly influenced the disturbance regime?

• What might be required for ecosystem restoration?

Use web sources when possible. For example, go to the Fire Effects Information System and gather the summary data for at least 5 plant species and 3 fish/wildlife species that you observed or know to be present. Work with other classmates on this. Collaboration is a must.

The Fire effects information system: http://www.fs.fed.us/database/feis/plants

Information about your specific watershed that may be helpful when considering restoration actions: http://www.epa.gov/surf/
Study Questions

1. Disturbances such as floods and fire generally affect entire ecosystems or landscapes. How might human perturbations at local scales alter disturbance regimes and thus have short and long-term affects on the site?

2. Explain the difference between disturbance and perturbation.

3. Explain the role disturbance plays in land management.
References and Selected Reading

Periodic disturbances in forests, shrublands, grasslands, and wetlands are part of the natural environment; as natural of an environmental factor as snow, wind, or rain.

Ecological Disturbance

Any discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrates, or the physical environment.

Disturbances include:
- Floods
- Wildfire
- Ice flows
- Hurricanes
- Wind and ice storms
Natural disturbances occur on a wide variety of spatial and temporal scales.

Disturbances

- Spatial/Temporal Relationships
- Global
- Continents
- Regions
- Watersheds
- Stands
- Points
- Spatial scale

Natural Disturbance Effects

- Sub-organismal
- Organismal (individual)
- Population
- Ecosystem/Landscape

Version 1.2. June, 2003
Slide 7

- FUELS
 - composition
 - continuity

- BIOTA
 - mortality seedbeds
 - scarification

- FIRE
 - size
 - frequency
 - behavior

Immediate fire effects
Long term fire effects

Slide 8

- Successional pathways
- Age, structure & composition
- Mosaic of vegetation types
- Insects & Plant pathogens
- Nutrient cycling & energy flows
- Biotic productivity
- Ecosystem disturbance effects
- Habitats available for fish & wildlife

Slide 9

- Other related concepts...
 - Perturbations or anthropogenic disturbances
 - Environmental stress
Stress

Factors which decrease net primary productivity of plants (water deficits, nutrient deficits, flooding, salinization).

Perturbations

- A departure from the normal state, behavior, or trajectory of ecological systems.
- The alteration of ecological systems by human land use.

Perturbations include:

- Fire exclusion
- Exotic invasions
- Deforestation
- Land cover/land use change
Perturbations include:

- Introduction of non-native herbivores - overgrazing
- Water diversions - altering natural hydro-dynamics
- Channelization
- Pollution

Some examples of livestock influences on wildland ecosystems

Direct Influences
- Grazing
- Trampling
- Nutrient inputs / redistribution
- Dispersal of exotics

Indirect Influences
- Changes in vegetation structure, productivity, composition
- Changes in soil structure, stream channels
- Influences on water quality

Secondary Influences
- Increased erosion
- Trailing / trampling
- Dispersal of exotics
- Nutrient inputs / redistribution

Tertiary Influences
- Changes in fire cycles
- Altered hydrology
- Altered soils and stream channels
- Reproductive success

Disturbance Regimes:

The general pattern or occurrence of a disturbance in a given ecosystem.
Disturbance Regimes:

Defined by:
- Frequency
- Size
- Magnitude
- Severity and intensity

Example: Fire Regimes

- Low severity
 - Frequent low intensity surface fires
- Moderate severity
 - Frequent, low intensity surface fires and infrequent stand-replacing fires
- High severity
 - Infrequent (long return interval severe, stand-replacing fires.

High Severity regime

- Long return interval
- Stand replacing fires
- Usually large in area
Slide 19

FIRE REGIME
Type, size and frequency

- Anthropogenic
- Biotic
- Physical
- Climate

Slide 20

Floods

Floods occur when flows fill an alluvial channel at bankfull discharge.

Significant substratum movement occurs (suspended sediment as well as bed load transport).

Slide 21

Flood Regime Variables

- **Frequency**
- **Magnitude**
 - (2, 5, 50, 100 year floods)
- **Season**
- **Duration**
Disturbance processes are important in land management...

- Critical to maintain productivity and biodiversity
- Negative consequences arise from altering disturbances
- Disturbances are a part of ecological restoration

Many species are disturbance dependant...

- Require disturbances for germination
- Reproduction is enhanced by disturbances
- Substrates are created for successful establishment
- Habitats are created by disturbances.

Consequences of altering disturbance regimes

- Altering flood regimes
 - Via flow regulation
 - Water diversions
 - Channel incision
Consequences of altering disturbance regimes

- Altering fire regimes...
 - Fire exclusion
 - Increases in fire occurrences

Ecological Restoration

...is the return of ecosystem structure and function that was altered or degraded by human activities.

Ecological Restoration

Involves the re-establishment of ecosystem features to the bounds of their range of natural variability
Ecological Restoration

Includes the restoration of disturbances (fires, floods, etc.) within their natural regime.

Slide 29

Dynamic Natural Ecosystem

Potential Natural Ecosystem

Further Degraded State(s)

Degraded Ecosystem State

Passive Restoration

Successful Restoration

New Ecosystem Trajectory

Active Restoration

Degraded land use activities

Misinterpretation of Ecosystem Needs

From a biological and ecological perspective, the only known substitute for natural fire, and the infinite and complex processes that arise from fire, is prescribed burning.