CANADIAN BARK-BEETLES

PART I.

DESCRIPTIONS OF NEW SPECIES

BY

J. M. SWAINÉ

Assistant Entomologist in Charge of Forest Insect Investigations

BULLETIN No. 14

(Technical Bulletin)

Published by direction of Hon. MARTIN BURRELL, Minister of Agriculture, Ottawa.

OTTAWA: Printed by J. de L. Taché,
Printer to the King's Most Excellent Majesty.
1917
CANADIAN BARK-BEETLES

PART I.

DESCRIPTIONS OF NEW SPECIES

BY

J. M. SWAINÉ

Assistant Entomologist in Charge of Forest Insect Investigations

BULLETIN No. 14

(Technical Bulletin)

Published by direction of Hon. MARTIN BURRELL, Minister of Agriculture, Ottawa.
To the Honourable,

The Minister of Agriculture,

Ottawa, Ont.

Sir,—I have the honour to submit for your approval Entomological Bulletin No. 14 entitled “Canadian Bark-beetles; Part I: Description of New Species,” which has been written by Mr. J. M. Swaine, Assistant Entomologist in charge of Forest Insect Investigations.

The Bark-beetles constitute the chief insect enemies of our coniferous forests, and it is impossible to give even an approximate estimate of the enormous annual loss caused by their depredations throughout Canada. Much of the dead timber whose destruction is attributed to fire is the result of outbreaks of bark-beetles; this is particularly true in British Columbia. In consequence of their great economic importance, Mr. Swaine has been devoting the greater part of his attention for a number of years to a study of the species of bark-beetles, their life-histories and bionomics. We are now in a position to commence the publication of the practical and scientific results of these investigations, and it is proposed to issue them in a short series of bulletins, of which the present is the first part.

There is a constant demand on the part of practical lumbermen, foresters, and others for the practical and scientific information that this series of bulletins will contain, and their publication and distribution will materially assist in the efforts that are now being made to conserve our forests.

I have the honour to be, sir,

Your obedient servant,

C. GORDON HEWITT,

Dominion Entomologist.
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anisandrus populi</td>
<td>22</td>
</tr>
<tr>
<td>Carphoborus carri</td>
<td>16</td>
</tr>
<tr>
<td>Crypturgus borealis</td>
<td>7</td>
</tr>
<tr>
<td>" corrugatus</td>
<td>7, 8</td>
</tr>
<tr>
<td>Eccoptogaster monticola</td>
<td>32</td>
</tr>
<tr>
<td>" tsuga</td>
<td>32</td>
</tr>
<tr>
<td>Hylastes asper</td>
<td>19</td>
</tr>
<tr>
<td>" nitidus</td>
<td>19</td>
</tr>
<tr>
<td>" scaber</td>
<td>18</td>
</tr>
<tr>
<td>Hylurgops grandicollis</td>
<td>17</td>
</tr>
<tr>
<td>" knausi</td>
<td>17</td>
</tr>
<tr>
<td>" lecontei</td>
<td>16</td>
</tr>
<tr>
<td>Ips englemanni</td>
<td>30</td>
</tr>
<tr>
<td>" lauteri</td>
<td>31</td>
</tr>
<tr>
<td>" yolocensis</td>
<td>31</td>
</tr>
<tr>
<td>Leperisinus cinereus</td>
<td>15</td>
</tr>
<tr>
<td>Phloeosinus canadensis</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>" juniperi</td>
<td>10</td>
</tr>
<tr>
<td>" minutus</td>
<td>9</td>
</tr>
<tr>
<td>" rugosus</td>
<td>10</td>
</tr>
<tr>
<td>Pityophthus canadensis</td>
<td>24</td>
</tr>
<tr>
<td>" confertus</td>
<td>27</td>
</tr>
<tr>
<td>" granulatus</td>
<td>28</td>
</tr>
<tr>
<td>" intextus</td>
<td>29</td>
</tr>
<tr>
<td>" lateralis</td>
<td>27</td>
</tr>
<tr>
<td>" nitidus</td>
<td>25</td>
</tr>
<tr>
<td>" nudus</td>
<td>28, 30</td>
</tr>
<tr>
<td>" ramiperda</td>
<td>28</td>
</tr>
<tr>
<td>" rhois</td>
<td>26, 27</td>
</tr>
<tr>
<td>Pseudocryphalus, n. gen.</td>
<td>20</td>
</tr>
<tr>
<td>" brittaini</td>
<td>20</td>
</tr>
<tr>
<td>" criddlei</td>
<td>21</td>
</tr>
<tr>
<td>Pseudohylesinus, n. gen.</td>
<td>11</td>
</tr>
<tr>
<td>Pseudohylesinus sericeus</td>
<td>14</td>
</tr>
<tr>
<td>" grandis</td>
<td>11, 12, 13, 14</td>
</tr>
<tr>
<td>" nobilis</td>
<td>12</td>
</tr>
<tr>
<td>" obesus</td>
<td>15</td>
</tr>
<tr>
<td>" stichensis</td>
<td>12</td>
</tr>
<tr>
<td>" tsuga</td>
<td>11</td>
</tr>
<tr>
<td>Trypodendron borealis</td>
<td>21</td>
</tr>
<tr>
<td>" raftarsi</td>
<td>22</td>
</tr>
<tr>
<td>" ponderosa</td>
<td>22</td>
</tr>
<tr>
<td>Xyleborus affinis</td>
<td>24</td>
</tr>
<tr>
<td>" canadensis</td>
<td>24</td>
</tr>
<tr>
<td>" inermis</td>
<td>24</td>
</tr>
<tr>
<td>" xylographus</td>
<td>23</td>
</tr>
</tbody>
</table>
Canadian Bark-beetles.

PART I. DESCRIPTIONS OF NEW SPECIES.

By J. M. Swaine.
Assistant Entomologist in Charge of Forest Insect Investigations.

INTRODUCTION.

The descriptions of new species composing this paper are presented at this time in order that the names may be used, without being accompanied by long descriptions, in a short series of technical and practical bulletins now in course of preparation. The types and paratypes of the new species described are in the National Collection of insects at Ottawa, unless otherwise stated in the text.

Crypturgus borealis, n. sp.

Description of the female.—Closely related to corrugatus, but with the sides of the elytra more distinctly parallel, the elytra noticeably coarsely granulate, and the body much more hairy; the length, 1.2 mm.

The head is minutely reticulate; the front convex, sparsely setose-punctate, strongly reticulate-granulate, with a large obliquely impressed triangular postepistomial area very strongly reticulate, bearing numerous long, coarse hairs; with a small circular fovea in the centre of the front; the median epistomal lobe strongly protuberant; the eyes coarsely granulate and circularly emarginate.

The pronotum slightly longer than wide, 27:23, broadly rounded behind and in front, the sides rounded less strongly than in atomus, widest behind the middle, more strongly narrowed in front; the disc moderately convex, the surface minutely and strongly reticulate, finely, feebly, moderately closely but not densely punctured, the punctures a little smaller than in atomus and very shallow, and the pubescence somewhat more distinct.

The elytra have the sides straight and parallel to beyond the middle, strongly narrowed on the caudal third; the striae wide, feebly impressed; the sutural striae a little more strongly impressed throughout, and rather coarsely, very closely punctured; the interspaces narrow, subconvex, densely coarsely granulate, with a row (sometimes confused) of fine, closely placed setose punctures; the setae from strial and interstrial punctures similar on the disc, the strial setae shorter on the declivity, on the disc and sides longer in this species than in atomus, and the interstrial punctures being so much more numerous, this species is quite noticeably hairy. The last three striae are more deeply impressed in this species than in atomus. The declivity has the apical half covered by a subcircular, glabrous, somewhat swollen, brownish, spongy area, formed by extremely minute and densely placed pores bearing minute setae.

The male has the postepistomial area of the front plano-concave, strongly reticulate, and setose-punctate as in the female, but lacking the definite frontal pit; the elytral declivity is normally rather strongly rugulose-punctate and hairy, without the spongy apical area. Of 28 specimens from Manitoba and Alberta, 27 are of the female type, with the spongy apical tips and frontal pit; one is of the male type.
The type locality is Winnipeg, Man.; J. B. Wallis; found westward to the Coast, and south to Colorado, in species of *Picea*.

Crypturgus corrugatus, n. sp.

Pale yellow brown, length 1.1 mm.; evidently pubescent on the elytra; the head wide, the front quadrature, plano-convex, densely strongly reticulate-granulate and sparsely pubescent, strongly pubescent on the sides; the eyes coarsely faceted; the pronotum slightly longer than wide, very broadly rounded in front and behind, suboval, feebly rounded on the sides, widest about the middle, little more strongly narrowed in front, with numerous, small, indistinct punctures, the surface very strongly reticulate, the pubescence minute, not very distinct; the elytra as wide as the pronotum, the sides parallel to beyond the middle, narrowly rounded behind, moderately shining, alutaceous, the elytral striae very wide, moderately impressed, the sutural striae a little more strongly impressed throughout, the striae punctures very coarse, shallow with slender hairs on the disc, becoming very short on declivity, the interspaces extremely narrow, with a row of closely placed setose, granulate, small punctures, the setæ rather long, similar, to those of the striae punctures on the disc; the declivity reddish opaque.

Described from six specimens from "North Mt., Pa."

Phloeosinus canadensis, n. sp.

A small black species with the grey pubescence short but rather conspicuous for this genus; length, 2.5 mm.; width 1.25 mm. Relative proportions: pronotum, width 29, length 24; elytra, width 31-32, length 45.

Description of female.—The head has the front plano-convex, shining, moderately, rather closely granulate-punctate, densely in front, densely and less coarsely upon the vertex, with the punctured area arcuate behind as usual; with a moderate median epistomal lobe, and a fine median carina on the cephalic half, terminating behind at the faint transverse impression; the genae and occiput minutely aciculate, punctulate, with larger scattered punctures; the eyes deeply not very widely emarginate, more than half divided.

The pronotum is slightly wider than long, about one-half as long as the elytra; widest at the hind margin, which is a little narrower than the base of the elytra; the hind margin bisinuate; the sides gradually arcuately narrowed towards the front, moderately constricted beyond the middle, with the constriction distinctly impressed across the disc; very broadly rounded on the front margin; the discal punctures of medium size and only moderately close, not granulate; the median line faintly very finely carinate; with a moderate, transverse, arcuate, subbasal impression and an indistinct sub-elevated lateral callus behind the middle; the pubescence fine and short. The mesonotum is finely reticulate, with the apex pubescent; the scutellum extremely minute. The mesosternum is preciptuous between the coxae.

The elytra are stout, slightly less than one-half longer than wide, shining, with the bases strongly arcuate, elevated, acute and finely crenulate as usual; the sides faintly arcuate, slightly wider behind; broadly rounded on the hind margin as viewed from above; with the discal striae very narrow but rather deeply impressed, finely and indistinctly punctured, outcurved near the base; the lateral striae wide and deeply impressed; the interspaces wide on the disc and slightly convex, narrower and rather strongly convex on the sides; the second interspace moderately widened near the base; the interspaces coarsely not very closely granulate-punctate, somewhat more coarsely near the base, the granules reduced in size towards the declivity, excepting those of the middle line which develop into a subregular row of small serrations; the declivity
shining, rather finely and not very closely punctured, except the median side of the first interspace which is densely punctured; with the first and third interspaces moderately convex, each with a regular row of rather sparse, acute, small serrations; the second interspace narrower than the third, flat, not closely punctured, shining and unarmed; the fifth, seventh and ninth convex and each with a few small acute serrations; the fourth, sixth, and eighth less convex and with the serrations slightly developed; the pubescence grey, fine, a little longer and more conspicuous than usual in this genus.

The male has the front moderately concave, and the frontal carina better developed; the first and third interspaces on the declivity are carinate and rather coarsely but sparsely toothed, those of the first much coarser and somewhat sparser than those of the third.

The type is from Ste. Anne de Bellevue, Que., in Thuya occidentalis. The common species of Eastern Canada, heretofore confused with P. dentatus Say.

Phloeosinus minutus, n. sp.

A small species, allied to *hoppingi* Sw., but stouter and black, with the pubescence sparse, short and reddish. Length, 2 mm.

Description of the female.—The head has the front plano-concave, coarsely granulate-punctate, with an acute median carina on the cephalic half. The pronotum is stout, wider than long, arcuate on the caudal half, very strongly narrowed and constricted in front; closely, deeply, moderately punctured, the pubescence short and less evident than in *hoppingi*. The elytra are very stout, but little longer than wide, stouter than *hoppingi*; the bases arcuate, finely elevated and serrate, the sides parallel, the hind margin very broadly rounded; the striae moderately deep on the disc and rather narrow, deeper on the sides; the striae punctures rather small but distinct; the interspaces moderately convex, much wider than the stria, closely granulated, with many fine and fewer somewhat uniseriate coarser granules intermixed; the declivity closely granulate-punctate with the coarse granules larger and acute on interspaces 1 and 3, interspace 2 narrowed towards the apex and finely granulate; the pubescence short and reddish, denser and shorter on the declivity than on the disc but not scale-like. The mesosternum is steep, and the venter of the abdomen moderately oblique, elevated behind.

The male has the declivity shining, finely punctured but hardly granulate, with interspaces 1 and 3 slightly but distinctly elevated and sparsely, acutely serrate, with one or two similar coarse granules on interspace 5.

Fairfax, Cypress Ridge, Marin Co., Calif., 5–10–14; Dr. E. C. Van Dyke and Mr. Ralph Hopping.

Phloeosinus rugosus, n. sp.

Description of the female.—A rather small species, length 3mm., width 1.3mm., a little more elongate than *dentatus*, with the strial punctures distinct and coarser than in *dentatus* and *canadensis*, but smaller than in *punctatus*; black with the elytra very dark brown; the pubescence minute and inconspicuous, yellowish, more evident and minutely scale-like on the declivity; the pronotum and elytra shining.

The head has the front moderately convex, with a broad transverse arcuate impression in front; a short acute median carina; densely, coarsely granulate-punctate; the pubescence very fine, erect, but indistinct; the eyes deeply emarginate; the antennal club with the sutures oblique.

