CONSTRUCTION ISSUE

Season’s Greetings From North Pole!

Build A 20M Portable Station
Alinco Two Band Mobile
Oatmeal Box Radio
Tesla Exposé
ICOM Next Generation Dual Band Performance!

ULTRA HIGH SPEED SCAN – Catch more of what’s going on! The IC-2350H scans twice as fast as older models, and there are 7 different scan modes to choose from!

WIDE BAND RECEIVE – Monitor more frequencies right “out of the box” (no modification necessary), including aircraft, public safety, police, fire, marine, weather, and more (receive 118-174 MHz).

CRYSTAL CLEAR RECEPTION – The built-in, adjustable (to 10db) RF attenuator improves blocking characteristics and provides a wide squelch.

IC-2350H FAST SCAN!

sensitivity range, enabling crystal clear reception of desired signals while fighting IMD (intermodulation distortion) from paperless, land mobile equipment, and other forms of interference. A COMBINATION OF GREAT FEATURES AT A VERY AFFORDABLE PRICE! Listen in on all the action using the IC-2350H and discover what a great value this next generation radio is! Visit your ICOM dealer today and hear more of what you’ve been missing!

IC-2350H FEATURES:

- 2M (45 Watts) & 440 MHz (35 Watts)
- Wide Band Rx (118-174 MHz)
- 110 Channel Memory Backed Up with EEPROM
- Tone Scan (opt. UT-89)
- Remote Control Mic (opt. UT-101)
- PL Encode Built-in
- Built-in Duplexer
- Auto Repeater Shift
- Voice Synthesizer (opt. UT-66)

Call ICOM’s brochure hotline: (206) 450-6088. For contact ICOM Technical Support in the hamRadio Forum on CompuServe @73540,325 (Internet: 73540,325 @compuserve.com). The ICOM logo is a registered trademark of ICOM, Inc. All other trademarks are subject to change without notice or obligation. All RF inputs are not intended to be used in the wireless communications system. FCC regulations limiting spurious emissions. CompuServe is a registered trademark of CompuServe Inc., incorporated, as HER Block Company: 735510591.
Get your own KPC-3 today. It's just the lift you've been needing.

ENJOY THE RUN

The KPC-3 offers more performance than any other TNC in its price range. No wonder it's the #1-selling TNC on the market today. And now, the KPC-3 can connect to GPS receivers with an NMEA-0183 interface. And it's the only TNC with enhanced GPS operations, including multiple string parsing; storage of outgoing data in tracking buffers; time-slotted broadcasting based on the GPS clock (so multiple stations can report without collision); and remote access to reconfigure the GPS unit. Like all Kantronics TNCs, the KPC-3 is thoroughly contemporary; it can run on a 9-volt battery, and it's portable. It also provides more than 20K of personal mailbox space that inexpensively expands to 100K.

For more information, contact your authorized Kantronics dealer or Kantronics at 1202 E. 23rd St., Lawrence, KS 66046-5006 913-842-7745 FAX 913-842-2031.
Now

The Drake SW8 – Finally, Professional Desktop Performance In An Affordable, Portable World Band Shortwave.

The company that has been setting the standards in premium-quality world band shortwave performance now puts top-of-the-line features and technology at your fingertips with the SW8... wherever you want to take it. Designed for both desktop use and easy portability, the Drake SW8 includes many of the same features that have made Drake a perennial favorite of experts—superb audio, versatility, and the unique combination of professional quality and functional simplicity. So tune in the world and get the best of all worlds—quality and affordability, desktop technology and portability.

The Drake SW8.

To order your SW8 direct, for more information, or for the dealer nearest you call:

1-800-968-7753

Drake

Get a Handle on World Events...Order Your Drake SW8 Today. Now Priced under $700.00

Get It Firsthand With Drake World Band.
Amateur Radio Today

TABLE OF CONTENTS

FEATURES
1. A Portable Integrated 20 Meter SSB/CW GRP Ham Radio Station
2. Nostalgia For The Future
3. A Perspirational Message
4. A Milliomh Adapter For Your DMM
5. The Reviews
6. Season's Greetings From North Pole

DEPARTMENTS
1. KB4ZGC
2. KC3ZQ
3. W2NSD/1
4. AJONLA6US
5. KB1UM
6. W5GMR
7. KM6L
8. K8AJ
9. W6AHB
10. WB6AOA
11. WB9RT
12. WA3WGV
13. KE5AY

On the cover: Season's Greetings From North Pole

This month's cover photo comes from George Pataki WB2AQC. 84-47 Kendrick Place, Jamaica NY 11432. George visited 50 amateur radio operators in 15 localities, and took 640 photographs during his summer, 1994 tour of Alaska. Our cover photo from the town of North Pole, Alaska, features Joel WL7AI sending us Season's Greetings from his very tall and well-anchored tower sporting a three element Yagi and his repeater antenna. Also in North Pole, George met with K7AJ and his 16 year old son David WL7KN and the family of Ed KL7XD, his wife, Sandy WL7PO, their daughter, Danielle WL7OW, and their two sons, Bill KL7TC and Mike, KL7YY who send their Season's Greetings as well.

Feedback:
Any circuit works better with feedback, so please take the time to report on how much you like, hate, or don't care one way or the other about the articles and columns in this issue. G = great, O = okay, and U = ugh. The G's and O's will be continued. Enough U's and it's Silent Keysville. Hey, this is your communications medium, so don't just sit there scratching your... er... head. FYI: Feedback "number" is the page number on which the article or column starts as shown in the index.

Contract:
The mere possession of this magazine constitutes an iron-clad legally binding contract between you and Kindly Old Wayne Green, the Publisher, wherein you agree to scour your newspapers and other magazines for items which you think, from reading his lengthy editorials, will interest said publisher. Furthermore, you agree to either send him the clippings or reasonably legible copies. And it wouldn't hurt you one little bit to keep copies of said clippings near your station mike to help you find better things to talk about than your rig or antenna.
Builder’s Alert!

If you’re not into designing and building little electronic gadgets, skip this, it’s not for you.

It all started when an envelope arrived with a little bag of hardware in it. Oh, I’d seen the Sescom ads, but I hadn’t really understood how neat their equipment boxes were. I spent a lot of years at the workbench making all kinds of electronic stuff, but nothing as cute as these had ever been available. Considering the size parts used to be, nothing I could have made back then would have fitted into most of these boxes.

So I contacted Sescom to see if they might be interested in me helping them get the boxes better known. Not being crazy, they agreed. Here’s the deal. For any article I publish that uses one of their boxes they’ll send a $50 check to the author, and that’s in addition to the pitance I shell out for good construction projects. A little bonus. Well, since their boxes only cost from $2 to $6, that’s a good gamble for any builder.

Don’t go away, I’m not done.

Sescom also makes some remarkably inexpensive modules for various audio applications. SIPs. These are also cute little buggers. If you can figure out some hamshack applications for these and come up with an article I can’t refuse, Sescom is offering a $100 reward, plus whatever you can squeeze out of ‘Never Spend a Dollar’.

There are 23 varieties so far, ranging from $15 to $35, things like mike pre-amps, remote volume control, automatic level controls, etc. These miniature circuit boards aren’t much larger than ICs.

I’m still not done.

Sescom makes most of their SIPs in fairly short runs, so they don’t need to have a market for tens of thousands to be interested in making more SIPs available. What they need is for you to brainstorm a small circuit and send them a prototype. If they like what you’ve done they’ll swing into action and add it to their catalog, with you getting $100 up front for the idea, plus a royalty on every sale. And I would expect, at the very least, an article from you on your hardywork. With good photos.

If your brain is all fogged up due to your poisoning yourself with mercury (fillings), Big Macs, Nutrasweet, Bud Light, and so on, then you can substitute some research into ham rag back issues for the creativity you’d otherwise have.

Sescom is mostly into audio circuits, but with your help maybe we can get them to start making some RF modules. Maybe some digital too. I’d love to have a module that would send my call digitally every time I push the mike button. At 9600 baud it would zip by like that. Then I’d want another module to decipher the signal when it’s used by others. The next thing you know we’d start seeing some of the big companies building this into their rigs, with a little LCD readout on the receiver giving the call of the station you’re receiving.

What else do you need?

How long will it be before we have a module in our rigs that we can load a digitized picture of ourselves into? That takes me back to the early slow-scan days around 1970, when I had three cameras set up in my shack, with one aimed at a menu board, a second at a slide projector, and the third at me. And there was this guy in Caracas who used to send hours and hours of Playbox centerfolds.

And the time when I went to Navassa to operate as KC4DX and took along some slow-scan QSOs on audio tape, plus a recorder to see what I’d received after I got home. I remember calling in on the slow scan channel on 20m and being told to go away because there was (wow!) a Mexican station on there that everyone wanted to contact. So I moved up the band and gave a few of the more alert slow-scanners a new country, while the herd were working that Mexican SSTV station.

Get out your soldering pencil and let’s see what you can do to have some fun and maybe even get Sescom better known.

Reminder For Skiers

Snow permitting, am I going to see you at Aspen January 4–11th, HT in hand so we can talk while on the lifts? That’s the slow season at Aspen, when prices are reasonable and the lift lines minimal (or less). And think of the fun we’ll have solving amateur radio’s problems over some delicious dinners. Mmm. We’ve had mini-hamfests at Aspen for many years and had a ball. Sking is half price if you’re over 65, and free at 70. There probably are some better places in the world to ski, I just haven’t found them yet. Let me know via fax: 603-588-3205 or via ProFusion@AOL.com.

Cuban QSLs

A letter from Thomas Hark KB8TAG enclosed a note he’d gotten from Oscar CO2OJ, explaining about his problem getting QSL cards, even though they’ve been sent to his post office box in Cuba. Oscar has been busy this last summer working American grid squares on both 2m and 6m via tropo and sporadic-E, hoping to be able to get the VOCC award. But with 75–80% of the QSL cards not making it through the Cuban postal system, he’s not getting the needed confirmations. A big part of the problem may be the $1 and $5 Green Stamps enclosed as incentives for a fast response. I suspect Oscar could get 100% of his wanted cards if he lined up an American QSL manager.

DXers can do well with Green Stamps if they can actually get their mail. I remember talking with Don Miller W9WNV back in the 1960s when he was going around the world DXpeditioning. He claimed that he was making over $50,000 a year charging for QSLs, with no income tax, since there was no way for the IRS to find out about it. And that would be more like $500,000 in todays dollarates. Say, does anyone know if Don’s out of prison yet?

Too bad if you missed the fun last summer on six meters. Many days it was hotter’n a pistol. With the sun spots cranking up, how about getting set up to have some DXing fun on 6m next summer?

Wayne Wrong On EMFs!

Well, that’s what a lot of readers have been saying, putting me down as just another hysterical eco-nut. After all, they’ve been saying, if there was any real problem the Health Department or the EPA would have acted long ago. Sure, like they’ve whipped into action in the case of cigarettes, which are a long-proven cause of sickness and death. Heck, cigarettes kill more Americans every year than AIDS, drugs, automobile accidents, and murders combined. But is that enough to warrant action? Not when the tobacco...
Mike Carbaugh WA3HDQ

First a little background info. I’ve had my ticket since 10th grade in 1967. I worked a lot of 6 meter AM and 2m FM, back when 2m was fun. Seems like now-a-days each repeater has its own little “group.” But I still use an HT in the car. I commute 52 miles one way and it’s nice to have.

I faded away from Ham Radio back in the late 70s. Since Techs were given 10m, I got back on the air in 1992. I run a barefoot-no frills station consisting of (1) Kenwood 520SE and Realistic HTX 100, mobile 10m; (2) 10m vertical; (3) HQ Mini-Quad, 6, 10, 15, 20 meters. (4) Coaxial dipole for 40m. Thanks to Radio Funfor info on construction. (5) Just purchased a PK-88 TNC; (6) searching for PC or Dumb Terminal. (7) Joined AMSAT and listen to the “birds.” (8) Realistic HTX 200 m HT.

Some random thoughts for newer ham and others. (1) 2m/10m crosslink repeaters are a lot of fun. Try them out if any are in your area. (2) send an SASE or postage when QSLing. (3) Clubs do more for newer or lower grade licensed hams - let them do some operating at field days, during contests and special events. Loosen up the meetings, don’t hold every one strictly to business. (4) Don’t be so quick to point out a newcomer to the repeater made a mistake and said “Break.” (5) Look where 20m and Novice did to activity on 10m! Allotment of more privileges on HF bands could increase our amateur ranks. (6) My last 125 10m contacts: 63 were Tech or Novice; 20 General class; 24 Advance class; 18 Extra class. (7) Seems to me everyone is taking advantage of Tech Plus and Novice activity on 10m. (8) What could we bring to other HF bands? 15 meters?

One final thought: I agree with you and so do many other silent hams - to “Hell with the Code.” It’s holding many good potential hams back.

Steven Katz WB2WIK/6: Your October editorial in 12 e “Money Ideas,” etc., brought to mind something that many hams know about and very few capitalize on. Many hams, including you and me, are PC nuts who have been there since the beginning. I had a “Sol” in 1976, followed by my first “real” PC, an Apple II, in 1978. First DOS system (IBM-PC) in 1983. Lacking available software in the early days, I wrote a lot of BASIC programs myself, as I’m sure you did. I now work in the PC peripherals industry and my office is in a building originally built and occupied by Pertec, the first real hard disk drive manufacturer in the U.S. They became part of DDC and then finally folded some years back, but Pertec launched a lot of businesses, including Micropolis (also here in Chatsworth, CA), Tendon and others. I feel like a dinosaur in this industry that is only maybe 18 years old. Sigh.

The business opportunities in PC peripherals are abundant. With read-write optical media and mechanisms becoming so affordable, floppy disks will soon be a thing of the past. Hard disks are already at 9 Gb and Micropolis (and probably others) are developing 18-19 Gb drives right now. RAID systems (Redundant Arrays of Independent Disks) for fault-tolerant data storage are becoming so popular that “hackers” already have them, including systems capable of storing 63 Gb of data in fail-safe setups that can’t lose a single Byte of data even in a disk “crash.” Pinnacle Micro and others are introducing 4.6 Gb optical read-write mechanisms with very affordable media. Where will it end? Nobody can possibly predict, but there’s surely no end in sight.

My 4-1/2 year-old daughter knows how to operate Windows 95. The information superhighway is alive and well, and anyone who isn’t on the Net is almost passé. I think the latest figures indicate some 35 million users on the World Wide Web, and this is bound to double in the next year or two. Highly competent PCs for less than pocket change abound in the marketplace. How can hams cash in on this? It’s obious. Networking and performing value-added retail services. The whole industry is so simple to understand that it’s populated mostly by folks who barely graduated high school. CD-ROMs are almost a thing of the past, since recordable CD mechanisms have become both available and affordable. Pinnacle’s new Apex 4.6 Gb drive is priced within reach of anyone who can buy lunch, and as prices continue to drop there will be no reason the average hacker can’t afford a 14-disk array jukebox for home entertainment. But end users are so silly they will continue to need integrators who are added-value resellers. And many folks would like to be part of the Web, but have no idea how to get on.

This is a fantastic business opportunity for thousands of hams who have any inkling whatever about how to set up a PC with a modem and get on line with an Internet provider. It’s child’s play, and as amazing as it sounds, thousands of slightly technically inclined individuals are making a great deal of money being part of the Superhighway. Mind you, these are short-term opportunities. Technology progresses faster than most of us can keep up, and many might have to be satisfied making their first million in the next year or two and then retire to operating from Tahiti.

It’s progressing faster than most could possibly imagine or keep up. But the money is available and there for the taking for enterprising folks who don’t mind working. It doesn’t take any financial investment, only the time to study and keep abreast of the rapidly changing technology. Banks, insurance companies, law firms et al, all need fault-tolerant data storage. How many hams are in this field? Raise your hands. Pity. Not very many.

Tsk.

It’s no good Steve, 20 years ago I tried hard to get hams to take advantage of the exploding computer field. The industry grew at 235% a year for its first seven years, just as I’d predicted. Thousands of people made millions. Some made billions. But you’re right, the industry is still growing fast and shows no sign of slowing down, so there’s plenty of money out there for manufacturers, programmers, consultants, and service providers. Any ham could live in a dream ham location and have a dream ham station, if he wanted to. It all takes is some self-education in computers and the gumption to do it. It doesn’t take a lot of brains to be a computer Ph.D., just some work. Wayne.

Michael Forinash KBOIA, Wayne, I’ve only been reading 73 for two years, but I think you’re doing a fine job. No complaints. Suggestions? Why not run an occasional photo of vintage equipment on the cover? I missed out on the 20s, 30s, and 40s, but I love looking at equipment from those periods. And how about more QRP projects?

Anyone got a good photo of a mint SW-3 or a SkyDiver Diversity we can run on the cover? Wayne.

Sid Choudhry KK6RN. I noticed in the September cover picture of your shack that you have a Palomar PT2500 antenna tuner just like mine. I’ve been looking everywhere for a manual for this tuner. Even Palomar hasn’t been able to find one. I wonder if you have one you could copy for me? Wayne’s so long gone, but I bet one of our readers can help. Sid’s at 2487 Cliff Road, Upland, CA 91784, Wayne.

Frank Rump KD4DZI. Wayne, a while back you asked hams to be courteous. A lot of them are nasty to each other on the air and the newspapers are telling us that violence has increased alarmingly among our youth since 1983. This was when Nutrasweet was introduced. Coincidence? Aspertame has been called a mind-altering drug and I’ve seen its effect on my wife after eating just one package of diet Jello pudding. Coincidence? I just use Ivory soap to wash my hair and my sense of smell is working fine. We had a policeman come to our ham club to talk about crime. He said if you use Mace on a person who has taken drugs it makes them more violent.

Nutrasweet (aspartame) looks to me like proof positive that money buys the FDA, just like it does our congress. Endless reports of its side effects show it can be devestating. Perhaps we should ask that any ham who has downed a diet cola or soda not operate for 24 hours. That might even clean up 14,313. But would it keep K1MAN off the air? Wayne.

Kintzondis Sirois SV2BXC. We had a tremendous 2m band opening on June 2nd. I was running 50 watts and got a 59 from F5NZO and then again from F5IRS, a path of about 2280 km! Then I worked F1CCB, HB9JAW, HB9NRO, and HB9SNR, all on 144.250 using FM. The sporadic-E was so strong I could hear HTs and it lasted for about an hour. Continued on page 32 of 73 Amateur Radio Today, December 1995.
WWV RECEIVER

Get time & frequency checks without buying multiband hf receiver. Very sensitive and selective ssa controlled superhet, dedicated to listening to WWV on 10,000 Hz. Performance makes it the most expensive receivers.

low noise receivers

LOW NOISE RECEIVER PREAMS

LNG-(*)

still only $59

wired/tested

FEATURES:

- Very low noise: 0.76B ufl vs, 0.8dB uhf
- High gain: 13-20dB (depends on freq)
- Wide dynamic range - resist overload
- Stable dual gain GMP EET

REPEATER CONTROLLERS

CWID-2.

controlled, minia-

ture, easy to build, low power CMOS, only $54 kit, $79 w/t.

COR-6. COR & Real Voice ID

on one board. Digital is recorded up to 20 seconds of your voice. Can record multiple id messages. Tail and time-out messages, courtesy beep, solid-state relay to key transmitter.

kit $99, w/t $149

COR-3. COR, timers, court,beep... kit $49

CWID. Diode programmable... kit $69

COR-4. Complete COR and CWID all on one board. CMOS logic for low power consumption. Eeprom programed.

Specify call.

kit $99, w/t $149

ACCESSORIES

DVR-1 DIGITAL VOICE RECORDER.

Recs up to 20 sec. of your voice with built-in mic or external mic. Terrific as voice id for repeaters or for fox hunting, contest caller, radio notebook, etc. Extensive manual tells how to use multiple messages to many applications.

kit $59, w/t $89

LDW-(*)

MINIATURE PREAMP

still only $29 kit, $44 wired/tested

- Low-cost MOSFET preamp
- Small size Only 5/6 W x 3/4 L x 1/4 H.
- Nf 1.2dB vs, 1.5dB uhf.
- Solder terminals for coax & pair connect

*Specify tuning range: 25-35, 35-55, 55-80, 80-100, 100-120, 120-150, 150-200, 200-260, 400-500 MHz.

HEXACON RESONATORS

HELICAL RESONATORS

Helical resonator filters may reduce your intermod & cross-band interference.

MODEL HRP-(*), $59 vs, $99 uhf.

RECEIVING CONVERTERS

Low noise converters to receive vhf & uhf bands on a 10M receiver.

- Kit less case $49, kit with case & BNC jacks $79, w/t in case $99.

TRANSMITTING CONVERTERS

XPV for vhf and XUV4 for uhf. Models to convert 10M ssb, cw, fm, etc. to 2M, 432, 435, and atv. 1W output. Kit only $89 (vhs), $99 (uhf). PA's up to 4W available.

- Buy at low, factory-direct net prices and save!
- For complete info, call or write for free catalog.

(Round $2 for overseas air mail.)

- Order by mail, fax, or phone (9-12 AM, 1-5 PM eastern time).
- Min. $5 S&H charge for first pound plus add weight & insurance.
- Use VISA, Mastercard, Discover, check, or UPS C.O.D.

LOW NOISE RECEIVERS

LAN-W(*)

still only $59

wired/tested

- Low-cost MOSFET preamp
- Small size Only 5/6W x 3/4L x 1/4H.
- NF 1.2dB vs, 1.5dB uhf.
- Solder terminals for coax & pair connect

*Specify tuning range: 25-35, 35-55, 55-80, 80-100, 100-120, 120-150, 150-200, 200-260, 400-500 MHz.

VHF & UHF AMPLIFIERS

For fm, ssb, adv. Output levels from 10W to 100W. Models starting at $99.

FM RECEIVERS:

- R100 FM RECEIVERS for 46-54, 72-78, 140-175, or 216-225 MHz.
- Very sensitive - 0.15uV, exceptional selectivity - both crystal & ceramic filters for >100dB at ±1kHz.
- FCC type accepted for ham bands.

New low price! kit $129, w/t $189.

- R451 FM RCVR, for 420-475 MHz. Similar to above.
- FCC type accepted. kit $129, w/t $189.

- R901 FM RCVR, for 902-928MHz.
- FCC type accepted. kit $189, w/t $219.

- R150 MONITOR RCVR for 143.064 or 216-225 MHz. 4-channels.
- Great for monitoring repeaters, amateur calling frequencies, packet radio, commercial two-way radio, police/fire frequencies, or weather forecasts.
- Good starter kit, easy to assemble and align. kit only $99, w/t $189.

- R120 AIRCRAFT RCVR for 110-130 MHz.
- kit only $99, w/t $219.

WEATHER SATELLITE RECEIVER

R139 Is The Affordable WeSat Rcvr!

Join the growing ranks of amateurs who get striking images directly from the weather satellites! We used our 30+ years of experience in designing high-quality vhf receivers to bring you a new enhanced version of our long-popular WeSat receivers. The new R139 is a very sensitive wideband fm receiver optimized for amateur reception of NOAA A/B and Russian Metos weather facsimile images on the 137 MHz band. Uses with any popular demodulator and software. Covers all five popular satellite channels. Scanner circuit and recorder controller allow you to automatically search for and tape signals as satellites pass overhead, even while away from home.

- R139 Receiver Kit and case $59
- R139 Receiver Kit with case and case power adapter $979
- R139 Receiver Wired/-tested in case with 12Vdc power adapter $239

You get more features for your dollar with our

REP-200 REPEATER

A fully microprocessor-controlled repeater with autotrack and many versatile dtmf control features at less than you might pay for a bare-bones repeater or controller alone!

kit only $1095 w/t only $1195

50 & 90 MHz bands are simply amazing.

- R139Be Receiver Kit for bare-bones repeater or controller alone.
- FCC type accepted for commercial use.

Request catalog for details.

REP-200T Voice Message Repeater. As above, except includes Digital Voice Recorder. Allows message up to 20 sec. to be remotely recorded on the air. Play back at user request by DTMF command, or as a periodic voice id, or both. Great for making club announcements!

adds only $100!

REP-200C Economy Repeater. Uses COR-6 Controller (no DTMF control or autotrack). Features real-voice ID.

kit only $795, w/t $1195

REP-200N Repeater. Want to use your own controller? No problem! We'll make you a repeater with rf modules only.

kit only $595, w/t $595

XMRS & RCVRs FOR REPEATERS, AUDIO & DIGITAL LINKS, TELEMETRY, ETC.

Also available in f-tight enclosures, and with data telemetry.
New 2m DX Record!

Tropospheric ducting resulted in some great DX for the alert, with the path opening between Hawaii and the West Coast at the end of June. Too bad if you missed it. The best DX was between Paul Lieb KH6HE, operating atop Mona Loa (13,660 feet) on the main island, and Jim Costello W7FI in Woodinville, Washington, up near Seattle. That's a distance of 2,692 miles. That was just a tad further than Paul's contact five years ago with KE2GXY, on Baja California. Paul also worked W7ZT and N7KSI in Washington, and N7AVK in Oregon. VE7SKA heard Paul, but couldn't get through. Anyone want to bet that SKA won't have a bigger signal next year? KH6HE also made 432 contacts with KG0XY and W65YA, but 2m was the hot band.

Launch contract for phase 3-D finalized

The Amateur Radio Satellite Corporation (AMSAT) has announced plans to launch the Phase 3-D satellite aboard the second flight of ESA's new Ariane 5 (Ariane 502) for approximately $1M US. The launch is currently slated for September, 1996, but if not possible could be shifted to an older Ariane 4 booster for launch by mid-1997.

Repeater Coordinators Meet

The nation's repeater frequency coordinators recently met with the ARRL and the FCC in St. Charles, Missouri. It was a politically charged meeting that has changed the face of VHF operation forever. This is because there is now a tentative agreement by which the American Radio Relay League has tentatively agreed, subject to board approval, to represent the nation's coordinators to the FCC. This, in exchange for the commission recognizing the work of the coordinators and possibly making their decisions binding on the ham radio community.

The meeting was held at the Best Western Noah's Ark motor hotel not far from St. Louis Airport. About fifty of the nations sixty-five recognized repeater coordinators were present. Also in the room were representatives of packet radio, amateur television and other modes that use the VHF and UHF spectrum, but from the outset it was made clear that this meeting was to discuss the problems of FM voice repeater coordination only.

Even though he was there unofficially, the tone of the meeting was set by the keynote speaker Ralph Hallor, N4RH, Deputy Chief of the FCC's Wireless Telecommunications Bureau: "I am particularly delighted that all of you have taken time from your schedules to be here and you have shown much interest in this matter, that you would come to St. Louis on a Saturday. I would like to ask that we try to stay focused. In talking to you, I know a number of you in this room have lots of other concerns. Enforcement, changes in the volunteer examine program, but that is not what today's meeting is about. Today's meeting is to talk about frequency coordination. An opportunity to get to really get to know each other. And it's an opportunity to bring frequency coordination to yet a higher plateau. So during the day let's stay focused on the real issues of why we are here. Let's not get sidetracked on other issues that can easily take up the day. Let's stay focused on frequency coordination. This is a truly historic day in the history of Amateur Radio.” Hallor, N4HY

Historic yes, but not without its problems. For a while, the entire proceeding seemed to be slipping away as the political differences between various coordinators and between some coordinators and the ARRL took center stage. As a result, much of the early discussion revolved into matters of finite detail rather than the general picture that Hallor had requested. So, not unlike other legislative bodies in a state of conflict, the group recessed. It was when the meeting reconvened that headway began. Owen Wormser, KOLEW, the president of the Mid-Atlantic Repeater Council was the person who brought it back on track.

"For the sake of beginning can we agree that those that are listed in the current ARRL Repeater Directory as coordinators for their specific areas etc. are in fact the baseline from which we can begin. Perhaps, but not the final solution, perhaps not the end of it, but can we agree that that is at least the beginning. Because where the next point goes is, if that is agreed then we have something else to say. And that is that in the longer term our objective is to produce the white paper which will be the assemblage its direction, it was Jim Fortney that added purpose:

"It has become very clear to me and I hope it would be clear to the majority of the rest of you, that the environment that the FCC finds itself in no longer allows us to use the methods and techniques that we have used in the past to deal with them. And that in fact that we better look at some new approaches. And one of those approaches that is being used elsewhere and has been suggested from a variety of directions that would be advantageous to us is if we, and I am talking about amateur radio, not repeater coordination necessarily, but amateur radio in total, we amateur radio had someone who represented us to the FCC." Fortney

Discussions and debates lasted another four hours. In the end it was decided to name the American Radio Relay League as the single point of contact, or spoke, between the nations frequency coordinators and the FCC. A committee chaired by Owen Wormser, KOLEW was empowered to draft a white paper setting forth the goals of the spoke. This paper will be circulated to all the nations recognized frequency coordinators listed in the ARRL repeater directory for comment before a final version is submitted. All of this seemed to please the FCC's Hallor:

"Clearly this afternoon, I think tremendous progress has been made. And I look forward to continuing to work with this group and your representatives who will ultimately be working with us directly in Washington. I think this is a giant move forward for Amateur Radio and I think it says a lot that all of you come here with such diverse views and in the course of a few short hours reach this kind of consensus.” Hallor

There is still a lot to be done before recognition of the work of coordinators becomes reality. Two of the biggest hurdles are drafting a white paper acceptable to most coordinators and for the ARRL's Board of Directors to vote on whether or not it really wants the SPHC job. The latter will happen in mid-January.

But assuming both of these tasks are accomplished, it may eventually mean that the average ham, people like you and me who simply operate FM with a mobile rig or an HT can be assured that the day of the so-called pirate repeater will come to an end. That our ability to communicate through our favorite repeater with a minimum of interference from other uncoordinated and unwanted repeater on the same channel pair, will be assured. And from a user's point of view, what more can an FM enthusiast want.

FCC Closing Several Offices

The recent Republican economy drive has hit the FCC, which has never been generously funded. The result is the announced closing of their Regional Offices in Atlanta, Boston, and Seattle. The Field Offices in Anchorage, Houston, Portland, Buffalo, Miami, San Juan, Honolulu, Norfolk, and St. Paul will also be closed, as will eight of their monitoring stations. The most serious of these is the Norfolk Office which was the training center for FCC agents for the whole country. No more "pink tickets" from Grand Island!

This presents an opportunity for amateur radio to offer to provide a new service for the FCC. We have thousands of handicapped and retired hams who would gladly volunteer to help monitor the spectrum as a public service. Since hams are everywhere, they could provide a more thorough monitoring service on HF, LF, VHF, and UHF than the FCC has had.

ARRL Seeks Enforcement Action

The ARRL may be headed to congress to try and force the FCC to enforce the Amateur Service rules. At least the rules that govern willful and malicious interference.

According to Minute number 3.1 of the recent Executive Committee meeting, on a motion presented by Director Joel Harrison, W8JIG, League President Rod Stafford, KB6ZV has been directed to appoint an ad hoc committee to—and we quote: "develop objectives and strategies to achieve legislative solutions to the problem of inadequate enforcement."

This action was prompted at least in part by a report to the committee by League General Counsel Christopher D. Imlay, N3AIXD. In his report, Imlay reported that progress on two egregious cases of repeater jamming have proceeded far
slower than had been promised by the FCC staff.
N3AKD also noted that the announced closings of
FCC field offices along with staff cuts appear to
have contributed to a deterioration in morale.

The FCC's internal problems not withstanding,
the ARRL appears to have concluded that the com-
munication has a constitutionally mandated re-
ponsibility to the American public. And since radio
amateurs are a part of this constituency, the FCC
has an obligation to enforce the rules it makes. If
the agency fails to do so, then legislative action
may have to be taken to make it happen.

Also noted in the committee minutes is RM-
8626, a petition by W5YI Report publisher Fred
Maia of Arlington, Texas. Minute 3.6 says that
the petition which would outlaw most one-way high
frequency transmissions was strongly opposed by
hundreds of commenters and should be, dismissed

\section*{Imax Images Of Shuttle-
Mir Available Via Internet}

Hams with Internet access will find several dra-
matic new images highlighting the historic docking
of the Space Shuttle Atlantis and the Mir space sta-
tion are available on the World Wide Web. The high
resolution images show crew activities and views
of Atlantis taken from Mir recorded using a 70-mm
IMAX camera.

Links to the collection can be found on the
"Today at NASA Home Page" on the World Wide
Web.

\section*{ARRL Honors NY Heros}

The American Radio Relay League has given
its highest possible honor to a New York area ra-
dio amateur. At its September 16th Executive Com-
mitee meeting in Albuquerque, New Mexico, the
committee voted unanimously to present its Na-
tional Certificate of Merit to Henry Borawski,
KB2PFP. This for—and we quote—"the bravery of
his actions in responding to the World Trade Cen-
ter bombing."

According to ARRL Hudson Division Director
Steve Mendelsohn, WA2DHF, Borawski used Am-
ateur Radio to assist citizens trapped inside the
World Trade Center after the bomb went off.
Mendelsohn who sponsored the Borawski nomi-
nation says that the award was given in recogni-
tion of the professional manner in which KB2PFP
performed his acts of heroism.

At the same meeting, the Executive Committee
also took note of the heroic efforts of numerous
Long Island, New York hams who donated their
communication skills is assisting firefighters beat
back a six thousand acre blaze. The committee sin-
gled out three hams, Section Manager Rick
Ramhap, N2GOR, Section Emergency Coordina-
tor Mario Mattea, WFT2T and Suffolk County Dis-
trict Emergency Coordinator Andrew Feldman,
WB2FXN, for special praise.

\section*{Fluke Oops!}

If you have a Fluke Series II DMM, Model 21,
23, Kl-23, 70, 73, 75, or 77, Fluke wants to get it
back to be modified. It seems that anything over
400 V, ac or dc, may indicate zero volts, which could
lead one to get one heck of a surprise, if the
reading is believed.

\section*{Israel Callbook}
Shlomo Reusali 4X8UM is preparing a callbook of
Israel hams active on the Internet. Send internet ad-
dresses to: mussels@shani.net. You can get the Israeli
From The Internet: Amateur Radio Newsline

\section*{Amateur Radio at the
Technoda}

The Technoda, a technical museum in Haifa,
Israel, is planning a full operational HF station with
a 3 element Yagi antenna, a display of CW recep-
tion as well as satellite communication and packet
radio.

\section*{ARRL Phone Change}

The ARRL has new phone numbers as the re-
sult of an area code for Newington. The Prefix has
changed to 860 but the previous area code, 203,
will continue to work until September 1996.

\section*{DX}

In DX, EH48Z, informs us that he hopes to go mobile
and activate some squares each Tuesday evening on
80 meters from 1900 UTC. He adds that other mobi-
lies are welcome to join in for a contact. QSL as directed.

And interest in the Worked All Ireland Award contin-
ues to grow. Quite a few amateurs are now operational
on or around 3670 MHz from 1900 UTC time most
evenings. If you are in the shack, do give a call on 3670
as recent activity has seen up to twenty operators on
the net.

\section*{QSL Contest}

Did you buy your QSL off a rack, or did you put some thought
and creativity into it? If you think you have
have a winner, send it in

\section*{What better present for a
ham friend than
twelve monthly
reminders
of your
thoughtfulness?}

Yes, a subscription to 73. But you’ll be
giving yourself a gift
too. For every gift
subscription you
handle for Santa,
we’ll send you a CD of
the music type of your
choice. First rate
music. Check out the
26 types of music
listed in Wayne’s
November editorial.

73 Amateur Radio Today • December 1995
How would you like to put together a neat single package 20 meter ham station capable of being powered by either the normal 120-V commercial power or a 12-V battery? It occupies a volume of less than one quarter of a cubic foot, and its footprint is just a bit more than one quarter of a square foot. It weighs less than ten pounds, and a handle on top makes it easy to carry anywhere on trips, for Field Day, emergency operation during a local disaster, or nestled in the corner of any room at home.

This integrated ham station consists of four modules, stacked atop each other, and held together with aluminum straps. In order, from bottom to top, are the power supply and speaker module; antenna tuner (MFJ-971); transceiver (MFJ-9420 with microphone); an accessory module, topped by a carrying handle. All interconnecting DC, AF, and RF cables is in the rear.

The station is capable of producing up to 8 watts CW and 10 watts SSB, and covers the entire 20 meter band in two switched segments. It contains a CW filter with four selectable bandwidths between 750 and 100 Hertz, with no ringing. The center (peak) frequency of the filter is adjustable between 400 and 1,000 hertz, an important plus for those who do not like the usual 750 hertz center frequency. A crystal-controlled marker generator with a 25-kHz output marks the subband edges and maintains calibration of the analog dial. It is controlled from the front panel. An electronic keyer is included, switched on with the filter from the front panel.

It contains a 20-watt 50-ohm dummy load, and a panel mounted RF wattmeter is included. RF from the transceiver can be switched from the input to the antenna tuner, a resonant antenna, or to the dummy load, with a front panel toggle switch. RF power is constantly monitored on this wattmeter. A 1-watt front-firing speaker is included in the power supply, along with both 3.5-mm and 1/4-inch headphone jacks which cut off the speaker when phones are being used. The “icing on the cake” is a 24-hour UTC LCD clock with its own internal battery.

Power Supply and Speaker Module

The power supply uses a standard linear regulator circuit. The transformer has a 16.3-V, 3-A secondary. A 10-ampere bridge is used with a 20,000-μF filter capacitor. Regulation is provided by an LM317T and a single 2N3055 NPN power transistor mounted in a 3" x 4" x 1" flanged heat sink, slightly narrowed with a hacksaw to fit on the rear deck of the Ten-Tec TP-45 aluminum clamshell enclosure. This enclosure is the exact same width as the MFJ cabinets, slightly less in depth and a fraction of an inch higher. A 1-watt, 8-ohm speaker with a large magnet is mounted on the panel, below which are a 3.5-mm and 1/4-inch phone jacks. Also on the panel is a meter which monitors either the DC voltage or current. The meter circuit includes a homebrew 3-ampere shunt, and a zener diode suppresses the meter zero, so the meter indications are from 10 to 15 VDC, and 0-3 amperes. There are two RCA jacks on the rear deck, providing the power for the remaining modules. One of these jacks is a spare and the other allows a 12-volt battery to be plugged in to supply power when commercial power is unavailable.

Antenna Tuner

Although I used an MFJ-971 Portable Antenna Tuner with a twin needle meter to indicate SWR and forward and reflected power, any antenna tuner capable of matching your antenna to the 50-Ohm nominal output of the transceiver can be used. I used a Ten-Tec TP-45 enclosure. (The MFJ-971 tuner is available from AES for $84.)

Transceiver

I used the MFJ-9420X (including the microphone, it was $210 from AES) because it is much more flexible than the other QRP rigs currently available. It’s a very well engineered transceiver, originally intended for SSB, but a CW adapter is available which makes it a very fine rig indeed. The receiver is both extremely quiet as well as sensitive. This is a very popular rig. I bought one of the first ones from AES, and it was on back-order for three months. In this circuit the audio output must not be grounded, so you can’t mount an external speaker jack on the metal rear deck. A simple modification is to insert a pair of back-to-back 8-ohm to 1,000-ohm tiny Radio Shack audio transformers between the output of the U5 chip and the speaker. One lead of the speaker and of the 8-ohm output winding of the audio transformer can be grounded, with the other lead of the transformer and speaker going to a closed circuit jack which can be mounted at the upper right hand corner of the rear deck (with the front panel facing you). The two transformers can be epoxied to the left side of the chassis at the top, near the rear deck.

Accessory Module

I used another Ten-Tec TP-45 enclosure for the accessories. It contains the RF Wattmeter and switching circuitry, and the dummy load. The dummy load consists of parallel-connected 470- and 560-ohm, 2-watt, 2% metal film resistors, five of each, sandwiched between two pieces of single-sided PC board stock, bolted to the inside of the rear deck. A SPST/NO relay, controlled by a toggle switch on the panel, switches the RF from the transceiver to either the RF OUT SO-239 (to
NEW MFJ-784B Features

- Tunable Spotting Tone™ -- an MFJ invention -- accurately tunes even the narrowest CW filter.
- MFJ’s exclusive Adaptive Tuning™ -- Center frequency tuning automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- New quieter audio amplifier gives you full 2½ Watts output.
- Speaker On/Off button, phones always active.
- Automatic gain control (AGC) keeps audio level constant during signal fade.
- Improved notch filter.
- MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.
- Improved notch filter.
- MFJ’s exclusive Adaptive Tuning™ automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- Improved manual notch in the CW mode.
- Manual notch and automatic notch can be used simultaneously.
- Noise reduction, automatic notch and tunable manual notch can be used in Memory mode.
- Improved manual notch.
- More Marke-Space frequencies and baud rates for data filters.
- Improved test filter for all digital circuitry, switches and controls.

Automatic notch filter
MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.

With up to 50 dB attenuation, you’ll copy stations otherwise masked by heterodynes.

Voice signals aren’t degraded because the notch is extremely narrow.

Turn on automatic notch and you’ll never hear unwanted heterodynes of tuners-operators.

You can selectively remove unwanted tones using the two manually tunable notch filters -- an MFJ exclusive.

Knock out unwanted CW stations while you’re on CW.

Adaptive Noise Reduction
Turning on noise reduction silences background noise. It reduces fatigue and makes noisy signals readable.

Noise reduction works in all filter modes and on all random noise -- white noise, static, impulse, ignition noise, power line noise, hiss, etc. The LMS algorithm gives you up to 20 dB of noise reduction. Noise reduction is adjustable to prevent signal distortion.

Unlike other filters, speech is not distorted by unequal time delay.

When signals are weak, you can improve copy by removing noisy high and low speech frequencies that contain little information.

On crowded HF bands, you can “slice-off” overlapping SSB signals to improve copy.

You can highpass filter out hum, pulses, raps and other irritating low frequency noise.

Tunable bandpass filters
Narrow band signals like CW and RTTY jump out of QRM when you switch in MFJ’s exclusive tunable FIR bandpass filters.

You can tune the center frequency from 300 to 3400 Hz, and vary the bandwidth from 30 Hz to 2100 Hz -- from super-tight CW filters to wide razor-sharp Data filters.

As you narrow the bandwidth, interfering signals drop out, because, just 60 Hz away, they’re down by over 47 dB.

You can use narrower bandwidths to fight tough QRM because these linear phase filters don’t distort signals with unequal time delays.

Even with the narrowest 30 Hz bandwidth, you’ll never have a problem with ringing.