The pronotum is stout, wider than long, as wide as the elytra at the base, widest at the hind margin which is bisinuate as usual; the sides broadly arcuate and narrowed, constricted beyond the middle with the constriction impressed

16380—2
across the dorsum; broadly rounded on the front margin; the disc polished, deeply rather coarsely and closely punctured; the smooth median line faintly indicated, distinct only on the middle third; the lateral callus feebly indicated; the transverse, subbasal, arcuate impression very faint; the basal median prominence distinctly compressed as usual; the pubescence very minute. The meso-sternum is oblique between the coxae.

The elytra are more than one-third longer than wide; with the base arcuate, elevated and finely crenulate as usual; the striae on the disc moderately narrow, distinctly wider than in dentatus and canadensis, with the punctures distinct and wider, but the striae narrower and the punctures smaller than in punctatus; the striae moderately impressed, more strongly than in dentatus, less so than in canadensis; the lateral striae widely and deeply impressed only near the side margins; the discal interspaces rather wide, distinctly outcurved towards the base, the second moderately widened basally; moderately convex, the last three on the sides very strongly convex; coarsely not very closely granulate-punctate, with a few transverse rugosities near the base and uniseriately finely serrate near the declivity; the declivity closely and roughly punctured; the first and third interspaces moderately elevated, each with a regular row of small, blunt, moderately close serrations; the second as wide as the first or third, not narrowed towards the tip, nearly flat, closely roughly punctured; the outer interspaces finely rather closely serrate, the fourth hardly serrate, the ninth carinate to the apex; the pubescence yellow, minute and almost invisible except on the declivity where it becomes much closer and minutely scale-like.

This species resembles punctatus in many respects, but has the elytral punctures smaller, the interspaces a little more closely granulate, the second interspace on the declivity as wide as the others, and the pronotum more sparsely and coarsely punctured. The mesonotum is oblique in the few specimens examined, and it is therefore placed in the cristatus group.

Described from five specimens: Scaffold Meadow, Tulare Co., Cal., Juniper, Hopping. Two of these have the declivital serrations noticeably coarser and sparser and may possibly be the males; there is no decided frontal or pronotal difference.

Phleosinus juniperi, n. sp.

A species of moderate size, hitherto confused with dentatus; readily distinguished from dentatus by its larger size, (usually), the more coarsely and more sparsely punctured frontal disc, with usually strongly developed carina and lateral calli, the coarser striae punctures and the oblique mesosternum.

Description of the female.—Length, 3·8mm.; width, 1·7mm. Relative proportions: pronotum, width 41, length 30; elytra, width 43-45, length 60.

The head has the front plano-convex, with a broad transverse postepistomal impression, the median carina and epistomal median lobe nearly obsolete; very densely, coarsely granulate-punctate; the eyes deeply, broadly emarginate; the antennal club elongate with the sutures oblique; the pubescence fine and indistinct.

The pronotum is one-fourth wider than long, widest at the extreme base, which is very slightly narrower than the base of the elytra; bisinuate behind; the sides regularly arcuately narrowed from base to apex, except a faint constriction behind the front margin, the constriction distinct across the dorsum; the front margin very broadly rounded; the disc brightly polished with the punctures of moderate size and only moderately close, with traces of irregular rows in front; the median carina distinct except in front, slightly elevated and shining, widest on the median third; without a distinct subbasal, arcuate, transverse impression; with a polished lateral callus on each side behind the middle, midway between the median line and the lateral margin; the pubescence very fine, short and indistinct.
The *elytra* stout, slightly less than one-third longer than wide, the bases arecate, elevated and finely crenulate as usual; the sides faintly arecate, semi-circularly rounded behind as viewed from above; shining; the striae very narrow and finely punctured, moderately regularly outcurved towards the base on the disc, moderately but distinctly impressed on the disc, wider, slightly more coarsely punctured, and rather strongly impressed on the sides; the interspaces wide, slightly convex on the disc, more distinctly so on the sides, densely granulate-punctate with a few very coarse and many finer granules intermixed, the coarser ones confused on the middle, becoming transverse rugosities near the base, the smaller granules disappearing and the coarser granules becoming uniseriate small acute serrations towards the declivity, the coarse granules uniseriate on the first interspace throughout becoming obsolete at the base; the second interspace hardly widened at the base; the *declivity* very closely punctured; the first and third interspaces slightly elevated, each with a regular row of rather small acute serrations, those of the first more sparsely placed; the second slightly wider than the first or third, not narrowed towards the tip, with two or three very small serrations near the apex, very closely punctured; the outer interspaces finely serrate; the pubescence yellow, fine and short on the disc becoming moderately thick, stout and somewhat scale-like on the declivity.

Variations: The second interspace on the declivity has in some specimens a few very small serrations at the top or on the face of the declivity, sometimes on one side only; these are evidently nearly obsolete in this species. The smooth median line, and the lateral calli are distinct in all the specimens available, and are usually well developed. The length varies from 3mm. to 3·8mm.

Described from ten specimens; Scaffold Meadow, Tulare Co., Cal.; Hopping.

Pseudohylesinus, new genus.

Hitherto included in *Hylesinus*; suboval from above; *elytra* densely scaly; the declivity normal; the forecoxae narrowly separated; the *elytral* bases strongly arecate, slightly elevated and regularly serrulate; the mesosternum somewhat inflated, the venter of the abdomen somewhat oblique; ventral segments, 1, 2 and 5 subequal in length; the proventriculus with the diagonal lines rather feebly developed; the ligula wide, from a convex chitinized base.

The type of the genus is *Pseudohylesinus grandis*, described herewith.

Pseudohylesinus tsugae, n. sp.

Description of female.—A stout species, of moderate size and reddish-brown colour, sparsely clothed with short stout hairs, with tufted hairs on the sides and narrow scales on the declivity; length 4·5 mm.; width 2mm.

The *head* has the front convex, shining, the punctures dense, rather coarse, shallow, granulate above; the beak short, twice as wide as long; the transverse arecate impression semicircular, narrowly impressed, deepest at the middle line; the epistoma deeply, transversely impressed and strongly margined; the median carina fine, acute, disappearing between the eyes; the antennal club with the first segment equal to the next two.

The *pronotum* is slightly less than one-half wider than long; slightly but distinctly narrower than the *elytra*, strongly bisinuate behind; the sides slightly arecate, moderately narrowed from the base to slightly beyond the middle, then constricted and broadly rounded on the front margin, the constriction extending over the disc as a broad impression; the punctuation small with a few larger punctures intermixed, dense, finely rugose, faintly asperate at the sides, smaller and closely granulate in front; the median line faintly, finely carinate; the pubescence of short, stout, reclinate hairs, becoming longer on the sides in front, longer and penniform in front of the scutellum.

16380—2
The elytra are slightly, distinctly wider than the pronotum, one-half longer than wide, strongly arcuate individually at the base, acute and serrate; the sides subparallel to the middle, then arcately narrowed and narrowly rounded behind; the striae narrow, moderately impressed nearly to the base, more strongly on the sides behind; outcurved at the base; the first stria and first interspace rather strongly impressed behind the scutellum; the striae punctures very small, deep and close, indistinct at the base; the interspaces wide, moderately convex, more strongly behind; the first and third more strongly elevated on the declivity; the ninth carinate and more strongly asperate about the sides of the declivity; the interspaces finely asperate, densely towards the base, except the first, uniseriately behind; the pubescence of stout hairs at the base, becoming short and scale-like on the declivity, with longer tufted hairs on the sides; the second abdominal sternite nearly as long as the first and fifth.

The type is from Stanley Park, Vancouver, B.C., in Tsuga heterophylla; widely distributed along the British Columbian coast.

Pseudohylesinus sitchensis, n. sp.

This species is barely distinct from *grandis*. The size and shape are practically the same, slightly more slender; the front rather coarsely and closely punctured, not so densely as in *grandis*; the transverse impression deeper than usual.

The pronotum is wider than long, 13:10; the sides strongly arcuate on the caudal two-thirds, strongly constricted in front of the middle; broadly rounded on the front margin; the median carina nearly obsolete; the punctuation small, dense and finely granulate, with larger setose punctures intermixed, more numerous on the sides; the pubescence on the disc of intermixed clavate setae and very stout scale-like hairs, with greyish clavate setae and palmate or tufted scales on the sides; sparsely, finely asperate on the sides.

The elytra are one-half longer than wide, slightly narrower than in *grandis*; the striae narrow, with small, close punctures, moderately impressed; the interspaces wide, moderately convex, finely uniseriately asperate and setose as usual, rather irregularly towards the base; the scales less dense than in *grandis*, and elongate, becoming tufted behind the scutellum and notably so on the sides; the marking of the *grandis* type, but more regular, an elongate whitish mark behind the scutellum, followed by a dark and then by a light-coloured elongate V-shaped marking, with the caudal third mottled in sections of the interspaces.

This species appears to be distinct from *grandis*, particularly in the elongate scales and the different shape of the pronotum.

Our specimens are few in number; probably the species is rare. The type is a male; the female has the pronotum less strongly constricted in front.

Menzies Bay, B.C.; also Port Renfrew and Stanley Park, B.C. A rare species, in Picea *sitchensis*.

Pseudohylesinus nobilis, n. sp.

Description of female.—Allied to *grandis*, but more coarsely punctured, more deeply striate and somewhat stouter, with the scales almost obsolete on the pronotum and small on the elytra; length, 3·9 mm.; width, 1·8 mm.

The head has the front very coarsely, sparsely punctured on the disc, moderately and more closely on the beak, finely and very densely on the vertex, less roughened than usual; the antennal club as in *grandis*.

The pronotum is rather stouter than in *grandis*, finely, very densely punctured with larger punctures intermixed, and indistinctly asperate on the sides.

The elytra have the general form of *grandis*; but with the striae deeper and wider; the striae punctures rather coarse, slightly smaller on the sides, the
interspaces strongly convex, rather strongly uniseriately asperate and setose; the scales of the elytra small and rather elongate, much smaller towards the base, not very evident except on the sides and declivity where they are dense, and variegated with a few light coloured patches.

It differs from *grandis* in the slightly stouter form, the punctuation of the front, pronotum and elytra, the finer elytral scales and deeper and wider elytral striae, which are also deeper, and coarser than in *tsugae*.

I have seen a few specimens through the kindness of Prof. H. F. Wilson, labelled, “Santiam, N.F., Ore.; 8-21-14; *Abies nobilis*; W. J. Chamberlain, collector; Or. Ex. Sta., No. 1428.”

Pseudohylesinus grandis, n. sp.

Description of female.—An elongate-oval species, rather stout, 3·5 mm. long, and 1·8 mm. wide; clothed with scales and short hairs, the elytra variegated, distinctly stouter than *nebulosus* Lec.

The head has the front convex above, the transverse impression wide, straight and strongly margined in front, with a narrow, acute, medium carina extending to the level of the anterior angle of the eyes; the front, vertex, and genae closely, roughly, not very coarsely punctured, more densely on the vertex, more sparsely on the epistoma; the front clothed with numerous short, stout, erect hairs; the vertex and a band behind the eyes with tufted hairs, the latter more strongly and densely; the lateral margins of the epistoma acute and over-hanging the deep antennal scrobes; the antennal club with the basal segment slightly longer than the outer two which are subequal; the eyes elongate, slightly wider above.

The pronotum is distinctly narrower than the elytra, one-fourth wider than long, the sides moderately arcuate, and narrowed towards the front on the hinder two-thirds, then moderately constricted; the front margin strongly rounded; the disc transversely impressed in front; densely rather roughly not coarsely punctured; the punctures shallow and irregular in size; with a narrow, shining median carina; densely clothed above with fringed scales interspersed sparsely with short suberect hairs, the scales passing into plumose hairs at the front and hind margins, and the scales light coloured except in a large irregular patch on each side the median line behind, on which they assume the ground colour; the scales very easily removed.

The elytra are moderately, distinctly wider than the pronotum, one-half longer than wide; strongly rounded at the base, and margined with close, wide crescentic serrations; the sides parallel to the middle then strongly narrowed and narrowly rounded behind; the striae narrow, faintly impressed on the disc, more strongly on the sides; the strial punctures small, shallow; the interspaces wide, faintly convex, more noticeably behind; the first and third more strongly on the declivity and the ninth carinate about the sides of the declivity as usual; closely, finely punctured, with a somewhat regular row of subacute lunular asperities becoming more numerous and confused near the base, the asperity overhanging a larger puncture bearing a rather long slender hair, the smaller punctures bearing short, wide, fringed scales which give the colour to the elytra; the ground colour a deep rich brown to nearly black; with the scales on sections of each interspace grey to yellowish, each interspace variegated individually; the light patches forming a wide V-shaped marking about the middle of the elytra; the interstrial asperities larger and more acute on the sides of the declivity the ninth interspace carinate and dentate behind about the declivital margin.

The prosternum is short, the process acute, the forecoxae narrowly separated; the venter closely punctured, clothed with small light palmate scales; the metasternum and base of the abdomen moderately inflated.

The male differs in the shape of the pronotum, which is very much wider than long, strongly rounded on the sides behind, very strongly constricted in
front of the middle, strongly rounded on the narrow front margin, and has the front and sides with the scattered coarse punctures sparsely rather coarsely asperate.

Variations.—There is a moderate variation in length, from 3 mm. to 3.8 mm. in our material. The colour pattern, formed by the light-scaled sections of the interspaces, is rather variable. In some the elytra are almost entirely grey; in many the light sections form a broad transverse V-shaped band about the middle of the elytra. There is usually some trace of this transverse band on perfect specimens, and the grey patches in front of and behind the scutellum are constant.

Pseudohylesinus s ericeus Mannh.

Original Description.—Bull. Mosc., 1843, 296: *Hylugus sericeus* Eschscholtz, Brevis, rufopiceus, griseo-sericeus, thorace carinato, elytris squamulis, brunneis, cinereisque variegatis, antennis pedibusque rufis."

"Longit 1 1/4, 1 1/2 lin. Latit. 1/2, 3/8 lin."

"Dejean. Cat. 3 me. edit. p. 331."

"Habitat in insula Sitkha, D.D. Eschscholtz et Blaschke."

Bull. Mosc., 1852, 356, "Var. b, minor, niger, atrohispidus, pedibus piecis, elytris obsolete cinereo-squamulosis. Sitkha truncis pini subcortice rarius." This is possibly distinct.

"Alaska to California. Length 3 mm., .12 inch. The outer interspaces of the elytra are marked with a row of small acute tubercles. The bristles of the elytra are longer in the type than in the variety, and the sides of the prothorax seem a little more rounded, but otherwise there is no special difference. The elytra are not banded as in the preceding species, but confusedly tesselated. I observe no sexual characters, and the front is finely carinate in the four specimens examined. The head is more prolonged than in the other species. The club of the antennae is subovate pointed, about twice as long as wide, annulated with straight sutures."

The type of Leconte's description is probably distinct from mine described here as *grandis* and differs chiefly as follows: a more slender species, with longer hairs; a male, with the pronotum almost transversely oval, the frontal lobe of the pronotum less distinct; the elytral hairs much longer. Otherwise it agrees closely with *grandis*. I have seen only the one example. There are four specimens under this name in the Leconte collection. The second is *nebulosus* Lec., a good species; the third *granulatus* Lec. ♀, and the fourth the species here described as *grandis*. The type of his description was from California.

The species referred to by Hopkins, U. S. Div. Ent., Bul. 48, page 20: "The Shore Pine Hylesinus (Hylesinus sericeus Mannh.) excavates one short longitudinal gallery from the entrance burrow and small cavity in the living bark of injured, dying, and recently felled shore pine. Newport and Seaside, Oreg. Common. Also recorded from California and Alaska," is probably distinct from *grandis*, and possibly the same as Leconte's first specimen.

The species *grandis* is known to us only from grand fir and Douglas fir, neither of which occurs in the region of Alaska from which Mannheim's specimen probably came, while shore pine, from which Dr. Hopkin's species was taken, is a common Alaskan coast tree. While it is possible that *grandis* may breed in Alaskan species of *Abies* or even in pine or spruce, it seems at present more
likely that the shore pine species is the true sericeus of Mannerheim. I have one specimen of grandis taken from the surface of the bark of a Sitka spruce, and one specimen from Queen Charlotte Islands where neither Douglas fir nor grand fir have been found, nor, so far as we know, any other species of Abies.

I have never taken any species of this genus from shore pine and am assuming that Hopkin's species is the same as Leconte's first specimen, which, if from a tree indigenous to the Alaskan coast, should be accepted as fixing the species.

Pseudohylesinus obesus, n. sp.

A stout species, gradually wider behind, the pubescence scale-like only on the declivity; length 4.5 mm.; width, 2 mm.

The head has the front shining, punctuation moderately close, not coarse; the transverse impression deep, but narrow; the carina strong and acute; the beak twice as wide as long, deeply impressed on each side of the carina in front; the median lobe very large, excavated above as usual; clothed with short slender reclining hairs.

The pronotum is slightly wider than long, 17:14; the hind margin strongly bisinuate; the sides subparallel, slightly convergent for over half the length, then suddenly, strongly constricted, broadly rounded on the front margin; the punctuation dense, shallow, smaller and large intermixed, somewhat granulate, sparsely asperate on the sides; the pubescence rather abundant, short, slender, and reclining, somewhat tufted in front of the scutellum.

The elytra are one-half longer than wide; strongly rounded and finely crenulate at the base, more distinctly towards the sides; somewhat dilated behind, widest behind the middle; rather narrowly rounded behind; the striae very narrow and faintly impressed on the disc, distinctly impressed on the sides, the strial punctures rather small, and very closely placed; the interspaces very wide, faintly convex. The ninth carinate about the declivity as usual, and the first and third distinctly convex near the tip, minutely, not roughly punctured, rather finely asperate, uniseriately except near the base, and on the basal half of the third and fifth; the pubescence very short and rather dense, in the form of stout hairs on the disc, tufted on the sides, and elongate scales on the declivity; the hairs from the asperate punctures present but very short and indistinct.

The type is from Inverness, B.C. It is apparently a rare species.

Leperisinus cinereus, n. sp.

This species is very closely allied to aculeatus, Say, but somewhat stouter with the elytra more convex at the middle; the pronotum with elongate, transverse asperities arranged much as in aculeatus, with the pronotal surface less strongly rugose; the elytral striae wider and distinct, the interstitial asperities much smaller than usually found in aculeatus, hardly distinct even on the declivity; the vestiture of scales as in aculeatus, but the colour everywhere very pale, cineres, with the red surface showing at the margin of the pronotum and about the bases of the elytra; very indistinctly marked with yellowish brown on the usual diamond-shaped median stripe, and the irregular lateral stripe of each side of the pronotum, with very indistinct traces of the same colour on the elytra. In some specimens the colour is more distinct, and there is a tendency towards two angulated transverse lines on the elytra.

The species was found first among material of aculeatus taken from ash at Hudson, Que. It is also represented from Cambridge, Roxbury, and Brookline, Mass.
Carphoborus carri, n. sp.

Description of female. Length, 1.7 mm.; width, .7 mm.; black with greyish scale-like pubescence. The head is finely, transversely aciculate behind, with the front clothed on a subcircular area with stout, close, yellow hairs, shorter towards the centre, which is shining, broadly transversely impressed on the cephalic half, fringed with long yellow hairs on the epistomal margin, the median epistomal process as long or rather longer than wide, subtruncate apically with the sides parallel; the eyes wide, coarsely granulate, deeply emarginate; the antennal club subtruncate apically, with three nearly straight sutures.

The pronotum has the sides straight and subparallel on the caudal half, strongly constricted in front of the middle; the front margin very broadly arcuate, the median line finely carinate; the disc closely, strongly, rather finely punctured, with small, very stout scale-like pubescence.

The elytra have the sides subparallel to beyond the middle, slightly wider behind the middle, arcuately narrowed on the caudal third to the narrowly rounded apex, subtruncate from above owing to the elevated third interspace; the bases arcuate, strongly elevated and margined with a row of strongly developed recurved lunar rugosities, followed upon the disc by an irregular second row; the striae moderately impressed, as wide as or wider than the narrowly convex interspaces; the striae punctures coarse, close and subquadrate, the second interspace much widened, strongly elevated, and coarsely rugose at the base; the interspaces densely punctured, and clothed with small, subcircular greyish scales similar to those of the pronotum; the first, third, fifth, seventh and ninth somewhat carinate behind, the intervening interspaces becoming very narrow behind; the declivity with first interspace moderately elevated, the second very narrow, nearly obsolete, the third strongly carinate and serrate, but little widened behind, parallel to the first, united with the similarly carinate ninth near the apex, with which it is connected by a very short obliquely transverse ridge; the fourth, sixth, and eighth normal; the fifth and seventh carinate and united at the tips within the angle made by the third and ninth. The ventral pubescence hairy, more scale-like on the middle segments of the abdomen; the fore coxae narrowly separated.

The male has the front more broadly impressed, conspicuously clothed with yellow hairs, very dense, rather long and incurved about the margins.

Collected in *Picea canadensis* near Edmonton, Alta., by Mr. F. S. Carr, after whom it is named; the type, a female, in the collection of the Entomological Branch, under No. 2268. Also, Aweme, Man., Mr. Norman Criddle.

Hylurgops lecontei, n. sp.

This species is represented by the second specimen mentioned by Leconte under the name *porosus*. The type of this description agrees exactly with the Leconte specimen.

Description of the adult.—Allied to *porosus* Lec., but smaller, with the pronotal punctures coarser and denser and the striae less deeply impressed on the declivity; length, 4.1 mm.; width, 1.6 mm.

The head is as in *porosus*.

The pronotum is arcuate on the sides, strongly narrowed towards the front, slightly narrowed behind; coarsely, densely granulate-punctate, with very few small punctures intermixed.

The elytra are much as in *porosus* Lec., but the striae only moderately impressed on the disc, faintly impressed towards the base, hardly more deeply impressed on the declivity than on the disc; the interspaces but little more prominent on the declivity than on the disc; uniserially asperate and setose
on the hinder half, but rather less strongly than in *porosus*; with the first interspace on the declivity more prominent than the others, the third not more so than the second, so that the declivity appears from above distinctly more narrowly rounded than in *porosus*; similarly clothed with minute pubescence becoming scale-like behind and forming a crust on the declivity.

The type is from Colorado. This species is represented in our collection also from Nevada, New Mexico, and British Columbia.

Hylurgops knausi, n. sp.

An elongate species allied to *porosus* but differing in the small, regular, pronotal punctuation, small strial punctures and wide flat, finely, densely granulate interspaces. Length, 5 mm.; width, 1.6 mm.

The head is as in *porosus*, but more finely, very densely punctured with the punctures rather coarse in front, and sparse on the middle line immediately behind the acute median epistomal carina.

The pronotum is slightly longer than wide, a little narrower than the elytra, with the sides moderately converging cephalad on the caudal half, then more strongly narrowed to the broadly arcuate front margin; moderately bisinuate behind; the caudal transverse carina acute only near the sides; the punctuation small, regular, dense, granulate only at the side margins; the median line finely carinate.

The elytra have the base nearly straight; about twice as long as wide; the sides nearly straight and parallel to well behind the middle, then rounded to the narrowly rounded apex; the declivity steep; the striæ impressed moderately upon the disc and declivity, the sutural strie deeper at the base; the lateral striæ faintly impressed in front, except the last two, which are rather deeply impressed; the strial punctures small, hardly decreasing in size on the sides; the interspaces moderately convex on the disc behind and more strongly so upon the declivity, flattened at the base and on the sides, somewhat wider than the striæ on the disc, much wider on the sides; finely, very densely, strongly granulate-punctate, rather feebly uniseriately asperate and hairy on the declivity only; the pubescence from the numerous fine punctures very minute, almost obsolete on the disc, minute and somewhat scale-like on the declivity.

A series that probably represents the other sex of this species has the pronotum somewhat less densely punctured and less granulate, with the declivity distinctly more feebly sculptured, and with the uniseriate hairs very short and inconspicuous.

Cloudcroft, N.M., 9,000 ft., W. Knaus.

Hylurgops grandicollis, n. sp.

An aberrant *Hylurgops* with a very wide depressed prothorax, as wide as the elytra, subacutely margined at the side; abundantly hairy throughout. Length, 5.2 mm.; width, 1.9 mm.

The head has the front rather closely subgranulely punctured with small and large scattered punctures intermixed, with rather numerous long erect hairs; the transverse arcuate impression deep; the epistomal lateral impressions deep, separated by a short, acute, median carina; the epistomal lobe short, wide, and deeply concave from above as usual; the antennal grooves very deep and acutely margined above; the club shorter than usual with the first segment comprising rather more than one-half the mass.

The pronotum is very large, slightly longer than wide, with the sides subparallel, faintly arcuate for over three-fourths of the length, then strongly narrowed to the narrow but broadly rounded front border, which is strongly recurved and finely margined; the hind angles rounded; the hind margin very
broadly arcuate, nearly truncate, not bisinuate; with a strongly developed, acute, basal, transverse carina towards the sides; the side margin produced, subacute from the hind angle forward for two-thirds the length, excavated on the under side below the subacute margin; the disc only moderately convex, closely finely punctured and densely granulate or finely rugulose, the granulations pointing chiefly towards the meson which is a fine raised line; densely clothed with red pubescence of two lengths, long erect hairs increasing in length from base to apex and beneath these a vestiture of very short suberect bristles. The scutellum is circular, extremely minute and not depressed.

The elytra have the base only slightly arcuate, not serrate; the sides subparallel, slightly arcuate for two-thirds of the length, then gradually arcuate to the narrowly rounded apex; rather narrowly rounded behind as viewed from above; the declivity steep; the striae very finely and not strongly impressed, almost obsolete near the base, gradually stronger to the declivity where they are moderately but finely impressed; the last stria deeply impressed about the side of the declivity; the sutural striae together with the sutural interspaces markedly impressed towards the base; the stria punctures small on the disc and declivity, very small on the sides; the interspaces wide and flat becoming gradually moderately convex upon the declivity; the interspaces closely indistinctly punctured and very densely and coarsely granulate, except upon the declivity which has the interspaces densely, minutely punctured, not granulate, and uniserially finely tuberculate; the sutural interspaces much narrowed towards the base; rather densely clothed with long red hairs and finer pubescence; the uniseriate hairs of each interspace numerous, long and erect, extending from base to apex; the remaining pubescence rather long and erect towards the base becoming shorter behind, and minute and somewhat scale-like upon the declivity.

The ventral surface rather closely and rather finely punctured and moderately hairy; the venter of the prothorax very densely granulate-punctate; the first and fifth visible abdominal segments longest, the second little shorter than the first and hardly as long as the next two combined; the mesosternum moderately protuberant; the third tarsal segments moderately widened and deeply bilobed; the prosternum deeply excavated with the ridges acute; the legs black, the tibiae very wide and very coarsely toothed.

We have two specimens from Clouderoff, N.M., obtained through the kindness of Mr. W. Knaus. A third specimen from the Cornell collection "S. Fe Canon, N.M., 7,000 ft., Aug., 1880 (Snow)", is evidently the same species but has the long hairs somewhat shorter than in the type and the declivity more noticeably scaly. It is possibly the male. We have also seen specimens from California.

Hylastes scaber, n. sp.

Allied to *porculus* Er. but much more coarsely punctured, with the elytral striae more strongly impressed, and the interspaces rugose; distinctly more slender than in *salebrosus* Eichh., with wide striae, not so deeply impressed, less coarsely rugose interspaces, pronotum more coarsely punctured and straight on the sides behind, and with moderately toothed tibiae. Length, 4 mm.; width, 1.4 mm.

The head has the front rather coarsely, very closely, roughly punctured; the transverse impression moderate; the epistoma broadly impressed on each side, with the median carina well developed and reaching to the transverse impression.