Tunable highpass/lowpass filters
For Voice and Data, nothing beats MFJ’s exclusive tunable highpass/lowpass FIR linear phase “brick wall” filters.

You can tune the lower cutoff frequency 200 to 2200 Hz and the upper cutoff frequency 1400 to 3400 Hz. This lets you create custom filters for Voice, Data and other modes.

Signals just 75 Hz away literally disappear -- they are reduced 57 dB!

NEW MFJ-784B Features

- Tunable Spotting Tone™ -- an MFJ invention -- accurately tunes even the narrowest CW filter.
- MFJ’s exclusive Adaptive Tuning™ -- Center frequency tuning automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- New quieter audio amplifier gives you full 2½ Watts output.
- Speaker On/Off button, phones always active.
- Automatic gain control (AGC) keeps audio level constant during signal fade.
- Improved notch filter.
- MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.
- Improved notch filter.
- MFJ’s exclusive Adaptive Tuning™ automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- Improved manual notch in the CW mode.
- Manual notch and automatic notch can be used simultaneously.
- Noise reduction, automatic notch and tunable manual notch can be used in Memory mode.
- Adjustable line level output.
- More Marke-Space frequencies and baud rates for data filters.
- Improved test filter for all digital circuitry, switches and controls.

Automatic notch filter
MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.

With up to 50 dB attenuation, you’ll copy stations otherwise masked by heterodynes.

Voice signals aren’t degraded because the notch is extremely narrow.

Turn on automatic notch and you’ll never hear unwanted heterodynes of tuners-operators.

You can selectively remove unwanted tones using the two manually tunable notch filters -- an MFJ exclusive.

Knock out unwanted CW stations while you’re on CW.

Adaptive Noise Reduction
Turning on noise reduction silences background noise. It reduces fatigue and makes noisy signals readable.

Noise reduction works in all filter modes and on all random noise -- white noise, static, impulse, ignition noise, power line noise, hiss, etc. The LMS algorithm gives you up to 20 dB of noise reduction. Noise reduction is adjustable to prevent signal distortion.

Unlike other filters, speech is not distorted by unequal time delay.

When signals are weak, you can improve copy by removing noisy high and low speech frequencies that contain little information.

On crowded HF bands, you can "slice-off" overlapping SSB signals to improve copy.

You can highpass filter out hum, pulses, raps and other irritating low frequency noise.

Tunable bandpass filters
Narrow band signals like CW and RTTY jump out of QRM when you switch in MFJ’s exclusive tunable FIR bandpass filters.

You can tune the center frequency from 300 to 3400 Hz, and vary the bandwidth from 30 Hz to 2100 Hz -- from super-tight CW filters to wide razor-sharp Data filters.

As you narrow the bandwidth, interfering signals drop out, because, just 60 Hz away, they’re down by over 47 dB.

You can use narrower bandwidths to fight tough QRM because these linear phase filters don’t distort signals with unequal time delays.

Even with the narrowest 30 Hz bandwidth, you’ll never have a problem with ringing.

Tunable highpass/lowpass filters
For Voice and Data, nothing beats MFJ’s exclusive tunable highpass/lowpass FIR linear phase "brick wall" filters.

You can tune the lower cutoff frequency 200 to 2200 Hz and the upper cutoff frequency 1400 to 3400 Hz. This lets you create custom filters for Voice, Data and other modes.

Signals just 75 Hz away literally disappear -- they are reduced 57 dB!

NEW MFJ-784B Features

- Tunable Spotting Tone™ -- an MFJ invention -- accurately tunes even the narrowest CW filter.
- MFJ’s exclusive Adaptive Tuning™ -- Center frequency tuning automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- New quieter audio amplifier gives you full 2½ Watts output.
- Speaker On/Off button, phones always active.
- Automatic gain control (AGC) keeps audio level constant during signal fade.
- Improved notch filter.
- MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.
- Improved notch filter.
- MFJ’s exclusive Adaptive Tuning™ automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- New quieter audio amplifier gives you full 2½ Watts output.
- Speaker On/Off button, phones always active.
- Automatic gain control (AGC) keeps audio level constant during signal fade.
- Improved notch filter.
- MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.
- Improved notch filter.
- MFJ’s exclusive Adaptive Tuning™ automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- New quieter audio amplifier gives you full 2½ Watts output.
- Speaker On/Off button, phones always active.
- Automatic gain control (AGC) keeps audio level constant during signal fade.
- Improved notch filter.
- MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.
- Improved notch filter.
- MFJ’s exclusive Adaptive Tuning™ automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- New quieter audio amplifier gives you full 2½ Watts output.
- Speaker On/Off button, phones always active.
- Automatic gain control (AGC) keeps audio level constant during signal fade.
- Improved notch filter.
- MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.
- Improved notch filter.
- MFJ’s exclusive Adaptive Tuning™ automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- New quieter audio amplifier gives you full 2½ Watts output.
- Speaker On/Off button, phones always active.
- Automatic gain control (AGC) keeps audio level constant during signal fade.
- Improved notch filter.
- MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.
- Improved notch filter.
- MFJ’s exclusive Adaptive Tuning™ automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- New quieter audio amplifier gives you full 2½ Watts output.
- Speaker On/Off button, phones always active.
- Automatic gain control (AGC) keeps audio level constant during signal fade.
- Improved notch filter.
- MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.
- Improved notch filter.
- MFJ’s exclusive Adaptive Tuning™ automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
- Improved automatic notch with variable aggressiveness.
- New quieter audio amplifier gives you full 2½ Watts output.
- Speaker On/Off button, phones always active.
- Automatic gain control (AGC) keeps audio level constant during signal fade.
- Improved notch filter.
- MFJ’s automatic notch filter searches for and eliminates multiple heterodynes in milliseconds. It’s so fast, that even interfering CW and RTTY signals can also be eliminated.
- Improved notch filter.
- MFJ’s exclusive Adaptive Tuning™ automatically becomes finer as you narrow bandwidth -- makes extremely narrow filters easy-to-use.
constructed using one of WIFB’s designs when I glanced at a new Ramsey Electronics catalog. Their new Model AF-1 filter uses a pair of MR8 switched capacitor filter chips, incorporates an LM380 amplifier to bring up those weak CW signals from the noise, has four selectable bandwidths (750, 500, 250, and 100 Hz) plus an adjustable center (peak) frequency. I would not have to listen to 750-Hz tones; I could pick my own lower frequency note. The cost, in kit form, is $36 plus the usual S&H. This filter also contains a limiter circuit at the input so it cannot be overloaded with too high a signal from the speaker jack. Because Ramsey intends this filter to be a self-contained item, it uses a bridge circuit so it can be operated from 12 VAC or 12 VDC without regard to polarity. It also contains board-mounted RCA jacks for audio input and output. Three DPDT push button switches, also board-mounted, provide on/off power and filter bypass on one switch. The other two switches must be manipulated in a relatively complex in/out system to select the desired bandpass. The CW gain pot is board-mounted. So is the pot which adjusts the center peak frequency. Because I intended to install this filter in the accessory module and use 3.5-mm phone jacks for audio in and out on the rear panel, and also because room in the accessory module was rapidly diminishing, I mounted the keyer where the filter would have to fit. I took my trusty hacksaw and removed the rear section of the PC board, eliminating the power bridge and RCA jacks. Also, I have an avaration to board-mounted controls, so I did not use those supplied. I used a DPDT toggle switch to control power and to bypass the filter, and two sections of a 4-position wafer switch to select the four bandwidths. I mounted a standard 10k pot on the panel for CW gain, and installed a rectangular multurn tripot replacing the pot which selects the center peak frequency, which I set for 500 Hertz.

Operation

Although my antenna, 33 feet of sloping wire at an average height of ten feet, is hardly state of the art, it’s the best I can manage in my location, so I didn’t have too high a hope for results. Tuned up, I can produce 5 watts CW and 8 watts PEP on SSB. I have tried it on SSB because my average power is probably no more than 3 watts which, combined with a much less than optimum antenna, should be a severe handicap. If I could talk with anyone I would consider myself lucky. The first five QSOs with this new station really surprised me! Even though conditions were very poor, W3FPN in Florida gave me a 4 by 0. He was 5 by 1-5. The next day P4EOEWE, who was only coming through 5 by 1, gave me a 5 by 1-4. We had a 10-minute chat, and he was running 400 watts to a beam. Okay, he was doing most of the work. AA2NU (NY), who was only 5/4, gave me a 2/2. W1KY (NY) was 5/6 and gave me a 5/6 and a note on his QSL that mine was the best QRP signal he’d ever heard. How about GDOPLT on the Isle of Man (in a pileup!), he was 5-5 gave me a 5/1-2. He was running 400 watts and a 2-el triband beam. Obviously, much praise should go to MFJ and the engineers who designed the MFJ-9420. The Ramsey AF-1 filter is phenomenal. Listening on CW, I was able to pick out a weak signal down in the noise and gradually hoist it up until it was all alone in the center of the 100 Hz passband, with absolutely no ringing. I wouldn’t have believed it until I actually tried it.

What Does It Cost?

Although the main components: MFJ-9420X and MFJ-971 total $294 (from AES). Then, other than the $36 for the AF-1 filter kit, I delved deeply and often into my junk box. Therefore, I spent quite a bit less than if I’d purchased all new or surplus parts. To give you an idea of total cost to duplicate this station I have gone through my catalogs to get the latest prices. The power supply and speaker: $51.25. CW filter: $42. crystal marker: $9. RF wattmeter and dummy load: $16.50. Electronic keyer: $11. Two TP-45 clamshells: $25. Handle: 50¢.

Conclusion

This article was written not for you to duplicate my particular station, but to suggest an approach which you might wish to emulate, using whatever rigs and accessories you have on hand. Look for me on 20 meters from Puerto Rico, both CW and SSB. I may not bend the needle of your S-meter, but I can give you a fine Q5 signal!
Have Beam, Will Travel!

Shake, twist—your walking stick becomes a beam!

How would you like a four element 2 meter yagi that travels the mountain trails as as walking stick? Pick a rest stop, remove the end cap, shake out the elements and feedline, and in two minutes your HT is full quieting wherever you point it.

Finished resting? Unscrew the elements and drop them into the boom; you’re ready for travel. But whenever you get the urge, it’s there, ready to zero in on a jammer, chase a radio fox, or shoot your signal out of a hole in time of difficulty.

What is it? ArrowBeam. It shoots straight and true, and its strong flexible elements are stored in the boom like arrows in a quiver. It weighs only a pound and a half and is balanced in the hand, but it can take abuse.

Keep it in the trunk of the car. It’s tough exterior protects everything against damage as it gets tossed and knocked about. But when it’s time for action—shake, twist, and ArrowBeam is ready to shoot your RF right where you want it.

This handy versatile antenna is made to be dropped, bumped, and stepped on while you are racing through brush and branches in pursuit of the elusive radio fox. Drop it? It bounces. Snap a low limb as you drive by? Twang! the tempered elements just spring back into position. Sit on it? You’ll need a bandois for your fanny, but ArrowBeam will be ready for more.

Of course ArrowBeam will do just fine in an attic or on a mast even though it’s made for the torture of the T-hunt.

Performance? ArrowBeam scored best for its boom length at the Dayton VHF competition. It’s the antenna chosen by the FAA for its spook beacon and rogue ELT search teams.

Now you can have ArrowBeam’s performance and toughness for your radio adventures.

Half-Size ArrowBeam?
Now there’s a version of ArrowBeam that breaks down to half the Walking Stick size—the Grab-N-Go Arrow Beam. For storage the boom separates at the center, so the whole antenna stores in half the length—perfect for slipping in a backpack.

You get the same great performance, the same ease of assembly, the same robust durability, but Grab-N-Go fits in your suitcase.

The Grab-N-Go ArrowBeam comes in its own forest green stuff sack. There’s extra room there for other goodies you may wish to carry with your beam—feedline, homebrew PVC mast, omnidirectional Pico-J antenna, etc. This is the version Becca is taking on her trip.

ArrowBeams
• Walking Stick 2m $79
 Elements 4 Boom Length 48”
 Gain 6.1 dB Front/Back 10.1 dB
 SWR <1.1 min., <1.5 band edges
 Add $6 S&H

• Grab-N-Go 2m $89
 Same as above, but breaks down to <25” for storage. Mast mount and Forest Green Stuff Sack included.
 Add $6 S&H

• Walking Stick 70cm $49
 Elements 5 Boom Length 40”
 Gain 7.3 dB Front/Back 12.1 dB
 SWR <1.1 min., <1.5 band edges
 Add $5 S&H

Other Range Extenders
• Pico-J 2m $19.95 ppd
• Pico-J 2m/70cm $26 ppd
• 2m Packet Pico-J $22 ppd
• TigerTail (2m/70cm) $8 ppd

Save $5
Order more than one item and knock $5 and shipping off the price of each after the first.

Yes. Send ArrowBeam: □ WS2m □ WS70cm □ GGG 2m
Yes. Send my □ Pico-J Model: □ TigerTail

Name ____________________________
Call ____________________________
Street ____________________________
City __________________ State ______ Zip ______

Antennas West
InfoPak Order Hotline
Box 50062-S Provo UT 84605
800 926 7373

CIRCLE 57 ON READER SERVICE CARD
Nostalgia For The Future

High performance crystal radio utilizes a high-efficiency JFET detector and dual resonant circuits for superior performance.

by David W. Cripe KC3ZQ

Abstract: This article describes a high-performance crystal radio receiver utilizing a high-efficiency JFET detector, and a dual-resonator tuned circuit for high selectivity. Included are a parts list, plans, and photographs showing construction details.

Ultimate Crystal Receiver

In our age of satellites, Digital Signal Processing, and packet radio, why would anyone give a second thought to a technology that was obsolete by the vacuum tube? Even though the crystal radio has been with us since the earliest days of the radio hobby, there are still thousands of enthusiasts who have a fascination for the lowly crystal receiver. There are thousands of hams who received their introduction into radio through little, home-brew crystal receivers, and to us, these conglomerations of wire, headphones and cat whiskers hold a special nostalgic attachment.

Having gotten my start in radio some twenty-five years ago with a little crystal set, I never really stopped playing with them, having built perhaps a dozen or so over the years, testing out one idea or another. Recently, I decided to design and build the ultimate crystal receiver. I spent a couple months here and there experimenting with various tuning configurations, and detector circuits, arriving finally at a design capable of pulling in some real DX. I found that with the proper design and a good antenna, a crystal radio is capable of performance equal to that of a typical portable transistorized receiver, and is much more fun to build and operate!

How It Works

Since a crystal radio has no amplification, it is essential that as much as possible of the energy entering the antenna be converted to audio energy in the headphones. Consequently, each of the components of the receiver must operate with very little signal loss. See Figure 1, the schematic of the new-and-improved crystal radio. Unlike the crystal sets that most of us are familiar with, this one uses two coils, L1 and L2, each with its own variable capacitor. The coils and capacitors in a crystal radio form a tunable band-pass filter with which the desired signal can be selected, and the unwanted signals rejected. These two resonant circuits form a two-pole band-pass filter giving much higher selectivity than that attainable with a single circuit. Dual resonant circuits are nothing new in crystal sets; the idea has been around since the days of spark. But, the additional selectivity the technique affords is especially useful in separating signals in today's crowded AM band. Additionally, coil L1 has a sliding tap to match the antenna impedance to the rest of the circuit; similarly coil L2 has a sliding tap to match the impedance of the detector and headphones. Figure 2 is a detailed close-up of the coils.

The purpose of the detector in a crystal radio is to convert the amplitude-modulated radio-frequency signal to an audio signal. It does this by clipping off the negative half-wave of each RF cycle, yielding a signal containing an audio-frequency term. The most radical departure of this receiver from conventional crystal radio design lies in the design of the RF detector. The detection efficiency of the 1N34 germanium crystal diode used as the detector in most crystal receivers diminishes rapidly if the peak amplitude of the RF signal applied to it drops below 0.3 volts. Consequently, in this design, the crystal diode detector has been discarded in favor of a circuit utilizing a Junction-Field-Effect-Transistor having superior detection efficiency and weak-signal performance than that attainable with a diode detector.

The detector used here is comprised of the circuit containing Q1, C3, R1, R2 and B1. The drain of the JFET Q1 is connected to the sliding tap of L2, and the source terminal of Q1 is connected to the headphones. The gate terminal of Q1 is coupled to the 'hot' end of L2 through C3. The drain-source channel of a JFET acts as a variable resistance, controlled by the voltage applied to the transistor gate. Since the 'hot' end of L2 has a much larger RF voltage amplitude than is present on the tap for the drain of Q1, we can take advantage of this voltage gain to cause Q1 to transition cleanly between a high-resistance and low-resistance state. This makes it a very effective RF detector, one requiring no external power source! (Note: You may want to experiment to see just how effective the JFET detector is—temporarily remove the circuit, and replace it with a 1N34 between the L2 slider and the phones. Quite a difference!)

Notice that there is a battery in the circuit—usually forbidden in crystal radios! This battery is NOT used as a power source for amplification, but as a voltage source, which, with resistors R1 and R2, is used for setting the bias voltage on the gate of Q1 for maximum sensitivity. (It is interesting to note that bias voltages were sometimes applied to the crystal detectors of early crystal radios, for the same purpose.) When operating, the current draw from this battery is only 9 μA, so even under daily use, this battery should last for several years. Because of this low current draw, this circuit will work fine using old batteries too weak to run your Walkman.

Building The Radio

Unlike most electronic construction projects, a crystal radio requires one to be a bit of a handymen to put one together. You will need some wood-and-metalworking tools in addition to a soldering iron to build this project. Furthermore, some of the parts for the radio will take a bit of hunting to find. High-impedance headphones, variable capacitors, and Farnsworth clips are definitely not stocked at your local Radio Shack! If your junk box doesn't have these parts, they are available through mail order. While you...
are waiting for these parts to come in, you can be winding coils!

The coils L1 and L2 are approximately 250 µH each, and are designed for very high Q and low distributed capacitance. The coils are wound with 16 gauge enameled magnet wire with each turn spaced by roughly one wire diameter. The coils L1 and L2 must be wound on coil forms approximately 4” diameter by 7” long. Cromeal is sold in cardboard boxes of this size. In my case, I happened to have some sections of thin-wall PVC drainage pipe of these dimensions which worked well, also. Drill the holes for mounting the slider bar and winding termination points as per Figure 3. If you are using cardboard coil forms, spray them with several coats of clear Krylon® varnish before winding. Obtain 1-1/2 lb. (175 feet) of 16 gauge enameled magnet wire, which can be purchased at your local electric motor repair shop. You will also need a spool of cord or twine of approximately the same diameter as the wire to space the turns. Wind the wire and twine on the form at the same time, so that the wire and twine goes on in alternate turns. Start and finish winding leaving approximately 1/2 inch on each end of the coil form (65 to 70 turns). Loop the wire through the termination holes drilled in the coil form, and tie the twine off so it does not unwind from the coil form.

Next, spray the wound coil with a layer of Krylon®. When this is dry, unwind the twine, being careful not to dislodge the spacing of the turns of wire. Give the coil one more good coat of Krylon® to fix the spaced turns of wire in place.

Install the winding terminal hardware as shown in Figure 4. Cut the ends of the coil windings about 1/2” longer than needed to reach these screws, and sand off the enamel insulation prior to assembling this hardware. Wrap the wire around the screw prior to installing the Fahnstock clip on the terminal screw.

It is necessary to remove the wire’s enamel insulation from the section of the coils beneath the slider’s path. Using an emery fingernail file, sand the insulation from the wire in a 1/2” wide strip below where the slider will mount. Brush the copper dust away so that no shorts result.

The slider assemblies are used to obtain the adjustable taps on the coils L1 and L2. The sliders will require some care in their fabrication. Figure 2 and Figure 4 show details of their construction. First, build the slider bars. Take the 3/16” square brass tubing, and cut them to the length of the coil forms. Then, drill a 1/8” diameter hole through the tubes 1/4” from each end. File down the burrs from these holes so that the 7/32” tubing can fit over the 3/16” tubing. The slider is constructed by cutting a 7/16” long section from the 7/32” square brass tubing. Carefully de-burr the cut end, and make sure that the 3/16” square tube will slide smoothly inside it. Solder the head of one of the 1/2”, 6-32 flat head screws to the middle of one side of the piece of 7/32” tubing. Next, obtain a bull-point pen spring from which to form the slider contacts. (Note: the brass or copper colored springs will solder more readily than the unplated steel springs.) Straighten out the spring, and cut two, one inch lengths. Bend these pieces of wire into “U” shaped loops, and solder these onto the sides of the sliders, so that about 3/16” of the loop extends below the slider tube. An alternative approach to the slider contact construction can be had if you have access to a section of copper fing­erstock. A single finger may be cut off and soldered onto the square tubing for a ready made slider. Screw a wire-nut over the 6-32 screw on the top of the slider for an insulated handle. Slide the slider assembly over the 3/16” square slider bar, and mount the finished assembly on the coil form as shown in Figure 4. Space the slider bar up from the coil form with #4 washers so that the spring wire slider contact just grasps the wire of the coil. (Note: if you chose not to fabricate your own slider assemblies, they are available pre-made from Modern Radio Labs.)

Now, cut a 22” length of a 1” x 12” board on which to mount the whole assembly. This is the origin of the term “breadboard”—old­time radios used to be built on wooden bases! From the wood remaining, cut two 4” by 6” pieces, and drill two 3/8” holes in each as shown in the diagram. Cut the 3/8” diameter dowel rods to a length of 24 inches, and insert the two pieces into the holes in the 4” x 6” blocks. Use a couple of finishing nails to affix these blocks onto the ends of the bread­board base. This forms the cradle which will hold the coils, and allow the distance between them to be varied.

As far as the assembly of the JFET detector circuit is concerned, construction is not critical. You may wire it up point-to-point, as I did, on brass brads driven into the breadboard. It may look pretty ratty, but fits in well with the overall aesthetics of the project.

Notes On Parts

Undoubtedly, obtaining the parts to build this project will take more leg­work than most of us are accustomed to. Unless you have a junk box as extensive as mine, you will likely have to hit some hamstands, or wait a few weeks for mail-order parts to arrive. But, be assured, that the thrill of operating this little receiver will make up for the time and effort that went into building it.

To obtain the square brass tubing needed for the coil sliders, try your local hardware store or hobby shop. Stores specializing in model airplanes, or radio controlled cars are likely to carry assorted brass tubing.

The variable capacitors C1 and C2 are standard 365 pF air variables. In recent years, these have become more difficult to find, but they are still available with a little searching. Antique Electronic Supply, Modern Radio Labs, and Fair Radio are good sources. If you don’t have any lurking in your junk box, and don’t want to go the expense of new units, I recommend you hit the local garage sales, and pick up a couple old tube-type, counter-top radios. These can usually be found for less than a buck, and are full of good salvageable parts for experimenters—in addition to variable capacitors.

The antenna for this radio is particularly important. The energy which
makes it to the headphones has to come into the antenna first, so if you want to go for DX, don't scrimp on the antenna. The general rule of thumb is to use as much wire as you can, and put it as high in the air as possible. If you are using a wire dipole for HF, a good AM broadcast antenna can be had by tying the center conductor and shield of the dipole feedline together to make the feedline a vertical antenna. Similarly, if you have a roof-mounted TV antenna, tie the ends of the 300 ohm twin-lead together to use the feedline as an antenna. The ARRL Handbook might provide ideas for antennas, but—use your imagination and creativity.

A good ground is equally important! But, most hams already have their shack well-grounded, so this should not be a big problem.

Headphones are another area where good equipment makes a real difference in the performance of a crystal radio. A good set of 2000 ohm, high impedance headphones is essential. These can often be found in hamfests in used condition at quite reasonable prices—otherwise, Fair Radio, Modern Radio Labs, and Antique Electronic Supply each carry them. If at all possible, try to acquire a set of phones manufactured by Baldwin. These used a mica diaphragm rather than the steel diaphragm that most high-impedance phones had. They have a very well deserved reputation for sensitivity, and are worth the extra couple bucks you will have to pay for them.

You may also wish to experiment with a crystal earphone instead of the 2000 ohm headphones. These are less expensive than with a new pair of 2000 ohm phones, and are roughly as sensitive. Crystal earphones are available from Mouser Electronics, Antique Electronic Supply, and Modern Radio Labs.

Fahnestock clips are the final touch needed to complete the project. Although they are not necessary electrically, they are a convenient way to hook up the circuit, and they do add a nostalgic touch to the project. They are available from Antique Electronic Supply and Modern Radio Labs.

Operating The Receiver

Once the receiver is assembled, and antenna and ground wires connected, it is time to give this rig a listen! Start off by setting the adjustments to nominal settings. Slide coils L1 and L2 so that their adjacent ends are about 4" apart, and set the sliders of each to about one-half of the way up from the grounded end of their respective coils. In adjusting the sliders, it is necessary to be careful that the slider contact touch only a single turn on the coil. If the slider is positioned so as to short two turns together, it will greatly reduce the sensitivity of the receiver. Set R2 to the middle of its range. Then, listening on the phones, turn C1 and C2 together until a strong, local station is heard. You may hear more than one station in the background. The detector bias voltage setting is particularly critical, so carefully adjust the detector bias control, R2, until the receiver volume is maximized.

I have found for this design, the best compromise of sensitivity and selectivity occurs when the adjacent ends of L1 and L2 are separated by about six inches. The selectivity of the receiver is also increased by adjusting the sliders toward the grounded end of their coils. For a long antenna, the best performance will be had with the L1 slider only a few turns from the grounded end of the coil. When increasing the selectivity of the receiver, there will be a point past which the volume of the signal will begin to diminish. It is at this point that the receiver will perform best. If you have access to a millivolt-voltmeter, it can be used to quickly find the optimum settings for the sliders. With the receiver tuned to a strong local station, by repositioning the sliders one way or another, and re-peaking the tuning capacitors, it is possible to find the position of the sliders giving the maximum detected carrier voltage across the headphones, which will be the most sensitive setting for the receiver.

So how does it work? Perhaps my station log might be some indicator of the performance of this rig. Using a 40 meter dipole at 30 feet as my receiving antenna, I was able to pick up KAAY, KOA, WSM, WMAQ, WSB, WBAP, WLW, WWWE, and a score of other mid-western clear-channel stations. Selectivity was such that I could easily separate KAAY (1090 kHz) from KHMO (1070 kHz). It is quite a novel experience to hear ‘DX’ on a crystal radio that one can’t even hear on a more expensive transistor portable.

While I can say that my most memorable radio experience was listening to my first crystal radio, the fun of building and operating this latest one must come in a close second. I hope that anyone else who chooses to build one of these derives as much enjoyment from it as I did mine. And perhaps with it, you may inspire an inquisitive youngster into a lifelong love of radio, with a crystal set that will be nostalgic for the future.

Parts List:

C1, C2 365 pF Variable Capacitors
C3 100 pF SM or Ceramic RS# 272-123
C4 0.01 µF RS# 272-131
R1 1 MΩ, 1/4 W RS# 271-1356
R2 1 MΩ, Variable RS# 271-211
L1, L2 250 µH tapped inductors—see text
Q1 2N3819 JFET RS# 276-2035
B1 9V battery
9V battery clip RS# 270-325

Qty
1-1/2 lb 16 AWG, Enamelled Magnet Wire
2 3/16" x 12" square brass tubing
1 7/32" x 12" square brass tubing
2 1/2" x 6-32 brass flat-head screw
4 5/8" x 6-32 brass round-head screw
4 5/8" x 4-40 brass round-head screw
10 Fahnestock Clips
#6 x 1/2" Sheet Metal Screws
#6 brass flat washers
#4 brass flat washers
#6 bronze split-ring lock washers
#4 bronze split-ring lock washers
2 Small wire nuts
2 Knobs for C1 and C2
2 3/8" x 3" wood dowels
1 1" x 8" or 1" x 12" board—at least 28" long
1 Spray can clear Krylon™ varnish
2 Coils Forms—see text

Suppliers:

Antique Electronic Supply 6221 S. Maple Ave., Tempe, AZ 85283
Fair Radio Sales 1016 E. Eureka Blvd 1105, Lima, OH 45802
Modern Radio Labs (My favorite source for hard-to-find crystal set parts) P.O. Box 14902, Minneapolis, MN 55414 Catalog $1
Mouser Electronics 11433 Woodside Ave., Santee, CA 92071
A Perspirational Message

by Wayne Green W2NSD/1 Editor

In my urging you to get up off the couch and make a difference, I often point out that if you can do this, why not you? Some readers may think this is simply Wayne braggadocio. My role here is to make you think about the things you value and consider what you can do to make a difference.

The fact is that you have a large amount of potential you can use. I know that you can do something, but you may not think of it right away. I'll help you put together a list of ideas.

When I was 11, I'd signed up for riding lessons. I wanted to learn to ride a horse. My parents helped me find a stable and a good instructor. I went to a riding lesson and learned how to hold the reins and sit on the horse. My instructor taught me how to walk, trot, and canter. I practiced a lot and soon became quite good.

It takes practice to become good at something. You can't just start and expect to be good at it. You have to be willing to put in the time and effort. If you're not willing to do that, you won't be successful.

My instructor also taught me about horse care. She showed me how to brush the horse and how to feed it. I learned about the different types of horses and how to take care of them.

I've been missing out on a ton of fun via the ham satellites. Fear? It certainly isn't because it costs a lot of money, so it's got to be fear or laziness. Oh, you're too busy? Sure, I believe you. We'll, I would, except that I notice that sometimes you do manage to spend time on the things you really want to do, so we're not talking time, which is a very lame excuse, we're talking motivation. Which is why I'm after you, month after month, to shake loose and restructure your life so you'll be able to build your physical and mental skills. And, via amateur radio, you'll be able to see your dream in the future.

Or perhaps you'd like to be king of the hill in DX? That's going to cost a bundle in both equipment and time, but the fact is that you can be a top DXer if you decide it is important to you. That means you need a good location with some rooms for beams and not many neighbors to boff about TV interference or sue over your ugly tower. It means at least a 70-foot tower, some monoband beams, and a kilowatt (minimum) amplifier. It also means you're gonna build some skills. Signal alone will leave the mustard completely uncut. Or you can sit there with 100-watts and unlimited determination and collect just about every certificate ever issued, the way Howie W2QHJ has for years. He could paper the Pentagon with his collection.

As Ray Croc, the man behind McDonald's, put it when he was writing about success, it doesn't take brains — there are too many brilliant scientists who can't afford a new car. It doesn't take education — look at the number of impoverished college professors. All it really takes is perseverance and you can have just about anything you desire. Do I have to sing “When You Wish Upon A Star” to get you motivated? “When you wish upon a star, makes no difference who you are, anything your heart desires can come to you. If your heart is in your dream, no request is too extreme. When you wish upon a star, your dreams come true.” But you do have to back up your dream with plenty of hard work. Nothing is free that's worthwhile.

Health, wealth, happiness, and endless fun with amateur radio are all waiting, but not for the unmotivated. It's your decision. You can build skills and knowledge, or you can go watch ball games, swallow beer, smoke, and waste hours a day numbing your mind with think-free TV garbage. It's your deal, so pick up the cards and let's see what your future holds.
Jan Mayen—A Special DXCC Country

by Roald Steen AJON/LA6US

The island of Jan Mayen is a volcanic island administered by Norway and located northeast of Iceland and about 300 miles off the coast of Greenland. Jan Mayen has become a special DXCC country with the prefix JW. Norwegian radio operators who operate from Jan Mayen use their Norwegian call, but replace the prefix LA with the prefix JW for Jan Mayen.

Jan Mayen is not a rare DX country, despite the small number of personnel on the island—usually less than 50—since many members of the island staff are engineers or technicians. One or more hams are active on the island much of the time.

I have worked Jan Mayen a few times on 20 meters from my home in Minnesota. I have also heard the island on the air during some of the ScanTests (The Scandinavian Activities Test) which I have participated in, without being able to break through the resulting pileup.

The dormant volcano of Mount Beerenberg is the dominating feature of Jan Mayen. The peak of Mount Beerenberg, located on the Northeast end of the elongated island, rises to an altitude of 2543 meters (8347 feet). Glaciers cover much of the mountain. At several points, the glacier covers the mountain all the way down to the ocean.

The weather of Jan Mayen does not make the island an attractive destination for your next vacation. Most of the year, the island is covered by clouds and fog. Strong winds are frequent. These strong winds quickly blow away much of the snow that falls on Mount Beerenberg. Much of the outer surface of Mount Beerenberg therefore consists of ice instead of snow.

While the weather on Jan Mayen is not very hospitable, it is of great interest to weather forecasters. Observations from this island play an important role in European weather forecasts. A U.S. Weather Station operated from Jan Mayen for a few years beginning during the Second World War.

The staff of Jan Mayen consists of a small crew of Norwegian armed forces personnel, together with employees of the Norwegian weather service. They operate satellite communications and two way radio communications for shipping and air traffic control for aircraft overflying nearby airspace. The island’s Loran C transmitter operates as part of a radio navigation system managed by the U.S. Coast Guard. The Loran C transmitter on Jan Mayen makes it possible to navigate across much of the North Atlantic Ocean.

The island facility includes a small ham shack, separate from the other buildings. There’s a story about the time when a polar bear began to show a great deal of interest in the ham shack while the ham radio operator in it had forgotten to bring his rifle. He had to ask a ham in Norway over the radio to contact the appropriate Norwegian authorities. They contacted the island staff, informing them about the problem. They sent out a small “rescue mission” that used gunfire to chase the bear away.
INSURANCE
Computer & Radio Equipment

HAMSURE coverage follows your equipment wherever you take it. Theft from vehicles, earthquake, water damage and all other hazards including surges, insure all your equipment and accessories (except towers and antennas but including rotors), media and purchased software.
Low Premium Low Deductible

HAMSURE
7901 Laguna Lane
Orland Park, IL 60462
800 - 988-7702

Available only in the 48 contiguous states

MORSE CODE MUSIC!

SENSATIONAL NEW WAY TO LEARN CODE—Do Aerobics, Sing, Jog, or Drive while learning code! A fun & easy way to learn or retain Morse Code skills. Now the secret is yours with this amazing synchronized breakthrough! Great tape for all licenses and classrooms—Order!

"THE RHYTHM OF THE CODE"
Version 2 cassette today!
Send $9.95 and include $2.00 S/H to:
KAWA RECORDS
P.O. Box 319-ST
Weymouth, MA 02188

Check or money order only. We ship all orders within 5 days. MA residents add 5% sales tax.

Morse Code Music—RHYTHM OF THE CODE Today

CIRCLE 78 ON READER SERVICE CARD

CIRCLE 2 ON READER SERVICE CARD
Alinco DX-70 HF/6m Transceiver

Surprises Everyone

Alinco Electronics, based out of Torrance, California, is best known for their single- and dual-band VHF/UHF handheld and mobile transceiver equipment, which is being sold by over 80 amateur radio dealers throughout the United States. Certain Alinco radios have achieved “fan club” status because of their unique design and relatively low cost.

For instance, there’s the Alinco 1200THZ 9600 baud packet radio made popular by Buck Rogers packet column, the Alinco DXJ-51F first handheld ever with spectral channel-occupancy bar graph, and the Alinco DR-599 dual-band mobile with “secret” antenna jack for public safety 800-950 MHz.

While Alinco Electronics, Inc., does not enjoy the market share of Kenwood, Yaesu, and ICOM, the company does enjoy a reputation for good performing VHF/UHF equipment at prices slightly lower than the big three, and a small but efficient service team who can turn around most repairs at the Torrance, California, facility within ten working days. Alinco’s technician/engineer, Taka Nakayama AB6VE, is extremely active on the ham bands and knows the equipment inside and out. “I love operating ham radio,” comments Taka. “When it comes to 9600 baud packet, cross-band duplexing, or driving in downtown areas where intermodulation is a problem, I know how well our Alinco radios work because I’m active on the air,” smiles Nakayama, who holds an Extra class US license and a Japanese license, too.

But Alinco Electronics really surprised the amateur radio community by coming out with a high frequency transceiver for the 1995 Dayton Hamvention debut. “First we have VHF/UHF, and now we have high frequency, too,” comments Alinco Electronics USA President Mark Morisato, KC6OCX. “And our new high frequency DX-70 does more!” adds Morisato. No doubt Mark means the built-in, all-mode, 6-meter, 50-54 MHz transceiver with 10 watts output that is included in the unit which is the same size as the popular Kenwood TS-50 mobile HF transceiver.

The new Alinco DX-70T HF plus 50 MHz all-mode transceiver runs 100 watts output from 1.8 MHz to 28 MHz on the ham bands, and tunes 150 kHz to 30 MHz continuously with its excellent general coverage receiver. Plus it covers 50-54 MHz, with all modes and 10 watts output. That’s plenty of soup to kick a 6-meter power amplifier into “QRO.”

Most unique is the detachable control head that allows the new Alinco DX-70T to be separated so the head can go on the dash, with the transceiver under the seat. The mike still plugs into the transceiver body, so separating the two can’t be a trunk-and-dash affair. But I don’t recommend trunk mounting of a remote-controlled transceiver anyway because of the long run of the DC power cable. This is just asking for trouble. If you need a longer mike cord they have an EDS-5 microphone extension cable that will handle the job nicely. Keep in mind that the extension cable will cost extra—probably about $40—so if you plan to run it remote, factor this in to the transceiver’s street price, which will probably run around $1,250.

Yes, 6-meter fans, of course there’s a separate output SO-239 antenna jack. When you switch to the 6-meter mode you can hear several relays go clink, telling you they are running an independent receiver and transmitter section for best performance on the 6-meter band.

I hooked the DX-70 to a 3-element tribander and regulated 12-volt power source, with the 6-meter side on a 3-element beam to see how the new radio would perform in the real world. The display popped up with a bold numerical readout of frequency: MHz, kHz, and hundos. The numbers are slightly smaller than the Kenwood TS-50, but are bolder—fatter—darker. And like the Kenwood TS-50, there is a “busy” icon when the squelch is open, along with an amber LED that also lights up with receive activity. The mode indicator appears in the upper right-hand corner, the AGC fast or slow appears above the frequency display. The VFO for memory channel shows to the left of the frequency. And more than enough audio to drive the top-mounted speaker.

As soon as I hooked into the tribander there was no mistaking that the Alinco DX-70 had a great receiver. It is dual-conversion, with sensitivity and selectivity numbers identical to what you might find on everyone’s sales brochures for a $1,000 HF mobile SSB transceiver. But unique with the Alinco DX-70 is the bottom left RF button that lets you switch in the 10 dB pre-amp, switch it out, or switch in -10 dB and -20 dB attenuation. I found that the attenuator was a big help when operating on 40 meters with a neighbor one block away just 75 kHz up the band. On 10 and 15 meters I switched the pre-amp on which gave me a hot receiver.

The same button that controls the RF gain selection also has a sub-function, turning the noise blanker on and off. While the noise blanker does not have any timing or sensitivity adjustments, it did a nice job of killing the clutter of our next door neighbor’s old Ford Thunderbird when he fired up the engine. The noise blanker didn’t garble on extremely strong signals. On many HF transceivers, engaging the noise blanker on 40 and 80 meters will cause most signals over S9 to become garbled. Not so with this noise blanker.

Selectivity on SSB is 2.4 kHz, and a convenient “filter” button next to the RF gain button allows you to kick in the 1 kHz SSB filter. The 1 kHz filter is already built in, and not an added option if you want to tighten up on an incoming weak signal. You can further home in on an illusive signal by rotating the IF shift knob to dodge the QRM. This same filter network offers 1 kHz or 1/2 kHz CW passband. And if you’re into shortwave listening, you can click in 2.4 kHz AM narrow, or 9 kHz AM wide—including FM—for full fidelity reception.

The first IF is 71.75 MHz, the second at 455 kHz, and spurious/image rejection is listed as 70 dB. When I switched back and forth between several transceivers on the bench, the Alinco was more sensitive and just as selective as the higher price sets.

Everyone commented on the recovered audio on SSB as being “sharp.” It’s the
same sounding audio I have heard from the Yaesu 900—nice full-fidelity treble without sounding tight or with a hiss. The DX-70, when tuned into a transmitting SSB station, is like listening to a hi-fi with bass, mid-range, and tweeters as opposed to an audio system with just a mid-range speaker. It’s hard to describe—listen for yourself.

The AGC is a function/AGC command on the same push button as the filter switch. The function button is conveniently located to the left of the set that makes it natural to depress with your thumb, using your forefinger for the other button.

I switched to 6 meters to confirm that all filters, noise blankers, AGC actions, and pre-amps weren’t the same. I did notice on my big 6-meter antenna that 10 dB of pre-amp gain brought in a phantom sound of an FM or TV station way in the background that could never be tuned in. However, I didn’t have that problem with the pre-amp turned on when I tested the unit on the mobile 54-inch whip.

I also tested the Alinco 6-meter receiver performance against a couple of other time tested 6m rigs and found the Alinco hotter on receive with the pre-amp clicked on than the other two units which I had running off of external amplifiers. And since the other two only ran 10 watts out, I didn’t find the 10 watts from this Alinco to be out of line.

Mirage, now sold by MFJ, offers a 10-watt in, 150-watt out, 6-meter amp that I’ve seen selling for under $350, so getting more power is not all that difficult.

The front panel of the Alinco features a main tuning dial along with a smaller tuning dial. The smaller dial is rotated for memory channel select, megahertz or ham band select, and to change frequencies in specific kilohertz steps like 2.5 KHz, 1 KHz, or 500 Hz. This sub-knob reminds me of the click-click-click knob on the Kenwood TS-140. It’s a handy feature. The main tuning knob resolves frequency down to 100 Hz (.1 KHz) dial indication, with 25 Hz steps if you ever-so-carefully turn the big knob.

The multi-function knob lets you quickly rotate through 100 memory channel locations which hold a surprising amount of memo-channel information: receive frequency, mode, any split TX, filter (!), AGC setting (!), RF gain amps or attenuators (!), noise blanker on or off (!).

This is a very smart memory that might allow you to independently select a CW frequency for fast AGC, narrow filter, no noise blanker, and RF pre-amp. On an SSB channel, you could memorize slow AGC, noise blanker, -10 dB attenuator, and the normal filter. I considered this versatile memory capability as a definite plus for this very compact rig.

Another nice feature is the high/low power output button. Unlike a slide switch or no power option at all, you can quickly reduce power to local stations or to reduce the current consumption of the radio on a dying storage battery.