The pronotum is but little longer than wide, moderately but distinctly narrower than the elytra, the hind angles rounded, the sides parallel, nearly straight to beyond the middle, then constricted, moderately bisinuate, and broadly rounded on the front margin; the disc extremely coarsely and not very
closely punctured, more closely on the sides and more finely in front; the median carina narrow but elevated on the caudal two-thirds.

The *elytra* are twice as long as wide; the sides nearly parallel to beyond the middle, then gradually arcuate, and somewhat constricted just before the rather narrowly rounded caudal margin, as seen from above, and very narrowly rounded at the apex; the striae well impressed on the disc, the sutural striae widest and deepest, moderately, distinctly impressed on the sides, wider than the narrow interspaces; the punctures very coarse, deep, quadrate, close, small at the front margin, somewhat reduced on the sides and declivity; the interspaces moderately convex on the sides, densely rather coarsely rugose, and uniseriately, rather finely tuberculate behind. The tibiae have a few moderately coarse teeth.

The type is from the Cornell Collection, labelled Virginia; other localities are Tennessee and District of Columbia.

Hylastes nitidus, n. sp.

A small, black, elongate species, very brightly polished; length, 4 mm.; width, 1.3 mm.

The *head* has the front evenly convex from the vertex to the epistomal impression; minutely, rather closely punctured; the transverse arcuate impression faint; the epistomal region very deeply abnormally impressed; the median carina fine and faint extending to the transverse impression; glabrous on the disc, with a few yellow hairs on the epistoma; the eyes very wide above and very narrow below.

The *pronotum* is one-half longer than wide, nearly as wide as the *elytra*, broadly rounded behind; the hind angles rounded; the sides straight and subparallel forward to the widest point which is beyond the middle, then strongly narrowed to the rather broadly arcuate front margin; very finely, rather closely punctured throughout, not roughened at the sides; the punctures smaller at the sides and minute at the front margin; very brightly polished.

The *elytra* are elongate, rather more than twice as long as wide, straight and acute at the base; the sides parallel to behind the middle, then gradually evenly arcuate behind as viewed from above, narrowly rounded at the apex; the striae distinctly impressed throughout, more strongly behind, the sutural striae a little wider and deeper; the striae punctures of medium size, very deep and closely placed; the interspaces moderately convex, more strongly behind and on the declivity; brightly polished except on the declivity; minutely punctured and somewhat coarsely sparsely roughened; densely granulate at the base; very densely granulate, finely uniseriately tuberculate and dull on the declivity; with very minute scale-like hairs on the declivity. The venter is polished, sparsely, moderately punctured, the last ventral convex, coarsely, densely, roughly punctured.

The type is from Las Vegas, N.M., near Hot Springs, 7,000 feet. July, 82, F. H. Snow.

Hylastes asper, n. sp.

A small dark brown species, somewhat similar to *longus*, Lec., but slightly smaller, the epistomal carina distinct, the pronotum slightly shorter, the elytral interspaces more convex and more strongly granulate.

The *head* has the front convex, finely, closely granulate-punctate on the disc, minutely, densely punctured on the vertex; the transverse arcuate impression moderately deep; the epistoma broadly concave on each side; the median carina acute, fine, from the epistomal margin to the transverse impression; the pubescence minute, longer on the epistoma.
The *pronotum* is elongate, much narrower than the elytra, one-third longer than wide; broadly rounded behind; the sides subparallel on the hinder half, somewhat wider at the middle, rather strongly narrowed in front of the middle, and very broadly rounded in front; the punctures moderate and very close on the disc, very dense and strongly granulate on the sides, much smaller, dense and finely granulate at the front margin; the median line smooth and slightly elevated, stronger behind.

The *elytra* are twice as long as wide; slightly arcuate at the base; the sides nearly parallel for over half the length then gradually arcuately narrowed to the rather narrowly rounded hind margin as viewed from above, narrowly rounded at the apex; the *striae* narrow, but rather deeply impressed on the disc and declivity, finely but distinctly impressed on the sides; the stria punctures small and closely placed, becoming very small on the declivity; the interspaces wider than the *striae*, moderately convex on the disc and declivity, flattened on the sides, strongly granulate, with a few small tuberces uniseriately placed on the declivity.

The venter is rather coarsely sparsely punctured, the last ventral strongly convex, rather finely, closely, roughly punctured; the prothorax below finely asperate in longitudinal rows, the punctures indistinct.

The type is from Colorado. Only one sex is represented.

Pseudocryphalus, new genus.

The form very stout; the *pronotum* feebly arched; the head slightly visible from above; the pubescence of the dorsal area scale-like; the antennal funicle 5-segmented, the club narrow, compressed, elongate, with three transverse sutures; the eyes narrow, elongate and feebly sinuate in front; the *pronotum* much wider than long, very strongly constricted in front, the cephalic margin practically unarmed, not acutely margined on the sides or behind, the rugosities of the disc very few; the *elytral* base very strongly elevated at the scutellar region; evidently punctate-striate; the two first ventral sternites of the abdomen subequal in length and each as long as the next two united; fore-coxae contiguous, prosternum very short; the mentum as wide as long, with very long plumose hairs; the tarsi slender, retractile; the tibial teeth long and slender.

The type is *P. brittaini*, n.sp., described herewith.

Pseudocryphalus brittaini, n.sp.

Length, 1.9 mm.; stout, black, with brown and gray scales; the *front* plano-concave, with a strong transversely arcuate impression behind the epistoma, the middle line impressed, clothed with stout pubescence, becoming long, dense and pale on the epistomal margin, with a rather coarse granule behind the impression on each side the middle line; the eyes long, narrow, extending upon the ventral surface.

The *pronotum* twice as wide as long; the sides very strongly rounded behind and very strongly constricted in front; the front margin broadly emarginate at the middle; very densely subgranulately punctured, clothed with brown and grey, very stout pubescence, the grey predominating on the sides and behind; the cephalic margin unarmed or nearly so, somewhat elevated, with pale fine pubescence and brown, elongate, elevated scales; with three pairs of elongate recurved rugosities in a longitudinal row on the middle of each side in front, the first pair on the front margin.

The *elytra* as wide as the pronotum, slightly less than one half longer than wide, the basal margin very strongly elevated, recurved and coarsely serrate in the scutellar region; the sides subparallel on the basal half, broadly rounded behind; the *striae* distinctly rather strongly impressed, the stria punctures
rather coarse, not close, deep and distinct, bearing very minute setæ; the inter-
spaces feebly convex, minutely punctured and with a median row of granules,
bearing very small elongate scales which hardly cover the surface, and a median
row of longer, erect, very stout bristles; the pubescence brown, with numerous
scattered white scales, more abundant towards the base and forming a narrow
band along the suture. The first two abdominal sternites subequal in length,
each longer than the next two united.
Salmon Arm, B.C.; apple trees, in dying bark. First examined in com-
pany with Prof. W. H. Brittain.

Pseudocryphalus cridd'ei, n.sp.

This species is very closely allied to *brittaini*: with the same size, form,
and colour; but it is apparently distinct through the very feebly impressed
elytral striae, and the small, very closely placed strial punctures.

We have very few examples of *brittaini* and a longer series may show inter-
gradations with this species.

Described from a series of 108 specimens from Aweme, Man., *Prunus
virginiana*; collected by Mr. Norman Criddle.

Trypodendron borealis, n. sp.

A series of males and females from Athabaska Landing, Alta., and Prince
Albert, Alta., is closely allied to *bivittatum*, but represents a distinct species,
differing chiefly in the colouration of the pronotum, the shape of the male
pronotum, and the less impressed declivital striae.

Description of the female.—Very closely similar to *bivittatum* in size and
colour, but with the light-coloured band of the caudal border of the pronotum
wider and extending to the side margins; and with the median black stripe on
each elytron nearly obsolete except at the top of the declivity. The elytral striae
are not impressed on the disc; the strial punctures small, but deeper than in
bivittatum; the interstrial punctures almost obsolete; the declivity with the first
and third interspaces elevated and finely uniseriately granulate, the first and
second striae together with the second interspace, which is there narrower,
pressed on the declivity to form a suture much as in *bivittatum*; the remaining
striae not impressed; the declivity brightly shining.

The *male* is quite distinct from *bivittatum*. The head is similar, broadly,
deeply excavated above, with the cavity closely punctured and hairy about
the sides forming a close fringe about the sides and in front, smooth and shining
at the bottom with a distinct longitudinal carina. The *pronotum* is subquadrate,
wider than long, slightly but distinctly longer than in *bivittatum*; the proportions,
length 11, width 14; nearly truncate and finely margined behind, the
hind angles narrowly rounded, subangulate; the sides faintly arcuate, sub-
parallel; the front angles rather narrowly rounded, the front margin *broadly,
distinctly emarginate* on the median half, strongly recurved in front so that the
front of the pronotum projects beyond the anterior foramen, which lies there-
fore entirely upon the ventral side of the pronotum; the disc shining, the asperi-
ties as in *bivittatum*, but rather less numerous, broad and very short, larger in
front, distinct to the hind margin on the disc, nearly obsolete on the sides,
closely punctured in front with close stiff hairs chiefly from the under side of the
frontal projection; with the pale caudal band very wide, extending to the side
margins, projecting cephalad on the middle of the sides nearly to the front
margin, leaving the front margin, the summit and the anterior half of the lateral
margins black; the sides hairy only about the margin, the hairs from the front
margin long and erect. The elytra are as in the female.
This species is known to the writer only from northern Alberta and northern Saskatchewan, where it breeds in *Picea canadensis*. Its habits are similar to those of *bivittatum*.

Trypodendron rufitarsis, Kirby.

This species is closely allied to *bivittatum* and has long been considered a synonym. It is apparently a distinct species. Our material was compared with Kirby’s type in the British Museum by Mr. R. N. Chrystal, and found to be the same.

Description of the female.—Of the size and shape of *T. bivittatum* Kirby, except that the elytra are distinctly narrower towards the base, and wider behind the middle; *bivittatum* usually has the elytra slightly widest about the middle. The structural characters of the head and pronotum are practically as in *bivittatum* except that the pronotum is more minutely and nearly obsolescently punctured on the sides behind, and the front of the head is much less densely, and on the upper half very much more coarsely granulate. The elytral striae are very narrow and slightly impressed, a little more strongly on the declivity; the strial punctures small and closely placed; the interspaces flat, smooth, with faint traces of a median stria, the intersial punctures sparse, uniseriate, faintly impressed, with short slender setae. The elytral interspaces of *bivittatum* are usually somewhat transversely wrinkled and the strial punctures are usually coarser. The colour in *rufitarsis* is black, with the antennæ and legs dark red-brown; the pronotum with a median band, less than one-third the width, extending from the base across the summit to the apex, dark smoky red, the colour stronger towards the basal margin. The elytra are without stripes, dark smoky red, becoming darker on the sides and nearly black on the sides towards the base. The declivity has the second interspace very narrow, impunctate, moderately impressed, so that the sulcus is narrow and shallow, with the third and first interspaces not strongly elevated and with the granules practically obsolete.

Distinguished from the allied species by the colour, the coarsely and rather sparsely granulate front, the shallow declival sulcus, with impunctate second interspace, and the nearly obsolete punctures on the hinder half of the sides of the pronotum and nearly obsolete declival granules.

Trypodendron ponderosae, n. sp.

This species is very closely allied to *rufitarsis* Kirby, but is distinguished by its constantly darker colour, deep shining black, with an indefinite area on the disc of the pronotum and elytra very dark reddish brown; the intersial punctures very small; the declival striae very strongly impressed, with the second interspace deeply sulcate.

Southern Coast and Interior of British Columbia, in *Pinus ponderosa*, *Picea engelmanni*, and *Pseudotsuga mucronata*.

Anisandrus populi, n. sp.

This species belongs to the *obesus* group and is intermediate in characters between *obesus* LeC. and *minor* Swaine.

Description of female.—Length, 3.2 mm.; of the shape of *obesus*, slightly, but distinctly more slender, with the sides of the elytra parallel as far as the abrupt angle of the declivity.

The head has the front plano-convex, shining, opaque towards the vertex, coarsely, rather sparsely punctured, more closely and finely on the sides in front, transversely impressed on the epistoma on each side of the distinct median carina.
The pronotum is wider than long, 33:29, rather strongly arcuate on the sides, and narrowly rounded on the middle line in front; sculptured and pubescent almost exactly as in obesus, subconcentrically asperate in front, with four median asperities on the apical margin; very finely rather closely punctured behind.

The elytra have nearly the same shape as obesus, but are slightly more slender. The punctuation is nearly as in obesus, but the strial punctures are relatively somewhat larger and rather widely separated; the interstrial punctures at the base nearly as large as those of the striae and confused, elsewhere on the disc very small, variably confused to nearly uniseriate, very densely confused along the side margins. The declivity has the striae impressed; the strial punctures larger than on the disc; the interspaces narrower than in obesus and rather regularly uniseriately granulate, with few interspersed punctures; the ridge of the seventh interspace well-developed and acute, but less so than in obesus, more distinctly arcuate in outline, and bearing four or five small, widely separated granules; with the caudo-lateral impressions as in obesus. The pubescence is rather abundant, light coloured, long, slender, and erect.

Description of the male.—Length, 1.6 mm.; smaller, more slender, and distinctly more fragile than the male of obesus.

The head has the front convex, coarsely, not closely punctured; the epistoma depressed, densely punctured, with the usual fringe of hairs.

The pronotum is subcircular, slightly wider than long, finely, not densely punctured, with scattered small acute granules on the cephalic half, almost exactly as in obesus, and similarly clothed with long slender pubescence.

The elytra are wider than the pronotum, arcuate on the sides, widest slightly before the middle, arcuately narrowed from there to the apex, elongate, with the apex very narrowly rounded, very strongly convex, shaped practically as in obesus; the striae hardly impressed, the strial punctures moderately coarse, deep, more widely separated than in obesus; the interstrial punctures nearly as large as those of the striae, the interspaces about the sides very densely punctured and sub-granulate, those of the declivity faintly granulate; the pubescence as in obesus, long, slender, curved, erect and longer about the margin. The ridge of the seventh declival interspace is obtusely carinate, not subacute as in the male of obesus.

Distinctive characters: The female is distinguished from obesus by the constantly smaller size, slightly but distinctly more slender form, and chiefly by the declival ridge of the seventh interspace being less acute and without the elongate serrations of obesus. The male is extremely rare and is represented in our collection by four bred specimens. It appears to be rather more slender than the male of obesus, and is very much smaller, with the front coarsely punctured and the punctures of the elytral interstriae nearly as large as those of the striae.

Variations: The size is constant in our large collection of females. The chief variations are in the details of the elytral punctuation and these are within moderate limits.

Ste. Anne de Bellevue, Que., in trunks of Populus. Abundant in weakened and dying trees in the region about Montreal Island and in the Ottawa Valley.

Xyleborus xylographus, Say.

So far as we can learn the type is not in existence and has apparently not been seen since the time of Dr. Harris. There is a single metatype in the Harris collection at Boston, labelled, "744, N.C.,” "Tomicus xylographus Say, 744, teste Say." This specimen should apparently be accepted as fixing the species.

Length 2.7 mm., rather slender, the pronotum rather strongly and closely punctured behind, the punctures of varying size, the elytral striae slightly
impressed, strial punctures moderate, interstrial punctures smaller, uniseriate, punctures distinct on the sides; declivity flattened, moderately opaque, the punctures shining, the suture wide and slightly elevated, with about three widely separated small acute granules, the second interspace flat, hardly impressed, with small granules above the face of the declivity; the third interspace slightly elevated and granulate as on the first.

Host trees: Probably various hardwood species.

Xyleborus inermis Eichh. is very closely allied to and possibly identical with xylographus Say. The lateral interspaces of inermis are described by Eichhoff as “sparsely, lightly, punctured.”

Xyleborus affinis Eichh. has the pronotum very lightly and sparingly punctured behind, and is apparently distinct thereby. I have not recognized either inermis or affinis from Canada or the Northern States.

Xyleborus canadensis, n. sp.

Length, 2.6 mm.; moderately stout, differs from xylographus chiefly in the distinctly stouter form, the sides of the elytra parallel far beyond the middle, hardly narrowed before the declivity, rather broadly rounded behind, broadly flattened on the declivity, the striae only very faintly impressed.

Host tree: Quercus.

Pityophthorus canadensis, n. sp.

This species is very closely allied to cariniceps Lec. and differs chiefly in characters of the female front and declivity of both sexes. The length is 2.5 mm.

Description of the female.—The head has the front with a large subcircular median area convex, impressed about the margins, minutely and densely punctured and densely finely pubescent, most densely on an elongate oval area on each side of the median line which is less densely punctured and pubescent particularly on the epistoma; the pubescence reddish yellow and longest on the middle part of the oval area; the remainder of the front, including the narrow band between the central pubescent area and the eyes, sparsely, moderately punctured and shining; the antennal club longer than the funicle, nearly as wide as long, with the sutures broadly, strongly arcuate and bisinuate on the outer face, the second and third more strongly, the sutures fringed with stiff hairs, the margin of the club with a few long erect hairs.

The pronotum is but little longer than wide, with the sides nearly parallel on the hinder half, strongly narrowed on the anterior half and rather narrowly rounded in front; the front margin finely serrate; coarsely and rather sparsely asperate on the cephalic third, more finely and densely towards the summit; transversely impressed immediately behind the summit so that the latter is subcarinate; moderately, deeply, not closely punctured and shining on the caudal half; the median line and a small area on the middle of each side behind the middle impunctate; finely acutely margined immediately in front of the caudal border.

The elytra are slightly narrower than the pronotum with the sides faintly arcuate, nearly parallel, a little narrowed on the caudal fourth and very broadly rounded behind as seen from above; the striae hardly impressed except the sutural striae which are faintly indicated; the striae punctures moderate, deep, in not very regular rows, less regular near the suture and near the lateral
margins; the interstrial punctures as large as those of the striae, sparsely and not very regularly placed, more numerous on the first two interspaces and on the sides, the sutural interspace with the punctures smaller behind and disappearing on the declivity, confused near the lateral margins; the declivity retuse, the sutural interspace fine, slightly elevated; the sutural area strongly sulcate, smooth and shining near the apex; the prominence with a row of small acute teeth on the third interspace along the mesal margin of the summit, the teeth becoming sparse and a little coarser towards the apex; with a few very minute granules on the outer margin of the caudal half of the declivity; the disc of the elytra nearly glabrous with a few hairs on the sides, becoming longer behind, and longer, sparser and stiff on the declivity.

The male has the front flattened on a large subcircular area, roughly punctured, with a strongly elevated, acute median carina, highest and abruptly terminated on the epistoma. The declivity has the row of small teeth on the third interspace nearly obsolete, with the retuse lateral elevations ending nearly half way down the declivity in a distinct but broad and very blunt prominence, behind which the smooth sulcus is abruptly strongly widened. This blunt tooth is directed meso-caudad; it is in the same position as the declival tooth of cariniceps, but is not elongate and only slightly overhangs the sulcus, not attaining the suture.

This species is abundant in twigs of Pinus in Ontario and Quebec. We have specimens from Marquette, Mich., and from Buffalo, N.Y. It probably extends throughout the northern section of the Eastern States.

Pityophthorus nitidus, n. sp.

Description of female.—The length, 2·1mm.; $2\frac{1}{2}$ times as long as the width; the elytral striae not impressed, the striael punctures small; the declivity sulcato-retuse, not acuminate.

The head has the front flattened, the flat area bounded by a semicircular line behind, very densely, minutely punctured and densely pubescent with short yellow hairs; the median carina nearly obsolete except the cephalic end which forms a rather prominent carinate tooth on the epistoma; the eyes rather finely granulate, deeply narrowly emarginate; the antennal club very wide, short oval, almost subcicular, the sutures broadly arcuate, the third most strongly, the first two segments each distinctly shorter than either of the last two, rather closely pubescent.

The pronotum is as long as wide; very broadly rounded behind, strongly arcuate on the sides behind, moderately constricted before the middle, broadly rounded on the front margin, which is finely serrate, the asperities slightly stronger at the middle; the summit slightly in front of the middle, with a wide transverse impression across the disc immediately behind the summit; finely subconcentrically asperate in front, rather coarsely, very densely, subgranulately punctured behind, the punctures smaller towards the lateral margins; with a small impunctate spot on the middle of the side, and a smooth median space.

The elytra are slightly less than twice as long as the pronotum, 9:5, faintly narrower than the pronotum; truncate at the base; the sides subparallel for over two-thirds the length then narrowed and rather broadly rounded behind, very faintly sulcato-retuse as viewed from above; the upper part of the declivity distinctly sulcato-retuse; the sutural striae finely impressed; the remaining striae only very faintly indicated, except near the lateral margins; the last two strongly impressed, especially behind; the striael punctures very small, fairly close and deep, in only moderately regular rows; the interspaces not convex, sparsely uniseriately punctured on the alternate interspaces of the disc, more closely punctured about the base and lateral margins; the ninth interspace moderately convex behind. The declivity is broadly sulcate above, the sulcus wide, not deep,
not widened behind, shining, the sides feebly retuse, with a row of minute granules on the suture and along the region of the third interspace; the whole declivity smooth and brightly shining, with the punctures extremely minute, hardly visible except towards the sides. The disc and the declivity are almost glabrous, with only minute, very sparse pubescence; the pubescence about the lateral margins very short but distinct. The last sternite is rather deeply broadly emarginate.

The male has the front flattened as above, but coarsely, fairly closely punctured with a well-developed median carina, and the pubescence almost invisible; the last ventral is emarginate as in the female.

Quebec province, Tullochgoram; Picea canadensis.

Pityophthorus rhois, n. sp.

Description of adult.—Length, 1.6mm.; the width three-eighths of the length; with the declivity very steep and retuse on the sides.

The head has the front coarsely punctured above, very distinctly flattened on the cephalic half, this area distinctly margined by an acute semicircular line, coarsely punctured, with slender hairs of moderate length, with an acute median denticle on the front margin; the vertex and genæ nearly impunctate, finely transversely aciculate; the eyes rather deeply emarginate, coarsely granulate; the antennal club very large, the first two sutures straight, the third arcuate and near the apical margin.

The pronotum is as long as wide with the hind margin very broadly rounded, subtruncate, and finely margined; the sides faintly arcuate, subparallel on the caudal half, feebly constricted in front of the middle and rather broadly rounded on the front margin, which is very finely serrate; the cephalic half concentrically asperate, in fairly distinct rows, the first distant from the serrate front margin; the caudal half rather coarsely and closely punctured on the disc, more sparsely on the sides, with a small irregular lateral impunctate area and a narrow, slightly elevated, smooth median line; the venter of the prothorax coarsely punctured in front, smooth and shining behind.

The elytra are as wide as the pronotum, three-fifths as wide as long; with the base truncate; the sides nearly parallel to beyond the middle then moderately narrowed and finally subtruncate on the caudal margin, as viewed from above; the striae moderately impressed, the strial punctures moderately coarse, deep and closely placed; the interspaces narrow, impunctate on the disc, punctured on and near the declivity and on the sides, and the sutural interspaces sparsely punctured. The declivity is very steep with the suture raised, sparsely uniseriately granulate and hairy, the first and second striae together with the intervening second interspace distinctly impressed, smooth and shining; the second striae strongly punctured; the lateral portions of the declivity strongly convex, the intervals granulate-punctate and setose. The interstriae punctures bear rather long erect hairs, which are therefore sparse and not present on the disc except along the suture. The last ventral segment is very deeply emarginate.

The type was taken by the writer at Ithaca, N.Y., in dead sumach limbs. It is a common species throughout the eastern part of the United States and Canada, usually confused in collections with Leconte's *consimilis*.

There is a series in our collection from Biscayne, Key West, and Haw Creek, Florida, which is left as a smaller race of *rhois*. It is slightly but distinctly smaller than the northern material, but of the same proportions and sculpture.
Pityophthusor lateralis, n. sp.

There is a short series of this species in the Cornell University Collection, all from Key West, Florida. It is very closely allied to rhois and can be described best by comparison. It is of the size, general shape and sculpture of rhois but differs specifically as follows: The pronotum has the sides straight and parallel on the hinder half and narrowly rounded on the front margin, with the marginal serrations larger, becoming much longer on the middle line, and the perfectly concentric asperities forming acute, serrate ridges; the punctures of the hinder half distinctly sparser and smaller; the elytra have the punctures on the sides very much smaller than those on the disc, with the lateral interspaces smooth and shining, the sides parallel farther behind the middle, the sulcus of the declivity deeper, the lateral convexities more strongly produced and more compressed.

The type is in the Cornell University Collection, and paratypes are placed in the collection of the Entomological Branch.

Pityophthusor confertus, n. sp.

Description of the female.—The length is 2 mm., the width about one-third the length, 5:14; the elytra densely, rather coarsely, apparently confusedly punctured, with the declivity sulcate-retuse and finely granulate on the suture and lateral prominences.

The head has the front subcircurally plano-concave, closely very finely punctured and closely pubescent, the hairs bright-yellow and short except about the margin of the pubescent area which bears a much longer fringe; with a faint trace of a median, longitudinal, less evidently punctured line, somewhat elevated on the epistomal margin; the antennal club with the sutures deep, very broadly arcuate, and strongly chitinized.

The pronotum is as long as wide; with the hind margin very broadly rounded; the hind angles rounded; the sides faintly arcuate, subparallel to beyond the middle, then faintly constricted, and broadly rounded on the cephalic margin, which is only very finely serrate, hardly noticeably so from above; the cephalic half moderately subconcentrically asperate; rather closely and somewhat roughly punctured behind, with the punctures very deep, rather coarse on the disc, very much smaller on the sides, the smooth median space narrow, subcarinate near the summit; the ventral surface of the thorax finely punctured behind.

The elytra are nearly twice as long as wide, 9:5; with the sides subparallel for three-fifths the length, narrowed behind, then strongly rounded at the hind angles, with the declivity somewhat produced and the suture projecting beyond the outline as viewed from above, not acuminated at the actual apex; the sutureal striae impressed, gradually more strongly behind, becoming deeply sulcate on the declivity; the suture nearly raised and nearly smooth on the disc; the other striae not impressed except the last; the punctures rather coarse and very close, apparently rather confused, but actually with very irregular strial and inter-strial rows, the punctures of the latter as large and nearly as numerous as those of the strial rows, more strongly confused near the suture and the side margins; the pubescence short, erect and indistinct. The declivity is sulcate-retuse with the punctures much smaller than on the disc, those of striae 1 and 2 nearly obsolete; the sulcus moderately wide and deep, widest slightly behind the middle, narrowed towards the apex, smooth and shining; the suture rather well developed, finely uniseriately granulate-hairy; the second striae of punctures minute, curving outward along the dorso-lateral margin of the sulcus; the convexity somewhat compressed, finely, densely, and roughly punctured; the third interspace with a row of about six small granules forming the margin of
the sulcus, with the accompanying long hairs, which in this species are directed caudo-mesad, with shorter sparse stiff hairs on the sides and ventral margin of the declivity; the apical margin narrowly rounded but not acuminated. The ventral surface is finely, not closely punctured, and finely pubescent; the last sternite is very deeply emarginate.

The male has the front flattened, semi-circularly margined behind, very strongly so across the middle; closely, deeply and roughly but not coarsely punctured; with a small median tubercle on the epistoma; rather closely pubescent with fine short hairs of equal length; the pronotum more distinctly constricted, with the sides straighter behind. The declivity has the granules and setae somewhat coarser.

A long series from Pinus contorta of British Columbia Coast Region. The type series was collected by Mr. Tom Wilson at Adams Lake, B.C.

Pityophthorus granulatus, n. sp.

This species is so closely allied to nudus that a detailed description is unnecessary. It differs from nudus chiefly in the usually more coarsely punctured pronotum and elytra, with the elytral interspaces transversely rugose, and the strongly, uniseriately granulate-setose suture and lateral convexities of the declivity. The secondary sexual characters appear to be the same as in nudus.

It is abundant in jack pine in Manitoba, and occurs in pine and balsam in Quebec province, and in Nova Scotia.