There is a dial lock key to prevent you from accidentally turning the big knob when tuning channels in from memory. Like ICOM transceivers, memory positions allow for instant QSY from the big knob. This allows you to use the small memo knob to get you within a pre-set spot on the dial, and then use the big frequency knob. A quick flick of the small knob instantly puts you back to that original memory position. And when operating from the memory position for the digital modes, you would lock (electronically) the big knob to insure you don’t accidentally bump off frequency.

Other buttons and knobs on the front would be the RIT capabilities; the "MF SEL" button to select memo, band, or frequency options; the little TX jewel LED that comes on for transmit; delta transmit; memory to permanent VFO selection; memory right, split, and priority—all the usual knobs on a HF transceiver.

If you press and hold the function key twice for longer than 2 seconds, "SE" will appear on the screen indicating you have set the Alinco DX-70 into the set mode. This is similar to the Kenwood TS-50 in the “menu” mode.

The multi-function small dial selects a whole bunch of set-up options.

The relatively large Alinco DX-70 manual instruction manual also gives procedures on a simple resetting of the mode settings, resetting all memory channels, simply resetting VFOs, or major reset that clears everything as if you had just purchased the equipment new from the dealer.

It gets better when you get to the back of the transceiver. There are the customary jacks for speaker or headphones, featuring the common miniature jack (not sub-miniature). There is the common CW jack for connecting a telegraph key or electronic keyer system. There’s no built-in electronic keyer, but most hams prefer their own style of electronic keyer and never seem to like any type of built-in keyer. The CW key-jack is also a miniature jack, not the big 1/4-inch jack you would find on larger equipment.

There are also RCA jacks for ALC as well as relay. When the equipment is new out of the box, the relay is out of circuit. Cutting an obvious internal jumper wire, detailed in the instruction manual, lets the relay close when the microphone or key is depressed. The ALC input voltage from the amp needs to be zero to -3 VDC.

There’s a small screw for connecting a ground foil tab, two antenna jacks plainly marked for HF and 6 meters, the heat sink, and then the power connector. More good news—it’s the common 6-pin power plug that is used by Kenwood, Yaesu, and ICOM from a DC source.

There is an external antenna tuner connection which the book describes as being compatible with a Kenwood AT-50, a Kenwood AT-300, an ICOM AH-3, or even an SGC 230 automatic long-wire antenna tuner for field day/maritime mobile/marine home applications.

While I didn’t see an accessory jack for going digital, the microphone offers pin 6 as the detector output with associated pins for PTT, ground, mike ground, and 5 volts DC. Taka at Alinco, an avid HF digital operator, says this radio has full capabilities in the digital modes.

Power output on high frequency was a good 100 watts, and I noticed the average modulation level was around 60 watts, indicating only slight ALC action. This gave us a good punchy signal that everybody I worked commented about as being "hefty" and sounding great. The SWR protection circuit throttles back output down to 25 watts with no antenna, and a momentary antenna short-out pulled the power down to a safe 5-watt level.

On 10 meter FM the power output was also 100 watts. This surprised me because AM throughout the bands was only 50 watts. On 6 meters the power output was 15 watts SSB, 11 watts FM, and 6 watts AM.

I then tried operating on 10-meter and 6-meter repeaters, and everything was going along fine in entering the 10-meter 100 kHz offsets as well as the 6-meter 500 kHz offsets. But where on earth was the almost-always-necessary CTCSS selections out of menu? What, no subaudible tone encode? Oh yes, but it uses dip-switch programming.

The CTCSS encode is on the bottom of the transceiver, with no mention of it in the well-written and illustrated instruction manual. The tone board is included with the package, already installed, but you need your trusty toothpick and penlight to manipulate the 8 switches for any of the 38 possible subaudible tones.

But besides that, I enjoyed operating the equipment. The only thing I couldn’t figure out when running the unit without reading the instruction manual was how to get it to go into the set mode. As soon as I cracked the books, it was right there.

It has been many years since I have seen an HF transceiver with a VHF band included, so when you get a chance, head on down to your local amateur radio dealer and take a listen to the sharp high-fidelity action on the new Alinco HF + 6-meter transceiver.
Imagine yourself traveling in a distant city.
You and a non-ham friend are traveling to
an important business meeting. You have
some general directions, but you're not really
sure where you're going. Reaching down to
your mobile rig, you hit the scan button until
the radio stops at an active channel. The
conversation comes to an end, and you key
the mic and call one of the stations. There's
no reply, so you call again. Silence. Keying
the mic a third time you notice that there's no
kickback from the repeater, even though the
strength of the signals would indicate that
you're well within range. While you've been
fiddling around with your radio, your friend
has been reading a map; he tells you to
get off at the next exit and take the first
right turn. You arrive at the destination
somewhat humbled, and certainly no
better off because of your ham radio
license. What went wrong?

Locked Out

Unless you have a broken radio, what
went wrong is probably just the fact that
the repeater you wanted to talk on needed
a CTCSS tone to key it up. You may have
heard of these tones at some point but
really weren't paying attention. You don't
need one for your home repeater, and
even if you did your rig is a few years old—
it doesn't have that feature anyway. But
you sure needed that feature today. What
exactly is a CTCSS tone, and why do
some repeaters need them while others
don't?

CTCSS stands for Continuous Tone
Coded Subaudible Squelch, which
describes exactly how the tones work.
A subaudible tone is placed on the
transmitted signal, just below the voice
modulation. The tone is there all the time
the transmitter is keyed, and it can control
the squelch in the receiving radio. The
CTCSS system was originally designed for
commercial use, either to allow several
companies to share a common frequency
without hearing the other fleets, or to allow
controllable access to community (multi-
user) repeaters. Hams began to use the
system in the late 70s, often to create
"closed" repeaters. These repeaters would
be open only to people who actually
supported them. Supporters were given
the proper codes, then had to add CTCSS
capability to their radios. (Of course, an
enterprising ham could simply decode the
tone, and install this tone on his radio
without paying to support the repeater. He
would often find he had no one else on
the repeater who would talk to him...) In
the 90s, the use of CTCSS tones is mainly
for preventing interference. As the bands
get more crowded, more and more
repeaters are going up. The frequency
assignments for these repeaters are
coordinated, but more often than not it's
possible for mobiles in one state to be
keying up their repeater, plus a second
repeater in a different state, especially
if the mobile happens to be on a high hill
right between both the repeaters.
The solution to this problem is simply to install
a CTCSS decoder on at least one of the
repeaters. Even though all the radios are
still on the same frequency, the repeater
will only key up if it hears a user with the
proper CTCSS tone. The user chooses
which repeater to access by changing the
tone, not the actual carrier frequency.

What's the Key?

So what do you do if this happens to
your hometown repeater? What if your rig
doesn't have programmable tones? Maybe
you're still using a crystal-bound rig, or
even a converted commercial rig. Do you
have to trade your rig in on the latest
synthesized programmable whiz-bang
unit? Of course not!

In the commercial two-way field, CTCSS
tones are practically synonymous with
Communications Specialists, Inc. The long
time leader in CTCSS encoders and
decoders, Comm Spec produces a multi-
tone encoder designed exactly for add-on
use, at a very affordable price. The TE-32
Multi-tone Encoder produces the 32 most
common tones and is enclosed in a 5.25"
x 3.3" x 1.7" cabinet with a switch, ready
for under the dash or under the shelf
mounting. The TE-32 is based on the
field-proven SS-32P board, which is a field-
programmable CTCSS encoder designed
primarily for installation in commercial
mobile rigs. Usually programmed with a
DIP switch, the SS-32 is slightly modified
for use in the TE-32. Rather than the DIP
switch, the tone frequency select lines are
routed out to the front panel switches of
the encoder. This allows easy access and
instant changing of the tone frequency. As
a matter of fact, the TE-32 consists of
nothing more than the SS-32P, the rotary
tone select switch, the toggle group select
switch, and a nice box. There's plenty of
open real estate in the box as well, but
don't be put off by the small size of the
unit. Communications Specialists' products
are all very well built, using
custom-designed integrated circuits to
keep things small and reliable.

How Do I Hook It Up?

All of the above may sound great, but
you may be a little hesitant to rip your rig
open and start poking around with a hot
soldering iron. If you've never done any
kit-building or electronic repairs before,
you may want to get some help, but
installing the encoder is really fairly
simple. There are only three wires: +
voltage, ground, and audio out (See
Figure 1). In most rigs the power will not
be a problem, as the TE-32 will operate
within a range of 11 to 25 VDC, drawing
only 12 mA. If your rig is somewhat more
mature, the instruction sheet gives
diagrams explaining how to power the unit
off of 12- and 6-volt AC lines, as well as
200-VDC supplies. The power supply
connections should be fairly straightforward,
but the connection point for the audio may be
a little trickier. The first thing to do is to
check the schematic if one came with your
radio (you did keep the manual
somewhere safe, didn't you?). In many
cases rigs were designed for add-on
boards that weren't installed as standard
equipment, and the tone input point will
be clearly labeled on an existing plug or
jack. If not, the best place to start looking
is on or around the modulation control,
usually on the center tap. This procedure
is very well explained in the instruction
sheet that comes with the TE-32. Once
you have the connections all set, the only
thing remaining is to adjust the output
level. If you have a friend with a
communications service monitor, great.
Just set your tone mod at about 0.6 kHz
deviation, and you're all set. If not, set
the control to minimum and increase the level
a little at a time until the repeater opens
when you key up. Set the level a little
higher than the minimum needed to open
the repeater, but lower than the point
where the tone becomes irritating. It's not
unusual to hear a low level hum in the
ORDER NOW 1-800 4 HOBBY KITS

- **2 Meters**
- **222 MHz**
- **440 MHz**
- **6 Meters**

Ramsey breaks the price barrier on FM rigs! The FX is ideal for shack, portable or mobile. The wide frequency coverage and programmability makes it the FX the perfect rig for Amateaur, CAP or MARS applications. Packeters really appreciate the dedicated packet port. TRLE-EQ is standard on the FX and simplifies T/R switching. High speed packet? No problem. Twelve diode programmed channels, 5W RF output, scanning, semi-automatic conversion recovery and proven EASY assembly. Why pay more for a used foreign rig when you can have one AMERICAN MADE (by you) for less. Complete kit less case and speaker. Order your matching case and look for that set price soon.

FX-50 kit (6 Meters) $149.95
FX-146 kit (2 Meters) $149.95
FX-440 kit (1 1/4 Meters) $149.95
CFX matching case set $29.95

2 MTR & 200 BOOST AMP KIT

Here’s a great booster for any 2 meter or 220 MHz hand-held unit. These power amplifiers can be used with all kits as a booster to increase the rig’s output power. Use as a base station to drive 2 or 4 vats of power. Full manual gain adjustment in both stages. Simple to install and trouble free.

PA-10 2 MTR POWER BOOSTER (10 X power gain) Shows full wired & tested...$29.95
PA-20 2 MTR POWER BOOSTER (8 X power gain) Shows full wired & tested...$49.95

FANTASTIC FM TRANSMITTERS

20 METER SSDB TRANSMITTER

Finally, a handy go anywhere rig that puts the fun back into ham radio. How about the DSS synthetizer that tunes in 10 kHz steps with exceptionally low noise for weak signal reception. Or how about the built in CW keyer that has a digital readout of your CW speed. Plenty 10 watt RF output and that’s just the beginning.-High speed packet? No problem. Twelve diode programmed channels, 5W RF output, scanning, semi-automatic conversion recovery and proven EASY assembly. Why pay more for a used foreign rig when you can have one AMERICAN MADE (by you) for less. Complete kit less case and speaker. Order your matching case and look for that set price soon.

SX-20 20 METER SSDB Transmitter Kit Form Only $49.95
SX-20 20 METER SSDB Transmitter Complete Kit $199.95

MINIATURE SPEAKER-MIKE

Fits Icon, Yaesu, Abillion, Ramsey and Radio Shack Radio Shack!looking for a handy little speaker-mike to complement your transceiver or other ICOM style handheld? The Ramsey Sm-1 speaker-mike is a beauty! It only 5 1/2" long, 1 1/4" wide and 1/2" inches high and has a handy clip on the back that can be used to hold it. The microphone is a true gooseneck and has a rigid metal clip. The incoming signal is split between a high fidelity lavalier or shirt. It’s small internal speaker isn’t going to break any sound barriers but it is very clear and has been heard when we’re running 5W. There’s even a jack on this mike so you can plug it in...you all tell us how you use the microphone and how to jam into your radio. Fits all Radio Shack, ICOR, Yaesu, Abillion and Ramsey rigs. SM-1 Mini Speaker-mike...

ACTIVE ANTENNA

Cramped for space? Get terrific performance with this desktop antenna. Propriety designed unit has dual HF and VHF circuitry and works in both antenna, as well as external jack. RF gain control and all operation makes unit ideal for SWL’s, traveling hams or scanner buffs who want the right reception. The matching case and knob set include a power for your rig.

CW KEYER

Send perfect CW. Microprocessor features four programmable memories of up to 25 words each, lambic keying, dot-dash memory, and full memory recall. Also features a Parrot keyer, fully automatic slow keyer, and fully RFI proof. EAROM memory keeps messages up to 100 years - you will never be without the key included in the kit. Folds in touch paddles or use your own. Easy assembly and matching case set available for a nice station look.

**CW-700 Micro keyer...$69.95
CW-700WT Attached CW-700and case...$119.95**

ACTIVETRANSMITTER

Endearing aircraft communications—pick up planes up to 100 miles away! Receives 10-100 MHz in a very smooth varactor tuning superfine 3300 circuits. Built in 15000 circuits. Lots of speaker volume. Runs on 9V battery. Great for air shows or just hanging around the airport! New 30-page manuals detailed pilots pocket...too. Add case set for "pro" look

ARRCIFETRANSMITTER

Easy to use aboard power amp has 9 times power gain! 1W, in 8W out, 2W in, 16W out. 5W for 40W out. Same as TX-4000 with PTT and TX-YT. Includes all parts, less case and T/R switch.

**PA-1, 20W per amp kit...$34.95
PA-1, 20W per amp kit...$34.95**

MINI KITS

Ramsay carries a complete line of low cost, easy to build, easy to use functional kits that can be used with any Ramsey or ICOM kit. . Kit includes antennas, tone decoders, VOX switches, timers, audio alarms, noise-makers and even shaving kits! Call for our free catalogue!

FOR SMALLER QRP AMPLIFIER

For a slick little QRP boost, use one of the 20 Watt amplifiers. Needs only 1/2-3 watts drive for full 5W output, linear for SSB. AM or CW operation, power MOSFETS for high efficiency with built-in clean signal. Built-in T/R relay for full 2W at 2-4 VDC. Add our matching case set for a complete station look.

2M 25W Power Amplifier Kit...

QUALITY POWER MONITOR

2WAY RADIO SERVICE MONITOR

FOXHOUND HEADQUARTERS

PACKET RADIO

Two new variations are available for the Commodore 64 (SX-64) or the IBM-PC (PBI). Easy assembly NO TUNING. Includes FRED disk software, PC Board and Full Documentation. Kit form...

**P-64A...$59.95
P-64...$59.95
50-CASE DISCOUNT...$59.95**

STEREO FM TRANSMITTER

SPEECH SCRAMBLER

MICRO-MIKE

World’s smallest FM wireless mike. Smaller than a sugar cube. Always available from any Ramsey dealer. FM-10A Transmitter Kit...

**FM-10A Stereo transmitter kit...$24.95
FM-10A Stereo transmit set...$29.95**

CRYSTAL RADIO

Relive the radio past with a crystal set like your grandparents used. Uses genuine Qena Crystal oil damped crystals. Several different types of radios are built. Uses a crystal, broadcast, shortwave and even WW II forstible style. To compare modern semiconductor components to the simplicity of the crystal radio. No soldering required and we even give antenna ideas. Radio for free; get new free today. There is a crystal set.

Crystal set...$19.95

DR. N-I-CAD CONDITION/FASTCHARGERS

Quitting spending big bucks for replacement battery packs, rejuvenate and condition your batteries over a period of 20 hours. Your battery has optimised discharge both to enhance the memory effect and to condition batteries that have been overly cared for in the past. Quick charge rapidly brings battery to full charge in less than an hour-just 15 minutes for some types! And your battery is charged using an advanced high current charging technique that most chargers are not capable of. Switch-mode regulator controls constant current while being monitored by a microcomputer-controlled electronic circuit. Your crystals are charged, not cooked! Charges NiCad or NiMH packs from 2 to 10 cells (easily expanded to 14 cell packs). Includes 10 faster charge rate up to 500% faster. If you’re buying new packs, waiting hours for recharge, get a Dr. N-I-Cad today! Available in money saving kit form or wired and tested with case at a special price. Kit builders: add our matching case set for a professional appearance.

**DN-1 Dr. N-I-Cad conditioner/charger kit...$49.95
DN-1C Complete charging combo...$79.95
DN-1WT Fully assembled Dr. N-I-Cad with case...$99.95**

ORDERS CALL 1-800-4 HOBBY KITS

RAMSEY ELECTRONICS, INC. 793 CANNING AVENUE PAVELCITY NY 11646

CIRCLE 34 ON READER SERVICE CARD
A continuous variable unit—there are no end stops to start counting clicks from. Not a problem on the test bench, but if you mount the encoder in a mobile you may want to keep it close to the driver. (If you purchase the TE-32 for use around the same two or three repeaters you may choose to replace the sixteen position switch with a three position unit, and use a simple diode matrix to select the three different tones. This is also well documented in the instructions, but basically consists of pulling the proper lines low for each of the desired frequencies, and using diodes to provide isolation between the lines.)

How Do I Run It?

Operation of the TE-32 encoder definitely does not require a degree in rocket science. The three-position toggle switch selects low range (67.0-114.8), high range (118.8-203.5) and no tone. You simply dial in the desired tone, and hit the PTT.

A Minor Drawback

Perhaps the only point that's less than ideal with the encoder is the fact that the frequency select switch is a sixteen-position unit. This makes the divisions a little closer together, and it's difficult to see what tone is actually selected unless you're looking directly at the face of the unit. Not only that, but the rotary switch is background of your audio—that's the actual CTCSS tone. This will be more or less audible depending on the tone level, and the actual tone that you're using. (High frequency tones (203.5) will be more audible than the lower tones (67.0). As long as the level is low enough so people don't ask about "that power supply hum in your audio," you should be OK. Tie down the cables, mount the TE-32 under the dash, and you're on the air.

Gorgeous Coffee Table Radio Book

You'll treasure "Early Radio - In Marconi's footsteps," by Peter Jensen. It covers the early history of radio, complete with quality photographs of the equipment and our pioneers (many in color). It's a large, hardbound, 176-page book. $49.95 from Uncle Wayne's Bookshelf, the sole US source. 70th N202, Peterborough NH 03458-1107.
REPEATER CONTROLLER
With AUTOPATCH $139.95

DTMF Controlled Autopatch and 4 control outputs. Switch selectable CWID, VOX or COR receiver control. Assembled tested board. LED’s for Power, TX, RX, Phone. Intel 8748 microcontroller. Board size 3.8 x 6.3 inches. You add receiver, transmitter, power supply (12v), phone line, and antenna system. Circuit board is top quality, double sided, plated through holes, solder mask on both sides and parts legend. Shipping $4 for UPS GROUND or $6 for UPS BLUE, COD add $4. For more information call or write to:

John Bell (702) 267-2704
1381 Saratoga St. Minden, NV 89423

Windows-Based HF Scanning, Logging, SWL, and Radio Control Software

Scan Manager 1.0 Pro
Scan Manager 1.0 Pro is a High-Performance Windows-Based program designed primarily for the Amateur Radio & SWL Enthusiast. Scan Manager 1.0 Pro Streamlines integrates the NEW version of SWL Manager for truly Powerful HF monitoring. Scan Manager 1.0 ProScan Category Concept is based upon the Classification of Services allocated by the ITU. These Classifications referred to as Scan Categories in Scan Manager) are broken down into the following categories: Amateur, Amateur, Broadcasting (SWL, Maritime, Standard Frequency & Time Signals, and Fixed Services. In addition, Scan Manager 1.0 Pro includes the AM Broadcast Band, the U.S. Citizens Band, WWV Schedule (from the ARRL), MacroBroadcast (AFSC CQ Scanning), and, of course, the User Database Scan Category (Create your own Scan Categories). The Scan Manager 1.0 Pro also includes QSO Manager and CWID (Caller ID) scanning for alphanumeric HF band assignments which makes scanning by Classification, or Category Extremely Easy.

Scan Manager 1.0 Pro Features

1. Includes Editable SWL Database with Hundreds of Broadcasts from Diverse of Countries
2. Powerful Search Capabilities. Filter by which Countries you are Listening to. Broadcasters are Grouped for easy use.
3. Includes Colorful Graphics of each Scan Category
4. Customizable with 90 Hot Keys to switch between Scan Categories
5. Colorful Labels you can Add for easy use.
6. Quick Scan. With ASCII Description of each Broadcast.
7. Compatibility with All Kenwood, Icom, and Yaesu Radios, plus others.
8. Use Color Ports 1-4
9. Color & GMT Time Display on Screen
10. Quickly Launch your Favorite TNC/Remote Prin
11. Import Text Files Directly into the User Database
12. Display Editable Spreadsheet type Views of either the SWL or User databases
13. Print Professional Quality Reports from the Database
14. One Click Logging of Scan Frequency to Database
15. Record Board Provides Quick Access to Help Index
16. One Click Displays SWL, Manager on Screen
17. One Click Displays SWL Manager on Screen

$69*
Includes Both Programs Integrated

Scan Manager 2.0
Scan Manager 2.0 is a High-Performance Windows-Based program designed primarily for the Amateur Radio & SWL Enthusiast. Scan Manager 1.0 Pro Streamlines integrates the NEW version of SWL Manager for truly Powerful HF monitoring. Scan Manager 1.0 ProScan Category Concept is based upon the Classification of Services allocated by the ITU. These Classifications referred to as Scan Categories in Scan Manager) are broken down into the following categories: Amateur, Amateur, Broadcasting (SWL, Maritime, Standard Frequency & Time Signals, and Fixed Services. In addition, Scan Manager 1.0 Pro includes the AM Broadcast Band, the U.S. Citizens Band, WWV Schedule (from the ARRL), MacroBroadcast (AFSC CQ Scanning), and, of course, the User Database Scan Category (Create your own Scan Categories). The Scan Manager 1.0 Pro also includes QSO Manager and CWID (Caller ID) scanning for alphanumeric HF band assignments which makes scanning by Classification, or Category Extremely Easy.

Scan Manager 2.0 Features

1. Includes Editable SWL Database with Hundreds of Broadcasts from Diverse of Countries
2. Powerful Search Capabilities. Filter by which Countries you are Listening to. Broadcasters are Grouped for easy use.
3. Includes Colorful Graphics of each Scan Category
4. Customizable with 90 Hot Keys to switch between Scan Categories
5. Colorful Labels you can Add for easy use.
6. Quick Scan. With ASCII Description of each Broadcast.
7. Compatibility with All Kenwood, Icom, and Yaesu Radios, plus others.
8. Use Color Ports 1-4
9. Color & GMT Time Display on Screen
10. Quickly Launch your Favorite TNC/Remote Prin
11. Import Text Files Directly into the User Database
12. Display Editable Spreadsheet type Views of either the SWL or User databases
13. Print Professional Quality Reports from the Database
14. One Click Logging of Scan Frequency to Database
15. Record Board Provides Quick Access to Help Index
16. One Click Displays SWL, Manager on Screen
17. One Click Displays SWL Manager on Screen

$99*
Includes Both Programs Integrated

kc4zgl ham software
1548 Cedar Mill Trl
Kennesaw, GA 30042, USA
Phone: (770) 421-0448
Internet: kenny.conrado@atavini.com

DAIW
Rugged, Reliable Products for Today's Amateurs. Contact Your Favorite Dealer Today!

Electronic Distributors
325 Mill Street
Vienna, VA. 22180
Phone: 703 938 8105
FAX 703 938 4525

73 Amateur Radio Today • December 1995 25
Key It!

By Michael Jay Geier KB1UM

Chances are, you’re using a modern, solid-state HF rig. Although there are still plenty of the older, tube-based radios around, by and large they’ve gradually been replaced by newer transceivers. Newer is better, right? Well, not always! In one respect, the old tube sets had a big advantage: they were easier to interface to linear amplifiers. Back in the old days, voltages were higher and the currents peripheral equipment was expected to need were higher, too. The transmit/receive switching in HF radios was just about always done with a relay, which gave you nice, high-current contacts with which to key your amplifier.

My, how things have changed! These days, most radios use solid-state T/R switching. Some do have small relays, but they often are only for the keying of external devices like amplifiers. So, what’s the problem? Can’t you just hook up your amp’s relay and go? Well, sometimes, but it may not be that simple.

Can’t Take It

Unlike with transceivers, linear amplifiers have not, by and large, been replaced by newer equipment. Sure, there are many new models around, but older amps are very durable, and there is little or no functional improvement to be had with a newer one, unless you buy one of the top-of-the-line microprocessor-controlled whizbangs costing many thousands of dollars. Consequently, many hams are using new radios with old amplifiers.

That leads to the common situation in which the keying transistor or reed relay in the radio simply can’t handle the current required by the older amplifier’s relay. So, how do you interface the two?

Many manufacturers provide optional, external relay boxes. These contain some kind of current amplifier circuit and a relay whose contacts can handle the required current for the amp. So, why not just buy one? Certainly, you can do that, but there are reasons why you may want to build your own. Although most relay boxes are not particularly expensive, they may cost more than you feel like putting out, or they may have to be ordered, causing a long delay in your getting your station set up. Or, perhaps, your radio is just old enough that they’re not making the accessories for it anymore. Finally, you might just want to do it for fun, or to provide a current buffer for a radio which offers no relay box.

A New Approach

Nearly all solid-state radios key their PTT lines by pulling them from some nominal voltage, at low current, down to ground. In other words, they are designed to sink a small amount of current from an external device when you transmit. That method complicates the interfacing issue—it would be easier to design the current amplifier if the transmit signal went up, not down. Of course, the issue is not insurmountable, but it generally leads to the same solution: the use of a PNP transistor in the relay box. That works well enough, but it has a significant drawback: it forces your radio’s PTT line to sink current, because the PNP design requires the transistor’s base to be pulled down in order to turn the relay on. Is that a problem? Not always; remember, that’s what the radio is designed to do. As long as you keep that current low, and you don’t have too many other gadgets, such as RTTY or SSTV units, doing the same thing, it may work fine. But, you could force your rig to take too much current, damaging it. Or, you may put too high a

![Figure 1]

- **Figure 1**
- **R1** 10K
- **R2** See Text
- **Q1** 2N2222 or similar
- **D1, D2** 1N914 or similar
- **K1** Normally Open, See Text

26 73 Amateur Radio Today • December 1995
Explore The World of Quorum Wefax

Wefax Explorer
Integrated Wefax / APT Receiver and Scan Converter with Qfax software.
$695.00 complete shipping and taxes not included

The Best Price / Performance. Period!
Construct a Wefax / APT reception system from individual component receivers, scan converters and image processing software and you’ll spend more money for fewer features, poorer performance, no automation and a jungle of wires. With the Wefax Explorer, simply connect an antenna and a few mouse clicks later you’re receiving the highest quality images possible. The Explorer is backed by a 1 year limited warranty and the extensive experience of the leading Wefax hardware manufacturer. Quorum equipment is used by virtually all wefax suppliers in worldwide amateur, commercial and military systems.

QFAX Features
- GOES / Meteosat Wefax Reception
- NOAA / Meteor APT Reception
- HF Wefax Reception
- Dual RF ports for geosync and polar reception under software control
- Integrated preamp and down converter power inserter
- 50 user definable configurations
- Software controlled receiver with 2 UHF, 10 VHF memories and scan
- On board audio amplifier and speaker with software controlled volume, squelch and mute
- Automatic Unattended Animation works continuously
- 8 bit data for up to 256 gray levels
- View at up to 1280 x 1024 256 color
- Use TIFF, GIF or PCX file formats and convert to BMP, JPEG, EPS and binary
- Contrast, Brightness, 3D effect, Sharpen, Smooth, Noise, Histograms and other image processing
- Ephemeris based NOAA APT navigation with geo-political and Lat-Lon overlays
- NOAA Tools show satellite path, Lat-Lon of cursor, distance and bearing to reference point
- Automatic Temperature Calibration
- Color Palettes and NOAA curves

Quorum Communications, Inc. FAX (214) 915-0270
8304 Esters Blvd. - Suite 850 - Irving, Texas 75063 (214) 915-0256 BBS (214) 915-0346
CIRCLE 257 ON READER SERVICE CARD
Voltage into it, which can cause damage if the keying is provided by a power IC which uses a supply voltage lower than the one you're trying to pull down.

I designed "Key It" with one objective in mind: it must not force the radio to sink current. So, I avoided the use of a PNP transistor, choosing instead an NPN. That, of course, makes the keying direction backwards. In other words, the base of an NPN transistor will turn on when the input voltage goes up, not when it pulls to ground. "Key It" gets around that problem by using the transistor in an inverting circuit.

How It Works

Take a look at Figure 1. The base of the current amplifying transistor connects through the 10k-ohm resistor to your radio's PTT line. It puts no current into that line. Rather, it takes a small current from the PTT circuit during receive! Connected across the relay coil, it pulls power from the station power supply, or the radio's accessory connector (more about that later), through R2, and effectively shorts out the relay, keeping it open. When you transmit, the input to the transistor's base goes to ground, causing the transistor to open. That lets the relay coil take the current, pulling in the relay and keying the linear amplifier via its contacts.

You might ask why I didn't opt to simply let the relay operate backwards and use its normally-closed contacts. That would indeed make them open during receive and closed during transmit, but it would also have the secondary effect of keeping the relay closed most of the time. Why not do that? I've found that relays which stay closed too much tend to get magnetized and stick closed even when power to the coil is removed. For reliable operation, it's best to keep the relay unenergized as much as possible.

Calculating R2

In order to prevent overheating of the transistor, and also possibly of R2, it pays to keep the overall current down as low as possible. The key to doing that is to select a relay for K1 that needs little current to pull its contacts in. That lets you use a bigger resistor for R2, and also requires less dissipation by the transistor.

Assuming you're going to use a 12-volt supply, it's best to select a 6-volt relay, with as high a coil resistance as you can find. A reed relay is a great choice, as long as its contacts can handle the current your amplifier's relay needs. So, let's say you pick a 6-volt reed relay with a 1400-ohm coil. How do you find R2's value? Since you want to drop about half the supply voltage, simply use a resistor with the same resistance as the relay coil's: about 1400 ohms! What could be easier than that?

Most likely, you won't find one that's exactly the same. Probably, you can get within a few hundred ohms or so. If you have to choose a resistance value above or below the coil's value, pick one above. Heck, a 12-volt supply is really about 13.8 volts, and most relays will pull in quite reliably at voltages a little less than they're rated for, anyway. Remember, the aim here is to reduce the total current, and higher resistance does that. Choosing too low a value will cause the transistor to overheat, and may feed too much voltage to the relay, causing magnetizing and sticking problems.

In this circuit, just about any little NPN transistor, such as a 2N2222A, will work fine. If you want to be sure, though, you can calculate the transistor's required power dissipation quite easily: just find the total current, which is your power supply voltage (probably 13.8 volts) divided by R2. In this case, that would be 13.8/1400, or 0.0098 amp, or about 10 mA. Now, multiply that by the 13.8-volt supply voltage, and you've got your power in watts. Our example circuit requires just under 140 mW of dissipation in the transistor, making that 2N2222A a good choice.

Details

The only thing left is to add a couple of diodes to prevent damage from reverse-current spikes generated by the relay coils. I put one across the Key It relay's coil, and another across its contacts, in order to dampen out the spikes created by the relay coil in the linear amplifier.

If you use a fast relay, you can use this circuit for QSK operation, provided your amplifier can take that kind of use; most older amps cannot. Also, this circuit assumes a common ground between the 12-volt supply and the radio, and it also assumes that your amplifier is keyed by pulling its relay coil's positive voltage to ground. Both of these are the normal situations. If, though, your amp requires something different, you can still use Key It, but you may have to remove D2, or reverse its direction. Remember, it should always be connected opposite to the normal direction of current flow—be sure to connect the cathode to plus.

Earlier, I mentioned the use of the radio's accessory connector. You can use it to power this circuit, but be absolutely certain that the total current required by Key It is less than the accessory connector is rated to supply. In general, those connectors are meant for pretty low-current stuff, and may not be able to handle Key It. In that case, use your station's 12-volt supply, or even a little wall cube if you have to. If you do go the cube route, try one rated at about 9 volts; with the low power requirements of this circuit, the unregulated cube will probably be at about 12 volts anyway. If you use a 12-volt cube, it may supply more like 15 volts, which could be too much!

That wraps it up! Now, you can key that old amplifier without fear of harming your radio. You don't need high current capability from the radio, and you won't be asking it to sink any current, either. Truly, new meets old and both are happy!
1 MHz TO 500MHz SPECTRUM ANALYZER

AS SEEN ON YOUR SCOPE

100% FACTORY ASSEMBLED NOT A KIT
MADE IN THE USA

MUST FOR EVERY SHOP:
The SA500ADP Spectrum Analyzer Scope Adapter works with any scope. Just one connection to the Vertical & Trigger Inputs and any scope becomes a full function Spectrum Analyzer. Tune H.T.'s Filters, ixers. Check all RF based Systems. The SA500ADP Scope Adapter will compliment any Ham Shack, Radio Service Shop or EMI Test Lab. MADE IN THE USA Not a kit. If you have been waiting for a low cost High performance Spectrum Analyzer at an affordable price, take Advantage of our special introductory offer. Add a 500MHz Tracking/Noise Generator for only $100 and save a total of $200.

SA500ADP only $399.00
Add Tracking Gen. $100.00
Introductory offer only $499.00
SAVE OVER $200 Reg. price $699

SETTING THE STANDARD
SA500A, SA1300B, SA1800C

SPECTRUM ANALYZERS

STARTING AT $995.00

MADE IN THE USA

SA1800C 1-1300 MHz & 850-1850MHz $2395 With Opt. 1,3,5,6

ADVANTAGE INSTRUMENTS CORP. MC - VISA - DISCOVER call 800-566-1818
3579 Hwy. 50 East Carson City, Nevada 89701 702-885-0234 FAX 702-885-7600
PRICES & SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION. F.O.B. CARSON CITY NV. NV. RESIDENTS ADD SALES TAX.
The Hamtronics RWWW Receiver

A precise, dedicated receiver for WWV.

The Hamtronics RWWW Receiver

The Hamtronics RWWW Receiver is a high-performance receiver specifically designed for the WWV and WWVH radio time and frequency standards. It offers a compact, user-friendly design that fits the needs of amateur radio enthusiasts looking for an accurate and reliable time and frequency standard.

The Circuit

The circuit board is FR-4, double-sided, and is designed to be easy to assemble and align. The board is equipped with a crystal-controlled receiver that is capable of receiving WWV and WWVH signals on 10 MHz. The receiver includes a variety of features such as AGC, IF and RF AGC, and a panel-mounted control.

Assembly

Assembly took about 4 hours, at a leisurely pace, double-checking each part before soldering. The process was a real pleasure: challenging, but with no problems. All parts fit perfectly. This was the best set of assembly instructions I've ever followed. The sequence in which the information is presented made assembly easier, and the Theory of Operation and Troubleshooting sections provided a thorough explanation of the circuit.

Alignment

Alignment is accomplished by supplying an accurate 10-MHz signal and sequentially adjusting the tuned circuits, tuning for minimum AGC voltage. I don't own a signal generator. At the time I completed assembling the circuit and making the off-board connections, WWV's signal was very strong on another receiver; therefore, I initially tried aligning the circuit using only the off-the-air signal. Without going into the details, take my word for it: it doesn't work. The tuned circuits are just too sharp to start alignment this way. Having a few computer clock oscillators on hand, I connected 6 volts to a 10.0000-MHz unit and coupled it to the receiver's input through a .01 µF ceramic disc capacitor. After initial alignment, the receiver's frequency and time were very steady and accurate.
Why the new ULTIMETER® 2000 is

The world’s best home weather station

The ULTIMETER 2000 tracks more than 100 values to help you alert others to dangerous weather extremes and protect your own equipment.

Features superibly accurate: • barometric pressure • 3-hr. pressure change • indoor/outdoor humidity • dew point • wind speed/direction • indoor and outdoor temperature • wind chill temperature • rainfall.

Instant access to: • current values • today’s highs and lows • yesterday’s highs and lows • long term highs and lows • time/date for all highs/lows • rain totals for today, yesterday and long term • alarms, and much more! Over 100 weather monitoring values in all!

Versatile 4 mode serial port makes it easy to record data automatically or monitor values remotely by phone, modem or radio link.

Patented design makes this complete weather monitoring system easy to install and simple to use. Informative, educational, and fun.

The ULTIMETER 2000 is a great value, too—only $379 plus shipping. *(Optional sensors add $)*

1-800-USA-PEET
or 908-531-4615
FAX 908-517-0669

PEET BRO S. COMPANY
1308-5127 Doris Ave., Ocean NJ 07712

Our 20th Year © 1995 Peet Bros. Co.
THE MINI STATION

The MINI STATION is a very compact and portable 2 Amp-Hour gel cell battery that will power your HT via your cigarette power cord at 5 Watts for days on end. It can even power a mobile rig for a few days or so (depending on how long winded you are). It's great for those situations when you need more talk power and longer battery life. The MINI STATION is also a fantastic power source for cellular phones, laptop computers, or anything that plugs into a car's cigarette lighter. We even used a customer's one million candle-power Q-BEAM spot light as a demo at the '95 Dayton Hamfest.

The MINI STATION is a very similar to a QUANTUM battery, except theirs costs about $200.00 with its special adapters. The MINI STATION utilizes your HT's cigarette power cord. In addition to a wall charger, it comes complete with a handy carrying pouch that has a removable shoulder strap. The pouch also has a belt strap that buckles, so you don't need to unfasten your belt to wear it.

The MINI STATION also has 2 LED's for indicating when the battery is switched on, running low on power, or has finished charging. Since the MINI STATION is a gel cell, it does not suffer from memory effect, so you don't need to wait until the battery is dead before you charge it. That means you can use it all week and then charge it, or use it everyday and charge it everyday so that it's always fully charged. It can be charged thousands of times with the supplied charger, for years of enjoyment. It automatically stops charging when its voltage sensing circuitry detects it is fully charged. Other brands have timed charging circuits (or no charging shut off at all) which can damage their battery or not fully charge it!

To order, send check or money order for $79.95 + $6.50 to:

THE HAM CONTACT
P.O. Box 3624, Dept. MS
Long Beach, CA 90803
for information call (310) 433-5860
COD Orders call (800) 933-HAM4
(800) 933-4264

Performance

I knew the receiver was working when I immediately heard WWV with only 8" of wire connected to the antenna terminal. A telescoping antenna brought in both WWV and WWVH that evening (WWVH ends their half-hourly identification message with "Aloha"; nice touch). The audio level fills a room, without distortion, well before reaching maximum on the volume control; it easily drives even a large stereo speaker.

The AGC is a good feature, and much more convenient than I had imagined it would be. I used the on-board volume control, and I never need to touch it, even when switching from speaker to headphones. It's interesting to leave the meter connected to the AGC line and watch the signal strength as it varies due to propagation. An "S" meter could easily be added.

Of the several frequencies on which WWV transmits, 10 MHz was the right choice for a monitor. With this combination of a reliable frequency and a sensitive receiver, there have been very few days or evenings since I built it that the signal was not usable.

You'll want to build the circuit board into some kind of an enclosure. The small size lends itself to just about any kind of final assembly you prefer. I installed a 5-foot telescoping antenna (Russell Industries, Inc., 3069 Lawson Blvd., Oceanside, NY 11572, part no. W-3H, 11 sections, 60" extended, 6-3/4" collapsed), but have found that the full length is rarely needed for reliable reception.

If you don't plan to run the receiver indoors on a 12-volt power supply, eight AA alkaline batteries will last for many hours and fit easily with the circuit board in a small project box. An assembly option includes a (supplied) resistor for 9-volt operation. This battery is smaller, and should be adequate for typical brief listening periods. You could even build it all into a speaker cabinet; all that's needed is an external antenna and on-off switch. If you don't like the austere look, add panel-mounted volume and squelch controls.

Summary

I don't believe you'll get better WWV reception on any other receiver. Add to that the pleasure of assembling a really well-designed kit of a finished size that can be packaged any way you want, and a reasonable price for the quality. The model RWVV is available in kit form for $59, wired and tested at $99, from Hamtronics, Inc., 85 Moul Road, Hilton, NY 14468-9535. Phone 716/392-9430; fax 716/392-9420. Now, who'll be the first to modify one for 30 meter CW?
A Milliohm Adapter
For Your DMM
Expand your meter sensitivity
by Marion D. Kitchens K4GOK

The lowest resistance scale on most DMMs is 200 ohms, allowing resolution of 0.1 ohms maximum. This is adequate for many purposes, but there are times when lower value resistances simply must be measured, and measured with greater resolution. A lot of problems occur around the shack because of poor pins and sockets on connectors, because of oxidized contacts on switches, and other similar circumstances. A particularly troublesome item is a relay with dirty or pitted contacts. Many small slide-type switches are notorious for fouled switch contacts. And we’ve all had unpleasant experiences with bad microswitches. It is often difficult to determine if the low-voltage winding of a power transformer is shorted or not, and sometimes center tap connections are not obvious. When the problem is a simple open or shorted connection, that is readily determined, but when partially open or shorted situations occur a way to measure low-value resistance is required. The milliohm adapter described here is quite helpful in those situations.

The adapter also serves a multitude of other purposes around the radio room and builders work bench. When designing high current power supplies, it is necessary to know the “internal” resistance of the windings. That property is seldom available, but can easily be measured with the adapter described here. You can even measure the internal temperature rise of a transformer, by comparing the cold and warm resistance measurements. I suspect you could measure the resistance of a cold solder joint as well, but I could not find one to measure in my shack <Grin>.

The milliohm adapter is a simple, but effective test instrument. It is simple enough to be wired on perfboard, or a PCB can be made from the foil pattern provided. All the parts are available from most peg board sources like Radio Shack or JimPak. There is nothing fussy or critical about the components or in calibrating and using the instrument. The adapter can be powered from a wide range of supplies from 5 to 12 VDC, and because it consumes power (100 mA) only when actually making a measurement, battery operation is practical. The instrument plugs directly into your DMM for clutter-free operation as shown in the photo. The circuit design precludes the necessity of correcting for the test lead resistance, which otherwise would be a significant part of the very low value resistance this instrument is capable of measuring.

The milliohm adapter has two basic resistance ranges of 2.000 ohms full scale and 20.00 ohms full scale. The lower range results in a maximum resolution of 0.001 ohms, or 1 milliohm per digit of display on a 3-1/2 digit DMM. Thus the name of milliohm adapter.

Circuit

Figure 1 shows the schematic of the milliohm adapter. The LM317 is operated in a constant current mode at 100 mA, set by the 15-ohm resistor paralleled with the 100-ohm trim pot. The two 2.2 MFD caps assure stability of the LM317. The circuit applies exactly 100 mA to the resistor under test, thus producing a

Photo A. Completed milliohm adapter.
voltage directly proportional to the value of the resistor. The DMM then displays the resistance as a voltage. A voltage reading of 100.0 millivolts equates to a resistance of 1,000 ohms. Note that this is a four-wire system, ensuring none of the 100 mA current flows thru the leads to the DMM and thereby eliminating any affects of the test leads on the measurement.

Construction

Figures 2 and 3 show the parts placement and the PCB foil pattern, respectively. The PCB construction is recommended, but perfboard construction is quite adequate. The photo shows a finished PCB ready for test lead attachment and mounting. There is nothing critical or fussy about the layout, just keep the 2.2 μF cap leads short and close to the pins of the LM317.

Install the LM317 first and bolt it to the board with a 4-40 screw. Note the polarity of the tantalum caps and install them correctly. Add the 15-ohm resistor and the 100-ohm trim pot to complete mounting of the components. The holes for the banana plugs should be slightly oversize to allow alignment with your DMM jacks. Install the banana plugs in the jacks of your DMM first, and then place the PCB over the plugs and tighten the mounting nuts on the banana plugs. Note that only the metal part of the banana plugs are used; discard the insulators. Four nuts are required—2 on each side of the PCB, so you may have to purchase four banana plugs to get the nuts.

Mount a power connector of your choice on the PCB. The small coaxial connectors shown in the drawing and photos are recommended, but any connector you have will do. Make sure the power connector polarity is correct; there is no circuit protection for reversed polarity.

Make a set of test leads by twisting together two 2 foot long pieces of red wire, and soldering them together at one end only. You should have a 2 foot long, twisted test lead connected at one end only. Repeat that with two pieces of black wire for the second test lead. The four unsoldered ends of the test leads are soldered to the PCB at points a, b, c, and d as shown in the drawing. The two red test leads go to points b and c, and the 2 black leads go to points a and d. Study the drawing carefully to be sure the connections are correct. Your test clips or other connectors will be attached only after check out and calibration.

Check the PCB for solder bridges and unsoldered joints.

Check Out and Calibration

Apply power from a 5- to 12-VDC source. There should be no current flow from the power supply at this point in check out. Make sure that the supply positive voltage appears at the end of the red test lead, and that the black lead is at ground potential. Adjust the 100-ohm trim pot for a mid-range position. Set your DMM on the 200 mA current range, and connect it between the ends of the red and black test leads. The DMM should show about 100 mA of current. Calibrate the unit by adjusting the 100-ohm trim pot for a current of exactly 100.0 mA on the DMM. Note that best accuracy will be obtained if the unit is calibrated with the power supply to be used in normal operation. Disconnect everything from the milliohm adapter.

Plug the instrument into the DMM jacks and set the DMM for 200 millivolts full scale. Apply power, and the DMM should show an overflow. Next short the two test leads together directly at the solder joints (do not use clips or connectors on the test leads for this test), and the DMM should read 000.0 or 000.1 If the reading is more than 000.2, find the problem and correct it before proceeding.

Recheck that the current through the test leads measures exactly 100.0 mA with the mA meter connected between the red and black test leads. Attach test clips to the red and black test leads. Short them...
C. Adapter in use with Beckman DMM.

Together and read the DMM on the 200 millivolt scale. Your DMM will now most likely read a small voltage. That is the resistance of your test clips and a measure of their connection quality. Wiggle the test clips for a better connection, if possible. The instrument is now ready to be mounted in a container and put to use. The photos show a completed unit mounted in a contained made from PCB material. Note that if your DMM shows negative readings (a minus sign), that can be remedied by reversing the test lead connections are points c and d on the PCB.

Using the Adapter

Plug in the adapter, set the DMM to 200-millivolt range, apply adapter power, and make measurements! Note that this is a 4-wire instrument, and that for proper operation there should always be four wires directly to each resistance being measured—any other arrangement will cause errors. The test leads as recommended will assure proper operation. Also note that this unit actually measures voltage, therefore all power must be removed from the resistance being measured.

A Closing Note

The accompanying data chart provides some enlightening information. First those slide-switches with high resistance were dumped, immediately. Note the voltage drop the transformers will have at rated output. Some relays had quite high contact resistance, and they were all old, but unused. Gotta watch those relays!

Table I. Data Chart Showing Measured Data.

<table>
<thead>
<tr>
<th>Transformers</th>
<th>Slide</th>
<th>Micro</th>
<th>Micro</th>
<th>Toggle</th>
<th>Toggle</th>
<th>Toggle</th>
<th>Toggle</th>
</tr>
</thead>
<tbody>
<tr>
<td>30V @ 6A</td>
<td>0.055 to >20</td>
<td>0.011 to 0.030</td>
<td>0.024 to 0.100</td>
<td>0.009 to 0.021</td>
<td>0.008 to 0.025</td>
<td>0.013 to 0.031</td>
<td>0.018 to 0.032</td>
</tr>
<tr>
<td>12.6 @ 1.2A</td>
<td>0.16 Ohm</td>
<td>1.04 Ohm</td>
<td>0.56 Ohm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.6 @ 2.0A</td>
<td>0.022 to 0.022</td>
</tr>
</tbody>
</table>

Relays

<table>
<thead>
<tr>
<th>#1 Close 1.540 to 0.200</th>
<th>#4 Close 0.020 to 1.750</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open 0.033 to 0.092</td>
<td>Open 0.016 to 0.060</td>
</tr>
<tr>
<td>Some >> 20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#2 Close 0.022 to 0.022</th>
<th>#5 Close 0.050 to 0.052</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open 0.200 to 0.530</td>
<td>Open 0.923 to 3.400</td>
</tr>
<tr>
<td>Some >> 1.0</td>
<td>Some >> 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#3 Close 0.015 to 0.122</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Open 0.015 to 0.018</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: All Data is in Ohms
Stop Cheating Yourself!

Amateur radio offers a wonderful opportunity to learn about electronics. You're really going to hate yourself if you miss out on the great fundamentals of electronics series which just started recently in Radio Fun.

Subscriptions are only $13.93 a year. You'll also get more of Wayne's editorials, and fabulous columns by hamdom's top writers, plus more product reviews, antenna projects, and some simple home-brew projects.

Order from Radio Fun, 70H N202, Peterborough NH 03458-1107. Or call 800-274-7373.

IT MAY BE YOUR HOBBY, BUT IT'S OUR BUSINESS!

- WT 51 $1,050
- LM 354HD $1,900
- LM470 $3,658

Designed to UBC 1991 - 70mph

CALL OR WRITE FOR A FREE CATALOGUE!
QSY Internet!

A wide menu of information sources.

by Al Williams WD5GNR

It seems that wherever you turn today, you hear about the Internet. Mainstream magazines, network news shows, even the local newspapers seem to be talking more and more about the Internet. You can certainly use the Internet to find out yesterday's cricket scores, or the price of cheese in 1978, but you can also find online tons of information about your favorite hobby. If you aren't on the Internet, this article will show you how to get started; all you need is some sort of computer and modem or an ASCII terminal. If you are on the Internet, read on to find out where to find ham radio-related information.

What Can I Get on the Internet?

Here's just a sample of the ham radio information you can find on the Internet:

- Callbooks
- Satellite and shuttle orbits
- Ham programs for many brands of computers (PCs, Macs, Commo-
dores, even Amigas)
- The latest FCC regulations
- Sample examination questions
- Recent DX station spots
- Propagation forecasts
- Repeater databases
- Hamfest and club listings

And that's just the tip of the iceberg. You can even talk to other hams in real time (like a RTTY QSO) or by using messages.

How Do I Get All This Stuff?

Information on the Internet comes in many flavors. The data you want resides on a computer that could be anywhere in the world (a server). To get the data, you need to use the right protocol. The Internet supports many different protocols. Here are the most popular ones:

Telnet

When you use telnet, you log on to the remote computer directly. For example, some callbook servers operate via telnet. The initial screen indicates what user ID you use to log on. Then, the computer automatically runs the callbook search program. Your computer acts like a dumb terminal, in this case.

FTP

You use FTP to retrieve files from a remote host. When you use FTP to connect to a remote computer, it asks you for a user ID and password. By convention, most Internet computers allow you to log on as "anonymous" and supply your electronic mail address as a password. Then, you'll have limited access to public files on the host computer.

Web

The Web (or World Wide Web) is the latest word in Internet tools. A Web server stores pages of information. A Web page on ham radio, for example, might have a link to a DX bulletin, another that runs a telnet session to a callbook server, and another that downloads a log book program using FTP. To use the Web, you usually use special software called a Web browser. You can use a simple text-only Web browser using nothing more than a Teletype. For personal computers, you can get sophisticated Web browsers that support text, graphics, sound, and even moving pictures. Most Web browsers can handle FTP and telnet, too. If you can use a Web browser, it may be the only Internet tool you ever use.

Usenet

The usenet (or newsgroups) are similar to ordinary bulletin board systems (BBS). There are groups for everything from ham radio, to cigar smoking (no kidding). You can read messages from others on the subject and post your own messages. How you read newsgroups varies depending on the system your provider uses.

IRC

You can use IRC (Internet Relay Chat) to talk to other people (including hams) in real time. This is very similar to having a RTTY QSO, except there is no QRM, QSB, and TVI, the transmission is fast and error-free, and multiple people can talk at once.

The exact interface you use with these tools varies depending on your Internet provider. Figure 1 shows a typical Web page viewed with the Windows 95 Internet Explorer (a Web browser from Microsoft).

Ham Radio Resources

The Web is by far today the most important part of the Internet. Exactly how you access the Web depends on what tools you are using. Resources on the Web have a "Universal Resource Locator" (URL) that serves to identify it. You instruct your browser to "open" a URL. Then you can travel to other parts of the Web by clicking on that page's link. A URL has three parts. Here's an example:

```
http://www.qualcomm.com/amsat/AmSatHome.html
```

The first part of the URL, "http://", tells your browser that you are
accessing a Web page. Other choices here are “ftp:” or “telnet:”, for example. The next part of the URL is the computer you want to use (the host). In the above example, the computer is “www.qualcomm.com.” The remaining part is a file name (including a directory). The example is for file AmsatHome.html in the amsat directory.

If you aren’t using a Web browser, you can still access FTP and telnet resources. Just use the host and file names with your FTP or telnet program.

The following are some URLs that are interesting to hams:

URL Description
http://www.cline.it/jukka/webcluster.html Real time DX spots.
http://acs.ncsu.edu/HamRadio Page with links to many resources (repeater database, news, tests, packet, etc.)
http://www.libertynet.org/~adam/low-pro.html Tips on operating from apartments or restricted homes
http://canada.unb.ca/radio/ DX propagation, packet information
http://www.qualcomm.com/amsat/AmsatHome.html AMSAT satellite information
http://hypatia.gsfc.nasa.gov/sarex_mainpage.html SAREX (Shuttle Amateur Radio Experiment) page
http://www.gate.net/~riehman SSTV page
http://webfind.tech.uh.edu/irc Information on ham radio IRC (Internet Relay Chat)
http://ftp.cs.buffalo.edu/pub/ham-radio
Many ham radio files
http://www.tapr.org/tapr/html/pkthome.html Packet radio information
http://www.qrz.com/callbook.html Callbook servers
http://promet12.cineca.it/hos/hsli.html
telnet://callsign.cs.buffalo.edu:2000/
http://acs.oakland.edu/barc/arrl.html
ARRL home page

Searching the Net

The Internet is constantly changing. How can you find new things? How can you find items about other subjects? The best way is to use a search program. There are several Web sites that allow you to search for Web pages or access them via an index. Two powerful search programs are Lycos (http://lycos.cs.cmu.edu) and Yahoo (http://www.yahoo.com).

If a file you want appears in a Web page link to an FTP server, you can easily find it this way. If it is only in an FTP server, finding it can be more difficult. You can use a program named “archie” to find files on FTP sites, if you know the file’s name (or part of the name). Otherwise, you can connect to FTP sites you think are likely, and see if they maintain an index file (usually, INDEX or 00_INDEX). Download the index file and search it for the file you are interested in; many index files have file descriptions in them. Remember, if you are using a Web browser, and you want to FTP files from oak.oakland.edu (for example), just open the “ftp://oak.oakland.edu” URL.

Making Contact

Before you can access these services, you need to connect to the Internet. If you use packet radio, you may be able to gain limited access to the Internet via an Internet Wormhole. However, this is slow and doesn’t offer many options. The good part is that it is free; ask around to find out where the nearest Wormhole is.

To get the most from the Internet, you need an account on a provider. If you live in a metropolitan area, you may find local providers. Table 1 shows the major national suppliers. There are four common types of accounts that use ordinary telephone lines:

1. Terminal
2. Proprietary interfaces
3. Direct SLIP
4. Direct PPP

When you use a terminal account, you use a modem and a terminal (or terminal emulator) to dial into the provider’s computer. Then you use tools on the provider’s computer. This is usually the least expensive way to get access. You can use any computer or terminal that will work with a modem. You don’t need to maintain any software, since it is all on the main computer. If you use an older computer (a Commodore 64, for example), this may be your only option. Any computer with terminal emulation software can use a terminal account.

There are many drawbacks to a terminal account, however. Usually, it is not possible to use graphical Web browsers on a terminal account. You may be able to use text-only browsers, but you lose the full impact of the Web that way. Another problem occurs when you transfer files via FTP or the Web. The file winds up on the provider’s computer—not yours! You’ll need to use some file transfer software (XMODEM, for example) to move the file from the provider’s computer to yours, a procedure that is just like getting a file from a common bulletin board system. If you use telnet or want to send electronic mail, a terminal account is as good as any other.

Many of the national providers (CompuServe, America Online, and so forth) use a proprietary interface to the Internet. You use their software on your computer to access their service. Then, by means of a series of menus or buttons, you can access the parts of the Internet that you want. These services often offer simplified access to common services, plus they usually have other services not related to the Internet. CompuServe, for example, has its own ham radio bulletin board that is independent of the Internet. Most of the major players have interfaces for the PC and the Macintosh.

If you opt for a SLIP or PPP account, your computer becomes a full node on the Internet for as long as you stay on the phone. This is the most powerful option since you control the software on your machine. It is also the most difficult to manage. You must set up your system to use a “stack” (software that manages the connection) and maintain all the Internet software you want to use. If you are using Linux, OS/2 Warp, Unix, or Windows 95, the stack is built in and you probably have several basic tools (FTP, telnet, and so forth) already on your system. If you run ordinary Windows or MSDOS, you’ll find it is quite a job to install the stacks and get them working properly.

What to Look For

When you select a provider, there are several things you should consider:

1. Cost

There are many tiers of pricing available. The most convenient is when you pay a flat fee and can use the service as much as you like. However, it may be less expensive to pay as you go. Typical flat-rate accounts run about $35 per month in the Houston area, for example. You can also get a basic account for about $10 per month. For that fee, you’ll get a few hours for free each month. Then additional hours will cost $1 or $2 an hour. Many providers have a free trial offer; be sure to ask.

2. Availability of local phone numbers

Be sure that the provider has local phone numbers. Otherwise, you’ll pay long distance charges. Some
providers have 800 numbers, but you'll pay as much to use them as you'd pay the phone company for long distance.

3. Number of times you can use the service

Many providers offer unlimited access during nonpeak hours (evenings, and weekends). Others may surcharge peak hours or disallow access during peak times. Be sure to check if you want access during the day. If you don't need daytime access, try to get a discount on evening access.

4. Services available

If you get a SLIP or PPP account, see if the provider supplies any software (especially the stack). Otherwise, you may need to buy or find tools (FTP, telnet, a Web browser, and so forth) for your computer. Also check that the provider will accept electronic mail for you and forward it when you connect. This is essential since you are connected to the Internet only when your computer connects to the provider's computer on the phone.

Another issue is usenet. Your provider must "subscribe" to particular newsgroups for you to read them. Make sure your provider receives any groups you want.

If you opt for a terminal account, you need to be even more selective about available services. If your provider doesn't have a text-only Web browser, for example, you can't access the Web! Make sure they have satisfactory tools. The same goes for services with proprietary interfaces: What they have is what you have to use.

Many people want to put their own pages on the WWW. Some providers offer this for free, others charge a fee, and some don't allow it at all. If you want your own personal pages on the Web, be sure to ask if the provider allows it.

5. Hidden costs

Check for hidden costs: prime time surcharges, phone line charges, fees for disk storage, and so forth. If you want to publish a page on the Web, make sure there isn't an additional fee for this service.

6. Support

Usually, if you aren't familiar with computer networking, you are better off going with one of the major national providers with a proprietary interface. Their systems are easier to use, and they offer free support. Terminal, SLIP, and PPP providers expect you to know more about what to do and are less likely to offer detailed support.

Summary

With the explosive growth of the Internet, it is difficult to keep up with the daily changes. The best way to find out about the Internet is to get an account and jump right in! You'll find it a useful adjunct to your radio gear, and an interesting hobby in its own right.

Bibliography

There are many, many books available about the Internet. Here are a few to get you started:

LeJeune, Urban. Mosaic and Web Explorer. Coriolis, 1995. If you use the Mosaic Web browser, you'll find this book very useful with information on the browser, web sites, and more. Includes a CD-ROM.

Netscape and HTML Explorer, Coriolis, 1995. This is similar to the Mosaic book, but uses Netscape, a very popular Web browser. Includes a CD-ROM.

Pike, Mary Ann. Using The Internet. Que, 1995. This is a complete book that comes with many Windows Internet tools on CD-ROM.

Vincent, Patrick. Free Stuff From The Internet. Coriolis, 1995. As the name says: how to get free stuff.
Kenwood TS-870S HF Transceiver

We are promised that conditions on the high frequency amateur bands are going to be getting better, with the startup of the next sunspot cycle. For now, the average ham, with a 100 watt station using antennas that are acceptable in an urban location, are having a difficult time working weaker stations through man-made and natural noise.

Certainly high power and large antennas will help, but many of us just can’t afford to go that route. Antenna restrictions and interference to consumer electronics creates a difficult situation that we have to live with, or give up that part of our hobby. We need an edge to make amateur radio as enjoyable as possible, and I for one don’t want to put off working the low bands until things improve, in a few years.

Kenwood has just released its newest and most advanced high frequency transceiver. The design feature that is unique in the amateur market (at least for now) is the use of a digital signal processor (DSP) that processes signals at the intermediate frequency (IF) as well as at audio frequencies. This has also been done recently by other companies making radios for the commercial and military markets (and their products may be purchased at great expense).

Kenwood was the first amateur radio company to design DSP into an amateur transceiver (in the TS-950 SD and SDX), and now they’ve expanded greatly beyond their original efforts, and they seem to have done it right! I’ve been able to copy signals on the TS-870S, buried in so much noise that I couldn’t copy on other receivers, and that’s what it’s all about. You can’t work them if you can’t hear them.

Description of the radio:

Let’s start with the receiver, since it is what you would spend your time listening to, not the transmitted signal. It is a quadruple conversion type superheterodyne. The frequencies used are 1st: 73.05 MHz; 2nd: 8.83 MHz; 3rd: 455 kHz and 4th: 11.3 kHz. All filters are included in the radio. The IF filtering is mainly done by the DSP. In addition to the DSP IF filtering, the radio contains ceramic or crystal filters located in the first three of the four IF frequencies, to act as additional bandwidth limiters. These are automatically selected by mode and operator-selected.

CW bandwidths range from 1 kHz down to 50 Hz in six steps. On FSK they range from 1.5 kHz to 250 Hz in four steps and on FM six different widths from 14 kHz to 5 kHz.

On SSB, slope tuning may be used, resulting in twelve different widths ranging from 1.4 kHz up to 6.0 kHz. Six bandwidths on AM complete the possibilities.

One reason that it is important to process the signal at IF instead of audio, is that once the signal has been detected, the DSP has lost a lot of the information that it requires to discriminate between noise and intelligence. For the most efficient transfer of voice or data, the receive filter must be matched to the transmitted signal, and predetection filtering is the optimum method. It makes little sense to have an overly wide bandwidth, and to attempt to make up for that by using a narrow audio filter. Certain artifacts will now ride along with the desired signal that make it very difficult to separate the desired signal from the noise.

A digital signal processor is a very specialized type of microprocessor. It crunches numbers, and in this case two DSP chips do it very quickly. In the receive mode, the analog signal is mixed down to a very low intermediate frequency of 11.3 kHz and converted into a digital stream of numbers. The DSP acts as IF filter, demodulator, AGC processor, squelch processor and—very importantly—as a noise processor. All of this occurs in a section of the radio which doesn’t have any service adjustments!

When transmitting, the modulation with the exception of FM, is generated by the DSP, which also serves as a microphone AGC amplifier, voice equalizer, speech processor, VOX controller and sidetone generator. Whew! What a busy region of the radio. Suffice it to say that this is one complex system.

The DSP section of this radio consists of two Motorola DSP56002FC240 132 pin, 24 bit chips with a claimed dynamic range of 144 dB. The IF to digital converter is an 18 bit sigma-delta (also known as a one bit) A/D converter. The IF is highly over-sampled, resulting in a very quiet digital signal with a very large dynamic range.

The DSP IF filtering creates filters that have shape factors, pass band flatness, very high out-of-band attenuation and phase characteristics that are impossible to build any other way.

The transmitted signals are generated in the DSP, and mixed up several times to the transmit frequency, and amplified by the final amplifier unit. The RF portion of the transmitter, for the most part, is very similar to that of the TS-850S.

The frequency synthesizer consists of three phase lock loops and three direct digital synthesizers, all controlled by a CPU. A 20 MHz crystal oscillator serves as the only reference oscillator in the radio. The result seems to be a very fast, quiet radio.

Using the radio:

My approach to writing the evaluation of the radio was to ask friends of mine to use the radio, and give me their opinions, opinions that I can then pass to you. I hope you will have the same experience as me!
While this radio is user friendly, it will require studying the instruction manual and practice to be able to take full advantage of the radio's unique features. It's not a beginner's radio. It would be a waste of money to buy one without the instruction manual, such as this and not be able to take full advantage of what it has to offer.

The TS-870S comes with a built-in antenna tuner and doesn't require (or will accept) any additional IF filters, all are already synthesized by the DSP. This sophisticated CW keyer is also included in the radio. It will operate from six to sixty words per minute, and emulates the K-1 Logikey. A normal key or paddle is all that's needed to get on CW. The radio will store four CW messages with a total of 220 characters. This sounds like a great feature for contesting. Options include a voice synthesizer, a digital recording system, and a high stability temperature-compensated crystal oscillator. An 8.83 MHz full bandwidth output is provided on the rear panel to be used with a station monitor such as the older Kenwood SM-220 or current SM-230.

DR Ulrich Rohde KA2WHE, well known for his communications books and articles in amateur publications was a consultant for Kenwood on the design of the receiver. His insistence that PIN diodes, rather than silicon PIN switching diodes be used in critical spots in the receiver front end, has resulted in a receiver with great immunity to overload. He had the use of a pre-production radio this summer and the opportunity to make some sophisticated measurements. I use his results with his permission.

Phase Noise: -120 dBc/Hz at 10 kHz, -126 dBc/Hz at 20 kHz

This indicated a very quiet frequency synthesizer, resulting in a narrow transmitted noise signal, and low reciprocal mixing in the receiver.

Third Order Intercept Point: 22 dBm with AIP on.
Second Order Intercept Point: 64 dBm with AIP on.

This indicated the ability to reject interference when there are many strong signals inside and outside of the band.

Dynamic Range: 95.3 dB with AIP on, 91.6 dB with preamp on.

Ulrich said to me that he considered the receiver in the TS-870S the best currently available at its price.

The display is similar to that currently used in the Kenwood models TS-950SDX and TS-450S. It is a good-looking multi-colored display, carefully thought-out to help the operator. The only shortcoming of this type of display is that it is very hard to see in bright sunlight. I've up to both the TS-450S and the TS-870S in my car, and while most operators won't use this radio mobile or outdoors, it's something to consider.

Unlike all other Kenwood High Frequency radios, the front feet don't raise up. If you wish to lift up your face, you'll have to put something under the front or build a ramp. The main tuning knob now has a rubber cover around the outside and a depression on the front for your finger, but doesn't have any adjustable friction adjustment. There are two tuning keys available on the main knob, and a much faster rate using the M.CH/VFO/CH control. I find the rate and feel to be very comfortable. Push-buttons either light up when they are in the on position, or light up an indicator on the display to indicate which band or sub-band the tuning is doing.

The instruction manual is very well-written and illustrated. The introduction and one page of the appendix explains something about the DSP and how it is used. Also included are sections on standard time stations, the NCDXF/ARRL beacon on 20 meters, and the shortwave broadcast bands. The remainder of the appendix explains the digital interface for computer control (using RS-232C).

Computer Control Of The TS-870S:

The TS-870S includes a built-in RS-232C port and comes with two 3.5 inch floppy disks, containing a DOS- or Windows-compatible software program called Radio Control Program™. RCP will allow complete control of the radio via a personal computer. It will let you use or create a "virtual radio" on your screen. As long as you can provide a two way communications path at baud rates of 1200 to 57600 bps, and audio lines, you can completely control the radio, and locate it anywhere! Optional software modules are available from DynaNet Corporation. The TS-870S can also transfer data (receive frequency and receive mode) to another TS870S or four other types of Kenwood transceivers.

The microphone supplied with the radio is the MC-43S hand mic., the same that has been used for many years. This microphone provides up and down buttons for changing frequency or memories, but no "soft keys" as on the TS-50S and TS-60S microphones. I would suspect that most buyers will opt for some kind of desk mic.

The TS-870S is a descendent of the TS-850S. The dimensions are the exactly same and at 25 pounds weighs only one pound more. Someone comfortable with the operation of the 850 would feel at home using the 870.

At a list price of $2199, and considering the typical dealer discounts, the selling price shouldn't be much more than the TS-850S, especially if you loaded up the 850 with a bunch of IF filters.

Best Points:

- The ability to survive in a crowded noise filled band.
- Many bandwidths in each mode without having to buy additional filters.
- It is also a well-thought-out contest radio. The built-in antenna switch, so that two different antennas can be used, even in the same band.
- The provision for an additional receiver to share the same antenna as the one currently in use by the 870.
- One of the features we liked most was the ability to fade away the transmit voice frequency equalization and voice processing to produce the best sounding signal for an individual voice, and to monitor the results. The reports on the air impressed many.
- It was also agreed that the noise blanker (which is adjustable from the front panel) was also very effective.
- An innovation which also received a good review was the ability to program the receiver for a very fast AGC release time on CW. When working a weak DX station being called by very much stronger local stations, the receiver would almost instantly recover from the stronger stations.

The antenna tuner is a real improvement over anything that Kenwood has offered in the past. First it's very fast. Whether you're just changing modes, changing the tone setting to a memory location or you are attempting to match an antenna, it just takes a few moments to tune and stop.

The numbers in the book don't indicate the apparent range of impedances that it is able to match. I was able to match a twenty meter mobile antenna on both 40 and 15 meters as well as the intended 20 meter band. At home, a random length dipole matched on most bands. Of course matching isn't everything, a non-resonant antenna still is a great radiator, and a tuner isn't going to change that.

In another novel change from the Kenwood past, the antenna tuner may also be used during receive. This will result in greater immunity from QRM caused by strong out of band stations, and if your antenna isn't very efficient it may raise the received signal strength. I had modified my TS-440S auto tuner years ago to do this, and found it to be a worthwhile feature, especially when operating mobile.

The antenna tuner has 18 preset memory frequency segments. This enables you to have one setting for the CW portion of most bands and another for the phone portion. In addition you can preset either antenna connector 1 or connector 2 (ANT 1, ANT 2) for the same portions.

Frequency Bands

While the receiver covers the entire range from 30 kHz to 30 MHz, the transmitter will not operate outside of the U.S. assigned bands—not by even ten hertz! MARS and CAP modification data will be available for those properly licensed.

This radio contains a 68 item menu, which enables you to set up the radio exactly the way you want it. This also eliminates many panel or hidden controls, such as VOX, CW pitch, display dim and more. There are actually two main menus, A and B. They are the same, and may be set separately for different situations such as normal operating or running the test switch between them at will. Also you can assign the most often needed menu functions to a quick menu for fast access, without calling up a main one.

When you temporarily want to return the menu to the default settings, it can be done by turning off the power, and holding the CLR button and turning the power on. To return to the original settings, turn off the power and turn it on again.

The front panel meter serves up to six different functions, and consists of a multi-colored circular bar graph, that looks somewhat like a mechanical VU meter. An unusual feature is that the relative bandwidth and position of the pass band
THE 6 METER FM LEADER

THE MAGIC BAND - SIX METERS. The best of both HF and VHF. Enjoy great DX during band openings and full repeater operation at other times.

BUILT TO MIL-STD-810 2 YEAR WARRANTY

SPECIFICATIONS

PCS-7500H

AZ-61

Frequencies: TX 46-54 MHz

46-54 MHz

RX 46-54 MHz

50-54 MHz

Power: 505 Watts

50/5 Watts

Sensitivity: < 0.10 pV

< 0.16 pV

for 12 dB SINAD

for 12 dB SINAD

Memories: 29

40

Tones: 38

38

Keypad: Backlit DTMF

Prog. and DTMF

DC Power: 13.8 VDC @ 9 amps typ.

12 VDC @ 1.5 amps typ.

12 VDC @ 1.5 amps typ.

6 to 16 VDC

Size: 2.5" X 1.5" X 2.3" D

6.85" X 2.5" X 1.3" D

PCS-7500H MOBILE

AZDEN COMMUNICATIONS DIVISION

147 New Hyde Park Rd., Franklin Sq., NY 11010

(516)328-7501 FAX (516)328-7506

CIRCLE 272 ON READER SERVICE CARD

SIEMENS

Solar Electricity. Dependable Power, Anywhere.

Wherever you need reliable power for telecommunications, Siemens solar systems can deliver it. Under any environmental condition.

High-efficiency and long-term proven performance make Siemens modules your best choice for all types of solar powered communications installations.

See Your Siemens SolarPower Product

ALTERNATIVE SOLAR PRODUCTS

27420 Jefferson Ave., Suite 104B

Temecula, CA 92590-2668

(909) 303-2366

FAX (909) 303-2388

Call today for your free catalog!
tuning is graphically displayed. This is a really nice feature because it instantly shows how the receiver filtering is set up.

The receiver sports three new buttons which use the unique features of the DSP. The first button is AUTO NOTCH. This introduces an automatic very deep notch in the receiver IF to eliminate a heterodyne that may interfere with an SSB transmission. By doing the processing at IF rather than at audio, a strong carrier won't capture the AGC, and reduce the desired signal's strength.

The second button is called BEAT CANCEL. Used on either SSB or AM this button enables an audio notch filter that will reduce or eliminate interfering tones. This function is also more effective at removing low-level tones than AUTO NOTCH.

The third button is called NR or noise reduction. This uses the DSP on All modes except FM to improve the signal to noise ratio of received signals. A different method is used on voice modes than is used in CW or FSK. An adaptive filter analyzes speech patterns and forms a variable filter around the received signal. Kenwood calls this method Speech Processing/Auto Correlation (SPAC). On CW and FSK the preferred method is the Line Enhancer Method or LEM.

Negatives

Like any new product, some things will require time and experience to perform the best they can. The radio that I had for evaluation was a pre-production model, and some of the minor things my fellow evaluators and I didn't like may be taken care of in production:

- It will take some study and practice to master.
- The poorly contrasting display in sunlight.
- Lack of extending front feet.
- It was reported by some that the receiver audio was distorted and lacked adequate frequency response.
- The radio doesn't include a power supply but requires a separate DC power supply capable of delivering 13.8 VDC with a current capacity of 22.5 A or more.
- An internal speaker is mounted on the top cover and it sounds all right, but I would recommend a good quality external speaker or earphones for serious operating.

Buying a major piece of radio equipment such as the TS-870S (or any other radio) requires an informed decision on the part of the buyer. I would certainly suggest that you spend some time in front of the radio, and see if it is able to do what you want it to. What seems wonderful to someone else, may not be what you need. Talk to others who have used the equipment and then make your own decision based on your own needs, tastes and experience.

A friendly piece of advice from someone who has worked on a lot of amateur radio gear: If you have trouble with a sophisticated radio such as this, don't try to repair it yourself, and don't take it to "Mr. Fixit". There are very few service adjustments inside, and it takes special tools, a lot of experience, good test equipment as well as the service manual to make it well again. This is no place for guessing and substitute parts.

Biography

First Licensed in 1956 as a novice (KN6YAZ) while in Jr. High School, Stuart Landau now holds an Extra Class License.K6YAZ. He has worked in commercial television, aerospace, and communications electronics, and is currently working as an Engineer for Standard Communications Corp., working on land mobile radio and marine electronics products.

Mr. Landau would like to thank Randy Powell, NZ6N, Al Mandel WB6RGF and Ulrich Rohde KA2WEH for their help with the evaluation. And a special thanks to the people at Kenwood for the loan of the radio along with the documentation and software. Comments to: (818) 203-2080

Inside the TS-870S HF Transceiver.
A Problem Under The Aurora Borealis
(Or, a ham’s Christmas Fable from our Hamly to yours!)

By the Reinhardt Family, Jeff KM8II; Melissa KD6BIT, Jessica KD6ARA and Steven KE6PNA

(Just a little south of the North Pole, according to Steven)

In a quandry about selecting a personalized call sign? You aren’t the only one. Selecting a call that’s just right is a problem that reaches from your house all the way to the North Pole!

Santa found himself in a real dilemma. “This is worse than the years with no snow,” he thought to himself. There before him was a blank form he had been staring at for at least two hours. “This is silly,” he mused. “I’m falling behind on reading letters from the children, the elves need some assistance and supervision, the reindeer need feeding and all I can think about is this blasted form.”

“Why the worried look, Dear?” Santa smiled at the voice of Mrs. Claus, who always sounded so soothing. “It’s this personalized call sign thing,” he replied. “I need a call sign that’s distinctive and an identifier like no other. Ever since this has been kicked around in a few countries, it’s caught on like wild fire.”

“Well, why don’t you get up and think on it while you do a few chores,” she said, picking up a plate with but a few remaining cookie crumbs. “I’m sure the exercise will do you good, with only a few days remaining before Christmas.”

Santa made his way out to the toy shop. There he encountered his busy assistants merriely working away. He asked Mike what he thought a good call sign might be. “Hummm, how about something cute, like PIXIE?” Santa smiled. “That’s a good start! Any more?”

“Well, there’s L1ST, which we work from, KIDS, who we work for, STOCK which you stuff, DOLLS for the girls, TRiNS for the boys and the GIFTS that you bring!” Santa chuckled, “All good ideas, my faithful friend!”

Thinking on the suggestions, Santa wandered over to Kit, his weather forecaster. “How are things looking for the 24th, Kit?” “Looking great, Santa, should be just right for a sleigh ride. But why so distracted?” he asked, noting that Santa’s mind seemed to be elsewhere. Santa related the personalized call sign problem. Kit, an avid DX chaser, said, “No problem! In my line of work I get call sign ideas all the time!” “Like what?” asked Santa. “Well, in a few days your sleigh will make its way through the DRIFTS, and the FLKIES, the air will be FROSTY and there will be plenty of SNOW. And you remember a few years ago when it was so FOGGY? That often happens in WINTR. Great night for one of the R8NDR as I recall!” Santa flashed a broad smile that caused his wire-rimmed glasses to rise on his nose. “Kit, you’ve convinced me there are plenty of good call signs to choose from. And as a citizen of the world, I can use any prefix I want!”

Kit’s comment about the reindeer reminded Santa that he had to make a trip to their barn. On entering he saw Morris, a trusted helper who loved the four-legged friends. Santa asked Morris if he had any ideas on a custom call.

“Well, as you know I love CW and that’s why I like these reindeer. They talk to me,” “They do?” said Santa incredulously, “Indeed—listen to their hooves on the wooden floor.”

Santa had always heard the reindeer’s tapping as a restlessness to take to the night sky, but listening more closely, Santa heard some distinct calls in Morse code—“That’s COME!” he exclaimed. “And there’s DONNR, hmmmm QPID!” he roared. “D8SHR, VIXEN, BLITZN, BR8NCR, and PR8NCR!” But a noise from the corner sent him into gales of laughter. “Oh, I can’t forget you, Rudolph,” as the hoof tapped out RNOSE. “But I can’t believe you boys are so good at CW.” Santa laughed as they all tapped out SL80H together.

He left the barn still roaring when he passed the familiar landmark, a snow-covered post in the ground, with a red stripe reminiscent of a candy cane. “By golly, I can get in the spirit of this, too,” he thought. “Why right there is a good call sign, NPOLE!”

As he made his way into his office, thoughts of Christmases past came back. His mind was really working now, as he began to doodle on a piece of paper...CH1MNY...hmm, hmas possibilities...ROOF...no, but he smiled, remembering he would have to duck under a few antennas while up there...B0WS, maybe...BOXES, no...K1RIS or K1NGL?...one seemed to need the other...N1CK? Maybe.

He did some letter reading and flipped on his radio. After listening to one 80 meter rag-chew, Santa turned off musing that for some of those hams COAL might be a suitable call sign in their future! He left the office, tired but cheered by the productive evening. As he passed under the roof overhang he wondered aloud about ICICLE as he saw one hanging there, but dismissed the thought. He made his way back to the kitchen and Mrs. Claus was humming a song. “K8R0L!” he said to himself. But Mrs. Claus heard him and said, “Still working on that call sign thing, dear?” “Yes,” he said. “And I’ve had some splendid suggestions, but I still haven’t heard one that really does it for me.” “Well, I’ve had some ideas, too. Care to hear them?” “Of course my love.” He handed her a plate and a glass of milk. “On the plate there’s one of your favorites, COOKIE. Eat too many and you’ll be ROUND!” “I already am!” they laughed together.

Mrs. Santa then showed a dreamy look in her eyes, “How about NOEL?!” Santa smiled warmly, “That’s closer, he said.” She continued, “There’s always JINGL; how about H0LLY? No? Or the many JOYS you bring? And remember, GIVER is you down to a dimple,” she said. “JOLLY describes you well. And let’s not forget the SOOT I have to get out of your clothing!” Santa laughed aloud and he said, “You’ve done it my dear!” “SOOT?” she inquired. “No, you have me laughing...he walked over to the license form and filled out H0HO on the first request line. “They should know me all over the world by this one!” They hugged and both reflected on the beauty of laughter and giving and how they fit together so well.

(The authors apologize if any of the aforementioned call signs are already in use, but remember, Santa was only brainstorming. And if one of the calls is yours, how lucky you are! Merry Christmas!)
Nikola Tesla was born in 1856, and by the time he was 26 he had invented the rotating magnetic field principle. This discovery made possible the generation and distribution over long distances virtually unlimited electrical energy in the form of 60 cycle alternating current. This included the invention of the ac generator, the ac motor, and the transformer.

He then moved on to explore the world of high frequency phenomena. By 1890 he had conceived his famous “Tesla coil,” still used as a major component in numerous electronic devices. By 1893 he had conceived, explained, and demonstrated the “four-tuned circuits,” using the theories of Maxwell and Hertz for the transmission of intelligence. The circuits were tuned to resonance with each other, two on the transmitting side and two on the receiving side, using a Geissler tube detector. His apparatus used the first antenna, as well as a ground connection, plus an antenna-ground circuit containing inductance and capacity. Yes, he invented the tuned circuit! In 1893 he made the first “wireless” transmission before the National Electric Light Association in St. Louis, and it is this essential understanding that exists today in all modern radios. These principles served as the foundation for his U.S. patents that eventually had priority over Marconi’s basic patents.

Most amateurs are unaware of what happened June 21, 1943, when the United States Supreme Court made a landmark decision that essentially settled the long dispute between Marconi and Tesla. The court’s decision on Case No. 369, identified as “Marconi Wireless Telegraph Company of America vs. United States,” rendered invalid Marconi’s basic patent No. 763,772 dated June 28, 1904. Tesla’s patent No. 645,576 of March 20, 1900, and its subdivision patent for apparatus No. 649,621 dated May 15, 1900, had priority. The court also cited John Stone’s patent No. 714,756 dated December 2, 1902, incorporating greater tuning selectivity, and Sir Oliver Lodge’s patent No. 609,154 dated August 16, 1898, providing variable inductance tuning.

The following definition served the Supreme Court well because it was then able to render a just decision: “A radio communication system requires two tuned circuits each at the transmitter and receiver, all four tuned to the same frequency.” It is this “four-tuned circuit invention” that Tesla patented. This enabled the high court to give him priority for these necessary basic elements of “wireless,” without which there would be no foundation for future advancements.

Most historians tend to attribute the birth of radio to the early technologists who made the first refinements, but it was Tesla who laid the foundation. Historians also give great praise, and
ASTRON POWER SUPPLIES

SPECIAL FEATURES
- Heavy Duty
- High Quality
- Rugged
- Reliable

PERFORMANCE SPECIFICATIONS
- Input Voltage: 105-125 Vac
- Output Voltage: 13.8 VDC ± 0.05 Volts (Internally Adjustable: 11-15 VDC)
- Ripple less than 5mv peak to peak (full load & low line)
- All units available in 220 Vac input voltage (except for SL-11A)

CORPORA TION

Amp Meier

YEAR WARRANTY. MADE IN U.S.A.