Pityophthorus ramiperda, n. sp.

Description of adult.—The form is rather stout, 2½ times as long as wide; with the pronotum strongly arcuate on the sides, and the declivity very steep and only slightly retuse; the length, 2.1 mm.

The head has the front moderately convex, closely rather finely, deeply punctured, with a median carina on the cephalic half extending to the epistomal margin; the vertex smooth; the antennal club very large, short oval, the first two sutures faintly arcuate, the second before the middle, the third strongly arcuate, the first two segments short, subequal, the third and fourth equal in length and together longer than the first two united, sparsely pubescent with short erect hairs, the sutures not septate.

The pronotum is about as wide as long, more strongly arcuate behind than usual, the hind angles rounded, strongly arcuate on the sides, constricted before the middle and broadly rounded on the front margin, which is serrate with the median asperities longest; the summit slightly in front of the middle; the cephalic portion concentrically finely asperate; the caudal portion rather coarsely, subgranulately punctured, more finely near the lateral margins, with a strong well-defined median carina from the summit to the caudal margin, and the basal marginal line fine across the disc but distinct. The ventral surface of the prothorax is smooth and shining, with a few small punctures near the front margin.

The elytra are almost exactly twice as long as the pronotum, 75:39; three-fifths as wide as long; about as wide as the pronotum, slightly wider at the middle; the base truncate; the sides faintly arcuate, subparallel for about four-fifths the length, then broadly rounded to the hind margin, which is sulcate-truncate as viewed from above; the suture elevated on the disc; the punctures in regular rows, the sutural striae moderately impressed, the remaining discal striae hardly impressed, the lateral striae from the eighth outward deeply impressed, the ninth very deep and wide; the striae punctures regular, small, deep and closely placed; the interspaces slightly transversely wrinkled, in places smooth and shining, rather finely, sparsely punctured, more coarsely and closely
near the lateral and basal margins, convex on the sides, the ninth strongly convex. The declivity is very steep, the caudal margin broadly rounded, not at all produced; the suture finely, feebly developed, faintly granulate; sulcate and distinctly but not strongly retuse on each side; the sulcus impunctate except at the apex, comprising the second interspace, slightly impressed, rather wide but hardly widened behind, smooth and shining; the third interspace very minutely uniserially granulate on the convexity and faintly convex below, where it joins the convex ninth interspace; the narrowly curved elevation thus produced forming the ventral margin of the lateral convexity; the strial rows distinct on the declivity but the punctures very minute; the intersstitial punctures almost obsolete. The pubescence of the dorsal surface is minute, nearly obsolete. The abdominal sternites subequal in length, the last broadly emarginate. I have not yet isolated any secondary sexual characters. The front in some individuals is much more coarsely punctured and is plainly somewhat flattened, with the carina nearly obsolete.

The type is from Isle Perrot, Que., in twigs of living Pinus strobus; also collected at Ste. Anne de Bellevue, Que., and Stony Creek, Ont.

Pityophthorus intextus, n. sp.

Description of male.—The length is 1.8mm.; the width slightly more than one-third the length; the declivity sulcato-retuse, with long bristles, not acuminate.

The head has the front shining, coarsely punctured, a transverse impression on the cephalic half bounded behind by a rough transverse carina; the longitudinal median carina very faint; with fine pubescence in front of the transverse carina; the antennal club very wide with the sutures transverse, slightly arcuate.

The pronotum is as long as wide, broadly rounded and margined behind; the hind angles rounded; the sides arcuate on the hinder half, rather strongly constricted in front of the middle and semicircularly rounded in front; the cephalic margin very finely serrate, the serrations recurved; the cephalic half finely concentrically asperate, the rows becoming irregular on the sides; behind shining, sparsely punctured, the punctures rather coarse, hardly smaller on the sides; with a smooth median space, wider behind and carinate towards the summit.

The elytra have the base truncate, narrower than the pronotum at the base, but becoming of the same width towards the middle; the sides somewhat arcuate, subparallel for two-thirds the length; broadly rounded behind as viewed from above, with the suture raised above the outline at the middle; punctured in fairly regular rows; the striae not impressed on the disc, except the sutural striae, those near the sides irregularly impressed; the striae punctures coarse and deep, so that the surface is strongly roughened; the interspaces with coarse, deep, setigerous punctures, sparse and irregular on the disc, rather close and uniseriate towards the declivity and near the side margin; the punctures decidedly confused about the scutellum. The declivity is strongly sulcato-retuse, with the apex moderately rounded on the ventral margin, not acuminate; the sulcus deep, wide, smooth and shining, slightly wider behind; the suture feebly developed, very finely uniserially granulate and with a row of fine hairs; the lateral convexities with the third interspaces there strongly, uniseriately, rather sparsely granulate, each granule preceding a long stiff bristle-like hair, with a few smaller granules and a few similar long hairs on the remaining interspaces of the convexity, and more numerous long hairs about the margin.

The female has the front coarsely punctured above and on a narrow space in front of the eyes, with the lower half of the front covered by a subcircular patch, extremely finely, densely punctured and very densely clothed with fine, short, erect, yellow hairs of equal length; the patch bounded in front
by the straight marginal fringe, circularly rounded on the sides and behind. The sides of the pronotum from above are nearly evenly arcuate, only faintly constricted in front of the middle, and more elongate. The type is from Athabaska Landing, Alta.; in *Picea canadensis*. Abundant throughout northern Alberta and northeastern British Columbia in spruce and larch.

Pityophthorus nudus, n. sp.

Description of male.—The length, 1.6mm.; the width slightly more than one-third the length, 4:11; nearly glabrous; the elytral striae in rows and the declivity sulcate with the apex acuminate. The head has the front plano-convex, closely, rather coarsely, roughly punctured, with a moderate median carina terminated in front by a median postmarginal granule; the pubescence fine and inconspicuous; with the usual postepistomal transverse groove from which arises a sparse epistomal fringe of short yellow hairs; the eyes rather short oval, very coarsely granulate, deeply narrowly emarginate in front, margined above and in front by a row of setigerous punctures; the antennal club with the sutures nearly straight, strongly chitinized, the first two recurved at the sides, the third procurved, the outer part of the funicle a little longer than the pedicel. The pronotum is as long as wide, nearly truncate behind, feebly arcuate on the sides to beyond the middle, faintly constricted in front of the middle, broadly rounded in front, and rather strongly regularly serrate on the cephalic margin; the cephalic half concentrically asperate, the first row distant from the margin, the remaining rows less perfectly concentric and broadly curved; the summit prominent; the caudal half shining, sparsely and rather finely punctured on the disc, much more weakly on the sides, with an impunctate median space and an impunctate area on the middle of each side. The ventral surface of the prothorax is coarsely punctured in front, smoothly shining and excavated behind. The elytra are slightly narrower than the pronotum; with the sides nearly parallel, faintly arcuate, suddenly narrowed beyond the bend of the declivity, and rapidly convergent to the strongly acuminate tip; the suture elevated on the disc; the punctures in regular strial rows; the striae hardly at all impressed; the strial punctures moderate in size, deep and closely placed; the interstriae impunctate except near the side margin, narrow, shining, slightly transversely rugose in places. The declivity is steep, triangular as viewed from above, with the suture very strongly elevated behind, acuminate at the tip; with the second interspace sulcate; moderately impressed, very wide at the middle, brightly shining, narrowed at the tip; the sides of the declivity retuse on the upper half, the convexity with two subregular rows of minute granules, without long hair; the suture similarly rather confusedly minutely granulate and not hairy; the elytra nearly glabrous except for the few long hairs of the declivity, and a few near the side margin. The last ventral segment is very broadly and deeply emarginate; the ventral segments coarsely punctured. The female has the front densely finely punctured towards the epistoma in front of a more or less distinct transverse ridge, and densely clothed with fine short pubescence.

This species is found in twigs of *Picea canadensis* in Ontario, Quebec, and in New York state.

Ips englemanii, n. sp.

This species agrees with *tridens* in all characters of the pronotum and elytra; it differs only in the nature of the frontal tumulus, which is much less elevated, with its cephalic face densely clothed with very long, incurved, light yellow hairs.
Ips pilifrons Sw. is entirely distinct from engelmanni in its larger size, with the striae punctures very coarse, close and usually quadrate, the frontal tumulus still less elevated, with its cephalic face more oblique, longer, and clothed with extremely dense, short, orange to brownish hairs, resembling the pile on velvet. Engelmanni has variations in punctuation, depth of striae and in the stoutness of the third declivital tooth. Ten specimens were dissected, representing all variations, but all were females. The male is thus far unknown. This species is found in the same sticks with tridens and, probably through the wandering of the autumn-feeding adults, even in the same tunnels during the winter.

The egg-tunnels were not distinguished from those of tridens.

Host trees: Picea engelmanni, and probably also Picea canadensis.

Distribution: Known to us from the Selkirks and Rockies of central British Columbia and from Alberta.

Ips yohoensis, n. sp.

A species with the pronotal and elytral characters of tridens Mannh., but distinct by the characters of the front. The front is very finely and very densely granulate and finely pubescent on the cephalic half, slightly but distinctly transversely elevated behind the epistoma, which is broadly triangularly impressed medially, immediately in front of the elevation, the epistomal margin and the median impression bearing long yellow hairs; the elevation more evidently pubescent than the remainder of the granulate part of the front, with a trace of a smooth median line. The punctuation of the pronotum is usually coarse and close; the elytral striae are usually deeply impressed and coarsely punctured with sparser interstrial punctures nearly as large as those of the striae. The male has the front somewhat more strongly granulate and the third declivital tooth usually somewhat longer and more evidently capitate.

Variations in the size of the punctures and in the depth of the striae are found. The median line is in some individuals smooth, shining, sulcate from the epistomal impression to the vertex, and guarded on each by a small tubercle at the summit of the epistomal elevation. A considerable number of our specimens have the front entirely or almost entirely free of pubescence. They were taken from the same sticks as the typical series and are probably abraded.

Host trees.—Picea engelmanni and probably P. canadensis.

Distribution.—Known to us only from the Yoho valley, British Columbia.

Ips hunteri, n. sp.

Very closely allied to I. interruptus Mannh. in size and sculpture, from which it differs most noticeably by the regularly impressed elytral striae, and the feebly granulate first and second elytral interspaces.

The front of the head is convex, opaque, densely granulate with coarser granules intermixed, closely hairy; the club with the first two sutures bisinuate. The pronotum about as wide as long, narrowly rounded in front, slightly wider at hind angles (this character variable); rather finely and densely asperate in front, moderately, not closely punctured behind, more closely and coarsely on the sides. The elytral striae narrow, regularly, distinctly impressed, the sutural striae deeper; the stria punctures small and close; the interspaces finely, uniserially punctured, somewhat confused and granulate near the declivity, the punctures of interspaces 1 and 2 granulate behind but hardly so on the basal half; the declivity coarsely punctured, not closely, with four spines, the third stout, capitate and acute in the male, more slender and less distinctly capitate in the female.

Described from a series of about 180 specimens collected by Prof. S. J. Hunter, at Creede, Colo., 8,844 ft.
Eccoptogaster tsugae, n. sp.

A small black species; length, 3.4 mm. The female has the front convex, aciculate-punctate and finely hairy, deeply impressed on the middle line behind, strongly transversely impressed on the epistoma. The pronotum is as wide as long, arcuate on the sides, narrowed towards the front, constricted behind the front margin, finely punctured on the disc, more coarsely and densely along the cephalic constriction and on the sides; finely margined about the sides and behind. The elytra have the striae rather strongly impressed, the punctures rather coarse but not densely placed and somewhat irregular; the interspaces evidently striate with the punctures fine and somewhat irregular on the disc towards the suture; all the punctures moderately coarser and scabrous towards the base. The venter of the abdomen is finely, moderately closely punctured, the second segment vertical, convex, with the ventral border finely margined and nearly semicircular, the third and fourth segments as long as the fifth, which is deeply concave and strongly elevated on the caudal margin. The male has the front flat, more strongly and coarsely aciculate-punctate, the elytra hardly scabrous at the base, and the second visible abdominal sternite is somewhat more coarsely margined in front.

Host trees.—Tsuga mertensiana, Pseudotsuga mucronata.

Distribution.—Cherry Creek valley, Vernon District, British Columbia; Glacier, B.C., Jasper Park, Alta. (P. mucronata). Probably generally distributed. Found in dying bark.

Eccoptogaster monticolae, n. sp.

A small black species allied to subscaber, but constantly much smaller and with distinct elytral and ventral characters. The length is 2.8 mm. The elytral punctures are small and variably somewhat scabrous and coarser at the base; the interstrial punctures usually distinctly smaller than those of the striae, which are feebly impressed; the ventral declivity with the second visible sternite convex, shining, vertical, with the caudal fifth slightly oblique, finely sparsely punctured, feebly margined in front or below, with no trace of a ventral spine; the other sternites sericeus, finely punctured, the third and fourth short, the fifth hardly longer than the third and fourth together, and strongly margined behind; the first visible sternite with the median part of the disc strongly convex when viewed from the side. The male has the front flattened and strongly aciculate, the second visible abdominal sternite more strongly margined, and the elytra less scabrous at the base. The series from Douglas fir, is apparently the same species.

Host trees.—Pinus monticola; Pseudotsuga mucronata.

Distribution.—Arrowhead, B.C., White pine; Creighton valley, British Columbia (Douglas fir).
CANADIAN BARK-BEETLES

PART II

A PRELIMINARY CLASSIFICATION, WITH AN ACCOUNT OF THE HABITS AND MEANS OF CONTROL

BY

J. M. SWAINE,
Assistant Entomologist in Charge of Forest Insect Investigations

BULLETIN No. 14
(Technical Bulletin)

Published by direction of the Hon. T. A. Crerar, Minister of Agriculture, Ottawa

OTTAWA
J. de LABROQUERIE TACHÉ
PRINTER TO THE KING'S MOST EXCELLENT MAJESTY
1918

ISSUED SEPT. 6, 1918.
CANADIAN BARK-BEETLES

PART II

A PRELIMINARY CLASSIFICATION, WITH AN ACCOUNT OF THE HABITS AND MEANS OF CONTROL

BY

J. M. SWAINE,
Assistant Entomologist in Charge of Forest Insect Investigations

BULLETIN No. 14
(Technical Bulletin)

Published by direction of the Hon. T. A. Crerar, Minister of Agriculture, Ottawa

OTTAWA
J. DE LABROQUERIE TACHÉ
PRINTER TO THE KING'S MOST EXCELLENT MAJESTY
1918

ISSUED SEPT. 6, 1918.
To the Honourable
The Minister of Agriculture,
Ottawa, Ont.

SIR,—I have the honour to submit, for your approval, Entomological Bulletin No. 14, Part II, entitled "Canadian Bark-Beetles; Part II: A Preliminary Classification, with an Account of the Habits and Means of Control," which has been written by Mr. J. M. Swaine, Assistant Entomologist in charge of Forest Insect Investigations.

As I pointed out in Part I of this series, the bark-beetles constitute the chief insect enemies of our coniferous forests. Forest fires are spectacular, and the results are immediately and strikingly noticeable, but competent authorities are of the opinion that the annual loss caused by the depredations of these and other forest insects which are widely distributed throughout the country is greater in the aggregate than the loss due to forest fires.

The methods to be adopted to control the outbreaks of these serious enemies of our forests depend upon a knowledge of the species of bark-beetles concerned. Different species have different habits, and as control measures are based upon their habits it is necessary for the forester to be able to recognize the various species that are to be found affecting our timber and shade trees. The object of this bulletin, which brings together the results of the work of many years, is to place in the hands of foresters, students, and other workers requiring such information, a means whereby they will be able to identify readily the species of bark-beetles causing any injuries that may be found in our Canadian forests. An account of the general habits and of the methods of controlling bark-beetle outbreaks is included, and descriptions are given of a number of new species.

At the present time the protection and correct utilization of our timber resources is of greater importance than ever from a national and imperial standpoint. When the information contained in this bulletin is available to practical foresters it will be of inestimable practical value, as it will assist them in taking the necessary steps to prevent the continued loss of timber now being destroyed and to protect extensive areas that are threatened by the attacks of bark-beetles, most insidious enemies of the forest.

I have the honour to be, sir,
Your obedient servant,

C. GORDON HEWITT,
Dominion Entomologist and Consulting Zoologist.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>I. The Beetles and Their Habits</td>
<td>8</td>
</tr>
<tr>
<td>The Life Stages</td>
<td>8</td>
</tr>
<tr>
<td>General Habits</td>
<td>9</td>
</tr>
<tr>
<td>Aberrant Habits</td>
<td>10</td>
</tr>
<tr>
<td>The Details of the Tunnels</td>
<td>10</td>
</tr>
<tr>
<td>The Entrance Hole</td>
<td>11</td>
</tr>
<tr>
<td>The Entrance-tunnels</td>
<td>11</td>
</tr>
<tr>
<td>The Egg-tunnels proper</td>
<td>12</td>
</tr>
<tr>
<td>The Ventilation-tunnels</td>
<td>14</td>
</tr>
<tr>
<td>The Egg-niches</td>
<td>14</td>
</tr>
<tr>
<td>The Egg-pockets</td>
<td>14</td>
</tr>
<tr>
<td>The Egg-grooves</td>
<td>14</td>
</tr>
<tr>
<td>The Turning-niches</td>
<td>14</td>
</tr>
<tr>
<td>The Nuptial Chamber</td>
<td>14</td>
</tr>
<tr>
<td>The Food Tunnels</td>
<td>15</td>
</tr>
<tr>
<td>The Types of Egg-tunnels</td>
<td>16</td>
</tr>
<tr>
<td>The Larval-mines</td>
<td>18</td>
</tr>
<tr>
<td>Factors Influencing the Development of Bark-beetles</td>
<td>18</td>
</tr>
<tr>
<td>Oviposition</td>
<td>19</td>
</tr>
<tr>
<td>Removing the Boring-dust</td>
<td>19</td>
</tr>
<tr>
<td>A Method for Studying Habits</td>
<td>20</td>
</tr>
<tr>
<td>II. Bark-beetle Injuries and the Means of Control</td>
<td>22</td>
</tr>
<tr>
<td>Bark-beetle Injuries</td>
<td>22</td>
</tr>
<tr>
<td>Primary Enemies</td>
<td>22</td>
</tr>
<tr>
<td>Secondary Enemies</td>
<td>23</td>
</tr>
<tr>
<td>Neutral Species</td>
<td>23</td>
</tr>
<tr>
<td>The Importance of Bark-beetle Injuries in Canadian Forests</td>
<td>23</td>
</tr>
<tr>
<td>The Normal Annual Loss</td>
<td>24</td>
</tr>
<tr>
<td>Sporadic Outbreaks</td>
<td>24</td>
</tr>
<tr>
<td>Epidemic Outbreaks</td>
<td>24</td>
</tr>
<tr>
<td>Conditions Favouring Bark-beetle Outbreaks</td>
<td>25</td>
</tr>
<tr>
<td>Slash</td>
<td>25</td>
</tr>
<tr>
<td>Ground Fires</td>
<td>25</td>
</tr>
<tr>
<td>Other Factors</td>
<td>26</td>
</tr>
<tr>
<td>Natural Control Factors</td>
<td>26</td>
</tr>
<tr>
<td>Parasites</td>
<td>26</td>
</tr>
<tr>
<td>Predators</td>
<td>26</td>
</tr>
<tr>
<td>Birds</td>
<td>27</td>
</tr>
<tr>
<td>Parasitic Fungi</td>
<td>27</td>
</tr>
<tr>
<td>Methods of Control</td>
<td>27</td>
</tr>
<tr>
<td>The Interrelations between Fire and Bark-beetles</td>
<td>28</td>
</tr>
<tr>
<td>III. Structural Characters of the Bark-beetles</td>
<td>30</td>
</tr>
<tr>
<td>General Characters of the Body</td>
<td>30</td>
</tr>
<tr>
<td>The Head</td>
<td>30</td>
</tr>
<tr>
<td>The Thorax</td>
<td>32</td>
</tr>
<tr>
<td>The Legs</td>
<td>33</td>
</tr>
<tr>
<td>The Elytra</td>
<td>33</td>
</tr>
<tr>
<td>The Abdomen</td>
<td>33</td>
</tr>
<tr>
<td>Internal Characters</td>
<td>34</td>
</tr>
<tr>
<td>IV. Classification. A Preliminary Arrangement of the Canadian Bark-beetles</td>
<td>35</td>
</tr>
<tr>
<td>Introductory</td>
<td>35</td>
</tr>
<tr>
<td>Paired Species</td>
<td>36</td>
</tr>
<tr>
<td>The Superfamily Ipoidea</td>
<td>38</td>
</tr>
<tr>
<td>The Family Platypodida</td>
<td>38</td>
</tr>
<tr>
<td>The Family Ipidse</td>
<td>38</td>
</tr>
<tr>
<td>The Subfamily Eccoptogasterinae</td>
<td>39</td>
</tr>
<tr>
<td>The Subfamily Hylesininae</td>
<td>39</td>
</tr>
<tr>
<td>The Subfamily Micracine</td>
<td>44</td>
</tr>
<tr>
<td>The Subfamily Ipinae</td>
<td>44</td>
</tr>
<tr>
<td>List of Coniferous Host Trees</td>
<td>134</td>
</tr>
<tr>
<td>Glossary</td>
<td>134</td>
</tr>
<tr>
<td>References to Literature</td>
<td>130</td>
</tr>
<tr>
<td>Index to Genera and Species and to the Plates</td>
<td>140</td>
</tr>
</tbody>
</table>
Canadian Bark-beetles.

PART II. A PRELIMINARY CLASSIFICATION, WITH AN ACCOUNT OF THE HABITS, INJURIES AND MEANS OF CONTROL.

By J. M. Swaine

INTRODUCTION.

This bulletin has been written with the object of assisting students and practical foresters in determining the bark-beetles of Canadian forests. The majority of the species occurring in the northern regions of the United States have also been included, since nearly all may eventually be found in Canada.

The bark-beetles of this country have thus far received but little attention from most collectors and students of the Coleoptera. There were until recently so many common species undescribed, and the older descriptions were so incomplete, that their determination was frequently given up as a hopeless task. Furthermore, while many of the species may be obtained in quantity, when the collector knows their habits, most of the bark-beetles are taken only in the bark or wood of their host trees, and then only by those who seek them. Owing probably to these two causes our literature shows a lamentable dearth of biological papers on North American bark-beetles. While the life-histories and habits of the European species have been discussed in scores of papers, the habits of very few of ours have been published, excepting the species of the genus Dendroctonus.

There are still numbers of our species undescribed. Some have been received or collected since these keys were finally revised. Others are represented in our collection by one or two specimens, and may prove to be only marked variations, and there are many other species, undoubtedly, that have not yet been collected.

The study of a group of beetles containing so many destructive enemies of forests and shade trees is of particular importance. Careful and detailed studies of the structural characters and habits must be made so that the injurious species may be readily determined and practical remedies perfected. A single dying pine or spruce may contain many species of bark-beetles working in the bark and wood. The entomologist must be able to determine all the different species he meets and must have a working knowledge of the habits of all of them so that, with the assistance of the evidence before him in the trees themselves, he may be able to select the species responsible for the primary injury to the timber. It is evident, therefore, that intensive laboratory studies upon the morphology and classification of the beetles are absolutely necessary, and that time spent upon even the species of apparently minor economic importance may give decidedly practical results.

Mr. A. E. Kellett, Artist Assistant in the Entomological Branch, has drawn the illustrations which bear his signature, under the supervision of the writer, and has prepared many of the photographs. The writer is indebted to many students of the Coleoptera and to several institutions for the privilege of studying their collections. This assistance will be acknowledged more fully in later publications dealing with the biology of the species.
I.

THE BEETLES AND THEIR HABITS.

THE LIFE STAGES.

The Bark-beetles are small, usually cylindric beetles, from one to nine millimetres in length, and brownish or black in colour when mature. They are found in company with their small, whitish, legless grubs, cutting tunnels in the bark or wood of trees. Figures on plates 4 and 5 illustrate types of the tunnels cut by them.

In common with other beetles there are four life stages: the egg, the larva or grub, the pupa or resting stage, and the adult beetle.

The eggs are usually oval, elongate-oval, subglobular, or rarely somewhat elongate; pearly white or translucent and watery; with a very delicate covering when deposited in niches and packed with boring dust, but with a thicker skin when left loose in the galleries (Pl. 3, figs. 1, 3). The surface modifications appear to be of minor importance. They are, of course, very small, but sometimes of an astonishing size in relation to the size of the mother beetle. The eggs of Cryphalus are almost as large as the beetle's abdomen.

The larvae are always legless, whitish in colour, with darker, strongly chitinized head and mandibles, and with the thoracic segments distinctly larger than the others, in the true bark beetles (Pl. 1, fig. 2). In ambrosia-beetles of the genera Anisandrus and Xyleborus, the larvae move about freely in the tunnels, and they are more elongate and distinctly more mobile than the others.

The characters of the larvae will prove of considerable assistance in the classification of the family; and in addition, they are of decided practical value, since not infrequently the larvae alone are obtainable in material sent in for determination. A discussion of the larval characters, however, must be left for a later publication.

A distinct prepupal, quiescent stage, lasting a few days, is common in the family.

The pupae are formed in the ends of the larval mines, sometimes in pupal cells. They are white at first, becoming yellowish before transformation. They are variably armed with spines and stiff setae, and present characters of decided importance (Pl. 1, fig. 3). The adults are yellowish when they emerge from the pupal skin, but rapidly become darker in colour, passing through yellow to reddish and dark brown or nearly black.

PLATE 1.

IPID BEETLES, All Greatly Enlarged. (Original.)

Fig. 1, Dendroctonus monticolae Hopk., upper left.
Fig. 2, Dendroctonus monticolae Hopk., larva, upper right.
Fig. 3, Dendroctonus borealis Hopk., larva, upper right.
Fig. 4, Pityophthorus nitidus Sw., pupa, upper left.
Fig. 5, Pityophthorus nitidus Sw., details of the pronotum, upper left, antennae incorrect.
Fig. 6, Pityophthorus nitidus Sw., caudal view of the declivity, lower left.

8
General Habits.

In habits the *Ipidae* of our fauna form a sharply isolated group. Their tunnels, cut usually in the bark or wood of trees, are characteristic of the family. Our species present two quite distinctive habits, corresponding to which they have been termed True Bark-beetles and Ambrosia-beetles, respectively. The former, with very few exceptions, cut their tunnels entirely or almost entirely in the bark or between the bark and the wood; the latter, on the other hand, penetrate the wood and the young develop in the tunnels well below the wood surface, nourished entirely by a peculiar fungus called Ambrosia, which grows invariably upon the tunnel walls and stains them dark brown or black.

With True Bark-beetles the typical habit is as follows: An entrance tunnel is cut obliquely upward through the bark to the wood surface. From the base or inner end of the entrance tunnel one or two or more egg-tunnels are cut, vertically, transversely, or in a radiate fashion, between the bark and the wood along the wood surface. With many species a small, flat cavity, the nuptial chamber, is excavated at the base of the entrance hole, and from it the egg-tunnels originate. The eggs are laid along the sides of the egg-tunnels, singly in cup-shaped egg-niches, a few together in larger egg-pockets, or many in layers and egg-grooves. The egg-tunnels and entrance hole are uniform in size, slightly larger than the diameter of the beetle, and perfectly cylindric. The larvæ excavate slender mines through the inner bark or between the bark and sapwood, away from the egg-tunnels. The larval mines are filled with excrement and increase gradually in diameter as the larvæ grow. With some species the mines are kept regularly spaced, rarely intercrossing unless crowded, and present a regular and pleasing pattern; such are those of *Chrysesus torva* Lec., (Pl. 23, fig. 5) in hickory twigs, and *Leperisinius aculeatus* Say in ash (Pl. 5, fig. 8). With other species the larval mines are quite irregular and when numerous reduce the inner bark entirely to powder. The ends of the mines are widened to form a more or less distinct pupal cell, which may lie between the bark and the wood, may be continued into the middle layers of bark, or may be sunken below the wood surface, according to the species habit. The adult beetles finally bore round holes through the bark and escape. The result of this excavation by adults and larvæ is a set of egg-tunnels and larval-mines, characteristic of the family, frequently of the genus, and common to the individual species.