LOW PROFILE POWER SUPPLY

SL SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Colors</th>
<th>Continuous Duty (Amps)</th>
<th>ICS*</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL-11A</td>
<td>Gray</td>
<td>7</td>
<td>11</td>
<td>2 1/8 x 7/8 x 9/16</td>
<td>12</td>
</tr>
<tr>
<td>SL-11R</td>
<td>Black</td>
<td>7</td>
<td>11</td>
<td>2 1/8 x 7/8 x 9/16</td>
<td>12</td>
</tr>
<tr>
<td>SL-11S</td>
<td>Gray</td>
<td>7</td>
<td>11</td>
<td>2 1/8 x 7/8 x 9/16</td>
<td>12</td>
</tr>
<tr>
<td>SL-11R</td>
<td>Gray</td>
<td>7</td>
<td>11</td>
<td>4 1/8 x 7/8 x 9/16</td>
<td>13</td>
</tr>
</tbody>
</table>

RS-L SERIES

POWER SUPPLIES WITH BUILT IN CIGARETTE LIGHTER RECEPTACLE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS*</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-4L</td>
<td>3</td>
<td>4</td>
<td>3 1/4 x 6 x 7/16</td>
<td>6</td>
</tr>
<tr>
<td>RS-5L</td>
<td>4</td>
<td>5</td>
<td>3 1/4 x 6 x 7/16</td>
<td>7</td>
</tr>
</tbody>
</table>

RM SERIES

10" RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS*</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5 1/8 x 12 1/16 x 7/16</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/8 x 12 1/16 x 7/16</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 1/8 x 12 1/16 x 7/16</td>
<td>50</td>
</tr>
<tr>
<td>RM-60A</td>
<td>50</td>
<td>55</td>
<td>7 x 19 x 12 1/16</td>
<td>60</td>
</tr>
</tbody>
</table>

RS-A SERIES

RS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS*</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7A</td>
<td>25</td>
<td>35</td>
<td>5 1/8 x 12 1/16 x 7/16</td>
<td>50</td>
</tr>
<tr>
<td>RS-7B</td>
<td>37</td>
<td>50</td>
<td>5 1/8 x 12 1/16 x 7/16</td>
<td>50</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>7 x 19 x 12 1/16</td>
<td>60</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>7 x 19 x 12 1/16</td>
<td>60</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 1/8 x 12 1/16 x 7/16</td>
<td>38</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/8 x 12 1/16 x 7/16</td>
<td>50</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>5 1/8 x 12 1/16 x 7/16</td>
<td>50</td>
</tr>
<tr>
<td>RS-70A</td>
<td>57</td>
<td>70</td>
<td>6 x 13 x 12 1/16</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

VS-M AND VRM-M SERIES

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amp)</th>
<th>ICS*</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/8 x 8 9/16</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5 1/8 x 10 1/16 x 7/16</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>3 x 11 1/16 x 7/16</td>
<td>35</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 x 11 1/16</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-S SERIES

Built In speaker

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Colors</th>
<th>Continuous Duty (Amps)</th>
<th>ICS*</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>Gray</td>
<td>5</td>
<td>7</td>
<td>4 x 7/16 x 10 1/16</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>Gray</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7/16 x 10 1/16</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>Gray</td>
<td>9</td>
<td>12</td>
<td>4 x 7/16 x 10 1/16</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>Gray</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 1/16</td>
<td>18</td>
</tr>
<tr>
<td>RS-11S</td>
<td>Gray</td>
<td>7</td>
<td>11</td>
<td>2 x 7 x 9/16</td>
<td>12</td>
</tr>
</tbody>
</table>

*ICS—Intermittent Communication Service (50% Duty Cycle 5 min. on 5 min. off)
correctly so, to such men as Maxwell and Hertz for their monumental work in wave theory. Unfortunately, Tesla's greatest contributions, AC power distribution and fundamentals of radio have largely been forgotten.

It is easy to understand why so many people have a distorted understanding of just who was the real inventor of radio. The newspapers hailed Marconi's first successful transatlantic radio transmission; then textbooks followed with their depiction of that exciting event. Both media sources had already raised the flag of victory for Marconi, much to Tesla's dismay, since he had done much of the pioneering work.

A similar media blitz is responsible for Thomas Edison becoming a familiar household name. In reality Edison did not create or develop our system of alternating current electricity. Indeed, he fought its adoption bitterly, choosing instead to promote a direct current system that had already been invented by others. In short, Edison's brief role in the electrical power industry was that of an entrepreneur who failed, rather than an inventor. It was Nikola Tesla's discovery of the rotating magnetic field principle in 1882 and patented in 1888 that gives us our modern day system of electrical power distribution.

In 1888-89 my students commissioned a bust of Tesla to donate to a large museum (any large museum). After discovering that the Division of Electricity and Modern Physics section of the National Museum of American History made no recognition of Tesla, we offered our bust. The curator promptly refused the offer, stating that he had no use for it. Later we discovered that he was displaying a bust of Edison alongside Tesla's induction motor. He also displayed photographs of the Niagara Falls power plant next to one of its original generators. A large brass inscription plate listed Tesla's patents, but with no mention of Tesla. In the middle of the display stood a life size replica of Edison with the caption, "While the Niagara AC plant was being built by Westinghouse, Edison was busy with other important things." The caption did not explain what these "other important things" were, nor why this was relevant to the Niagara power plant.

The Smithsonian Book of Invention is a prodigious 3 1/4 inch thick book of America's greatest inventors and their inventions. Tesla's name does not appear anywhere in that publication. One wonders how such an august institution, with all the learned historians in their employ, could possibly ignore Tesla's contributions in their chapters depicting the evolution of electric power and radio.

Further evidence of history being rewritten is seen in the Smithsonian's publication, "The Beginning of the Electrical Age," which meticulously traces the history of electricity from Volta to Edison, naming 43 significant contributors, and yet Tesla's name is never mentioned! Instead, it shows pictures of the Niagara Falls Power project with the inference that this was the work of Edison. Yet it was Tesla's polyphase AC system that the power commission adopted and licenses had to be issued to use Tesla's patents. Since the money for this publication came from the Thomas Alva Edison Foundation, perhaps this explains why Edison's name and picture appear so prominently and Tesla's name is missing. History, it appears, is indeed for sale at the Smithsonian.

Radio amateurs especially should take exception to the flagrant disregard for truth in history that exists in the Division of Electricity and Modern Physics section of the National Museum of American History, within the Smithsonian Institution. Why does the Smithsonian have such a biased view of electrical history?

Tesla's induction motor, using his rotating magnetic field principle, provides us our worldwide system of alternating current electricity. Few people realize the earthshaking importance of this discovery. Honored engineers have ranked it the electrical equivalent of the wheel.

Niels Bohr in 1956 stated, "Tesla's most ingenious inventions and researches have been fundamental for that development which so deeply influences our whole civilization."

Dr. W. H. Eccles, in the Proceedings Of The Institution Of Electrical Engineers, stated, "Tesla was the greatest electrical inventor we have had on our roll of membership; in fact we might go as far as to say that he was the greatest inventor in the realm of electrical engineering."

John Stone in 1917 stated, "Among all those, the name of Nikola Tesla stands out most prominently. Tesla with his almost preternatural insight into alternating current phenomena that has enabled him some years before to revolutionize the art of electric power transmission through the invention of the rotary field motor, knew how to make resonance serve, not merely the role of a microscope, to make visible the electric oscillations, as Hertz had done, but he made it serve the role of a stereopticon. He did more to excite interest and create an intelligent understanding of these phenomena than anyone else, and it has been difficult to make any but unimportant improvements in the art of radio telegraphy without traveling, part of the way at least, along a trail blazed by this pioneer who, though eminently ingenious, practical and successful in apparatus he devised and constructed, was so far ahead of his time that the best of us then mistook him for a dreamer."

Lord Kelvin in 1896 stated, "Tesla has contributed more to electrical science than any man up to his time."

Tesla was recognized by his peers, but then largely forgotten.

Tesla died in 1943, alone in his hotel room at the Hotel New Yorker, surrounded by a world of technological progress he was instrumental in creating. Yet the only monument to his memory in our country is a statue at Niagara Falls, a gift from the former country of Yugoslavia. He is one of only two Americans honored by the International Electrotechnical Congress in Munich. In 1956, the unit of magnetic flux density in the MKS system was designated the tesla. Thus, his name is alongside only fifteen others such as Volta, Faraday, Ohm, Watt, and Ampere. Joseph Henry is the only other American so honored.

For those who are old enough to remember, the Smithsonian Institution carried on a similar feud with the Wright Brothers that lasted 45 years. It was not until December 1948, after we had entered the jet age, that its officials finally relinquished their demand to honor Samuel P. Langley, whose plane did not fly. He was Secretary of the Smithsonian in 1903, when the Wrights flew their plane at Kitty Hawk.

At best, I hope to build enough support from the amateur radio community to petition the Smithsonian officials to honor Tesla. Certainly there is overwhelming evidence that he has earned his place in history in our country's premier museum. At the very least, this issue might stimulate some lively discussions on the ham bands.

Note: Tesla was, in my estimation, the single greatest genius in history. In addition to inventing electricity as we know it and laying the groundwork for radio, Tesla also invented the electric clock, the loud speaker, the fluorescent lamp, and a long list of other firsts. At a time when the text books were claiming that voice could never be transmitted by radio, Tesla was planning a world radio broadcasting system, and was building a tower on Long Island to transmit free electric power. The electric companies, seeing this as a serious threat to their making and selling electricity, got together and put Tesla out of business. Please help put pressure on the Smithsonian to recognize this incredible genius.—Wayne.
THE POWER STATION

The POWER STATION is a 12V x 7 Amp-Hr gel-cell battery complete with voltmeter, wall charger and a cord for charging via automobiles. It will power most HT’s at 5 Watts for 2-4 weeks (depending upon how long-winded you are). Also VHF, UHF, QRP, or HF mobiles such as the KENWOOD TS-50 (at 50W). There are no hidden costs, all you need is your mobile, HT power cord or cigarette lighter adapter.

The POWER STATION provides 12V from a cigarette plug and has two recessed terminals for hardwiring. A mini-phone jack with regulated 3V, 6V, or 9V output can be used separately for CD players, Walkmans, etc. THE POWER STATION can be charged in an automobile in only 3 hours, or in the home in 8 hours. The charger will automatically shut off when the battery is completely charged, so you can charge it even when it has only been slightly discharged, (unlike Ni-Cads that have memory). Our charging circuit uses voltage sensing circuitry, other brands are timed chargers which always charge the battery a full cycle, this damages their battery and shortens its’ life if it only needs a partial charge. The POWER STATION has a voltmeter that shows the exact state of charge of the battery, not worthless idiot lights that tell you "YOUR BATTERY IS NOW DEAD." The voltmeter can even be used to measure voltages of other sources.

To order, send check or money order for $49.95 + $8.50 for shipping, along with your shipping address and telephone number to:

Joe Brancato
THE HAM CONTACT
P.O. Box 3624, Dept. 73
Long Beach, CA 90803.

CA Residents Add 8 1/4% Sales Tax. Alaska, Hawaii, and Canadian Residents, please send U.S. Money Order $517.15 Shipping.

If you wish more information please send a SASE to the above Address. For COD orders, call (310) 433-5860, outside of CA Orders only call CA (800) 933-HAM and leave a message. Dealer inquiries invited.

CIRCLE 384 ON READER SERVICE CARD

BATTERIES
BUY DIRECT FROM US, THE MANUFACTURER!

Seasons Greetings
12% OFF
ON ALL • REPLACEMENT BATTERY PACKS
MASTERCHARGERS • POWERPAC+
FOR THE MONTH OF DECEMBER

Monthly Discounts Applicable to End-Users only.

Prices and specifications subject to change without notice.

W & W ASSOCIATES
800 South Broadway, Hicksville, NY 11801
WORLD WIDE DISTRIBUTORSHIPS AVAILABLE. PLEASE INQUIRE

NYS residents add 8 1/2% sales tax. Add $4.00 for postage and handling.

In U.S.A. and Canada Call Toll Free:(800) 221-0732 • In NY State Call:(516) 942-0011 • Fax:(516) 942-1944

CIRCLE 191 ON READER SERVICE CARD

73 Amateur Radio Today • December 1995 49
HAM TO HAM

Dave Miller, N29E
7462 Lawler Avenue
Niles, IL 60714-3108

Two months have passed since we inaugurated this column within the pages of 73 Amateur Radio Today magazine. Input from you, the reader, has begun to materialize, but we still need a much more enthusiastic response in order to fill this space with the very best of information that’s available. We’re looking for tips, ideas, suggestions and techniques that will help our other readers in their pursuit of amateur radio. Whatever you feel might be helpful, things that you’ve discovered in your own ham career that have proven worthwhile, both technical and from an operational standpoint.

Everyone has something to contribute, the key to unlocking the idea for the rest of us to share is to sit down and write to me about it. Make your point as clearly as you possibly can, including all details, schematics, sketches, etc. Whatever you feel would be helpful to get your point across to others. One of the secrets to making sure that your written suggestion clear is, to have a friend read it over first, preferably one who’s not familiar with the idea. If he has any questions, then you’ll know what else you’ll need to include for best clarity.

We’re looking for workable, proven ideas and suggestions, ones that will be repeatable by others with the same or similar problem and ones that haven’t been published elsewhere. Send your contributions to:

73 Magazine’s Ham To Ham column
c/o Dave Miller, N29E
7462 Lawler Avenue
Niles, IL 60714-3108

For each idea used within this column, Uncle Wayne will send you ten real U.S. dollars for your time, trouble and postage costs, but the real satisfaction is in knowing that you’ll have helped others benefit from your experiences and knowledge.

If you’ve sent in ideas and suggestions to other publications, only to be ignored or forced to wait for months—years—to even receive a response, I can guarantee you that it won’t happen this time. I’ll acknowledge all legitimate contributions expeditiously, giving the contributor an idea of whether his or her idea will be used, and roughly when. Nothing turns people off more quickly than to have their ideas and suggestions viewed with indifference. I know too have been ignored at times by other publications. I promise you that it won’t happen here, it’s one of the reasons that I first contacted Uncle Wayne about starting this type of column in the pages of 73.

We need a place where good ideas are valued enough to be treated respectfully, and this is it.

There are tons of good ideas out there. With all of the equipment now available to the average ham and all of the different and varied modes of operation, any number of problems and their solutions have to be discovered by Joe or Jane average ham. These are the ones I want to hear from. The dyed-in-the-wool engineers and contemplative theoretical physicists are welcome to send their thoughts, ideas and drawn-out treatises to the other magazines. We’re looking for real hams with solutions to real ham-related problems, within the down-to-earth context of our hobby. As the masthead says, Ham To Ham, not physicist to physicist or theoretician to theoretician.

By the way, I’ve no problem with engineers, physicists or theoreticians particularly, it’s just that I don’t think that most other hams are really all that interested in long, boring soliloquies on concepts that can be explained much more succinctly. Bravely in explanation is often the key to understanding, it’s simply the key to staying awake after a long day at the salt mines while you sit back and read the latest issue of 73. Not everyone who reads a magazine like this one, or who holds an amateur radio license for that matter, is an engineer, nor may they be involved whatsoever in the electronics profession on a day-to-day basis. I’ve the feeling that most of the folks who might be reading this just want a straight-forward solution to a perplexing problem within the hobby, and that’s where this column is heading. If this is vastly different from your own interests in the pursuit, try to step back and view it from that perspective. Now, if I’ve said is already your viewpoint, or you can at least momentarily make it your viewpoint, then sit down and write into commercial and Loss equipment, antennas, station accessories, etc. and send them in to me. Knowledge is only usable if it’s in understandable form. 73 Magazine has always had the reputation of being a practical showcase for real hams, with real, duplicable ideas and articles. Let the others print things that no one wants to read, build or do, we’ll stick to actual reality, not virtual reality.

When you do contribute ideas to this column, however, please try to be fair to the manufacturer of the item if you have a suggestion for an improvement. Everything ever made can be improved upon. Equipment manufacturers often sacrifice one feature for another, or they may drop something because of cost and competitive design reasons. We’re usually wrong if we consider everyone other than ourselves to be fools! We’re also definitely not looking for unsubstantiated complaints or libellous accusations about any particular manufacturer or company. That’s not the purpose of this column. Our purpose is simply to help others who might be experiencing the same or similar problem with a piece of gear, with the thought in mind of fixing the problem, not fixing the blame for it.

Anything in and around the ham shack is open for acceptance on this page. We’re all involved in electronics in general, as well as in amateur radio specifically, so consider sending in ideas that may not seem suitable for use in ham radio—though I do want to keep the main focus along the ham equipment lines. In fact, my first tip this month is something that reaches beyond the ham shack and into the world of TV’s, VCR’s, etc. as well.

A Simple Infrared Control Verifier

Some of the current ham gear is showing up with infrared remote control capabilities, just like the vast majority of new TV sets, home VCR’s, stereo audio setups, etc. Infrared headsets and microphones have also invaded the ham shack in the interest of keeping desktop cable clutter to a minimum.

Here’s a simple way that you can verify if your hand-held infrared remote transmitter is at least putting out a signal when a button is depressed, since our eyes can’t see an IR beam of light directly. By the way, many of the problems with infrared remote controls can be traced to a faulty hand-held transmitter unit. Either a button(s) not making good contact, dead batteries or batteries making poor contact or a cracked PC board from too many drops on the floor! But to test it, all that you really need to do is to tack an IR detector diode across the input of any high-gain audio amplifier, turn up the amplifier’s volume, aim the remote transmitter at the diode’s face, and you’ll be able to hear the pulses being sent out by the IR transmitter. That’s it.

Any high-gain audio amplifier that’s usable down to microphone levels should work—such as the Radio Shack #277-1008 portable battery operated test amplifier. The IR detector diode can be one-half of an infrared emitter/detector pair, such as the IR detector diode in the Radio Shack #276-142 combo. Even a glass en­cased 1N914 or 1N4148 silicon switching diode can be pressed into service, but it’s much less sensitive than a real IR diode—did you know that all glass-encased diodes are somewhat light sensitive? They’re temperature sensitive too, but the ones specifically made for light or temperature sensing are specifically formulated to enhance those particular properties.

Painting Antennas

I can remember overhearing a conversation on the ham bands one day—between two fellow hams who seemed to know each other fairly well—on the virtues and drawbacks of painting a new 2-meter vertical antenna that one of them was planning on putting up soon. The one putting up the new vertical asked the other if he thought that painting his new antenna, to help preserve it, would be okay. The second ham

Continued on page 66
HF for only $549

HOW IT ALL STARTED

We wanted to offer the most affordable HF rig in the industry and still provide real performance for even the most experienced ham. In recent years, many hams requested a "back to basics" transceiver that was simple to use. We reviewed all the latest design techniques, selected the best concepts from the 20 rigs we designed over these 25 years and asked 500 hams across the country for their ideas.

WE CALL IT THE SCOUT

Every feature can be mastered in minutes. No modern rig is as easy to use. It only takes a second to change bands. Plug-in modules are available for 160-10 meters including WARC. Single conversion and crystal mixing are the foundation of this 90 dB dynamic range receiver. That’s the strong signal performance of rigs costing 3 times as much! It’s sensitive and receive audio is sparkling clean with less than 2% distortion. The ideal selectivity for every band condition is at the touch of a knob. This patented “Jones” filter provides variable IF bandwidth from 500 Hz to 2.5 KHz.

HERE’S HOW IT’S USED

MOBILE

Hams complain about today’s cars having precious little space for gear. The SCOUT is the smallest HF rig in the industry (excluding QRP) measuring only 2.5” x 7.25” x 9.75” and runs directly off the 12 VDC car battery. If the SCOUT won’t fit your car, nothing will. The optional noise blanker reduces ignition noise from both your car and the one that just drove by.

PORTABLE

Business travelers and vacationing hams typically set up a briefcase or small travel bag to include the 5 lb SCOUT, wire or whip antenna and lightweight power supply like our Model 938 switcher (it’s only 3 lbs!). It is surprising how many hikers and cyclists take along their SCOUT using some clever battery arrangement.

NEW HAMS

The SCOUT is the most economical way to get started in ham radio. Consider the choice a new ham must make just to test his interest in HF: (1) Spend nearly $1000 or more on a new rig, (2) buy a used radio and take a chance on its condition, or (3) invest in a SCOUT at $549 with a one year factory warranty and our legendary TEN-TEC support.

OLD TIMERS

Operators with years of experience and a shack full of expensive HF gear also buy the SCOUT. It’s refreshing to many who say “It takes 5 minutes to learn and without all the complicated features, there is only one thing to do with a SCOUT, work someone!” Experienced hams call us constantly to report “I can’t believe this receiver, it outperforms my $1400 synthesized rig.”

CALL TODAY:

1-800-833-7373 (U.S. & Canada)

Call Ten-Tec from 9:00 AM to 5:30 PM Eastern time, Monday through Friday for more information or to order. You can reach our repair department at 615-428-0364 from 8:00 AM to 4:00 PM. You can also FAX at 615-428-4483 or write us at 1185 Dolly Parton Parkway, Sevierville, TN 37862.

ATTENTION QRP ENTHUSIASTS

The SCOUT has a little brother, the ARGO 556. It is identical to the SCOUT without the 50 watt final. Adjustable 1-5 watts output. TX-2 Amps, RX-.6 Amps. Only $489*

NEW ACCESSORIES

- **$549** includes one band module of your choice
- **$29** Each additional band module

SCOUT ACCESSORIES:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PRICE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>296</td>
<td>Mobile Bracket</td>
</tr>
<tr>
<td>297</td>
<td>Noise Blanker</td>
</tr>
<tr>
<td>937</td>
<td>11 Amp Power Supply</td>
</tr>
<tr>
<td>938</td>
<td>Tiny Switching Supply</td>
</tr>
<tr>
<td>700C</td>
<td>Hand Mike</td>
</tr>
<tr>
<td>607</td>
<td>Weighed Key Paddle</td>
</tr>
<tr>
<td>291</td>
<td>Antenna Tuner</td>
</tr>
</tbody>
</table>

VISA, MC, DISCOVER

*Plus shipping and handling; call toll-free for charges.

Introducing TKits

A new division of Ten-Tec

Call 615-453-7172 to request your kit catalog.
More Amplifiers

Last time, we were discussing the buying and setting up of an HF linear amplifier. Let's continue:

OK, so you picked one and bought it! If it's new, you're substantially poorer but pretty happy, because you can be pretty sure it'll work. If it's a used amp, either you've seen it work or, like me, you took a chance, hoping the seller was honest when he told you it was a wonderfully operating bargain. Let's find out!

Hook It Up

Connecting an amplifier to your radio can be simple, but it isn't always. Sometimes there are obstacles. For starters, where do you put the big beast? I recommend that you don't put it right up against the radio. Why? Two reasons: heat and RF feedback. Amps really get quite warm in operation, especially if you use them in some continuous-duty-cycle mode like RTTY or SSTV. Do you want all that heat going into your radio? Aside from possibly shortening the rig's life, the extra heat may very well cause the radio to drift noticeably, even if it's a modern, digitally synthesized model. The reference oscillator, although crystal-controlled, can drift thermally enough to cause the radio to slide a bit. Heck, some smaller HF rigs drift a little from their own final amps' heat!

The second issue is more immediate. No matter how well grounded your station is, that amp will throw some RF, and it can glitch your rig something fierce, causing everything from screaming audio feedback to "permanent keying"; you may have to turn the radio or the amp off to get it out of transmission! Besides, if your station is like most, it probably doesn't have an ideal ground, exacerbating the situation. There are two things you can do, besides getting a really good ground, to help avoid the RF feedback blues. First, keep the amp a good foot or more from the radio. Second, line up the equipment so that the antenna lead goes from the radio, to the amp and out the window without crossing back near the radio. In other words, put the boxes in a line, from rig to amp to window. In some marginal grounding situations, like the one I used to have when I lived up in Vermont, that can really make a difference. I remember that, when I tried it the other way, with the amp's output coax going back behind the radio, it went nuts. When I put it all in a line, it worked fine. Hey, it even rhymes!

Wire It Up

Now that you've selected your operating layout, it's time to connect it all up. Obviously, the radio's antenna coax goes to the input of the amp, and the antenna goes to its output. If you have an antenna tuner rated for less power than your amp puts out, don't put it at the output of the amp, even if you intend to leave it in the bypass position; chances are, you'll fry it when you tune up the amp. The switches and connectors in small tuners aren't intended for such service, and they may arc or melt down when you hit 'em with the juice. Until you've actually put out 500 or more watts of RF, you have no idea what it can do; it behaves very differently than when you run 100 watts. It's perfectly fine, though, to put the tuner between the radio and the amp's input, although actually using it with the amp turned on can complicate the tune-up procedure.

With older radios, you can usually connect the relay output directly to the relay on the amp. With newer sets, though, there may not be enough current to drive the amp's relay without damaging your radio! That's especially true when you use a newer radio with an older amp, as many of us do. There are several ways out of this predicament. First, if your radio's manufacturer offers a relay box, you can simply buy it. Or, you can make your own. To do that, see my article entitled "Key It" in this issue, or design your own relay circuit, always keeping in mind the current limits of your radio, which should be stated in the manual.

If your amp has an ALC input, connect your radio's ALC output to it, using a shielded cable. Usually, the ALC output is present on an accessory connector, somewhere near the relay output. A good audio cable will do fine here. Do you really need to use ALC? No, but it sure helps you avoid splattering all over the band, which is quite easy to do with an amp, particularly if your radio is, like most, lacking an RF power output control for SSB. If you're depending on the rig's microphone gain control to keep things under the drive limit, you're pushing your luck. If, though, your radio or amp has no ALC connection, you can still use them with each other. Just be careful not to overdrive the amp, or you may have to look for that little pink slip in your mailbox, or, at least, accept the wrath of all those people on the band who don't appreciate being splattered on from 20 kHz away!

Most amps and radios use negative-going ALC which ranges from zero to about -5 volts DC. Usually, you can just connect the cable and go. Some, though, use an oddball arrangement, with positive voltage or another voltage range. If you can't get your amplifier to put anything out, try disconnecting the ALC line. If that brings it back to normal, you either have an incompatible setup (in which case you'll have to run without ALC), or your amp may have an ALC adjustment you need to do to get it working properly. If that's the case, follow the manufacturer's instructions. If you don't have them, turn the amp's ALC pot wide open, tune the amp into a dummy load with the rig sending a carrier, and turn the pot down until the output just starts to fall. That ought to do it. Just remember to do this quickly, because very few amps can stand putting out full steady-state power for very long.

Don't forget the ground! With all that RF floating around, proper grounding is more important than it is with a lower-power setup. Most of my problems with amplifier operation have been due to poor grounding, which causes horrendous RF feedback, essentially wiping the rig out so badly that it's useless. The best arrangement is a "star" ground, in which the rig's and amp's ground terminals are connected with braid to a common ground point, preferably an outside rod. Although a "serial" ground, in which the braid goes from the rig to the amp and then to the ground, can work, it may also cause RF feedback, so it is not a great idea. And never run the braid from the amp to the rig and then to ground—that's just asking for lots of RF energy to get pumped back into the radio.

Rock and Roll!

You should be ready to give it all a try! If you're lucky, you can just feed carrier into the amplifier, tune it up quickly for maximum output consistent with a plate current dip, and yack away. If it doesn't work properly, though, there are some things you can try.

Before we go on, there's something I must say: Please, please exercise extreme caution when opening your amplifier or working near its antenna. Never open the amp with the power plugged in, and always discharge the anodes to the chassis before you go near them. The high voltages inside an amp will easily kill you, and so will the amp's RF output. It has happened to a few very experienced hams who got careless and ignored the rules. Nothing in this hobby
is worth dying for! With that in mind, let's take a look.

I Get Zip

No output? If you don't hear the amp's relay pulling in when you key the microphone, something's wrong with your relay circuit. Check it out. If you hear the relay but don't get any output, try disconnecting the ALC line, as I mentioned above. If it still doesn't work, something may be wrong with your amplifier. First, is the radio putting power into the amp? If you see very little power going in, even though you've got the rig set for full carrier output, chances are a problem in the amp is keeping the SWR at the radio so high that the rig is backing off its power to protect the final transistors. An SWR meter between the rig and the amp will tell you the story. Don't expect 1:1 SWR. But, if it's more than about 2:1 and it never dips as you tune the amp, something's wrong.

"...we're gonna be up here all day!!"

You may've heard horror stories of people having to use tuners between solid-state radios and older amplifiers. It's true that many older amps don't have tuned input circuits (not all newer ones have them either), but they should still exhibit an input somewhere near 50 ohms, unless there's a problem. My amp has no impedance matching network (there's one indicated on the schematic, but a look inside the amp reveals a direct connection to the tubes' inputs via a capacitor), and its SWR is about 1:4:1. So, what could cause the impedance of an amp to change so much that it would make the radio back off?

Bad tubes. Where do you think the 100 watts you put into your amp goes? If it all stayed in the amplifier, those tubes would melt down! Some of that power goes out the antenna, along with the amplified signal. When the tubes don't emit sufficiently, the path through the tube presents a much higher impedance, making the amp's input impedance rise quite a bit—the signal has nowhere to go.

When I got my amp, the tubes were DOA, except for the filaments, and the SWR was about 5:1. Ouch! A working set of tubes reduced the SWR to its perfectly acceptable 1:4:1.

Another place to look is the antenna relay. Thanks to all that RF power flowing through them, the relay contacts can really get crudded up. Both of the amp's I've owned have required relay cleaning, using a burnishing tool. No contact, no signal.

If you do get some output, but not nearly enough, chances are your tubes are weak. Unlike transistors, tubes can work at various levels of performance. Again, look for raised input SWR. Also, check that the filaments light on all the tubes! Multiple-tubed amps run the tubes in parallel, and will still work at reduced performance even if one or more of them is as dead as the proverbial doormat. Like the old saying goes, "If that last engine goes out, we're gonna be up here all day!"

Finally, if you're sure the tubes are good, set the amp's meter to its plate voltage scale, key the amp with no signal input and see that the high-voltage power supply is working. Don't be alarmed if the reading is as much as a couple of hundred volts off from the specified value; not only are those meters not very accurate, but the exact high voltage will depend on your AC power's voltage, which can vary enough, from region to region and even by time of day, to cause a significant change in the high voltage reading. Remember, the high voltage is multiplied from the incoming AC. So, if your plate voltage is supposed to be 2500 volts, and the amp is running on 120 volts, that's a step-up factor of about 21. If the incoming power drops by, say, 10 volts, that's a 210-volt difference in your reading. Still, if your expected 2500 volts reads 900 volts, the high voltage supply isn't working properly, and may have a bad diode or other failure.
Bullet-Proof Your Valuable VHF Microwave Converter.

Well, this is the time for all jollity and merriment as Christmas approaches. I hope you and yours are all enjoying the holiday season. Here in California, "seasons" are usually defined by two, the rainy season and the sunny season. In the summer it's too hot, and in the winter it's somewhat rainy. This year the rainy season lasted unusually longer into a normally dry month of July. I envy others that are able to enjoy four seasons. Have a merry Christmas and a happy New Year.

This month I want to reflect on several aspects of making your project VHF/UHF converters resistant to destruction, or, "Make It Bullet-Proof." What I mean is having a construction technique that embeds some safety measures in it's design to allow a margin of error, or happenstance factor. Having this factor built into, say, a microwave converter will give you some very valuable protection to your mixer circuitry. This one device seems to take the brunt of punishment from a converter standpoint. The mixer is the one device that interfaces directly with the IF system of a two meter or other transceiver and could be keyed directly into the transceiver when an IF switching circuit malfunction. The effort here is not to make the simplest system that will function, but one to which some protection circuitry is added to protect your equipment as much as possible.

We all have used the breadboard construction technique to experiment with different circuits of interest. This method is time proven but has several drawbacks, especially when we go to place the bench-tested breadboard circuit into operation with a quick "wanna see it work" attitude. This is not a problem for a quick test, but further cleanup of circuitry and housing problems remain that must be dealt with before the circuitry can be called reliable. It may test just fine on the bench, but when connections and cables are moved about there will be lots of intermittents and other disparaging problems. We need to increase the circuit's "survivability."

Not to worry. What you are seeing is the birth of a finished product. It does not have to have a machine-milled cabinet with inlaid labeling. All it has to have is a re-inforced back plate for connections and some type of metal enclosure to shield the respective circuitry contained inside. What comes to mind, in the simplest form, is the use an aluminum chassis upside down to mount all components internal to the chassis. Construction is usually limited to minimum holes drilled in the chassis to mount parts and circuit boards. The back board cable entry is especially nice in comparison to loose clip leads and other cables run about the test workbench. This pile of spaghetti has become tangled and even set the stage for a set of trip wires that have sent parts flying. It has happened to me and only cleaning up our act improves this operation. Now that our house is in order, let's get on to the meat and potatoes of this month's column.

Construction of a microwave converter, while not intended to be expensive, does contain some hard-to-locate components. These can be modified devices and home-constructed amplifiers; however, one component still eludes our grasp for home modification or construction: the microwave mixer. Suitable mixers have been constructed for the lower microwave frequencies, but for a 10-GHz mixer, this one item, the commercial mixer, is considered "rarium" or, as I usually say, "unobtainium." Well, they are obtainable but very precious. This circuit I am about to describe is designed to protect them from key up power transients from the IF source a two meter radio.

As you know, the mixer only needs about 10 dBm of power to function properly from the IF device (usually a 2 meter radio), while the 2 meter radio is capable of powers far in excess of 10 dBm. Most HTs will provide 2 to 5 watts of power while other rigs are in the 10-watt class. The problem is that, in receive, the mixer circuitry needs to be connected as direct as possible without attenuating to the receiver circuits of the 2 meter radio for best receive performance. While in transmit, the output power of the 2 meter radio may be operating at reduced, low-power ranges. It still needs to be attenuated down to the +10 dBm range to prevent mixer burnout.

The worst scenario possible, even after taking care of proper relay-switching circuitry, is to have the relay fail to operate, and having the low-power (usually 1/2 to 2 watts) key full into the mixer. See Figure 1 for a basic switching circuit. Note that if the relay fails to operate, the full IF output of the IF radio is applied to the mixer. This is usually always "fatal" to a mixer, and we term it rear-end mixer blowout. Now, when this is your precious, one-of-a-kind mixer, what can be done to prevent your mixer from being toasted from excessive RF?

The North Texas Microwave Society a few years ago came up with quite a clever protection scheme—a circuit improvement to the scenario shown in Figure 1. They placed an amplifier and attenuator in the receiver path, effectively blocking high-power RF from a direct connection between the mixer and the 2 meter radio. A single Microwave Miniature Integrated Circuit (MMIC) amplifier like a MAR-1 is used for the amplifier. It has about 10 dB of gain and is followed by a 10 dB-attenuator making the entire circuit zero gain. That is, the gain of the amplifier is offset by the loss in the attenuator pad.

If for some reason the switching relay fails to operate, and the transmitter is keyed into the receive path of the mixer circuit with this configuration in place (Figure 2), two things happen. First, the power of the transmitter is attenuated by the receiver amp output attenuator, reducing power through the pad. Second, this reduced power from the 2 meter IF radio is applied to the output circuitry of the MAR-1 MMIC amplifier, further reducing power through the MMIC (backwards) to the input circuit of the MMIC amplifier and on to the mixer.

Bench tests show that, even when 10 watts were applied to the circuit to test for immunity to high-power RF, the above circuit did not fail. As predicted the power was attenuated by the attenuator and the MMIC survived this high-power surge.

This excessive power was not kept on for a long test period as the 10-dB pad which was constructed out of 1-watt resistors, would not have stand a long transmitter key up. They will take abuse for a few minutes or less, easily. It is hoped that you have quickly recognized your switching problem due to your station's
failure to transmit, and have begun to investigate.

The protection circuit, at worst, will destroy the pad or attenuator

"Just verify these parameters and fixes can be built into the system."

and not the mixer. This should happen only on very long key ups. Normal operations preclude the long key ups except for beam heading alignment, where transmitters are put on the air for several minutes at full power. Normally contacts are quite short and the circuit can survive many such short, attempted contacts. The best part of this circuit is that the remedy is quite inexpensive, compared to a new mixer.

The MAR-1, or similar MMIC, costs in the $1 range, and the output receive attenuator can be made up from 1/2- to 1-watt resistors with several resistors paralleled to make the specific pad value required. By using several resistors, the power handling capability is increased to several watts continuous. It will stand the full 10 watts for a short interval. Resistor pad values will have to be adjusted to suit your requirements. The 10-dB pad is used with a reduced power driving source of 100 mW. If your IF power is higher, the pad value will have to be increased accordingly. For 10-watt rigs operating on full power, you will need a pad loss of 30 dB.

Most mixers require driving RF power of about +10 dBm, so with 10 watts (10 watts in dBM = 40 dBm), a 30 dB pad or attenuator is just right. When using pads for this power level make sure that the pad resistors can handle this on a continuous basis. Don’t skimp here, as using an under-rated pad is just as dangerous as the receiving switching key up troubles. I suggest for high-power pads that you look for commercial heatsinked high-power surplus pads rather than constructing them. Don’t get me wrong—home constructed pads can work, but assembling a 10-watt non inductive 150-MHz pad is a little tough.

They can be constructed out of multiple 2-watt high-value resistors, whose combination paralleled value equals the desired single resistor value needed. The lower value required in the “T” pad attenuator arms make this the better selection for home construction and higher power pads. See Figure 3 for resistor values used to construct an attenuator that would withstand several watts of RF power.

Let’s discuss the construction of a 20-dB attenuator as per Figure 3. From a formula for a “T” type pad with 50-ohms input and output impedance, the arm resistance (2 each) would be 41 ohms and the shunt resistor would be 10 ohms. Note that each of the input and outputs read 50 ohms in reference to ground and the respective input.

These values are not standard, and if we construct them using standard carbon resistors we can arrive at 40 ohms by paralleling four 160-ohm resistors. For the 10-ohm resistor four 39-ohm resistors are used. A pad or attenuator so constructed from eight 160-ohm carbon resistors and four 39-ohm resistors would yield an attenuation of 20.93 dB. So you see, by being slightly off the mark, the total value required is not real critical.

The wattage of the carbon resistors is a selection choice you have to make. If high powers are anticipated use 2-watt resistors for the attenuator. Reduce the resistors’ wattage as you see fit, to include 2-, 1-, or 1/2-watt carbon resistors. If the pad is constructed from groups of four 1/2-watt carbon resistors, then the total pad should be capable of handling 2 watts of power. The same goes for pads similarly constructed out of 1-watt resistors equals 4 watts of power, and, for 2-watt resistors so assembled, 8 watts of power handling should be feasible.
I can't stress this fact enough. These resistors should be carbon-composition types to prevent unwanted reactances that come from non-RF-type resistors, like wire-wound types. They exhibit an RF inductance to the circuit and should not be used. As a matter of fact, some small value types could be used for small value RF choices. Use the carbon-composition types and all will be just fine.

Another type of mixer trouble may not be related to RF driving power and switching circuits. In deference to "rear-end mixer problems" this one could be titled "front-end mixer destruction." Front-end mixer troubles are the same product of overloading the mixer with input powers (excess RF level) of sufficient magnitude that it over dissipates the mixer with RF and destroys the mixer. This scenario is the same as previously described before, but now applies to a mixer that seemingly is protected by the RF preamplifier and does not utilize any switching circuitry. What then is going on?

What is happening is that the RF preamplifier used in applications like this are stacked, or are capable of significant gain, say, in the 30 dB or so gain ranges. Because of this high gain the amplifier might be capable of high output RF power like a transmitting RF amplifier. This condition can happen when the receiving preamplifier is subjected to very high input power levels approaching saturation. These levels are easy to create when multiple stations are operating on the same hilltop near each other. Just imagine the input power that a receiving preamplifier is subjected to when, out in the field, you turn your dish antenna towards another amateur's dish when he is transmitting. Not a good thing to try. I blew up a very low noise single-stage amplifier doing just that.

The other problem that could happen, when using a very high gain amplification string amp, or a converted multiple-stage amplifier, is that it will amplify its heart out and give you maximum gain before it goes into saturation (if it survives). The point to consider about protection to the front end of the mixer is, What maximum power output capability does the receiving preamplifier string have when operating under saturation RF input conditions? Most small signal devices will not make good high-power output amplifiers and usually saturate before zero to +4 or so dBm is reached. This is well within the safety range of a mixer's performance acceptance parameters. The maximum is typical to the LO power which is near +10 dBm for most mixers.

Failure to check this one parameter could yield you some surprise. One of our microwave group members did blow up a mixer in just the manner described here. It was a choice mixer. It was destroyed because the receiving preamplifier string was capable of providing +20 dBm output (that's 100 mW) when the input circuit was driven into saturation. Imagine a preamp putting out 100 mW. That's a nice transmitting amplifier, but for the poor mixer that's twice the maximum RF driving power and almost certain to over dissipate the signal diodes in the mixer forever.

Prevention of this scenario is simple: test the amplifier strings that are to be used together before connection to pertinent systems. Know what the capabilities are even in modes of operation that you don't expect to use. Just verify these parameters and fixes can be built into the system.

What is the fix for an over-powerful RF preamplifier with too much gain and high-power output? An example of this type of amplifier would be a CATV satellite LNA amplifier, or similar for other frequencies. These amplifiers have very high gains needed for satellite work, and while they are convertible to amateur bands and other services, we need to watch out for applications where the excessive satellite gains used for terrestrial use might be detrimental. In any case the fix is simple; connect a 10-dB attenuator if you experience high-power outputs. This will reduce that excessive power from the 100 mW power to a comfortable +10 dBm power level that is safe for the mixer. The extra gain in the amplifier was soaked up in the attenuator, but with "extra" gain you had some to spare, and I feel sure it will not be missed with the benefits derived from the mixer protection circuitry.

Well that's it for this month. I hope you and yours have a Merry Christmas and a Happy New Year. 73 Chuck WB6IGP

Figure 3. Attenuator values for possible loss calculations to attenuate RF power of transmitter and receiver protection circuit.

[Diagram of Attenuator]

Notes:
1. Tie multiple resistors in series or parallel to obtain non-standard resistance values.
2. Use only carbon composition resistors to avoid RF reactances.
3. Use 1/2, 1, or 2 watt resistors as required for your power needs.

Kenwood® TM-741 A® or TM-742 A® UPGRADES

The RC-740X Band Unit Expansion Box

The RC-740X has been designed to accommodate those Hams who require more capacity for their dollar: With it, you may install up to four additional units. This allows you the option of having all six bands, either mobile or portable base station. No longer must you decide which upgrade band units you will do without. Purchase any or all four of them.

The RC-740X has been designed with the Ham in mind, allowing you to install it without modification to your Kenwood radio. Simply follow the clear instructional guide and you will be up and ready for that elusive QSO. Regularly $399 NOW $299.00

Limited Time Offer

CALL (800) 560-7234

Now Available at HAM RADIO OUTLET

R·C·S·I
Radio Control Systems, Inc.
6125-G Rosson Road, San Diego, CA 92111

Tech Support (619) 600-7000; 10am-4:30pm PST
Fax (619) 292-6965
VISA, MasterCard, UPS COD

World Wide Web http://www.cts.com/browse/rcsi
Switches and Fuses

New term; new kids; new ideas; and of course old problems. Every year it seems that we who are on the front lines with young students must keep coming up with new ways to get their attention, and new techniques to test that they have indeed learned the material. The teacher of ham radio in the classroom, fortunately, has many tried and true experiments in the classroom, but there are some simple ones that I use every term because they are effective and the kids really like them. The following two projects can be adapted to any group in grades 4 through 8. Every child in the class should be able to participate on some level; or it can be done at home for extra credit.

The book *Inquire* by Educational Service, Inc. has a good lesson for "Making An Electrical Switch."

Purpose: To make an electrical switch and show that it works on the same principle as the electrical light switch.

Materials: Three lengths of light insulated wire (one piece 11 inches long and two pieces 20 inches long), an 8 x 8 inch board (2 inches thick), a 20-watt light bulb, a light socket to fit the light bulb, a dry cell battery with terminals, wire cutters, 2 popsicle sticks, a hammer, and three nails.

Procedure: Take 6 inches of the insulation off one end of both of the 20-inch-long pieces of wire and 2 inches off the other two ends. Also take 2 inches of insulation off of both ends of the 11-inch piece of wire. Wind the 6 inches of uninsulated wire around one end of the popsicle stick, one wire on each stick. Nail both ends of one stick firmly to the board. Nail only the wireless end of the other stick to the board (do not nail down firmly) so you can turn the popsicle stick. Attach one end of the 11-inch wire to a light socket terminal and one end to a battery terminal. Attach the free end of the movable popsicle stick to the other light socket terminal. Then, attach the free end of the stationary popsicle stick to the other light socket terminal. Insert the light bulb into the socket. Turn the movable popsicle stick so its uninsulated wire touches the uninsulated wire of the stationary popsicle stick completing the circuit and lighting the light bulb.

Variation: Divide the class into groups. Duplicate the directions for making a switch and have each group make an electrical switch as a project. The groups will know if they followed directions correctly if the light bulb lights up.

When your students have mastered the skills you require from the above project, let them try this next one at home and then show and tell the rest of the class their results. "How Does A Fuse Work" is a natural follow-up activity.

Purpose: To learn how a fuse works.

Materials: The switch used in the above activity, and a piece of thin tin foil.

Introduction to the class: Today we’re going to learn how a fuse works. Then we will make one for ourselves. An electric fuse is a protective device for the electrical system. The fuse is a soft metal, with one point having a lower melting point, enclosed inside a fireproof container. When there is a problem inside the electrical system, such as, a short circuit or too many appliances operating at the same time, the fuse will melt or blow, breaking the circuit. This blown fuse indicates that something is wrong with the circuit and should be corrected. In the case of a short circuit, the short should be located and repaired. What should be done if the fuse blows because too many appliances are operating at one time?

Procedure: Disconnect the light socket and insert in its place a piece of thin tin foil. We now have our fuse. Let’s see what happens when a fuse blows (melts). I will turn the switch to complete the path of the electrical circuit. What happened class? Correct, the thin tin foil gets warm and melts, breaking the electrical circuit. What happens when a fuse blows at home, school?

Some of my groups made excellent charts and posters showing their work. When they made their presentation to the class they were well prepared with visual aids and lots of “teacher tools” to make their points more clear.
FREE SAMPLE COPY!
ANTIQUE RADIO Classified
Antique Radio’s Largest-Circulation Monthly Magazine
Articles - Classifieds - Ads for Parts & Services
Also: Early TV, Ham Equip., Books, Telegraph, 40’s & 50’s Radios & more...
Free 20-word ad each month. Don’t miss out!
1-Year: $34.95 ($51.95 by 1st Class)
6-Month Trial - $17.95. Foreign - Write.
A.R.C., P.O. Box 802-E10, Carlisle, MA 01741
Or Call: (508) 371-0512

AMATEUR TELEVISION
SEE THE SPACE SHUTTLE VIDEO
Many ATV repeaters and individuals are retransmitting Space Shuttle Video & Audio from their TVRO’s tuned to Spacenet 2 transponder 9 or weather radar during significant storms, as well as home camcorder video. If it’s being done in your area on 420, check page 538 in the 95-96 ARRL Repeater Directory or call us. ATV repeaters are springing up all over - all you need is one of the TVC-4G ATV 420-450 MHz downconverters, any TV set to ch 2, 3 or 4 and a 70 CM antenna (you can use your 435 Oscar antenna). We also have ATV downconverters, antennas, transmitters and amplifiers for the 400, 900 and 1200 MHz bands. In fact we are your one stop for all your ATV needs and info. We ship most items within 24 hours after you call. Hams, call for our complete 10 page ATV catalogue.

(818) 447-4565 M-Th 8am-5:30pm
Visa, MC, UPS COD
P.C. ELECTRONICS
Tom (W6ORC) 2522 Paxson Ln, Arcadia CA 91007
Maryann (W8BYS)
Some Ham Antennas Made From TV Twin-Lead

Twin-lead transmission line (Figure 1) is generally quite cheap, and can be used to make a variety of different antenna types ... as well as being used to carry signals back and forth between the rig and the antenna.

Figure 1 shows two popular varieties of twin-lead transmission line. The variety of twin-lead shown in Figure 1A is 300-ohm television antenna transmission line. TV-style twin-lead has small diameter copper conductors separated by a rubber or plastic insulating material, all molded into one piece. This type of line is quite light for transmitter use, but will easily handle power levels up to a couple hundred watts. I know only one person who routinely used 300-ohm twin-lead on a kilowatt rig, and he claimed it ran uncomfortably hot to the touch!

A thicker, wider, and tougher form of twin-lead is the 450-ohm stuff shown in Figure 1B. This line usually has square holes cut into the plastic insulator separating the conductors in order to reduce losses. The 450-ohm line can be used at higher power levels than the 300-ohm line, and is a reasonable replacement for a 600-ohm parallel, "open-air," transmission line called for by some antenna designs.

The "Quick 'n' Dirty" Twin-Lead Antenna

The antenna shown in Figure 2 is one of the first that I ever used (when a mentor, W4II, gave me a roll of twin-lead wire), after seeing it in an early edition of Bill Orr's (W6SAI) Radio Handbook. I ran this type of antenna out a basement window, and attached the top end to an old pine tree, and the middle supported by a 2X4 nailed rather unceremoniously to a tool shed on the back of the house.

Basically a quarter-wavelength "Round Robin" Marconi, it consists of 300-ohm or 450-ohm twin-lead transmission line with a length of 234/F. Thus, for 40-meters the length would be about 32 feet 6 inches long overall. The 52-ohm coaxial cable is connected such that the center conductor goes to one conductor of the twin-lead, and the shield goes to the other. If you desire, ground the shield of the coax, as well as attaching it to the twin-lead.

The "Quick 'n' Dirty" (or "Round Robin" as my mentor called it) can be installed at an angle (as shown), although I suspect best performance occurs when the wire is straight. In the version that I had, there was only a small VSWR with one bend that put the vertical and horizontal segments at about a 120-degree angle.

This antenna works better than single conductor Marconi antennas because regular Marconis suffer from ground losses. By supplying a return line, the radiation resistance is raised from 10 or 15 ohms, to something on the order of 40 to 50 ohms—which makes it a good match to 52-ohm coaxial cable.

Folded Dipole

The folded dipole (Figure 3) is one of the most popular twin-lead antennas. It's a half-wavelength dipole made of twin-lead. Note that the parallel conductors at the ends of the antenna are tied together (and soldered, by the way). The feedline is connected to the folded dipole in the center of one of the conductors. If 300-ohm twin-lead is used as the transmission line, then it can be connected directly to the radiator element. But if you want to use coaxial cable to feed the antenna (which is a heckuva lot more convenient), then use a 4:1 balun transformer between the coax and the antenna's feedpoint.

For low and moderate power operation, the folded dipole is a reasonable choice for hams. It has a bit more bandwidth than the straight dipole, so is easier to use without a lot of adjusting of the antenna tuner (especially with modern rigs that have a VSWR shut-down circuit). On the negative side, the typical folded dipole is somewhat less robust than the standard dipole. Unless special measures are taken, the folded dipole may very well come falling down in winds a bit more than a gentle breeze. Some of those special measures are discussed in detail in my book Joe Carr's Receiving Antenna Handbook (HighText Publications, Inc., P.O. Box 1489, Solana Beach, CA, 92075; $19.95). If you want to build a folded dipole, then I highly recommend that you review that material.

The azimuthal pattern of the folded dipole is a standard "figure-8," very nearly the same as for regular dipole antennas. In other words, it is bi-directional and transmits broadly to the wire; there are two nulls, one off each end of the wire.

Folded Dipole Beam Antennas

Over the years it became popular to make beam antennas from folded dipole antennas. A well-designed, properly installed two-element directional antenna refocuses the figure-8 pattern of the half-wavelength dipole or folded dipole into a single direction, resulting in a gain of about 3 dB (ideally). A 3-dB gain is equivalent to doubling your transmmitter power. The actual gain will be somewhat less, in most cases, because of installation or design difficulties.

The antenna shown in Figure 4 uses two folded dipoles, installed parallel to each other about one-eighth wavelength (1/8) apart. One folded dipole acts as a reflector and the other as a driven element. Which is which can be...
Amplifiers, ATV Down Converters & Hard to Find Parts

LINEAR AMPLIFIERS

- HF Amplifiers
 - PC board and complete parts list for HF amplifiers described in the Motorola Application Notes and Engineering
 - Buffetron: AN779H (20W)
 - 2 Meter Amplifiers (144-148 MHz)
 - AN779L (20W)
 - AN762 (14WV)
 - (Kit or Wired and Tested)
 - BF83 (18W)
 - 35W - Model 307A.
 - AR305 (300W)
 - 75W - Model 875A, $119.95/$199.91
 - AN778 (300W)
 - AN731 (300W)
 - 440-450 MHz Amplifiers
 - ER2A (300W)
 - (SSB-PM-ATV)
 - EB304 (600W)
 - 100W - Model KEB 67, $159.95
 - AS437 (3000W)

For detailed information and prices, call or write for a free catalog!

ADDITIONAL ITEMS

- Heat Sink Material
- Model 99 Heat Sink (0.5 x 12 x 17), $24.00
- CHS-8 Copper Spring (8 x 4 x 2.5), $14.00
- Low Pass Filters (up to 300W) for harmonics
 - Specify 10M, 15M, 20M, 40M, 80M or 160M
- HF Splitters and Combiners up to 20W

Slow Scan TV

doesn't have to be expensive anymore!

Every day more hams are enhancing their communication by using images. Join the fun and see what you've been missing.

Quality Color SSTV is easy and affordable with Panason TV. $239.95

 Requires IBM PC compatible, 786 or better CPU. 1 Megabyte of memory, color VGA display, MS-DOS. Shipping: $5 to U.S.A. and Canada, $15 for others. Write or call for complete details.

Absolute Value Systems

115 Seddon St. #7
Chelmsford, MA 01824-1823
(508) 256-6907
email: john@world.std.com

CB-TO-10 METERS

CIRCULAR 99 ON READER SERVICE CARD

Performance SOFTWARE

KaGOLD for Kantronics w/V5rom

PkGOLD for AEA PK-88,232,2232

Invest in the GOLD standard today! Easy operation with incredible power!
- Conference/Background File Transfers
- Robot QAs
- Logging
- Macro Files
- Automatic QTH/GSL Exchange
- Advanced Text Handling
 - 95 page Manual
 - Extensive Help System
 - Quick Reference Guide
 - Nothing Else Comes Close
 - Call Today For Prices

InterFlex Systems

Box 6418
laguna Niguel
CA 92670

Phone 714 496-6639

WJere's the Beam?

Unobtrusive DX Gear Antennas for 80 thru 10
- Easily hidden
- Install Fast
- Fixed or Portable
- There's a 20 meter antenna with real DX Punch included in this picture. You can't see it, and your neighbors can't either. But it works DX hard.
- How about a low profile 40/80 m.
- Included in the package. Price $300.- $600.
- Work DX without telling the neighbors

CIRCULAR 351 ON READER SERVICE CARD

COMPARE!

Ours is

$49.95

#111-2072
Dual Band 5.0/7.0dB
2m/70cm Gain

Discover what you should be paying for 2m/70cm accessories. Get your free MCM Electronics catalog today!

Mail the inquiry card bound in this section or Call:

1-800-543-4330

Get fast delivery from our distribution facilities near Reno, NV and Dayton, OH!

Price effective until Jan. 31, 1996

CODE: 73M04

73 Amateur Radio Today • December 1995 61
So why do you want to change which is the reflector and which is the director? It's simple; this antenna is bi-directional, but only one direction at a time. The antenna transmits in the direction of the one that is excited, with the other element acting as a parasitic reflector. Reversing the roles of the elements reverses the direction. In an ideal beam, the reflector would be a tad longer than the driven element, but in this case they are the same length which results in a bit of deterioration.

It is very important on this antenna to make the two feedlines exactly the same length, even if it means wasting a bit of wire on one of them. If you want to feed this antenna with coaxial cable, then the 4.1 balun transformer can be placed at the common terminals of the DPDT switch.

An old favorite with the twin-lead crowd is the ZL-special shown in Figure 5. This antenna is very much like Figure 4, except that the two folded dipoles are connected together with a phasing harness made of 300-ohm twin-lead. Spacing is about 1/8 to 1/4, while the most usual prescription for the phasing harness is to make it either 1/4 or 3/8 long. Keep in mind that the electrical length is shorter than the physical length by the amount of the velocity factor of the line. If you want to make a 1/4 phase harness with line that has a velocity factor of 0.80, then the physical length would be:

$$246\mathrm{V/F}_{\text{MHz}} = (246 \times 0.80)/F_{\text{MHz}} = 197/F_{\text{MHz}}$$

Contacting Me

If you don't hear my elderly TS-430 barking out CW on 40-meters or 20-meters, or occasionally SSB on 15-meters, then try writing to me at P.O. Box 1098, Falls Church, VA 22041. Or, if you are a cyberspace surfer, then contact me via E-mail at carrjj@aol.com.

The RAbeam eats yagis for lunch!

The 2 element "Mighty" RAbeam

It's not just another yagi

RAbeam

2328 East Van Buren St. Suite 131, Phoenix, AZ 85006

(602) 244-1913

RABEAM ANTENNAS INTERNATIONAL

*For more details call:
Packet Radio
Portable & Affordable!

★ Simple Installation
★ No External Power
★ Smart Dog™ Timer
★ Perfect For Portable
★ Assembled & Tested
★ VHF, UHF, HF (10M)

Just... $49.95
VISA/MASTERCARD

Whether you’re an experienced packeteer or a newcomer wanting to explore packet for the first time, this is what you’ve been waiting for! Thanks to a breakthrough in digital signal processing, we have developed a tiny, full-featured, packet modem at an unprecedented low price. The BayPac Model BP-1 transforms your PC-compatible computer into a powerful Packet TNC, capable of supporting sophisticated features like digipeating, file transfers, and remote terminal access. NOW is the time for YOU to join the PACKET REVOLUTION!

Tigertronics
400 Daily Lane
P.O. Box 5210
Grants Pass, OR
97577

CAT-300 Repeater Controller
Attention Repeater Owners
Finally a repeater controller with a TI voice synthesizer and full feature autopatch incredibly priced at $299.00.

Features Include:
★ Voice Synthesizer
★ (412) Word Vocabulary
★ Twelve Voice Messages
★ Two Voice Identifiers
★ CW Identifier
★ Full Feature Autopatch
★ User Speed Dials
★ Emergency Speed Dials
★ Reverse Autopatch
★ DTMF Key Pad Test
★ DTMF Repeater Access
★ DTMF Repeater Muting
★ (56) Control Functions
★ Remote Control Switches
★ Hardware Logic Inputs
★ DVR Controller Ready

★ Female Voice & Sound Effects
★ Programmable Courtesy Tones
★ Programmable Codes and Timers

Write or Call for a brochure describing the CAT-300 Controller, including schematic, voice word list, and control functions.

CAT-300 Controller Board $299.00 Wired and Tested
Computer Automation Technology Inc.
4631 N.W. 31st Avenue, Suite 142
Fort Lauderdale, Florida 33309
Phone: (305) 978-6171 - Fax: (407) 488-2894
Internet: cat@tnterramp.com

Get A New Image
PC HF Fax Plus $129
PC HF Fax Plus is a simple, yet comprehensive HF system that receives Fax, RTTY, CW, and AMTOR on an IBM PC or compatible. It includes an FSK demodulator, advanced signal processing software, tutorial audio cassette, and complete reference manual. Just plug the demodulator into a serial port, install the software and get text and vivid images on your PC.

PC SSTV $149.95
PC Slow Scan Television is a complete system for sending and receiving full color amateur SSTV. The package includes an SSTV FSK modem, SSTV software, image capture utilities and reference manual. All popular formats are supported including Robot, Scootie, Marlin and AVT. The system requires a 286, 386 or faster PC with VGA or super VGA display.

Have It All For Only $199.95
For a limited time we are offering both software packages with a single FSK modem for under $200. This combination offer will let you send and receive the popular HF image and text transmission modes. Call or write for our free catalog. Visa and Mastercard welcomed.

Software Systems Consulting
615 S. El Camino Real, San Clemente, CA 92672
Tel.(714) 498-5784 Fax.(714) 498-0568

Get A New Image
PC HF Fax Plus $129
PC HF Fax Plus is a simple, yet comprehensive HF system that receives Fax, RTTY, CW, and AMTOR on an IBM PC or compatible. It includes an FSK demodulator, advanced signal processing software, tutorial audio cassette, and complete reference manual. Just plug the demodulator into a serial port, install the software and get text and vivid images on your PC.

PC SSTV $149.95
PC Slow Scan Television is a complete system for sending and receiving full color amateur SSTV. The package includes an SSTV FSK modem, SSTV software, image capture utilities and reference manual. All popular formats are supported including Robot, Scootie, Marlin and AVT. The system requires a 286, 386 or faster PC with VGA or super VGA display.

Have It All For Only $199.95
For a limited time we are offering both software packages with a single FSK modem for under $200. This combination offer will let you send and receive the popular HF image and text transmission modes. Call or write for our free catalog. Visa and Mastercard welcomed.

Software Systems Consulting
615 S. El Camino Real, San Clemente, CA 92672
Tel.(714) 498-5784 Fax.(714) 498-0568

Ready to join capable of supporting like digipeating, file transfers, and remote terminal access. NOW is the time for YOU to join the PACKET REVOLUTION!

THIS IS NO MIRAGE.
This is real. Telnetec DXF amplifiers. It's clearly the best VHF amplifier around. Unsurpassed commercial-level quality. Price. Performance. Features. And made in the USA. It's the amplifier everybody wants to own. Now available for B, E, 220, and UH-F.

DLP-180 (6 meters) $339
DLP-175 (2 meters) $269
DLP-V60 (280 MHz) $269
DLP-U150 (70 cm) $349

New for 1998 - DXR amplifiers. Same design and features except: 100% continuous duty cycle. Receiver preamplifiers for all bands also available. Call for details, ask for Amateur Department.

TELETNC
101101 Capital Boulevard
Wake Forest, NC 27587
Tel: (800) 778-0551 Fax: (919) 556-6180
VISA/MASTERCARD

73 Amateur Radio Today • December 1995 63
Low Power Operation

Michael Bryce WB8VGE
2225 Mayflower NW
Massillon OH 44646

There's nothing quite like spending quality time working on a few simple circuits. You generally can get a hefty helping of the warm fuzzies when even the simplest circuit functions as planned.

So, let's take a look at several simple circuits you can build. Some are modifications to commercial rigs, others are stand-alone projects.

This month, I've also started something different. Since many of the best circuits are simple, there's usually no PC board. "Just use perf-board" is the battle cry we hear all the time. Well, I've been working on this long-time problem from my end. Starting with last month's RIT for the Small Wonder Labs rigs, I've laid out the schematics using a PC board CAD program called "CIRCAD," which has the ability to generate a "net list" after the schematic has been laid out. By using this net list feature, it is possible to lay out a PC board and be fairly sure it will work. Provided the schematic is correct that is! The PC board will only be as accurate as the schematic. I've found it hard to change from my old way of making PC boards. First, I build a prototype board, make corrections, make another set of PC boards, make corrections, and so on until the finished PC board is accurate. Needless to say, that takes a lot of time and money. By using CIRCAD, you generate the schematic, import the net list, autoroute the board and you're done.

There is also another added feature. I will upload all the files in a PKZIPped format to both CompuServe and America Online. The files will be in the HamNet SIG hiding within the QRP section library files. Use the key word "CIRCAD" to locate the files in the libraries.

On America Online, the files will be in the ham radio SIG. CIRCAD, while a commercial product retailing for about $1,000, is also available from both services, runs under DOS and requires at least 4 Meg RAM and a hard drive. CIRCAD will not run under windows. The demo version does work and will generate artwork. However, there is a limit on the number of ICs that can be used and it will not generate either the gerber or drill files. Other than that, the demo version will work just fine to "fine tune" any of these smaller projects. I'll have a complete review of CIRCAD coming next year. Look for it.

One last note about these PC boards. I do not have the free time required to build and try out each and every circuit. The PC boards "should" be error free. Keep the hate mail down to a minimum if the boards don't work as they should. However, if you find a mistake, by all means let me know and I will correct the files and replace them on the BBS. I would check and double-check any artwork before committing to a large run of PC boards. I'm sure you may need to tweak a few of my layouts to suit your needs or requirements.

The first circuit is a modification of last month's RIT by Dave Benson. As I mentioned last month, it would be rather easy to build on a RIT "on" LED to the circuit. Well that is exactly what I did. I also put on the PC board lots of pads to make connections to and from your transceiver as easy as possible. I added some decoupling capacitors to the VCC pin of the 4066 for good measure.

The schematic for the modified RIT is shown in Figure 1. The PC board I laid out is not as small as Dave's version. Instead of standing the resistors and diodes on end, they are laid down flat. There are no mounting holes—you can use double-sided foam tape or hot melt glue.

Here is one more add-on circuit for the popular MFJ QRP radios (Figure 2). This circuit watches the RIT voltage and will tell you if the RIT is active or not. This circuit comes from Paul Harden NA5N. Basically, the circuit consists of two op-amps (in a single 8-pin DIP package) which constantly monitors the RIT line. The circuit is designed for the MFJ mono-banders, but you may be able to find diverse uses for this project.

In a nutshell, one op-amp monitors the voltage generated by the RIT control when it is moved from its center position. When the RIT control is moved, the voltage across it changes. By comparing the RIT control voltage against the reference voltage generated by the two pots, the op-amps will switch states, lighting the LED. How tight you set the two reference pots will determine where in the RIT control the LED will light.

I have not given this circuit a try, but have used voltage comparators like this one for years. If you have trouble with noise or RF getting into the comparators, tack on a 0.1-uF capacitor at the junction of R3/R1 and the voltage reference pots.

To fancy things up a bit, instead of the junk box LED, how about using a bi-color LED instead? This way you can tell what direction the RIT is set. You will need to remove the two steering diodes and insert a current-limiting resistor in their place. Any value from 470 ohms to 2k ohms should be fine.

The basic circuit can easily be changed to provide a battery status indicator. Instead of feeding R2 with the RIT voltage from the MFJ rig, use a stable voltage reference source such as a LM336Z 5.0 diode. Again, remove the two diodes and in their place install a 1k-ohm resistor. By using two LEDs, you can set one comparator to give you a green OK for the
Figure 2a. Parts layout for a RIT voltage detector for MFJ QRP radios.

Figure 2b. Foil pattern for a RIT voltage detector for MFJ QRP radios.

Figure 2c. Schematic for a RIT voltage detector for MFJ QRP radios.

time’s. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modifications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modifications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modifications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modifications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modifications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modifications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modifications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modifications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modifications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modifications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modifications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modifications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modifications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modifications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modifications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modifications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.

I’m currently working on putting together some modifications to the Ten-Tec Century 21 series of rigs. There seems to be a rather big hole when it comes to modifications and fixes for this classic rig. Although not a QRP receiver by any means, many a Century 21 has been put to use by QRPer’s. If you have any modifications for this rig, by all means send them to me.

Although you would need an external op-amp to boost the output from a SWR bridge, you could easily adapt the circuit to warn you of an excessive SWR on your portable antenna. This really is an easy-to-use circuit and its use is limited only by your imagination.

As I mentioned earlier, both the PC and the schematics will be uploaded to America Online and CompuServe. Both will be hiding within the ham radio SIGs. On CompuServe, the files will be in the QRP SIG library inside HamNet. Both files will be "zipped" to speed download times. You will need the demo version of CIRCAD to view or modify the files. CIRCAD is available on both systems.
HAM TO HAM
Continued from page 50
answered very authoritatively "Oh my gosh, no, you'll be insulating it from the air and it won't work!"

Even though we talk about getting on-the-air, and our signals radiating through the air, direct contact with the air isn't a factor in whether a particular antenna works well or not. When the astronauts were on the moon's surface, with no air anywhere except within their space suits, their radio signals made it back to earth in fine shape. The rubber ducky type of antennas seen on virtually every hand-held transceiver, though not in direct contact with the air, seem to do a pretty good job for the most part. In fact, I've painted several ham antennas using a flat lacquer-based spray paint without any regrets, only longer life from the antennas!

It's true that using insulated wire for a horizontal dipole will change the dipole's length requirements slightly, but it certainly won't prevent it from working just as well as a bare-wire antenna. Most people don't use insulated wire for wire dipoles simply because there's no point in paying for insulation that isn't really needed. A dipole is normally strung high enough in the air to be out of reach of children and others, so insulating it from accidental human or animal contact isn't usually a factor. If it's not up high enough to be out of reach, I'd definitely opt for the safety factor of insulated wire!

But a thin coating of non-metallic paint on your 2-meter beam or vertical won't affect the resonant frequency to any appreciable degree and it certainly won't render it an ineffective radiator or receptor of RF energy. Just make sure that any metal to metal contact points aren't inadvertently insulated, and I'd stop short of getting any paint on the matching section—just in case it requires a minor change in tune-up—or on any insulating connection blocks to avoid possibly changing their insulating properties.

Before any painting, I would also make sure that the aluminum is thoroughly cleaned of any oil that might have been used during the machining process and that any shiny aluminum be lightly sanded to give better grip to the paint coating. Flat gray primer spray paint is usually a good choice for this type of situation since it's formulated for good adhesion on bare metal. And it's best to do all spray painting out-of-doors, in calm weather, for safety and health reasons.

A Word Of Caution In Using Spray Contact Cleaners Near RF Circuity
Spray contact cleaners, those commonly sold to clean noisy switches and potentiometers, should be used with a great deal of caution around any parts carrying RF voltages and high RF voltages in particular. This would include using these sprays on any band-change rotary switches used in many of the older ham transceivers, linear amplifiers and the current lineup of manual antenna tuners.

Before the broad-band, nontune final RF stages became commonplace in ham transceivers, most rigs used mechanical, multi-section rotary switches to accomplish all band-changing functions within the radio. The temptation to use ordinary spray contact cleaners on these switches, however, especially the sections carrying high voltage RF, should be strictly avoided.

Many of the popular spray cleaners will leave behind an oily deposit, used to lubricate the item being cleaned, but in RF circuits, this oily deposit can soak into the switch's insulating wafers, causing them to lose some of their non-conductive RF insulating properties. That oily surface will also cause dust and grime to collect on the insulator, further exacerbating the problem by gradually creating a semi-conductive surface on the insulating wafer. The final result can be arcing and eventual carbonization of the wafer material—particularly if it's of a phenolic base—with almost certain destruction of the switch—and perhaps other associated parts—in the end analysis.

The lesson to be learned here is to never use ordinary control-cleaning spray on RF circuit parts, particularly if that spray leaves behind an oily lubricating film. If RF switching sections absolutely must be cleaned, take the time to do it by hand, with a swab, using only small amounts of cleaning medium and then only a medium that will evaporate completely without leaving behind any left-over residue. In reality, rarely do these switches need any more cleaning other than simply being "exercised" several times through their entire rotational range. The switch contact wipers will usually clean themselves with this simple procedure. They're normally plated with silver, and even though the silver appears black because of tarnish, silver oxide is nearly as good of a conductor as shiny silver, so don't be fooled into thinking that a "really good" cleaning is needed. Looks can sometimes be deceiving.

I'll return with more Ham To Ham tips, suggestions and techniques next month, but in the meantime, jot down some of your ham-related favorites and send them to me at the address shown near the beginning. I'm not able to return all submissions, however, so please make sure that you send non-essential copies, or include a self-addressed and stamped envelope for any material that you must have returned to you and I'll do my best to get it back—no guarantees though. But here's the best part, Uncle Wayne Green will send you ten dollars for every tip that we use in this column, plus make you a hero with all of your fellow hams! What an incredible deal!

73, DE Dave, N29E

Note: The ideas and suggestions contributed to this column by its readers have not necessarily been tested by the column's moderator nor by the staff of 73 Magazine, and thus no guarantee of operational success is implied. Always use your own best judgment before modifying any electronic item from the original equipment manufacturer's specifications. No responsibility is implied by the moderator or 73 Magazine for any equipment damage or malfunction resulting from information supplied in this column. Please send all correspondence relating to this column to 73 Magazine's Ham To Ham column, c/o Dave Miller, N29E, 7462 Lawver Avenue, Niles, IL 60714-3108. USA.

All contributions used in this column will be reimbursed by a contributor's fee of $10, which includes its exclusive use by 73 Magazine. We will attempt to respond to all legitimate contributor's ideas in a timely manner, but be sure to send all specific questions on any particular tip to the originator of the idea, not to this column's moderator nor to 73 Magazine.
Unique Ham Devices

CK-53 CW Keyer / Monitor

The CK-53 provides monitoring and display of Morse code transmissions using your personal computer. The CK-53 is also a keyer translating your keyboard entries into perfect code. Included is a standard software package for monitoring, control, and logging of QSOs. Features code speed 2 to 35 WPM with auto speed tracking. Complete with 2.5" assembled/tested PCB, software (3.5" or 5.25" disk), and detailed users manual.

Perfect for learning or building code speed!

PL-259ST Silver Teflon $1.00 ea.
PL-259 STG Silver Teflon Gold Pin $1.19ea.

50% Discount on Best Price

C.O.A.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.

COAX CABLE

RG-213/U Type IIA, 95% Braid $33/ft.
RG-8X Type IIA, 95% Braid $14.75/ft.
450 OHM LADDER-LINE

16 Gauge Stranded Cu-clad $1.75/ft.
16 Gauge Solid Cu-clad $1.50/ft.
300 Ohm KW Twinlead $1.25/ft.
72 Ohm 13 Gauge Twinlead $2.00/ft.
RTTY LOOP

Amateur Radio Teletype

Marc L. Leavcy, M.D. WA3AJR
6 Jenny Lane
Baltimore, Maryland 21208

I don’t know about you, but I feel especially warm and fuzzy this year. They say that “into each life some rain must fall,” and, without going into details, my family has been inundated in a monsoon this past year. Therefore, in honor of the winter holidays and their traditions, let me make some suggestions for gifts to make the digital amateur happy.

Kantronics offers their KAM Plus, a packet controller that operates any of the popular HF digital modes and VH F packet, simultaneously. In one small package, they pack enough features to make just about anyone on packet, RTTY, or AMTOR happy.

This is the “Home-brew” issue, and if you are interested in putting together your own station, from the board level up, you might do well to look at Kantronics. They have transmitter and receiver boards for VH F and UHF, most under $200 each. How about a 1200-baud modem kit for fifty bucks? This is only a sample of what Kantronics has for the RTTYer. A catalog and gift certificate may be just what the doctor ordered.

Speaking of home-brew, TEC-200 film is an interesting product. If you have a ham interested in construction, and are looking for an inexpensive gift, you could do a lot worse than five bucks for this stuff. Copy the circuit onto the film using a plain paper copier, iron it onto the circuit board, peel and etch. Sounds neat, and worth looking into. The Meadowlake Corporation makes the stuff available. Let me know what you think.

I mentioned Buckmaster a while back, and they have some nifty items for the ham on the list. CD-ROMs with international call sign databases for fifty bucks, or with a collection of shareware programs and data files for half that price are just two of the items available. Check with them to see the latest material available on this exciting new medium. Then again, if you are flush with funds, check out the complete collection of 73 Magazine, on microfiche for $285. Oh, well, if only they offered this on CD-ROM! (Hint…hint!)

Another call sign database is the SAM database, available on either floppy disk or CD-ROM for forty dollars. Several options are available, to allow county reference, license expiration, birth date, or others. Check this one out through RT Systems, Inc.

Ramsey Electronics has been a perennial favorite for little kits and things. Between transmitters and receivers and DTFM boards, this is another potential catalog and gift certificate item. Check it out and see if you don’t agree.

With the number of questions I get every month about Baycom, let’s not forget Tigertronics and their BayPac modem. This little modem, designed for Baycom, costs about fifty dollars, and is just a tad larger than a DB-25 plug. This may be just the ticket for turning that laptop and hand held into a packet station.

Now, for those of you who still use mechanical teleprinters, a few little sources and tips. Ribbons labeled for Model 15s may not grace the shelves in your local office supply store, but Underwood typewriter ribbons are usually at the top of the list. They will work just fine. Get the heavier type, for longer life. Lithium grease, perfect for lubricating the vanes and levers, may be found at the automotive counter in little tubes, perfect for the tool box. Restore the black crinkle finish of your machine’s cabinet with liquid black shoe polish, if it is just a tad dirty. If the paint is badly messed up, there are spray crinkle finishes in the hardware or paint store, although they take a bit of practice to use right. While you’re in the stationery store, pick up some type cleaner for those Model 15s and Model 28s. They have putty types, typing sheet types, and liquids with brushes, messy as that sounds. Look around, I’m sure there will be something of interest.

Now, the computer-type digital hams have a veritable plethora (there I go again) of goodies to choose from these days. From inexpensive floppy disks, disk holders, copy stands, screen cleaners, mouse pads, and who knows how many other ten-dollar and under items, the sky is the limit if you care to spend some real money. Anyway, if you are shopping for the computing ham, your best bet may be a gift certificate from the local computer superstore.

In keeping with this month’s theme of gift giving and neat products, this month’s world wide web site is a potential source for many a gift. The Raymond Sarrio Company has listed an amateur radio discount catalog on the web, which promises prices below retail. Take a look for yourself at:

http://www.csz.com/sarrio.html

and let me know what you think.

Incidentally, all listings for items or sources in this month’s column have come through my perusal of ads, literature, or other such material. No manufacturer has solicited space in this column, nor are many even aware of this column’s existence, for that matter. Therefore, if you contact any of these folks, be sure to tell them that you read about their fine wares in 73 magazine’s RTTY Loop column, okay? I mean, might as well boost the column and the magazine when you can.

Can I put in a specific plug for the column here? Okay, regular readers of RTTY Loop are quite aware of the RTTY Loop Software Collection, a compendium of software, primarily for the PC-compatible crowd, that caters to the widest variety of digital amateurs. Now up to a dozen disks, each one may be yours by sending me a blank 3.5-inch high-density disk, a stamped self-addressed disk mailer for return to you, and $2.00 in US funds per disk, to the address at the top of the column. Now, I would not expect you to just order the disks blindly, and we have covered the contents of some of these disks before. A full listing is available by snailmail, by sending me a self-addressed, stamped envelope for return of the printed listing, or via E-mail, to any of my electronic mailboxes:

ComputServe—75036.2501
Delphi—MarcWA3AJR;
America Online MarcWA3AJR;
Internet—
MarcWA3AJR@aol.com

Even if you don’t want to ask about the disks, I look forward to your comments, questions, and suggestions. Talk about gifts, your input is just what I desire! My very best wishes to each and every one of you for a Happy Chanukah, Merry Christmas. Joyous Kwanzaa, and a Healthy and Successful New Year.

Sources for items mentioned in this month’s column:

Kantronics, 1200 E. 3rd Street, Lawrence, KS 66046-5008; (913) 942-7743

Hamtronics, Inc., 65-D Moul Road, Hilton, NY 14468-9835; (716) 392-9430

The Meadowlake Corporation, Department J, P.O. Box 1555, Orono, FL 32404, (904) 625-1300

Buckmaster, Route 4, Box 1630, Mineral, VA 23117; (540) 894-5777; http://www.buck.com

RT Systems, Inc., 8020 Stephane Drive, Huntsville, AL 35802; (205) 882-9292

Ramsey Electronics, Inc., 793 Canning Parkway, Victor, NY 14564; (716) 924-4580

Tigertronics, Inc., 300 Daily Lane, PO Box 5210, Grants Pass, OR 97527; (503) 474-6700
COLLINS S-LINE RADIO

Military-surplus 'winged' emblem HF Ham-band equipment, 45 lbs. each. USED - REPAIRABLE (not "mint" condition):

- KWM-2A TRANSCIEVER .. $425
- With PM-2 supply ... $495
- 30L1 POWER AMPLIFIER with 811A's $550
- S16F2 AC SUPPLY for KWM-2A/30L1 $135
- 51284 CONTROL-SPEAKER w/directional coupler $150
- 6146W TUBE, JAN-box GE, 10/175.00
- S-METER for Collins KWM-2A, Unused...... $29.95

Prices F.O.B. Lima, O. • VISA, MASTERCARD, DISCOVER
Allow for Shipping • Write for latest catalog
Address Dept. 73 • Phone 419/227-6757 • Fax 419/227-1313

FAIR RADIO SALES
1016 E. EUREKA • Box 1105 • LIMA, OHIO • 45802

Picolj

Under $2910.00
Similar Savings on Icom, Yaesu, Aston, Kenwood, Hy-Gain, Alinco, Etc. All L.T.O.
Over 9039 Ham items in Stock
All Prices, cash FOB Preston.
More Specials in HAM-ADS.
Looking for Something not Listed?
Call Today (208) 852-0830
ROSS DISTRIBUTING COMPANY
78 S. State Street, Preston, Id. 83263
Hours Tue.-Fri. 9-6 • Sat. 9-2 Mondays. Closed Sat. & Sun.

ROSS DISTRIBUTING COMPANY

PAY TV AND SATELLITE DESCRAMBLING

Pay TV and Satellite Describing Volumes 1-7 (all different).
Satellite and DBS Hacking, Wireless and Cable Hacking,
Complete Wizard, Buying Surplus Dstated and Discounted Goods,
Cellular Phone Hacking, Computer and Phone Hacking, New
Hacker Video, $15.00 each, $65.00 for 5/95.00 $95.00, American
Hacker Magazine $29.95 includes BBS. Our Best Deal only
$129.95 includes everything here and lots more. Now catalog $1

SCRAMBLING NEWS

3494 Delaware Ave. #123, Buffalo, NY 14217-1230
Voice: 716-874-2088 Fax: 716-771-7915 e-mail:scambk@home.com
CIRCLE 96 ON READER SERVICE CARD

this month's Goodie FROM THE CANDY STORE

Molton Electronics
310 Garfield St Suite 4
PO Box 2748
Eugene, Oregon 97402

TxDI-1
TRANSMITTER FINGERPRINTING SYSTEM
Txd1™ Software and IBM/Compatible circuit card.
Now Shipping Version 2 Software with automatic MATCH and COMPARE!

Txd1™ TxDporter™
EXTERNAL ADAPTER FOR MOBILE OPERATION.
CONNECTS THE TxD1 TO YOUR LAPTOP COMPUTER!

CALL OR WRITE FOR MORE INFORMATION. OR CONTACT US VIA THE INTERNET FOR A COMPLETE CATALOG.
moltron.info@emerald.com

TxDI-1 FINGERPRINTING SYSTEM WITH SOFTWARE $999.00
TxDporter™ MOBILE OPERATION ADAPTER $249.00

CALL OR WRITE FOR MORE INFORMATION.

STAREE TRACING

$ 49.95*

"Windows 95" Ready!

CONTACT
New Contact Brg 52 dgrs

$ 49.95*

35.31 N 62.44 W
Locator FM/RSP
AZM 292 dgrs
Orbit # 2157
11:49:06 UTC

LOGS
Report Signature Loss of Active Satellite

- Multi-Tasking Real Time Satellite Tracking
- Five Global Projections with Zoom In/Out Capability
- Interactive Voice/Sound Tracking
- Kansas City Tracker Interface Support
- Professional Logbook/Callbook Manager

1-800-350-3871

Logsat Software Corporation
Tel: (407) 278-0789 Fax: (407) 278-2416
425 S. Chickasaw Tr., Ste. 193, Orlando, FL 32826 USA

"Track Hundreds Of Satellites, In Dozens Of Windows"

LOGSAT PROFESSIONAL V.5.1

$35.00 s/h • $5.00 Int.

for Windows

CIRCLE 248 ON READER SERVICE CARD

73 Amateur Radio Today • December 1995 69
Hamming Your Way to Fitness

Unlike American-style mobile T-hunts, an international-rules foxhunt is a formal event. It takes lots of preparation and on-site staffing to put one on. Sanctioned hunts must follow the 12-page IARU document, "Rules for Championship in Amateur Radio Direction Finding."

An IARU-rules foxhunt course comprises five low-power (0.25 to 1.5 watts) fox transmitters in a hilly wooded area of about six square kilometers. The foxes are spaced such that the shortest distance from the starting point to each one and then to the finish line is 5 to 12 kilometers. Foxes must be at least 400 meters apart. The first must be at least 750 meters from the start.

Each fox transmits for 60 seconds, one after another in numbered sequence, all on the same frequency. A continuous transmitter on a different frequency at the finish line helps hunters find their way home to the finish line once they have found all five foxes and marked their scoring cards with the unique punches attached to each fox. Scores are determined primarily by the number of transmitters found, and secondarily by elapsed time. Contestants are individually timed. They start at five-minute intervals, coinciding with the start of fox #1 transmissions. This scatters the contestants on the course to minimize "follow the leader" problems.

Foxhunting is a map-and-compass exercise as well as an RDF test. Successful hunters pay careful attention to their exact location and the bearings to all foxes at all times, plotting them on detailed topographical maps provided by the organizers. They know that if they miss a fox bearing, they must wait four minutes to hear that fox again. They also eye their watches, since exceeding the time limit (100 to 140 minutes) means disqualification. In other words, it is better to return under the time limit with only one fox found than to find all five but take one minute over the limit.

Each target transmitter has distinctive identification, sent continuously in CW or MCI. Fox #1 sends "MOE" continuously, plus callsign. Fox #2 sends "MOI," fox #3 sends "MOS" and so forth. Even without knowing Morse Code, contestants can identify the individual foxes by counting dots.

To aid competitors who get lost, a homing fox at the finish line transmits "MO" continuously on a separate frequency. Two-meter foxes in IARU championships transmit AM with tone modulation. Eighty-meter foxes send keyed CW. The 50-meter and 2-meter events are on separate days so each entrant can compete on both bands.

Under IARU rules, all competitors use the same venue and the same foxes, but they are divided into four separate divisions: Seniors (males 18 to 40 years), Juniors (boys under 18), Women (any age—nobody asks!), and "Old Timers." Only Seniors are required to find all five foxes, in any order. Others need find only four foxes; the designated four are different for each division.

Each country entering a championship match may field one or more teams of three to five contestants each. Team score is a function of the best three individual scores. Team members are not allowed to help one another; Course Marshals are alert for violations. Medals are awarded to top team and individual entrants. This makes for a total of eight individual and eight team medal sets awarded in gold, silver, and bronze at a championship meet. There are no cash or merchandise awards.

Foxhunting World Championships take place every three years. The seventh was in September 1994 at Sodertelje, Sweden, about 25 miles southwest of Stockholm. In the years between, regional meets are scheduled. IARU Region 1 (Europe and Africa) held its championships in September of this year in Chetina, Slovakia, with twenty countries represented.

In IARU Region 3, China and Japan are the countries with greatest foxhunting activity.

Others, such as Australia, are becoming more and more involved in the sport. National ham societies such as Japan Amateur Radio League sponsor foxhunting as a means of recruiting newcomers to the hobby. Australia will host the next IARU Region 3 Championships at Townsville, Queensland, in July 1996.

What about IARU Region 2, which encompasses North and South America? Sad to say, there
are no IARU-sanctioned foxhunts here, despite the fact that ARRL Headquarters in Newington is the International Secretariat for IARU. Presently, hams from Region 2 who want to compete in IARU championships must travel overseas and enter unofficially. IARU events have a "friendship" category for newcomers who are out of their region or are not national champions. There is also a "promoters" section for newcomers wishing to run the course without being part of the actual competition.

Before we can convince ARRL and IARU to hold championships in Region 2, many more T-hunters (and some League officials) must learn about the fun of international-rules foxhunting and appreciate the support it may gain. Several individuals and groups in the USA and Canada are promoting this radio sport, as you will see in upcoming "Homing In" columns. This month, I'll tell about what's happening in southern California.

Hamcon-95

It all started when the Southern California Six-Meter Club (SC6MC) volunteered to put on a transmitter hunt for Hamcon-95, the ARRL Southwestern Division Convention on the Queen Mary during Labor Day weekend. Sunday afternoon Southwestern Division convention T-hunts are a tradition that goes back over 15 years. Up until this year, they have always included long-distance drives. Many have had multiple transmitters. The lure of hefty cash prizes brings out up to twenty mobile teams to Hamcon hunts. SC6MC T-hunt chairman Bob Hastings K6PHE and wife Gracie KK6CG have enjoyed small-scale on-foot foxhunts put on by the United Radio Amateur Club of Los Angeles, so, when someone suggested an all-on-foot foxhunt for Hamcon-95, they agreed immediately. As an incentive for a good turnout, Hamcon organizers approved $500 in cash prize money and the SC6MC board agreed to spend $200 on trophies, certificates, and refreshments.

Here was a chance to introduce the T-hunters of southern California and Arizona to international-style foxhunting. To do that and to convince the convention organizers that their money was well spent, a good turnout was important. Convention-goers had to be told in advance to plan on staying in the Long Beach area through Sunday and to bring on-foot "sniffing" gear.

Beginning in early August, the word went out by repeater bulletins, packet, Internet, and on-line services that a new and exciting kind of transmitter hunt was on the agenda for Hamcon-95. The announcements included a summary of international-style foxhunt rules and suggestions for simple foxhunting equipment. Convention-goers were invited to sign up for the hunt and also to attend a two-hour Foxhunt Forum at the convention center Saturday morning. At the forum, a room full of neophyte and old-time RDFers heard all about international hunts from your columnist and two other hams who have experienced them, J. Scott Bovitz N6MI and Kevin Kelly N6QAB.

Three weeks before the convention, it was my duty to be the first person to be heard for the Los Angeles area "Pathfinder" Saturday evening mobile T-hunt. It turned out to be an opportunity for hunters to practice for Hamcon/Foxhunt-95. It was also a chance for me to try computer inputting and get a better idea of what makes a fox location easy or hard. WA6OPS and I put the mobile hunt T in a ravine in Rancho Cucamonga, 18 miles from the starting point. Its beam was pointed so as to create signal reflections from the nearby San Gabriel mountains, just so it wouldn't be too easy.

The ravine was just east of a beautiful 40-acre park, where we concealed six miniature foxes. When hunters found the ravine transmitter, a note instructed them to come to the park, where we gave them competitor cards and told them to hunt down transmitters #2 through #7. We timed each person start-to-finish, just as in an international-rules hunt. A dozen hams tried the park course.

All had fun, and many decided then and there to try hunting for dollars at the convention.

No Forests Here

The biggest problem in putting on Hamcon/Foxhunt-95 was locating a suitable site. A dense forest is best because navigation is more of a challenge and hunters can't observe one another unless they are very close. Unfortunately, the closest forests to Long Beach are dozens of miles away and they aren't very dense anyway. K6PHE and KK6CG suggested Angel's Gate Park, which turned out to be an excellent choice.

This 130-acre complex is only a ten-minute drive from the convention center. Only a small part is wooded, but the rest has an abundance of interesting features to make up for that. Fort MacArthur Military Museum is there, with dozens of old buildings, bunkers, and fortifications, perfect for concealing radio foxes. This park overlooks the Pacific Ocean, so moderate temperatures prevail during the day. This is important, because afternoon highs often exceed 100 degrees around Labor Day just a few miles further inland.

Our goal was for Hamcon/Foxhunt-95 to be as close to an IARU-rules hunt as practical, but we made a few changes to

Continued on page 78
Barter 'n' Buy

Turn your old ham and computer gear into cash now. Sure, you can wait for a hamfest to try and dump it, but you know you'll get a far more realistic price if you have it out where 100,000 active ham potential buyers can see it than the few hundred local hams who come by a flea market table. Check your attic, garage, cellar and closet shelves and get cash for your ham and computer gear before it's too old to sell. You know we're not going to use it again, so why leave it for your widow to throw out? That stuff isn't getting any younger!

The 73 Flea Market, Barter 'n' Buy, costs you peanuts (almost)—comes to 35 cents a word for individual (noncommercial) ads and $1.00 a word for commercial ads. Don't plan on telling a long story. Use abbreviations, cram it in. But be honest. There are plenty of hams who love to fix things, so if it doesn't work, say so.

Make your list, count the words, including your call, address and phone number. Include a check or your credit card number and expiration. If you're placing a commercial ad, include an additional phone number, separate from your ad. This is a monthly magazine, not a daily newspaper, so figure a couple months before the action starts, then be prepared. If you get too many calls, you priced it low. If you don't get many calls, too high.

So get busy. Blow the dust off, check everything out, make sure it still works right and maybe you can help make a ham sure it still works right and maybe you can help make a ham newcomer or retired old timer happy with that rig you're not using now. Or you might get busy on your computer and put together a list of small gear/parts to send to those interested?

The deadline for the February 1998 classified ad section is December 12, 1995.

ALL ABOUT CRYSTAL SETS. Theory and construction of crystal set radios. $9.95 each, ppd USA. Send to: ALL ABOUT BOOKS Dept, S. P.O. Box 22366, San Diego CA 92192. BN800

KENWOOD AUTHORIZED REPAIR. Also ICOM, Yaesu. GROLTON ELECTRONICS, Box 379, Groton MA 01450. (508)414-3322. BN8310

NOW ON 40 METERS! NEW, KNOB-TUNED w/DIGITAL DISPLAY, SYNTHESIZED gp transceiver. Complete kit list only $199.95. S&H $7.50 (continental US). GUARANTEED TO WORK. For info send SASE: Callwrite to order. S & S ENGINEERING, 14102 Brown Road, Smithsonian MD 21783. (301)416-0681. BN8334

NI-CD BATTERY analyzer/cycler. PC controlled. DOS software, $289. PO Box 672, London, Ontario Canada N4A 5Y4 Lalamanta Products 519-472-5566 Fax 519-472-1702 BN8385

CODE 5 News and Petition information. SASE to KB7PQ, 503 Dubois Street, Cheney WA 99004. BN81012

ELECTRON TUBES: All types and sizes. Transmitting, receiving, microwave . . . Large inventory — same day shipping. DAILY ELECTRONICS, 10914 NE 39th St. Suite B-6, Vancouver WA 98682. (800)346-6667 or (906)985-8856. BN8179

WANTED: HAM EQUIPMENT AND RELATED ITEMS. Donate your excess gear, new, old, in-any-condition, to the Radio Club of Junior High School 22, the Nation's only full-time, nonprofit organization working to get Ham Radio into schools around the country, as a teaching tool, using our EDUCOM—Education Through Communication, program. Send your radio to school. Your donated material will be picked up anywhere or shipped arranged, and this means a tax deduction to the full extent of the law for you as we are an IRS 501(c)(3) charity in our 15th year of service. It is always easier to donate and usually more financially rewarding, but MOST IMPORTANT your gift will mean a whole new world of educational opportunity for children worldwide. Radics you can write off, kids you can't. Make 1995 the year to help a child and yourself. Don't delay, contact us today—95 will be over soon. Write, phone or Fax the WB2J2K "22 Crew" today: The RC of JHS 22, POB 1052, New York, NY 10025. 24 hours call 516-674-4702 or Fax 516-674-9600. Join us on the WB2J2K CLASSROOM NET, 7.238 MHz 1200-1330 UTC daily, and 21.365 MHz from 1400 to 2000 UTC. BN8762

ORZI CALLSIGN DATABASE ON CD-ROM $16.95!!! Over 835,000 callsigns, thousands of ham programs, mods, etc. Runs on OS/2, WINDOWS, DOS, and UNIX. To order call 1-800-360-8800, 1-909-517-1100, or fax (24 hrs) 1-909-517-1105. Rom-Dezvous Multimedia, 3811 Schafer Ave. Suite 1, Chino CA 91710. S&H $5.95. Visa, MC, Disc, Amex, personal checks. BN8420

QRZ CALLSIGN DATABASE ON CD-ROM $16.95!!! Over 835,000 callsigns, thousands of ham programs, mods, etc. Runs on OS/2, WINDOWS, DOS, and UNIX. To order call 1-800-360-8800, 1-909-517-1100, or fax (24 hrs) 1-909-517-1105. Rom-Dezvous Multimedia, 3811 Schafer Ave. Suite 1, Chino CA 91710. S&H $5.95. Visa, MC, Disc, Amex, personal checks. BN8420

HAM'S-NEED COMPUTER RIBBONS? Lowest prices. Color or black. State your needs. Free info. HARCLY(), P.O.Box 830A, Coquille OR 97423. BN8457

HEATHKIT WANTED! S.B. Series 'Green Front' for parts. Robert Schlegel, 2302 26th St. East, Roy WA 98580 BN8510

Test Equipment: Ballantine 320 RMS Voltmeter $60; Ballantine 323-07 RMS Voltmeter $150; Fluke 1120A IEEE-488 Translator $100; Fluke 2020A Printer $75; GR 1390 B Noise Generator $60; HP 4030B AC Voltmeter $70; HP 431C/478A Power Meter $250; HP 461A Amplifier $100; List of Ebay-Related, Phones (908)722-6157, Fax: (908)722-6391. BN8037

RF TRANSISTORS, Japanese transistors and tubes need dealers, repair shops, kit makers, etc. for 2SC1969, 2SC2312, MB8719, MRF455, MRF454, 2SC2679 and more. WESTGATE (800)213-4583. BN8950

HEALTH COMPANY is selling photocopies of most Heathkit manuals. Only authorized holder for copyright manuals. Phone (619)825-5899. 8-4 ET. BN8964

PRINTED CIRCUIT BOARDS for projects in 73, Ham Radio, QST, APRIL Handbooks. SASE: SASE. FAR CIRCUITS, 19N640 Field Ct., Dundee IL 60118. BN8986

AZDEN SERVICE by former factory techs. SOUTHERN TECHNOLOGIES AMATEUR RADIO INC, 10715 SW 190 St. #8, Miami FL 33157. (305)238-3327. BN8979

ROTOR PARTS ROTOR SERVICE. Rotor accessories: Brak-D-Lays, Quick-Connects, Pre-Set mods. NEW models for sale. Free catalog. C.A.T.S., 7366 State Road 105, Pemberville OH 43450. BN8996

Wanted for Museum: Apple-1 and other pre-1980 microcomputers. Also early microcomputer journals, newsletters and advertising literature. KK4WW, 703-231-6478/755-2321. BN8100

STOCKING STUFFERS! Give the gift of music this holiday season to your favorite Ham. Order THE RHYTHM OF THE CODE Morse code music cassette tape. Send only $9.95 and $2.00 S&H to KARA WOODES, P.O. Box 319, Weymouth MA 02188; or Visa-MC call 617-331-1826 after 4PM EDT weekdays. BN81020

TIRED OF IRONING? Single/small quantity ss PCB service. Most boards $25. We scan magazine artwork free. Get out those back issues FIRST! PROTO. (919)403-8243. BN81022

Continued on page 88
Subscribe to 73 right now...call 800-274-7373 (9-5 Monday-Friday EST).
NEVER SAY DIE
Continued from page 4
industry has bought and paid for a few senators, it isn't.

Well, the congressional brakes have been on when it comes to EMFs also, with the power companies facing hundreds of billions of dollars in expense in meeting any reasonable magnetic field limitations.

Thus I was surprised and delighted to read a report from the National Council on Radiation Protection and Measurements (NCRP) committee which calls for strong action to stop the exposure of the US population. It endorses a 2 mg exposure limit, to take effect immediately for new day care centers, schools, playgrounds, and new transmission lines near existing housing. And it would be phased in more slowly for existing schools, housing, and businesses.

The report was funded by the EPA and has been called by them to be "the first comprehensive review of the world's literature on EMF health effects."

The government's past field strength guidelines have been set at 10,000 mg for a few hours a day for the public and 5,000 mg for the constant exposure by workers, so the new guidelines lower them by over a thousand times! Are you still using that electric blanket?

It's an 800-page report, so I won't cover it all. But, in essence, what I've been saying about the exposure to magnetic fields has been right on the money, with no exaggeration. The report shows that there is a "positive association between childhood cancers and exposure to EMFs generated by electric power transmission and distribution systems."

The action of these fields on the faster-growing cells of children and unborn babies is more evident, but there is plenty of evidence that the slower-growing cells of adults are also affected, and the effects are not in any way beneficial. Another case of slow poison for you.

So, compare this report with the recent rash media baloney saying that EMFs have not been proven to be dangerous. Don't the power companies wish! But the power companies advertise in our newspapers, on the radio and TV, and have been bribing the heck out of our congress, so they tend to control the media and the government. If they would spend a little of the money we're paying them for power to help develop cold fusion power generators instead of PR aimed at stopping off the inevitable, we'd have much cleaner air and cheaper electricity.

We're seeing a replay of the cigarette and asbestos episodes in our history. Well, if congress can't get itself to be honest with cigarettes, maybe the FDA will get into the act.

And I'm no fan of the FDA. With 95% of our FDA approved drugs never proven to be effective (bet you didn't know that!), and no efforts at all to check any alternatives not coming from the pharmaceutical industry, the FDA is a tyrant which seems to be hurting us far more than helping. It seems to be a tool of the pharmaceutical and health insurance industries, and in bed with the AMA, which is not famous for its ethics.

Hmm, I can see the headlines now, "Wayne Green shot by unknown assassin."

Now, if you still disagree with me about EMFs, and you're not doing it out of ignorance, then let me see your data. I've been doing my homework on this for several years and the NCRP chairman is a good friend of mine.

Well, it's good to see that the government may finally be lumbering into action on EMFs.

Repeater Groups, Please Advise

With the FCC getting fed up here with complaints about repeaters, and with no help seemingly available from the ARRL and their Repeater Advisory Committee, things have taken the course you might expect when there are few guidelines and ample room is left for the expansion of egos.

Starting from the top, one of the last things in the whole world amateur radio needs is to ignore any situation that is causing the...
FCC agitation. We're on very thin ice as it is, so we really don't need to poke the lion with a sharp stick. Remember, we're dealing with political appointees and bureaucrats. The appointees (Commissioners) have more politically important things to worry about than amateur radio, what with the incredible growth of communications technology, so we don't want to be in the position of a bothersome fly that is causing aggravation and is more likely to get swatted than cared for.

Sure, within my memory amateur radio was paying its dues by supplying trained or at least trainable technicians and operators in time of war. It was, until 30 years ago, the major supplier of high-tech career-oriented youngsters. It was also the pioneering ground for new communications technologies—up until 30 years ago. It used to be a major factor in providing emergency communications, but CB, cellular telephones, and improved business and government communications systems are phasing us out in this arena.

Thus, every complaint to the FCC is like a fly buzzing around, asking to be swatted. Even more irritating and alarming to the Commission are the complaints delivered via a member of Congress to the FCC from a ham consultant.

What Are The Beefs?

State repeater coordinator groups are, by and large, doing a fine, if often thankless, job of assigning channels for their areas. But where a resource is finite, there are going to be arguments and bitching over it's use. This natural source of contention has been made worse by some coordinators taking advantage of their position of responsibility. Bribery, the patronizing of friends, and such have been causing complaints. When a new group wants to set up a repeater and is told that there are no available channels, they tend to get upset. And when they find that one individual has eight repeater channels assigned, six of which are rarely in use, this does not make for happy campers.

I get around the country quite a bit. In each city I visit, I check out the repeater channels, looking to say hello. And I listen and scan the 2m band to see how much repeater activity there really is. When I'm able to call in on a dozen repeaters, with no one answering my call on any of them, what am I to think? When I scan the band and hear maybe one repeater in action in an area where there are no more available channels, I know something's wrong. In other towns I try the listed repeaters and find that virtually all of them are guarded against me by PL access. They're private. No trespassing. Visitors keep out. Non-paying hams keep out.

So we have hams complaining to the FCC, writing their congressmen, and even suing. None of these approaches are going to do any good, and the chances are they can do a world of harm.

The FCC vs. the ARRL

When the FCC put increased pressure on the ARRL to take more responsibility in mediating repeater problems, thus taking the heat off the Commission, the League called a meeting of the coordinators. The coordinator groups were instantly suspicious of Big Brother stepping in and telling 'em what to do. Well, the FCC is pushing for one "point of contact" to deal with repeater problems, so what organization would be more logical than our only national ham organization? Alas, the ARRL's reputation for even-handedness is not shining. They have always tended more toward running amateur radio as a dictatorship than a democracy and, while League apparatchiks are comfortable telling what to do, we still have a few hams who prefer that their opinions be considered.

Through some genetic mishap, I'm one of the trouble-makers who doesn't like to be told what to do. Ask me and I'll do just about anything. Tell me, and go to hell. Thus I've been an enemy of dictatorships, communism, and socialism, much preferring democracy. Yes, it's been a losing battle in America, with socialist programs smothering our school system, health care, welfare, and so on, through a dozen generous government bureaus.

In the ham field, I agree we need a national organization, but I think it should be structured oppositely what it is. I believe that QST should be a communications medium for the discussion of proposals for rule changes, and that the directors should poll ham

Continued on page 76

With SGC's new PowerTalk, you'll intercept weak HF signals, increase signal clarity and eliminate unwanted noise. You'll hear SSB signals clearer and easier than ever before. PowerTalk combines the advanced receiver technology of SGC's exclusive ADSP" (Adaptive Digital Signal Processing) and SNS" (Signal Noise Subtraction). Fast audio and visual tuning—a DSP command center with a high performance spinner knob and bright LED indicators. Plus all the outstanding features of the popular SG-2000: 644 ITU and ham frequencies, programmable memory, large LCD display and 150 watts of power out. PowerTalk is a true HF-SSB Power Tool. We have all the details. Call us and hear more.
NEVER SAY DIE
Continued from page 75

present these at director's meetings, just as our congressmen are supposed to do. And probably would do if we would stop lobbyists from buying their influence. So, instead, we have the ARRL board making the decisions and the directors then telling the unwashed what they are. The word goes down from on high, not up from the members.

This is not the system that I would want making decisions on repeater matters. So I can understand why many coordinator groups are alarmed at the prospect of the League being set up as the single point of contact with the FCC.

I suspect that the League isn't at all anxious to have this nasty monkey on their back. It's a thankless job, complete with the potential for fighting bitter law suits. And there is no upside. It won't increase revenues. It isn't going to increase their languishing membership. And it'll obviously cost money to handle.

My recommendation was for the state and area coordinator groups to pass the hat to fund a National Coordinator Committee and hire a General Secretary — preferably a retired ham, and Lord knows we have more than enough of them. The NCC would be incorporated to limit liability and would be the point of contact for the FCC. It, in turn, would contact a coordinator when a problem arose. This approach would get the whole thing out of the political arena.

Since coordinators have a lot more to do than repeater coordination, the NCC should have a newsletter to provide communications. Coordinators have to take into consideration all VHF/UHF ham band users, not just the repeater groups. Repeaters have to live with SSTV, ATV, satellites, weak signal, moonbounce, packet, and so on. So the coordinators have to agree on band plans for these bands.

My suggestion as a way to deal with this isn't new. I propose that the NCC hold a biennial (every other year) national conference where all proposals for FCC rule or band plan changes would be discussed and voted on by delegates from interested clubs and coordinator groups. I talked this over with the FCC Commissioners a few years ago and they thought this was a great solution to the aggravation and cost of their dealing with amateur radio rule changes. They agreed that the Commission would supply legal help for any such conference to help expedite new rules being enacted. This would make it so their amateur radio rules could be more in step with technology and the current needs of the hobby.

Will Democracy Work?
Perhaps, as the Yugoslavs and more and more little wars around the world between ethnic groups are proving, mankind is not yet able to peacefully resolve differences. So perhaps my idealistic dream of a self-regulating amateur radio service is unattainable.

But we've come a long way during the almost 60 years I've been involved in the hobby. I got snickers and ridicule when I first proposed that we do our own license testing. We've gotten rid of many restrictions that hobbled us in the past. But as long as emotions rule minds, we're going to have problems.

Should we continue to encourage the use of 450 MHz for repeater linking, or should we move it on up to higher and less used bands? Without linking, what would 450 occupancy look like? Is there a need for more channels, and thus pressure to encourage the ATVers to move higher? For that matter, how many ATVers are there on 420? We need more data. And then we need the probably unattainable: cooler heads.

If we can organize an NCC, I'd like to see a yearly audit of band occupancy in each area. With computer-controlled scanners it's fairly easy to run such an audit. But then we'd also want to check for legitimate usage. I still remember how the US military occupied allocated short wave frequencies by transmitting so many hours a day, whether they had any traffic or not. The use showed up on the ITU reports, showing activity, and thus preserving the frequencies. I remember visiting one of the Army stations in Heidelberg and seeing their transmitters holding down a whole list of frequencies with test transmissions.

So let's do it like the Turtles and the Hulus kill each other and see if we can learn to give and take to accommodate the 73 different hobbies we're enjoying and call them ham radio.

Good News For Entrepreneurs!

The socialists in congress are pushing to raise the minimum wage. This is indeed good news for entrepreneurs. Frankly, I hope they raise the minimum wage to at least $7.50 per hour, which is around $15,000 a year. How can a family live for much less than that these days, right?

Of course this will increase the costs for manufacturers to make products, forcing them to either increase their prices or get rid of workers by replacing them with automation and computers. And this is where you come in.

A good rule of thumb is to multiply the cost of manufacturing a product by about six to cover the costs of distribution and marketing. Thus any increase in worker's pay will be multiplied by six when it reaches the sales price for the product. And that will make many manufacturers no longer competitive with foreign factories, so they will either have to move their jobs to Mexico or some other lower wage country, or automate more to cut payroll.

If you spend much time on the telephone you know that more and more companies have replaced telephone operators with automated message handling systems. There are fewer and fewer jobs for low-skilled workers. And there are going to be even less.

The next time you visit a factory, take a good look at what the workers are doing. How many of them could be replaced by a computer or a computer-driven machine? Every time you can replace a worker by a machine of some kind you are going to save the company money. You'll also probably improve the quality of the product.

A worker making $15,000 a year also costs the company around $5,000 more for health care insurance, unemployment insurance, and so on. A machine doesn't come in late and leave early. It doesn't have children that get sick. It doesn't even take long weekends or have to observe holidays. No ten-minute smoking breaks every hour, either.

Companies are going to be looking for consultants who can cut their payroll, either by streamlining the work or replacing un- or semi-skilled workers with machines and computers.

This is going to come as a big surprise to the kids who are dropping out of school. McDonald's is experimenting with automated burger flippers. It won't be long before most fast food chains can be run by half as many workers or less.

For instance, suppose you could punch in your order on a keyboard by your parking place as you get out of your car. You'd put your credit card in to pay and get a card to put that into a slot once inside. Your tray would come out almost immediately with your order. A similar system would work for the drive-through service. If you don't have a credit card you can pay with cash inside. But you can bet that McDonald's credit cards would be plentiful. They might even work at Wendy's, earning you prizes or future Big Macs.

Long Ago

When I first moved 73 to New Hampshire from Brooklyn in 1962, just two years after starting it, I hired a bunch of college dropouts to help me out. I paid $20 a week, plus room and board. I had up to eight kids living in my 40-room house and we had a great time. I cooked the meals, we put out the magazine, and we set up a heck of a ham station way up on Mt. Monadnock, a few miles away.

When I bought a small offset press we started also putting out a small VHF magazine, a contesters' magazine, and one for club newsletter editors. High school kids came in after school and helped collate, staple, and
address these publications for 50¢ an hour. They got some spending money. It helped keep them out of trouble. And they got to learn about the responsibilities of working.

I had one ham working with us who was so much trouble that I finally gave up and tried to fire him. He pleaded with me to let him stay and keep working without any pay. Being a sucker, I said I’d give it a try. After a couple weeks I told him he wasn’t worth nothing. He then offered to pay me $20 a week if I’d let him stay.

I finally agreed to let him stay if he’d live in my house up on the mountain and help clean out the brush around the place. Just don’t come down and aggravate us here. Well, for instance, I did the cooking and the live-in hams took turns washing the dishes. When it was Teddy’s turn he managed to turn a half-hour job into a four-hour job. The same when it was his job to empty the wastebaskets or shovel out the horse stalls.

Teddy came down from the mountain one day and asked if I minded if he put up a vee beam for six meters, aiming it down the east coast. What could go wrong? I said sure. The next thing I knew a few weeks later he’d cut down a couple dozen big trees to make a path for the two legs of his vee beam. Worse, he’d miscalculated a bit and the beam was actually aimed at Bermuda, so no one down the coast could hear him.

I remember him walking up with a broken yardstick in his hand. He looked at me sheepishly and explained that he’d had it in his mouth and walked through a 30° door.

Bless The League

One day the government arrived. They’d had a complaint about my paying less than the minimum wage. I pushed them to find out where the complaint had come from, and they said it was the ARRL in Connecticut. They said I’d have to stop paying the hams with the room and board and $20 a week, pay them regular wages, and charge them for the room and board. And the after-school kids would have to get at least the minimum wage.

I automated the collating and addressing of the publications I was printing, thus getting rid of the school kids. The hams were replaced by local people doing most of the work. No more room and board. No more fun. And without the gang to keep the ham shack up on the mountain operating, I closed it down and sold the place. Well, we all had the time of our lives while it lasted. Several of my alumni have gone on to successful entrepreneurship.

You better believe that the lobbyists in Washington from Mexico and other low-wage countries are pushing Congress hard to increase our minimum wage. Every dollar it goes up will mean millions for their countries, and more welfare and unemployment problems for us.

One alternative is to improve our school system so we’ll have better educated and better-skilled workers so we can compete better internationally, but here we’re up against the most powerful lobbies in the country, the teacher’s unions. And they’re unfailingly supported by the mass ignorance and apathy of voters.

Say, if we move the minimum wage up to $15 an hour we’ll no longer have any poverty, right? Who could possibly be against that? If they move it to $20 I might even consider working again.

Teapot Tempers

The ham newsletters have been scraping the barrel lately. Like for instance, the FCC, which has been refusing to issue special call signs for the USIA into issuing one for the VOA’s 50th anniversary: K3VOA. Sigh. And a judge awarded N5DA $10,000 from N5EWD for some names he was called over the local repeater. Oh yes, the West Coast IARNa director quit after an abusive call from Baxter. And WA6ITF is pissed at Baxter for messing with his news reports. An average week.

With KV4FZ presumably QRT after his court conviction, I wonder how the mess he generated on 14,313 is progressing. I suppose there’s no real hope of getting Congress to grant a special exemption from prosecution for blowing away the rest of the BARF gang. It’s the lack of reasonable loopholes in our laws that are making the Mafia so successful. If we could attract some Sicilian hams, perhaps we could get our bands cleaned up. Lord knows the ARRL seems to have absolutely no interest whatever in the problem.

Rapture!

There’s a new book out that I’ve just got to get you to read. How are you going to learn anything if you don’t read? Instead of wasting big parts of your life on nonproductive amusement like watching ball games (of any kind), stupid TV crapola like sitcoms, game shows, soap operas, and all that gawking OJ goofoaf, pick up a book, a highlighter, and read.

You can read on buses, planes or trains, in the back seat if someone else is driving (Sherry drives—I read), and while waiting for your waiter in a restaurant (they’re called “waiters,” right?). You have the same 168 hours a week to work with that I do, and I’m polishing off a couple of books a week, and that’s in addition to keeping up with around a hundred magazines a month. I’m no magician. I’m not doing anything that you couldn’t do, if you wanted to. Now, what can I write that will get you off dead center? Dead is the operative word there.

For instance, if I can get you to (a) buy the book and then (b) actually read it, you’re going to have the time of your life with Raptures of the Deep by Fred Juenneman. It’s just out, but I got a sneak preview via a disk copy from Fred last year. Barnes & Noble estimate that 50% of the books they sell are never read. I’ll bet it’s more like 80%, from my experience in talking with people.

The sorry fact is that most people are not reading books. I was talking with a product of our local school system the other day and I asked her how many books she’s read. Oh, about 15 in the last ten years. All fiction. Sigh. It’s no wonder she’s stuck in a low-paying job that requires few skills and little knowledge.

What’s Raptures about? Well, it’s nonfiction, and it’s about what we understand in science today, and the challenges facing scientists in just about every field. Juenneman has done an incredible job of research on how and why scientists believe what they do about our world and how it works. And none of the usual math equations scientists don’t seem to be able to help themselves from using (and make them seem brilliant). Oh, the egos in the Ph.D. fields! I know hundreds of Ph.D.s now, by virtue of my cold fusion adventure. Some are great fun to talk with, others can’t help letting their egos show. That’s a natural manifestation of insecurity (aka an overcompensated-for inferiority complex).

The “Raptures” of the title has to do with our living at the bottom of a sea of nitrogen (air is 78% nitrogen) and thus suffering from nitrogen narcosis (raptures of the deep, as experienced by divers who get too much of it).

To get an idea of the breath of the book, just look at the 12-page index in the back. Three columns per page! Fred has done a remarkable job of historical research in a surprising number of fields.

The book runs 286 pages, costs $30, and is published by Research and Development magazine, where many of the chapters originally appeared in Fred’s columns, which he’s been writing for them for over 20 years. Yes, I’ll have the book available via Uncle Wayne’s Bookshelf. ISBN #1-57450-001-5. You can help Fred by pushing your local library to get a copy. It’ll make a wonderful gift for a youngster who has learned to read, if you know any.
Homing
Continued from page 72

accommodate standard two
meter FM gear and to equalize
the field. The four divisions were
based on age only, not sex. Age
brackets were determined Satur-
day night after sign-ups were
complete. See the sidebar for a
summary of the rules.

Sign-ups for the Sunday hunt
were accepted all day Saturday
at the convention hall. Upon reg-
istering, entrants received a sheet
of rules and directions to the stag-
ing area. We were concerned that
if they knew in advance exactly
where the hunt would be, they
would go there early to get the lay
of the land. Besides giving some
an unfair advantage, this would
interrupt the fox hiding commit-
tee’s work. So we pulled a switch-
eroo. The instructions told them
to report to the Los Angeles Mar-
itime Museum, two miles away
from Angel's Gate Park. There
they were met by a foxhunt com-
mitee representative. When all
hunters had arrived, the group
was told the actual hunt site and
given directions to it.

Forty convention-goers signed
up for the foxhunt, which sets a
record for entries in a Southwestern
Division Convention RDF contest.
Ages ranged from 11 to 70. Two
were non-hams and the rest were
licensees of all classes. The hunt
went smoothly and
everyone had a great time. A wide
variety of equipment was used,
from sophisticated sniffers to sim-
ple “body shielding” maneuvers.
Almost everyone found at least
one transmitter. Five found them
all.

I hope reading about Hamcon/
Foxhunt-95 has inspired you to try
international-style foxhunting in
your home town and given you
some ideas on how to do it and
promote it. If your club has never
done RDF contesting, it’s an easy
way to start the fun. If you have
been doing mobile T-hunting for
a while, It’s a great change of
pace. Who knows, a sports chan-
nel may make us all famous some
day!

Next time, I'll have more on
Hamcon/Foxhunt-95, including
stories of two handicapped hams
who participated. In the coming
months, I’ll tell how other groups
here and abroad practice for
international championships. You
will also learn about transmitters
and RDF setups that work best for
this kind of hunting.

I want to hear all about RDF con-
tests in your area, whether you do
mobile T-hunting or on-foot foxhun-
ting. Send your stories and photos
to the address at the beginning of this
article or send e-mail to me via Inter-
net (Homingin@aol.com) or
CompuServe (762206,2166).
NEW PRODUCTS

Compiled by Ron Galik KAOAET

Radio Adventures Corp. has released the C5 advanced CMOS Frequency Counter chip. The C5 delivers many unique and useful features in a 28 pin DIP. The C5 along with a standard 74HC02 and three low cost driver transistors drives a six digit seven segment LED display to 100 Hz resolution. Frequency range is DC to beyond 50 MHz and the update rate is approximately 40 times per second making the display update appear almost instantaneous. The C5 can be used to build general purpose frequency counters and is especially useful in building frequency displays for home-brew transceivers or to add a display to vintage tube type equipment.

Advanced Electronic Applications, Inc. has released the PK-232MBX and PK-900 multi-mode data controllers are now shipping with Global Positioning Satellite system (GPS) firmware. The biggest new feature is that GPS commands can be remotely programmed, so in Stand Alone Tracking applications where a TNC, GPS receiver, and radio (no computer) are installed in a vehicle—it is all done remotely. The data controllers automatically transmit their position information at user-defined intervals and can also be remotely polled for GPS location information. This remote polling is great for those who use the TNCs in a Pete Bros. ULTIMETER-II™ weather set-up. Each member of an amateur radio group in a region can set up a weather station in the back yard, then other members can poll (at any time) the various weather stations for information. Doing this forms a picture of the region’s weather on the Automatic Packet Reporting System map (APRS™, by Bob Bruninga). Mobile packet users can be transmitting their position information in a Stand Alone Tracking configuration and still act as a message forwarding mailbox—all while mobile.

Palomar Engineers model
PCM-1 RF Current Meter

Palomar’s new clamp-on RF current meter makes it possible to check ground radials one by one to find broken radials and to determine antenna efficiency. It also checks currents on coaxial cable shields. It fits any wire from the smallest to f(1,2) in diameter. It has three ranges: 0.1, 1 and 5 amperes full scale with direct panel meter readout. It is compact, handheld, battery operated for use right at your antenna—no other equipment is required.

AMTECH has released three SMT solder creams for working with surface mount components. The NC 500 series eliminates solder balls and is a halide- Halogen- and, VOC-free.

The WS 400 series is water washable and non-hygrosopic. The FRS series is fatigue resistant at.

NEMAL Electronics has published a new edition of its cable and connector selection guide. The 48 page guide contains detailed technical specifications and illustrations of more than 1000 cable, connector, and interconnect products. The 1995/96 edition contains more than 100 new products including a section on 750 BNC connectors, adapters, and patch panels for serial digital; applications, RF terminations and attenuators, and custom composite cables. The guide also includes comprehensive performance data on a wide range of coaxial cables together with charts for quick selection of appropriate connectors and tooling.

AVCOM has also introduced a super portable spectrum analyzer, model SPA-20A. It turns any TV into a powerful 950-2050 MHz spectrum analyzer allowing the user to find and identify satellite signals, maximize antenna performance, and troubleshoot system failures.

AVCOM has just released the PRC-1 Polarrot Control Box—a self-contained, battery powered, microprocessor based controller that can control servo-actuated feedhorns or other satellite ham equipment.

AVCOM’s PSA-65B portable spectrum analyzer covers frequencies from less than 1 MHz to 1250 MHz and has greater than -95 dBm sensitivity. The lightweight, battery or line operated instrument is perfect for field testing RF systems.

The MFJ-784 DSP Filter has a tunable “brick wall” bandpass, lowpass, highpass, notch filters, programmable pre-set filters and up to 60 dB attenuation. The multiple notch filter eliminates heterodynes, adaptive noise reduction reduces noise, and QRM for voice, CW, and data. It comes with a watt amplifier, volume control, input level control, speaker jack, earphone jack, accessory jack, PTT line and PTT sense and line level output. It measures 9” X 2(1,2)” X 6”. It runs on 12 VDC or 110 VAC.

MFJ-452 Super CW Keyboard

MFJ Enterprises, Inc. announces the MFJ-452 Super CW Keyboard with Perpetual Memory. This keyboard has a two line LCD display and RFI suppression.

The MFJ-452 features eight 250 character nonvolatile message memories, a 150 character type-ahead buffer, an iambic keyer, and a powerful Morse Code Trainer, plus other features.

MFJ-1798 “10” Band Antenna

The new MFJ-1798 is a “perfect 10” /ten bands that is: 75/80, 40, 30, 20, 17, 15, 12, 10, 6, and 2 meters with only one antenna. This antenna offers separate full size radiators, end loading, elevated top feed, low radiation angle, very wide bandwidth. It's self-supporting and only 20 feet tall. It will mount easily to any ground level spot, tower top, condo, roof top—just about anywhere! The MFJ-1798 is as easy as A B C to tune. The frequency adjustments are nearly independent—adjusting just one band has a minimum effect on the resonant frequency of other bands.

ACCULEX

ACCULEX has released a new catalog containing new digital panel meters, counters, timers, signal conditioners, printer cables and other accessories.

Addresses and phone numbers for these fine products can be found on their ads in 73 or by writing 73’s Review Department or by calling 603-924-0058.

New Product reviews and reviewers are welcome. Write to Ron at 73.

Continued on page 80

73 Amateur Radio Today • December 1995 79
All the above repeaters are available for 6 meter, 2 meter, 222 MHz, and 440 MHz ham bands; and they are FCC type accepted for operation in the commercial hi-band and UHF band. Basic output power levels are offered from 10 W to 25 W.

Voice-ID Repeater Controller

The new COR-6 module from Hamtronic combines COR circuits and a real-voice ID on one board. It can be used with transmitter and receiver modules to make a simple, low-cost repeater.

A digital IC records up to 20 seconds of your voice, using audio from the repeater receiver. The unit includes tail and time-out timers, courtesy beep, solid-state relay to key transmitter.

The 20 seconds of recording time can be broken up any way you like. You can enhance the basic circuitry by adding a switch to select any of several messages, for instance. You can even use the TD-4 DTMF Controller to allow remote control of recording.

With a kit price of only $99, the COR-6 is quite a bargain, considering what voice ID cost to implement just a few years ago. It is also available wired and tested for $149.

New Hamtronics® VHF FM Receivers

Hamtronics, Inc. has announced new low-cost monitor receiver kits for the 28, 50, 73, 144, 152, and 220 MHz bands. The R100 Receiver was designed to replace both the R144/R220 and R76 series receivers which have long been popular for demanding applications, such as repeaters, audio and data links, packet radio, and remote control. The R100 not only provides a replacement for the older R76 series used for the lower VHF bands, but it also allows easier coverage of the various segments of the 150-175 MHz high band and 200-240 MHz ranges which are popular with commercial customers. In addition, the R100 was designed to have a new positive-acting, wide-range squelch circuit and additional output terminals for repeater audio and discriminator audio, and it is now easier to assemble and align.

The R100 retains all of the popular features Hamtronics repeaters have been noted for. It uses triple-tuned circuits in the front end and excellent crystal and ceramic filters in the IF with steep skirts for close channel spacing or repeater operation. The IF selectivity, for instance, is over 100 dB at +/- 12 kHz away from the carrier. Low noise FETs in the front end provide good overload resistance and 0.15 μV sensitivity.

Best of all, the price of the R100 is considerably less than the R144/R220 series. Kits for any of the bands are only $120. Wired and tested units are only $189, a $30 savings. Channel crystals for any desired frequency within these bands are only $12, which is a very good price for commercial-grade crystals. Proportionally-controlled crystal oscillators are available for operation over wide temperature ranges.

For more details, write to Hamtronics, Inc., 65-D Moul Rd., Hilton NY 14468-9535 or call (716) 392-9430 (fax: (716) 392-9420). While you are at it, ask for a complete catalog, which also includes all their equipment, including repeaters, transmitters, receivers, transmitting and receiving converters, preamps, and data modems. (Be sure to tell them where you heard about this.)
Hamcon/Foxhunt-95 Rules Summary

1. Bring your own RDF gear, spare batteries, compass, protractor, pencil, water, medications, sunscreen, etc. When you arrive, tow your RDF gear in the impound area. Do not turn it on until you reach the end of the start corridor.

2. You will be given an official topographical map of the course to keep and mark up. The course boundaries are marked with green. Forbidden zones (church and Young Marines barracks) are marked with pink.

3. There are six FM transmitters with distinctive MCW ID, all on 146.565 MHz. Antennas may be any polarization. There is a non-scored intermittent beacon at the finish on 145.725 MHz. Do not transmit on any band while you hunt, except you may call for emergency assistance on 145.725 MHz.

4. Your starting time will be given to you in advance. Starting is at two-minute intervals. Contestants in different divisions may be started simultaneously.

5. Age divisions are as follows: Youth (17 and under) Prime (18 through 30) Masters (31 through 45) Seniors (46 and up).

6. Cash prizes in each division will be $50 for first place, $30 for second, $20 for third, $15 for fourth, $10 for fifth. Trophies will also be given for first, second and third places, ribbons for fourth and fifth.

Other rules and directions are covered in the text. For the unabridged Hamcon/Foxhunt-95 rules, send an e-mail request to Homingin@aol.com or send a self-addressed stamped envelope to the author.
SPECIAL EVENTS

DEC 2
FARIBAULT, MN The Annual Courage Center Handi-Ham Winter Hamfest will be held at the Eagles Club, starting with registration at 8:30 AM. There will be a Handi-Ham equipment Auction, Flea Market, dinner at noon, and Program. Talk-in on 1979. Contact Don Franz WOFIT, 1114 Frank Ave., Albert Lea MN 56007.

JACKSONVILLE, IL The Central Illinois Winter Superfest, co-sponsored by Illinois Valley ARC and Jacksonville ARS, will be held 9 AM-2 PM at Turner J.H.S., 664 S. Lincoln Ave. Set-up at 6 AM. Flea Market, radio and computer dealers. VE Exams 10 AM; pre-reg. required. Contact Tim Childers KB9FBI, 773 E. College, Jacksonville IL 62650. Tel. (217) 245-2061. Talk-in on 146.775(-) and 444.675(+). Advance reservations taken until Nov. 15th. Send SASE with check payable to Jacksonville ARS, to Rich Tavender KB9XIO, 721 E. State, Jacksonville IL 62650.

MESA, AZ The Superstition ARC Hamfest will be held at Mesa Community College beginning at 7 AM. VE Exams reg. at 7:30 AM-11:30 AM. You must have original and one copy of your license and/or any applicable C.S.C.E. Photo ID required. Walk-ins only. Call Larry Kuck, (602) 986-2298. Talk-in 147.125(-) and 449.60 MHz. No PL tone required. Contact Rick Checketts KA0KXE, (602) 898-9158; Edward Cole KB7RMO, 5264 East Hannibal St., Mesa AZ 85205; or Gary Roberts KB7VGP, (602) 461-0644.

DEC 4
SPECIAL EVENT STATIONS

HOUSTON, TX Members of Clear Lake ARC and Bay Area QCWA Chapter 184 will operate SE Stations to celebrate the end of Hurricane Season for 1995. The Hurricane Party II Special Event will last 48 hours, 0000Z Dec. 2nd-0000Z Dec. 4th. Operation will be in the General Class portion of the HF bands, and on the CLARC Rptr. at 442.75 MHz. In addition to member stations, CLARC club station KCSI2F will operate in a mini Field Day. For a certificate/QSL, send QSL and a $5 - $12 SASE addressed to the station worked.

DEC 5 & 7
MESA, AZ EVARG will operate K7PFE 1400Z-2400Z Dec. 3rd and 7th, to commemorate the sinking of the USS Arizona. Operation will be in the lower portion of 20 meters. For a certificate, send a 9” x 12” SASE to EVARG, P.O. Box 1424, Gilbert AZ 85299-1424.

CONWAY, SC The Strand ARC will operate WD4JMT 1400Z-2400Z in conjunction with the Conway Christmas Parade and Christmas Boat Parade. Operation will be lower General 80-15 meters and Novice 10 meters. For a certificate, contact Dave Berry KE400W, 100 Longwood Ln., Conway SC 29527.

Nazareth and Bethlehem, PA The Delaware-Lehigh ARC will operate the 1995 W30K Christmas Cities station, 1400Z-0200Z, on 3.965, 7.265, 14.265, 21.365, 28.365. For a certificate, send QSL and a 9” x 12” SASE to DLARC, RR 4, Greystone Building, Nazareth PA 18064.

Hey, we need good potential cover photos!

Letters

Continued from page 6
around noon GMT. We could use some of that in the US—Wayne.

John McGowan Once again, KUDOS! Loved the story in Homing in re: tracking false SOS. I started reading your mag about a year ago. I was intrigued by the how-to antenna articles. I've been working in the cellular industry for the past 5 years. As you might guess, antennas seem to be the most vital link in the chain. I hadn't been involved with ham radio since Boy Scouts, 30 years ago. Well your editorials have piqued my interest again. I've studied the no-code test backwards and forwards. But now comes the problem; where to take the test? I understand that most clubs have VEes, but you'd think the identity of local clubs, was a state secret! I've a suggestion for your Special Events column—a posting for clubs. Sure, why not?

Don Shipman W3RDF. I read the article entitled "Senior Citizens Upgrade" by Hal Goodman W3UMH in the October issue of 73. I couldn't help but reminisce about the value and meaning of the top ticket in the days when the author and I got started in this great hobby. In those days the Class A Extra Class ticket carried honor and prestige and not just the privilege of using more frequency spectrum. Today it lacks the honor and prestige it had in the 40s, 50s and 60s. I recall looking up to Class A hams with a great deal of admiration and respect for their knowledge and true accomplishments. They were the real king pins of our hobby. Not so today. Most are "Extra" in name only and know little about radio theory and are in many cases very poor operators.

Like the author, I got my first license (Class B) in 1950, before the Novice Class was created. I sat in front of the FCC inspector shaking as I waited to see if I passed the 13 wpm code test; then waiting weeks to find out if I passed the written exam. There wasn't a published "question pool" to memorize. There was no "multiple choice" code test. Also like the author, my family and career were the primary focus of my life and I gave little thought to upgrading until I retired in the mid 1980's. The freedom of retirement provided the time to upgrade to Extra; to become a VE and an Elmer and to enjoy the satisfaction that comes from helping others.

For the past three decades our ham radio community has allowed our standards to erode in all walks of life. Kids graduate from high schools without knowing how to read or write. Unqualified people are placed in positions of authority simply to meet quotas and goals, without regard for their abilility. Standards in our own hobby have been lowered, making it easy for someone to memorize their way into the ranks of the heroes of the past. It's really sad that many of these Novice Extras, deceived by the pride of their new title, will never strive to understand one tenth of the theory they were forced to memorize. This false sense of accomplishment will most likely quench their desire to become the real Extras they might have otherwise become.

The author made a lot of good arguments for the case of license entitlements partly based on longevity. I believe if his friends really wanted the top ticket they could easily put forth the effort to upgrade. Furthermore, I think his proposal represents another step in the wrong direction of putting people into higher positions when they're not really qualified. Let's not further lower the standards simply to accommodate a certain class of people. The country is beginning to recover from these errors of the past and ifs time our hobby did the same. Oh. I agree with you. But then what do you suggest we do to generate the five million hams we need if we are going to have a prayer of holding our frequencies? Wayne.

Mike Snowden K6HVI Hello to all at 73: First of all I wish to thank all of you at 73 Amateur Radio Today for a great publication. "Uncle Wayne" has certainly opened my eyes as well as my mind. If only I had found him a few years back. But then as he infers, "it is never too late to start."

I am a "newbie" to amateur radio, just over a year now. Since I have started reading 73, Wayne...
Conditions this month will range from very good to poor and very poor. You may expect the Very Good conditions between the 5th and 7th, and again between the 21st to 24th, with Good a day or so on either side. The Poorest days are expected to be the 14th to 17th, and 28th to 31st. The remainder should be Fair or trending.

10-12 Meters
An occasional F2 opening toward the tropics during daylight hours...but, as is usual during sunspot minima, you can't expect much winter activity. Listen and call on the Good (G) or Very Good (VG) days.

15-17 Meters
Short skip and some DX openings during daylight hours on Good (G) and Very Good (VG) days, particularly during afternoon hours. The band closes early, however.

20 Meters
Fair to good DX during daylight hours, peaking shortly after sunrise for an hour or so, and again in the early afternoon; and closing at, or shortly after sunset. Short-skip up to 2,500 miles or so during daylight hours. Again, listen on the Good and Very Good days.

30 Meters
Check WWV at 18 minutes after any hour.

30 Meters
A strange and unpredictable band! Sometimes like 40 and other times like 20. Your best bet for DX is late afternoon and early evening hours. Short skip during daylight hours will prevail.

40 Meters
DX to Europe and Africa during late afternoon and toward South America after sunset. After midnight, listen for Asia and the Pacific. Short skip during days and longer skip after dark.

80 Meters
This should be your best DX band during hours of darkness, peaking around midnight and just before dawn. Short skip in daytime and longer skip after dark.

160 Meters
Here's another wintertime DX band. Open after sunset, and peaking to the east around midnight, and toward the west and Pacific areas near dawn. Band closes during daylight hours due to high absorption of these lower HF frequencies."

For those who chase DX, you will become avid and frequent listeners and "not" callers. Hover around the band's lower edges on the lower HF bands, and almost anywhere on the higher HF bands. As always, have fun and stay sharp. Let me know how the forecasts work for you...and have a wonderful and happy holiday season. W1XU

"A vertical antenna is superb for transmitting and fair for listening. How about using one with both vertical and horizontal radiation? I'd suggest a vertical loop, switchable from bottom to side feed points if you can have only one antenna.

Why muddle the waters? Subscribe to 73.
New Products
Continued from page 80

Old West Graphics
Old West Graphics is happy to announce the release of Photo ID Name Tags for clubs involved in ARES, RACES, SKYWARN, SSC, and NTS. Professionally produce, these tags are 2.25" wide by 4" high, heat-laminated, with a 3" strap and alligator clip for your lapel. Official reps of local groups are the only people eligible to place orders, since these are law-enforcement-recognized identification. Each tag is $5 plus 30 cents shipping and handling. Write for the Photo-ID Package, which contains all necessary information and a sample.

While you’re at it, request Old West Graphics latest sign catalog and get a free surprise gift. Old West does t-shirts, custom ham radio street signs, sweatshirts, decals, banners... anything and anywhere you’d want your club logo or call sign. Latest product is a 4" by 8" hamshack callSIGN for $5.00.

Collins Amateur Equipment
For $22.95 pp you can get a nicely done 104-page 3.5" x 7" guide to Collins equipment made from 1946 to 1980. Well, almost all of it was made between 1946 and 1962, when the ARRL’s so-called “Incentive Licensing” proposal put most of their dealers out of business, along with over 90% of the other manufacturers. Collins-lovers will enjoy this guide.

FREE Slow Scan TV
Slow Scan TV is one of the most fascinating yet often neglected facets of Amateur Radio. Most people think it is poor quality black & white images using equipment costing kilobucks. That was true but isn’t anymore.

John Langner WB2OSZ has written an interesting handbook containing sections on:
- How to get started
- Questions and answers
- Typical color images
- Commercial products
- Home-brew projects
- Much, much more

It is available for free in electronic form on the World Wide Web. The Universal Resource Locator (URL) is:
http://www.ultranet.com/~svtv
Contact John Langner WB2OSZ
john@world.std.com
115 Stedman St, Chelmsford MA
01824-1823 (508)-256-6907

Free cable to connector cross reference
RF Industries announces the availability of a free Belden-Alphatimes/RFI cable to connector cross reference guide. The guide enables you to easily select the appropriate RF connector to match the cable you are working with.

The catalog is organized first by cable groups and second by the types of RF connectors available for these groups. The connectors are then divided into subgroups by type. The catalog is free.

RF Industries announces the availability of FCC certified connectors.

According to the FCC, under certain applications it is illegal to replace a stock antenna with one that provides higher gain. In order to prevent this from happening, the FCC has issued an edict that calls for a unique connector thereby prohibiting the attachment of any other type of connector.

NEUMOD 9600 High Speed MODEM
The NeuMod 9600 is a high speed, 9600 bps “Smart” modem designed to improve the quality and reliability of data communications over narrow band radio links. Its advanced protocol provides for 255 unique ID codes network configuration for both selective polling and/or group polling. Data transmission is either transparent or packetized, each packet is appended with both a source and destination ID code allowing point to point or point to multi-point of up to 255 points. When the NeuMod 9600 is integrated with the DCL-SYNX-U, it becomes NEULINK 9600, high speed “Smart” 2 watt modem transceiver.

Addresses and phone numbers for these fine products can be found on their ads in 73 or by writing 73’s Review Department or by calling 603-974-8655.

Advance Design
Advance Design has just introduced the CK-53 Morse code monitor/keyer module. This unique product along with a PC and a radio allow the user to tune in the world of CW. The CK-53 is an assembled and tested, 2.5" x 3" PCB assembly which features an RS-232 interface to the computer, dual parallel speaker connections for audio, and an isolated relay contact keyer output.

The included terminal software allows easy, convenient communications. Eight buffers in addition to the 512 byte transmit buffer can be edited before transmission, either manually or by appending saved buffer data logged to disk allowing the user to save favorite QSOs.
Here's what I do. I connect first to a local node and then to an Internet Gateway like N2MH-11, which is more than 50 miles away. At the prompt, I'm on the Internet. I type "Who" and a long list of DX stations are listed, including a couple from Australia! It can take a long time to get through on the busier nodes, but there are a lot of channels, so you can move off for a private contact. Digital modes are here!

Ted Brattstrom NH6Y/KC6YJ Just back from Palau and got caught up with the last few months of 73 and Radio Fun. OK, I'll attempt some articles for you on the joy of satellites and mini-DXpeditions (KC6YJ-NH6YJ/KR4-NH6YJ/Kolawao County—NH6YJ/KL). However, I'd like to make one complaint, you've been bashing Techs lately and suggesting that they are not full members in the ham community since they are not operating on HF. Granted, many people stop at 2 meter repeaters (others seem to have stopped at 75m or 40m phone), but some of us use the satellites and not only work some great DX, but also have had some very interesting conversations. Of course the other modes are also fun. I've operated packet, TCP/IP, 6m, RS-10, AO-21, FO-20, RS-15, MIR, a bunch of shuttles (packet and voice for both spacecraft types), AO-10, AO-13. So the thing to do is to kick them into really using the spectrum they've been bestowing. Granted, HF is fun too! As a Tech I've played on 10m phone and received my DXCC, but I've also had some great chats, such as an hour and a half with Trent Christian on Piccairn. The path to North America closed for him, but we were still trading, and we kept finding things to talk about. Then again, I've had exciting short, 10-minute chats with US1R, USIMR, and Norm Thaggard (ROMIR). It doesn't take high power if there aren't other hams trying to contact them! And I've helped set up a SAREX contact with students from my school and another school. We had lots of fun with that! We simulcast it on the statewide RACES linked repeater system. Some hams and SWL (VHFLs?) got their first taste of space communications listening in! (Hmm...do you want an article on that?)

Rickey Nievera N2MBC Newcomers to amateur radio might want to know about a way they can work DX via 2m. Talk about radio fun! I'm using an Alinco Data Radio with an old Amiga 2000 and the MFJ 1278B TNC with the MFJ 1290 Multicom software and having fun with packet, working DX via the Internet.

I've been interested in cold fusion since reading about it in your editorials and (surprise!) not reading about it anywhere else. Unfortunately, my local library is a bit anemic in the information department so I'll ask you where I can find more information. Some time ago I ran across a copy of your "Cold Fusion" magazine at a bookstore, but could not afford the stiff cover price. Be that as it may, my wife and I are very interested in taking advantage of getting into the ground floor of this tremendous opportunity. Can you help us? Your guidance would be most appreciated.

A couple of other things to pass along to you and anyone else: I have been reading a couple of books that those subscribers to 73 will want to read. For example, if you have been bashing Techs lately and suggesting that they are not full members in the ham community since they are not operating on HF. However, I'd like to make one complaint, you've been bashing Techs lately and suggesting that they are not full members in the ham community since they are not operating on HF. Granted, many people stop at 2 meter repeaters (others seem to have stopped at 75m or 40m phone), but some of us use the satellites and not only work some great DX, but also have had some very interesting conversations. Of course the other modes are also fun. I've operated packet, TCP/IP, 6m, RS-10, AO-21, FO-20, RS-15, MIR, a bunch of shuttles (packet and voice for both spacecraft types), AO-10, AO-13. So the thing to do is to kick them into really using the spectrum they've been bestowing. Granted, HF is fun too! As a Tech I've played on 10m phone and received my DXCC, but I've also had some great chats, such as an hour and a half with Trent Christian on Piccairn. The path to North America closed for him, but we were still strong into Hawaii, and we kept finding things to talk about. Then again, I've had exciting short, 10-minute chats with US1R, USIMR, and Norm Thaggard (ROMIR). It doesn't take high power if there aren't other hams trying to contact them! And I've helped set up a SAREX contact with students from my school and another school. We had lots of fun with that! We simulcast it on the statewide RACES linked repeater system. Some hams and SWL (VHFLs?) got their first taste of space communications listening in! (Hmm...do you want an article on that?)

Steve Loritz KC7COI After reading your editorials for the past three years and coming across two back issues from the mid-seventies at the used bookstore I work at. I am compelled to write you.

Thank you for 73 Amateur Radio Today.

Rickey Nievera N2MBC Newcomers to amateur radio might want to know about a way they can work DX via 2m. Talk about radio fun! I'm using an Alinco Data Radio with an old Amiga 2000 and the MFJ 1278B TNC with the MFJ 1290 Multicom software and having fun with packet, working DX via the Internet.

I've been interested in cold fusion since reading about it in your editorials and (surprise!) not reading about it anywhere else. Unfortunately, my local library is a bit anemic in the information department so I'll ask you where I can find more information. Some time ago I ran across a copy of your "Cold Fusion" magazine at a bookstore, but could not afford the stiff cover price. Be that as it may, my wife and I are very interested in taking advantage of getting into the ground floor of this tremendous opportunity. Can you help us? Your guidance would be most appreciated.

A couple of other things to pass along to you and anyone else: I have been reading a couple of books that those subscribers to 73 will want to read. For example, if you have been bashing Techs lately and suggesting that they are not full members in the ham community since they are not operating on HF. However, I'd like to make one complaint, you've been bashing Techs lately and suggesting that they are not full members in the ham community since they are not operating on HF. Granted, many people stop at 2 meter repeaters (others seem to have stopped at 75m or 40m phone), but some of us use the satellites and not only work some great DX, but also have had some very interesting conversations. Of course the other modes are also fun. I've operated packet, TCP/IP, 6m, RS-10, AO-21, FO-20, RS-15, MIR, a bunch of shuttles (packet and voice for both spacecraft types), AO-10, AO-13. So the thing to do is to kick them into really using the spectrum they've been bestowing. Granted, HF is fun too! As a Tech I've played on 10m phone and received my DXCC, but I've also had some great chats, such as an hour and a half with Trent Christian on Piccairn. The path to North America closed for him, but we were still strong into Hawaii, and we kept finding things to talk about. Then again, I've had exciting short, 10-minute chats with US1R, USIMR, and Norm Thaggard (ROMIR). It doesn't take high power if there aren't other hams trying to contact them! And I've helped set up a SAREX contact with students from my school and another school. We had lots of fun with that! We simulcast it on the statewide RACES linked repeater system. Some hams and SWL (VHFLs?) got their first taste of space communications listening in! (Hmm...do you want an article on that?)

Steve Loritz KC7COI After reading your editorials for the past three years and coming across two back issues from the mid-seventies at the used bookstore I work at. I am compelled to write you.

Thank you for 73 Amateur Radio Today.

Rickey Nievera N2MBC Newcomers to amateur radio might want to know about a way they can work DX via 2m. Talk about radio fun! I'm using an Alinco Data Radio with an old Amiga 2000 and the MFJ 1278B TNC with the MFJ 1290 Multicom software and having fun with packet, working DX via the Internet.

I've been interested in cold fusion since reading about it in your editorials and (surprise!) not reading about it anywhere else. Unfortunately, my local library is a bit anemic in the information department so I'll ask you where I can find more information. Some time ago I ran across a copy of your "Cold Fusion" magazine at a bookstore, but could not afford the stiff cover price. Be that as it may, my wife and I are very interested in taking advantage of getting into the ground floor of this tremendous opportunity. Can you help us? Your guidance would be most appreciated.

A couple of other things to pass along to you and anyone else: I have been reading a couple of books that those subscribers to 73 will want to read. For example, if you have been bashing Techs lately and suggesting that they are not full members in the ham community since they are not operating on HF. However, I'd like to make one complaint, you've been bashing Techs lately and suggesting that they are not full members in the ham community since they are not operating on HF. Granted, many people stop at 2 meter repeaters (others seem to have stopped at 75m or 40m phone), but some of us use the satellites and not only work some great DX, but also have had some very interesting conversations. Of course the other modes are also fun. I've operated packet, TCP/IP, 6m, RS-10, AO-21, FO-20, RS-15, MIR, a bunch of shuttles (packet and voice for both spacecraft types), AO-10, AO-13. So the thing to do is to kick them into really using the spectrum they've been bestowing. Granted, HF is fun too! As a Tech I've played on 10m phone and received my DXCC, but I've also had some great chats, such as an hour and a half with Trent Christian on Piccairn. The path to North America closed for him, but we were still strong into Hawaii, and we kept finding things to talk about. Then again, I've had exciting short, 10-minute chats with US1R, USIMR, and Norm Thaggard (ROMIR). It doesn't take high power if there aren't other hams trying to contact them! And I've helped set up a SAREX contact with students from my school and another school. We had lots of fun with that! We simulcast it on the statewide RACES linked repeater system. Some hams and SWL (VHFLs?) got their first taste of space communications listening in! (Hmm...do you want an article on that?)

Steve Loritz KC7COI After reading your editorials for the past three years and coming across two back issues from the mid-seventies at the used bookstore I work at. I am compelled to write you.
THAT3709 Secrets of RF Circuit Design By J. Carr. Written in clear, non-technical language, covers everything from antennas to transistors. $21.95

THAT10651 Mastering Radio Frequency Circuits By Joe Carr. If you're interested in learning about radio components and circuits, this book is great! Plus there are a ton of simple circuits you can build. It explains how circuits work, about test equipment, receivers, the works. This will take a lot of the mystery out of how radios work... the easy way. This will be one of your better $20 ham investments. $20.00

DP910 73 Magazine Index 1960-1990 A complete index to every article published in 73 Magazine through 1990. IBM PC software. $50.00

WAYNE'S PICKS

WG2 The Million Dollar Video Explains how just about any company can increase sales by over a million dollars through the steady (and intelligent) use of promotion. Explains in detail how you can get tons of free advertising. Uncle Wayne shows you how to beat the system. $39.95

"SEEK YOU" By The Ham Band - The title says it all. "On the Morning Evening Greyline", "Radio Widow", "The Trap to Dayton", "The Comets" and seven more. Ham radio CD includes experiences that radio hams live through. This is an extremely entertaining CD and will strike a chord with any ham radio, SWL or NTL—in an ideal present! SCYD $15 NY/TAX. $18.

IE8657 Dumbing Up Down: The Hidden Curriculum Of Compulsory Schooling By John Guru If you enjoyed "Declarative", you'll enjoy this also. A Wayne Green recommended selection.

WG11 LEARN THE CODE There are two ways to learn the code, (1) the easy way, (2) everyone else's way. Your choice. There are two speeds of code you need to know—one (5 wpm) you can learn in less than an hour, the other (20 wpm) takes longer, but nowhere near as long as you probably think. Sure, you can also learn it at 13 wpm, if you want, but just wastes your time.

Learning to copy code is just like learning to type or play the piano. If you have to stop and think, you can't do it. It has to be made automatic. When you go the usual code learning route of starting slow and speeding up you are screwing up. That brings you to that dreaded plateau at about 10 wpm. When you're starting out at 20 wpm clock speed. Then you have to start all over from scratch and do it the way you should have in the first place. With Uncle Wayne's tape, you start right out at 20 wpm and learn your hard to what your ears hear. Uncle Wayne gives you a choice on the 5 wpm code test. You can either buy the 5 Zippe one hour method of passing the test, which is a course offered priced at $5 (under 75-12), or you can buy any tapes... one, The Genetics you have an hour of fordlhrally difficult practice at 6 wpm. Then here's the 13 wpm Break Starter ($5.95 — $713.1), in case you for some masonic reason want to bother learning the code at 13. Per and the ever popular Congress 20 wpm tape ($5.95 — $713.04), if you you find your become a code fanatic the 25 wpm Mind Breaker ($5.95 — $7132) which will serve you right.

Until wiser heads... or heads... are able to dump the code requirement from the ham exams, the 7-E Zippe and Congress are the best furrowing tube to ham nirvana. By the way, anyone can learn the code if they go about it Uncle Wayne's way.

SOFTWARE

GTGE Morse Tutor - From beginner to Extra Class. Code from 1 to 600 words per minute. Standard or Fastforwalt mode. Create your own drills. Exam contains to FCC requirements. $5.10 for IBM PC, XT, AT or compatible.

GZS25 Morse Tutor 5.25" Disk $19.95

GZU25 Morse Tutor 3.5" Disk $19.95

GZD5SM Gold Edition 5.25" Disk $29.95

GZD35 Gold Edition 3.5" Disk $29.95

+ Add $10.00 for 3.5" Disk

WWSWV-H Ham Operator Education Package A Software, Extra—For PCs, contains both 3.5" and 5" diskettes. $39.95

VisiStudy Cards Compact, up-to-date Flash Cards with Key Words, Underlined, Quiz on back. Formulates worked out. Schematic at your fingertips. Used SUCCESSFULLY by kids 6 to 871.

NOVICE VIS08 $11.95
TECH VIS98 $18.95
GENERAL VIS98 $18.95
ADVANCED VIS98 $15.95
EXTRA VIS98 $14.45

NEW BOOKS

ART420 Introduction to Radio Frequency Design is this practical material, the author emphasizes use of models and their application to both linear and nonlinear circuits, traditional circuit analysis stressing the viewpoints taken by the RF designer and introducing subject material by numerical examples. Includes 3 1/2 inch disk for IBM PC or compatibles.

R&D57450 Ruptures of the Deep by Fred Jaussen What we understand in science today, and the challenges facing scientists in just a few years from now. A collection of research on how and why scientists believe what they do about our world and how it works. $29.95

SHORTWAVE

NBPWAGP4P 1995 Passport to World Band Radio By International Broadcasting Services. Let you'll get the latest station and time data. $19.95

07965 The RTTY Listener by Fred Osterman New and expanded. This specialized book contains the discuss topics 1 through 25 of the RTTY Listener Newsletter. Contains up-to-date, hard-to-find information on advanced RTTY and FAX monitoring techniques and frequencies. $19.95

09G42 The Scanner Listener's Handbook by Edward Scornen ZN2GG Get the most out of your scanner radio. $19.95

CRBS1 Scanner Modification Handbook, Vol. 1 by Bill Creek provides straightforward, step-by-step instructions for expanding the operating capabilities of VHF scanners. $17.95

CRBS2 Scanner Modification Handbook, Vol. 2 by Bill Creek contains a new section that provides improved approaches and updated techniques for the mods in Vol. 1. There's 39 new exciting modifications for popular scanners. $17.95

TAB 339643 Tuning in To RF Scanning From Police to Satellite Bands. Bob Kaye, 150 papers. 1994. Tab Books. This is a wonderful book for the VHF-UHF scanner listener. It explains about the various radio bands, antennas, the laws, and lists frequencies for every imaginable service... including the Secret Service. FBI, military, IRS, persons, Fire & Wildlife, McDonnell's old window, radio search teams, railroads, Russian satellites, Treasury Dept., wireless microphones for concerts, and so on.

07A66 Aeronautical Communications Handbook by Robert E. Evans Exhaustive, scholarly treatise of shortwave aeronautical information. $19.95

AR4025 Beyond Line of Sight. Shows how has pushed forward the discovery of the propagation modes that make VHF DX possible. VHF-110, E-arc & auroral-E ionospheric scatter. F-layer propagation, transionospheric propagation and earth-moon-earth modes.

TAB 447248 The Shortwave Listener's Q&A Book—Everything you need to know to enjoy Shortwave Listening. Choosing receivers, antennas, Attenuators, frequencies, and getting QSLs. $12.95

THE LAST CHANCE ITEMS

SAM52488 IC User's Casebook A must for any hobbyist's workshop, covers all the popular amplifiers, inverters and noninverting followers, linear amplifiers, active filters, digital circuits and waveform generators and timers. $12.95

SAAM48441 178 IC Designs & Applications A comprehensive collection of linear developments for electronic design and basic applications. $12.95

REFERENCE

RS-1 The Amateur Radio Mail Order Catalog and Resource Directory, 4th Edition is the most comprehensive source book for electronic parts, software, and equipment targeted at the amateur or serious electronic hobbyist anywhere! Plus a wealth of "value-added" tips for making all in 262 pages. 4th Edition clearance at only $8.95 ($16.00)

TAB2701 Transmitting History by Joseph Moell and Thomas Callor Radio direction finding simplified. $19.95

UE401 RTTY Today by Dave Ingram Modern guide to amateur radio telegraphy. $8.95

TT329 The World Ham Directory by Mike Wolski-New 2nd edition. Introduces the special interest ham radio network and shows you when and where you can contact them at $9.95

WDP87155 1995 North American Calendar The 1995 North American Calendar lists the calls, names, and addresses for 5000+ licensed amateur radio operators in all countries of North America. $35.00

MMH42 Radio Handbook, 23rd Ed. by William L. Orr WSG64840 pages of everything you want to know about radio communications. $39.95

AR402 Your RTTY/AMTOR Companion invites you to explore the world of HF digital communications. If you've never operated RTTY or AMTOR before, this book is written especially for you! You won't find complicated technical jargon here. Just information you can use right away! You'll discover how to assemble your own RTTY/AMTOR station... Use RTTY and AMTOR with as much fun as you can through the work. Complete in RTTY/AMTOR contents. Host for digital DX. $8.00

AR3754 Radio Frequency Interference—How to find it and fix it. Interference problems are challenging, but cietable. With the techniques in this book, you can help restore electronic peace in your neighborhood. $15.00

DQV41 Basic Electronics Prepared by the Bureau of Naval Personnel covers the important aspects of applied electronics and electronics communications. $12.95

DQV76 Second Level Basic Electronics Prepared by the Bureau of Naval Personnel leads to Basic Electronics, thorough treatment of the more advanced levels of applied electronics. $12.95

20NO59 How To Read Schematics (4th Ed.) by Donald E. Harrington Written for the beginner in electronics, but it also contains information valuable to the hobbyist and engineering technician. $19.95

WLSWOCP Radio Operator's World Almanac By Williston and WCOP. A comprehensive (5x7), detailed, and comprehensive world atlas designed to be a constant desk top companion for radio operators. $17.95

GE3579 Final Quantum Revelations Dr. Kirti Khaneja knows not only science but revelation to answer difficult and profound questions about physical reality and cosmic destiny. $34.95

TEC787 Exploring the Physics of the Universe by Milo Wolf Packled with intriguing discussions like. What is the origin of the laws of physics? And what is the nature of space? A highly readable book on how mathematics describes the physical universe and what paradoxes and enigmas remain for an enterprising mind to solve, with speculations on the nature of subatomic particles and the interference patterns of spherical waves. $39.00

THEODORE S. STEIN

Ungle Wayne's Bookshefl
Letters
Continued from page 85
read about how our culture's acceptance of rich foods like meat and dairy as the cornerstone of diet have led to increased disease rates, cancer, fat kids, poor test scores, lower intelligence... and on, and on, and on. Why do you think people with starch-based, health-supporting diets like those in Asia, the Middle-East, and elsewhere have lower cancer and disease rates, smarter kids, and longer life expectancy?

Enough of that. Wayne, we are having a hard time putting ideas to action. What will it take to get everyone going? Thanks a million.

Steve, I've been trying to get the old duffer hams off their fat butts and into new technologies for 44 years now, so I doubt that your letter will break many away from Gilligan's Island re-runs, or spending hours checking into 75m nets to report no traffic. Wayne

Luke Gow VK2GXQ My name is Luke and I am a 14-year-old high school student in NSW, Australia. Although I have only been on a short time I have been very active on the ham bands. I hold the 'Full Call' license which is the highest of the four Australian classes and I may work all modes and all bands. My Dad is also a ham and we are both constant readers of 73 Magazine, although the issues are a couple of months behind because of shipping to VK. I designed my own QSL card which I have included for you, perhaps you may consider it for QSL of the Month. I drew both the koala and kangaroo freehand before scanning it with my "Typist" Caere Scanner so I could edit the pictures on my Apple Macintosh LC computer. After editing the Koala and Kangaroo, I added clothes to the animals. The kangaroo's shirt bears "VK" for Australia. As my two major interests, besides amateur radio, are surfing and playing guitar, I decided to include a surfboard and Gibson guitar on the card also. The koala is standing with the surfboard in the sand, while the kangaroo is holding the guitar and a flag in his hands. The flag shows a basic map of Australia and has been colored green and gold, Australia's national colors. I then colored the animals using Pixel Paint, a Macintosh paint program. After setting the text I printed the finished card on my Deskwriter C Inkjet printer. I enclose a picture of the states and in the three months I have been on the air I have worked 46 states and have 33 confirmed. I am only waiting on Maine, Delaware, North Dakota, and Idaho to contact. The whole family enjoys reading the magazine, keep up the good work.

Rusty Chamberlin WA5PDG I first subscribed to 73 when I was a junior at LaFerla High School (Texas), over 30 years ago. You are truly an inspiration. Your curiosity, your optimism, your belief in the individual, and your belief in free markets inspires many of us. Keep up the good work.

(Thanks Rusty, but there's so much more that needs to be done that I need a clone — Wayne)

Jerry Richter K11WY Oh Uncle Wayne, you sly old devil, you. How did you ever come to possess the uncanny ability to become a Monday morning quarterback the day before the game in all matters of the world, including your analysis of our fine government? As I listen to the strains of 'The Star Spangled Banner,' I salute you, Your May editorial relating to "Work Ethic" and "Management" was right on. Oooh! Made me feel goodo! Being a federal gov't\'s retiree, I could relate to both areas and on both sides of the coin. 38 years Naval Reserve and 32 years in the federal government. Amazing, isn't it, how our system operates? I'm really convinced that the government is operated 100% on the Peter Principle. Remember the one where people get promoted to the maximum level of their incompetence and then transferred to another department and the process starts all over again? Well now, doncha' know we have all these Peters floating atop the workers, who are the real backbone of their organizations, and what happens to the really competent people? You got it. During my 32 years as a government employee I've seen upper management spend entire spring sessions sitting around the office, planning golf tournaments. No, not on their breaks. During work hours. I've witnessed first hand directors telling counselors to drop the sexual harrassment charges filed against supervisors because it would be an embarrassment. You wouldn't believe what the military brass does. Or maybe you would, Uncle Wayne. Our tax payers would rally on the White House steps if they knew what went on with their tax dollars. Like a full bird colonel spending $3,000 of taxpayers money to plant flowers because a three-star is coming, but then doesn't provide for watering, so they all die later. How about the GS-14 that was caught several times flagrant delicto with an office sleuth. Was he punished? No, he was transferred with no loss in pay and the people who turned him in were punished. Ooops, I forgot, this is a ham radio magazine. Great publication! Keep it up please. See what your editors do to people?

Jerry, you really should write a book! When I found out what was going on that most people don't know about, I wrote one...Wayne.

See Green Team help wanted ad bottom of page 83, November 1995, 73 Magazine

Barter 'n' Buy
Continued from page 71
Personalized Coffee Mugs — Your call sign etched on 13 oz. clear glass mug. Send call sign and $9.95 + $3.00 S&H check or money order to In Your Window, P.O. Box 962, Ellenwood, GA 30049. FAST SERVICE! BNB1040

Superfast Morse Code

Amateur Radio Repair
most makes and models, discount labor rates until June 1995. WESTERN AMATEUR RADIO REPAIR CO. John Rupe, Box 697, North Cove WA 98547; (360) 267-4011, Thanks AB7DR. BNB1015

Restricted top secret hacker information
RESTRICTED Top Secret Hacker Information. Cellular / Cable / Surveillance / Satellite / VideoCaper Books / Video - Software, Make $100/hr. Catalog - $3.00. TELECODE P.O. Box 6426-BNB, YUMA AZ 85366-6426. BNB1024

Morse Code Computer Interfaces $49.95, with CW/Filter $79.95, Free IBM Shareware and Ham Catalog. Dynamic Electronics, Box 896, Harlottesville AL 35640, (205)773-2788, FAX:773-7725. BNB1034

R390A/URR Receiver covering .5 to 32 MHz. Complete $250.00. U-pack. Will deliver within 6 months for $25.00. Call (660)314-0266, ask for Wait. P.O. Box 477, Tolland CT 06084. BNB1041

Rotator control using P.C. Schematic, instructions, parts list, and program in BASIC. Parts 440 Radio Shack. Use parallel port. $15. Andy Zorza, 6556 Fairview Road, Hickson TN 37343. 423-842-3046. BNB1038

Butterfly "Butterfly" HFI8 ANTENNA. New, used 1 Day $150.00 ($300 value) (408) 265-3986. Dick - W62FM. BNB1036

"Tis the Season! Get your Precut ATV Ant., 910 MHZ 11.5 Db. gain $89.95. 440 Mhz $99.95. Fullsize $80.00. S&H $5.00, brochure $2.50. ABTEC. Dept. C. 1726 Maumee Ft. Wayne IN 46803, (219)422-9718 (IN res. add 5% sales tax). BNB1031

Wanted: Kenwood DG-5. Sell antique radios, Grebes, RCA, Crosby, Philco, etc. all 1920's Tabletops. Telephone line/loop, test sets, Harris FTMB-2B, Triplet Mod. B, $500 each, both $800 or B.O. 800-657-5168. Lee MA. BNB1036

Chipswitch - To give your HR-2510 and HR-2600 the same features as the BIG RIGS, call (203)715-0512 or write to CHIPSWITCH at 4773 Sonoma Hwy #132, Santa Rosa CA 95409 for FREE information. BNB1033
<table>
<thead>
<tr>
<th>Special</th>
<th>Product</th>
<th>Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>$200.00 off</td>
<td>FT-1000/D, FT-990/DC</td>
<td>FT-1000/DC, FT-990/DC</td>
</tr>
<tr>
<td>$25.00 off</td>
<td>G-2800SDX, G-1000SDX, G-800SDX, G-800S</td>
<td>FT-840 (Includes YSK-900 Remote Kit)</td>
</tr>
<tr>
<td>$70.00 off</td>
<td>FT-530</td>
<td>FT-530</td>
</tr>
<tr>
<td>$50.00 off</td>
<td>FT-2200</td>
<td>FT-2200</td>
</tr>
<tr>
<td>$40.00 off</td>
<td>FT-5200</td>
<td>FT-5200</td>
</tr>
</tbody>
</table>

CUSTOMER: Surrender this coupon at time of purchase to your authorized Yaesu dealer for immediate discount. Limit one coupon per purchase. Coupon is non-transferable and can be used only for the products advertised in this ad and for the discounts as stated. Offer only good at authorized U.S. and Canadian Yaesu dealers.

DEALER: Send this coupon along with a copy of sales receipt to YAESU U.S.A., Sales Dept., 17210 Edwards Rd., Cerritos, CA 90703.

CHECK BOX(ES) | $200 OFF FT-1000/D, FT-990/DC | $70 OFF FT-5200 |
| $25 OFF FT-900/AT, FT-840 |
| $40 OFF FT-5200, FT-2200 |
| $25 OFF FT-G-2800SDX, G-1000SDX, G-800SDX, G-800S |

PURCHASE DATE: ______________________
DEALER NAME/STATE: ______________________
DEALER SIGNATURE: ______________________

Offer void where prohibited by law. Coupon has no cash value. Limit one coupon per purchase. Not valid with any other Yaesu offers or discounts. Offers not applicable to purchases made prior to October 14, 1995 or after January 6, 1996.

COUPON VALID FOR PURCHASES MADE BETWEEN OCT 14, 1995 AND JAN 6, 1996
Best Dual-Banders on Wheels

GET CASH BACK FROM KENWOOD — SEE DEALER FOR DETAILS!

144MHz/440MHz Dual-Band Operation

Kenwood’s TM-733A is a versatile FM dual-band radio with sophistication and power (144MHz: 50W/440MHz: 35W) for high performance mobile communications. As well as receiving simultaneously on VHF and UHF bands, it can receive two frequencies on the same band.

Six-In-One Programmable Memory

Six entire operating profiles—including everything from the frequency range to the dimmer level can be stored in the programmable memory for recall at the press of a button. It’s like having six transceivers in one.

Data Connector for 1200/9600 bps Packet

Using the 6-pin mini DIN connector on the front panel, you can hook up a TNC to the TM-733A for either 1200 or 9600 bps packet communications.

Theft-Deterrent Features

For the added safety, you can choose the quick-release detachable front panel kit (option). The transceiver unit can be concealed under a seat or in the trunk.

Other Features

- 72 multi-function memory channels
- AIP (Advanced Intercept Point) Built-in DTSS with page
- Built-in CTCSS encoder & optional TSU-8 decoder
- Wireless clone function
- Wireless remote control function
- Built-in DTSS selective calling with page
- Independent SQL & VOL controls for each band
- Built-in CTCSS encoder & optional TSU-7 decoder
- Wireless remote control function
- High-visibility illuminated panel keys
- Wide-band VHF/UHF receive coverage (including Air Band)
- Date & time display, stopwatch, alarm, on/off timer
- Cross-band repeater function
- Modifiable for MARS/CAP
- Auto simplex checker

TM-742A

144MHz/440MHz & 144MHz/220MHz Operation

The TM-742A (144MHz: 50W/440MHz: 35W) and TM-642A (144MHz: 50W/220MHz: 25W) dual-band mobile transceivers can be converted into tri-banders with the addition of an optional FM band unit: 200MHz (50W), 500MHz (50W), 220MHz (25W; TM-742A only), 440MHz (35W; TM-642A only), or 1200MHz (10W). The transceiver can display and even receive three bands simultaneously.

101 Memory Channels

For each band, there are 100 memory channels plus 1 call channel. Each channel can store transmit and receive frequencies independently or odd split repeaters.

Separate Control & Display Units

The display and controls can be mounted separately on either side of the steering wheel, for example — while the main unit is concealed in the trunk.

ISO 9002 Meets ISO Manufacturing Quality Standards

KENWOOD COMMUNICATIONS CORPORATION
AMATEUR RADIO PRODUCTS GROUP
P.O. Box 22745, 2991 E. Dominguez St., Long Beach, California 90801-2745
Customer support/Brochures (310) 639-5360
INTERNET http://www.kenwood.net

KENWOOD ELECTRONICS CANADA INC.
6070 Keele Street, Mississauga, Ontario, Canada L5T 1S8

85ARD-1311