The tunnels of the ambrosia-beetles are discussed briefly on the following pages. They will not be confused with those cut by any other beetles of our fauna. A distinctive character is the blackening of the tunnel walls by the ambrosia fungus. The larval tunnels of *Hylecatus* are somewhat similar and are also lined with a fungus, but they are not similarly discoloured. The tunnels of *Stenocelis* might be mistaken for those of ambrosia-beetles, but there is no staining from fungi, and the larvæ tunnel freely in the wood.

Aberrant Habits.

The tunnels of a few of our species of *Pityophthorus*, notably *ramiperda* and *puberulus*, cut their tunnels through the pith of pine twigs (Pl. 4, fig. 5). Several species of *Conophthorus* excavate egg-tunnels through the pith of pine cones (Pl. 8, fig. 5). *Hylastinus obscurus* Marsh, makes normal egg-tunnels in clover roots. A species of *Pityophthorus* cuts the egg-tunnels immediately below the wood surface of dry maple twigs, and both adults and larvæ feed upon the black wood fungi which abound in sapwood of the twigs they select. Exotic species are found in various nuts, date pits, nutmegs, jalap root, and dry twigs. Species of *Xyloleptes* breed in plants of the gourd family. Several ambrosia-beetles are recorded cutting their tunnels in the staves of wine casks.
and in similar places. Aberrant habits are much more common in tropical countries than with us. The vast majority of our species breed normally in the bark or wood of trees.

Details of the Tunnels.

A study of the egg-tunnels and larval-mines reveals many important and interesting characters. A distinctive form of the galleries obtains with many species, so that an examination of the tunnels in the bark or wood may determine exactly the species to which they belong. It is thus possible to determine which species have been working in a tree, even years after the beetles have left, and if the galleries were engraved upon the wood, even after the bark has disappeared. The work of *Chramesus icorix* Lec. in hickory branches (Pl. 23, fig. 5), of *Leperinus aculeatus* Say in ash (Pl. 20, fig. 2), of *Eccoptogaster picsse* Sw. in spruce and fir (Pl. 20, fig. 3), of *E. rugulosus* Ratz. in fruit trees and wild cherry (Pl. 5, fig. 7), of *Phloeosinus canadensis* Sw. in eastern cedar (Pl. 5, fig. 5), of *Dryocoetes confusus* Sw. in mountain balsam (Pl. 19, fig. 1), and many others, may be specifically determined, even though, as rarely happens, no old dead beetles are to be found in the bark.

The Entrance-hole.

The entrance-hole with most species is usually free from chips or frass except while this material is being extruded; but with certain other species there are peculiar characters connected with it. The boring-dust and excrement of *Xyloterinus politus* Say projects from the entrance-hole while excavation is active, often for several centimetres, as a cylindric rod of the diameter of the entrance-hole. During a period of fine weather these are often visible in great numbers on the trunks and limbs of dying, infested maples and beeches. The entrance-holes of *T. retusus* Lec., on the other hand, are readily distinguished by quite different characters. The opening is covered by a cup-like layer, an aggregation of excrement. Through a small hole in the centre of this cup, which is convex outwards, a slender thread of excrement projects, pushed out by additions from within, until finally broken by rain or by the action of gravity. The air circulation in tunnels so blocked at the entrance must be extremely slow. The borings of *Eccoptogaster rugulosus* Ratz. and *Phthorophloeus liminaris* Harris in green bark of peach trees and wild cherry trees result in a copious exudation of sap, and the hardening of the sap produces conspicuous gummy masses about the entrance-holes. The flow of resin from the tunnels of certain species of *Dendrocolonus, Ips*, and others, in green bark of pines and spruces, results in a "pitch-tube" or "resin-tube" about the entrance-hole. The beetles are able to live in spite of the exuding resin, and by their movements backward and forward in the ejection of the boring-dust, form the surrounding tower of gum upon the bark. The presence of this "resin-tube" about the entrance-hole proves that the tunnel was started in fresh, sappy bark.

With many species of Ipid beetles the male spends part of his time backed into the entrance tunnel near the opening, which he neatly fits, and through which his declivity is often visible. In species whose males are wingless, and therefore have no part in the construction of new tunnels, the female adopts this function of guarding the entrance, in addition to her other regular duties. With a few species, like *Chramesus icorix* Lec., one or other of the parent adults dies in the entrance-hole, and thus prevents the intrusion of later enemies. This closing of the entrance-hole for a considerable part of the time guards in a measure from predacious and parasitic enemies, and checks evaporation from the tunnel walls.
THE ENTRANCE-TUNNELS.

The entrance-tunnels of the ambrosia-beetles pass directly through the bark and more or less deeply into the wood. There they give off side tunnels, along which the greater number of the egg-niches are cut, or in which the eggs are deposited free, according to the habit of the species.

The entrance-tunnels of the True Bark-beetles either pass directly through the bark, or in most cases traverse it more or less obliquely, to open into the nuptial-chamber or directly into the egg-tunnel within. The length of the entrance-tunnel is never great, and varies with the thickness of the bark in which the beetles are working. In the thick bark of large pine trunks, thinner places, the bark fissures, are frequently chosen for the location of the entrance-holes. Some species of ambrosia-beetles prefer to start their tunnels on freshly cut or broken surfaces. The entrance-tunnels are always perfectly cylindric, a result of the shape of the beetles and their constant revolution during the excavation. Certain species usually cut their entrance-tunnels obliquely upward, so that it is possible to tell whether the tunnels have been cut before or after the trunk has fallen.

THE EGG-TUNNELS PROPER.

The egg-tunnels of the True Bark-beetles are usually cut between the wood surface and the bark, engraving both. Certain species cut the egg-tunnel entirely within the bark. Orthotomicus exulatus Eichh. has this habit when working in the thick bark of mature white pine, although on branches and trunks of smaller trees its egg-tunnels engrave the wood surface more or less distinctly. The egg-tunnels of many species are almost entirely within the bark, only scoring the wood slightly; such are those of Philacosinus canadensis Sw. in cedar. On the other hand the tunnels of Chramesus icoric Lec., Lepirinus aculeatus Say, Pityophorus canadensis Sw., and many others, score the wood very deeply, and those of a few species, such as Pityophorus ramiperda Sw. and Lymantria decipiens Lec., are almost entirely or quite below and parallel with the wood surface. Certain species of Hypothemus, Stephanoderes, Micracis, and Pityophorus cut their primary tunnels within the pith of twigs, and have, on this account, been termed "twig beetles." Some species of Pityophorus cut their egg-tunnels usually upon the wood surface of twigs, while their larvae frequently bore to the centre and pupate in the pith.

The egg-tunnels of the ambrosia beetles branch from the entrance tunnels in various ways, to be described in more detail under the several species in later papers. The species of Gnathotrichus, Pterocyclon, Trypodendron, and Corthylus cut their egg-tunnels at a greater or less depth below the wood surface, according to the species and particular conditions of the wood, and vary somewhat in individual habits. All the species in these genera cut egg-niches above and below along the walls of the egg-tunnels, and later even along the entrance tunnels. These niches are similar to those cut by most True Bark-beetles, and the eggs are usually packed in with boring-dust and excrement. The niches are widened and lengthened by the larva to form short side tunnels or "larval cradles," usually at right angles to the egg-tunnel, and only slightly longer than the larval itself (Pl. 3, fig. 8); compound. The egg-tunnels of Anisandrus and Xyleborus are usually merely side tunnels arising from the sides or the distal end of the entrance tunnel. The eggs, in these two genera, are deposited free in the tunnels and the larvae live therein without cutting cradles; simple. The tunnels of Xyleborus saxesceni Ratz. are peculiar in that the larvae excavate cavities in congress (Pl. 2, fig. 13).

It is interesting to note that certain species of the genus Platypus (formerly included in the Family Ipidae), which occur in the southern and western portions of the continent, lay their eggs, according to Hubbard and others, free in the
tunnels, their larvæ cutting cradles similar to those excavated by larvæ of the Ambrosia beetles already mentioned, and are thus in a manner intermediate in habit between Xyleborus and Trypodendron. The only Canadian species of the genus lays its eggs free in the ends of the tunnels, and its larvæ apparently do not cut cradles.*

The tunnels and cradles of Ambrosia beetles are lined with a fungus used for food and usually characteristic of the beetle species, or at least of allied groups of species. As this subject is to be discussed in greater detail elsewhere, it is sufficient here to observe that all Ambrosia beetle tunnels are characterized by the presence of one species of these fungi during the egg-laying season, and later contain, in addition, numerous saprophytic as well as parasitic forms. The tunnel walls are invariably stained brown or black by the action of the Ambrosia fungus upon the wood.

THE VENTILATION TUNNELS.

These are short tunnels cut at intervals along the roof of elongate egg-tunnels in certain species of Dendroctonus and Ips, directed outward towards or to the outer surface of the bark (Pl. 2, fig. 3). The length of these ventilation tunnels depends upon the thickness of the bark overlying the egg-tunnel, and may vary from a millimetre, or less, to more than an inch. They serve as turning-niches and storage-places for boring-dust, and in some measure may increase the air circulation within the egg-tunnels. Many such tunnels that I have examined ended bluntly in the outer layers of bark, and could only serve as turning-niches, storage-tunnels, and to increase the body of air available for the beetles. With certain species, as Dendroctonus simplex Lec., the long egg-tunnel is often blocked in places with boring-dust, so that these ventilation-tunnels are perhaps useful, in such cases, for air circulation, but are certainly necessary as turning niches for the female.

*According to Chamberlain, Or. Ag. Exp. Sta. Bul. 147, 1918, the larvæ of this species also cut cradles shortly before pupating.

PLATE 2.

TYPES OF EGG TUNNELS.

Fig. 1, Forked, longitudinal.
Fig. 2, Simple, longitudinal.
Fig. 3, Radiate, typical.
Fig. 4, Cave-tunnel.
Fig. 5, Radiate, modified; Ips concinnus Mannh.—e.h., entrance hole; e.p., egg-pocket; e.t., egg tunnel; l.g., larval gallery; n.c., nuptial chamber.
Fig. 6, Irregular, short.
Fig. 7, Radiate, transverse.
Fig. 8, Forked, transverse.
Fig. 9, Radiate, longitudinal.
Fig. 10, Forked transverse, with larval mines, Phthorophloeus.
Fig. 11, Radiate, egg-tunnels commenced, Ips pini Say, from below.
Fig. 12, Ambrosia tunnels, simple, horizontal.
Fig. 13, Ambrosia tunnels, compound, social gallery, X. saxesceni Ratz.
Fig. 14, Ambrosia tunnels, compound, with cradles, Pterocyclon mali Fitch.
Fig. 15, Pith tunnels, Micracis.
Fig. 16, Ambrosia tunnels, compound, with cradles, Gnathotrichus.
Figs. 17, 18, Ambrosia tunnels, simple, vertically branched; Anisandrus.
Egg-Niches.

The great majority of North American bark-beetles deposit their eggs singly in small niches, termed egg-niches, cut along the sides of the egg-tunnels. These are shown distinctly in the illustrations of the tunnels of Leperisinus aculeatus Say, Pityogenes hopkinsi Sw., Pityophorus cariniceps Lec., and many others given in this paper. Usually the niche is cup-shaped, with a circular opening, and is somewhat deeper than the thickness of the eggs. The niche is cut with the mandibles, and usually at the extreme end of the egg-tunnel as thus far cut. The size of the niche in relation to the size of the egg varies with the species. The tunnel face of the wall of egg-packing is usually slightly convex, so that the cylindrical character of the tunnel is but little altered; but certain species cut relatively small niches, with the result that the eggs and their covering of dust project decidedly into the tunnel.

Egg-Pockets.

These are large niche cut along the sides of the egg-tunnels by species of Dendroctonus, Ips concinnus Mannh., Orthotomicus cælatus Eieh., and others, in which several eggs are deposited and packed with boring-dust. O. cælatus deposits from two to eight eggs in a mass at the bottom of each pocket. Dendroctonus simplex Lec., places three or four eggs side by side in the bottom of an elongate shallow pocket or very short groove. The details vary considerably with the species and with the environment, and apparently to some extent with the individual. D. simplex often deposits a few eggs in the boring-dust which fills portions of the tunnels.

Egg-Grooves.

Dendroctonus valens Lec., Hylurgops pinifex Fitch, Dryocetes americanus Hopk., and others, deposit their eggs in layers or rows along one or both sides of the egg-tunnels. The tunnel is widened or grooved for the reception of the layer or layers of eggs and their invariable protective covering of boring-dust. Hylurgops pinifex Fitch, often deposits three layers of eggs in one groove. The continuous wall of egg-packing covering the egg layers is in line with the tunnel wall so that the cavity of the tunnel is cylindrical, and but little larger than the circumference of the beetles. Here again, the details vary greatly with the species and often markedly in the same genus. Dryocetes americanus Hopk.; frequently deposits a few eggs in the roof of the tunnel.

Turning-Niches.

These are cut by Dendroctonus simplex Lec., and others, at intervals along the sides of the egg-tunnels; they are rather wide and deep excavations, and are used by the beetles for reversing their position, exactly as a street car or railway train uses a "Y" in the track. I have only rarely found a few eggs deposited in them. Certain species cut a short tunnel or a niche at the base of the entrance-tunnel at an angle with the egg-tunnel; these serve in the same manner for turning. The constructors of forked tunnels use the two branches of the egg-tunnel and the entrance-tunnel for the same purpose. The ventilation-tunnels, previously referred to, and the nuptial chamber are also used for this purpose as well as for copulation.

The Nuptial Chamber.

Many polygamous and a smaller number of monogamous species have a distinct chamber in the inner bark at the base of the entrance hole, called the
nuptial chamber, from which the egg-tunnels originate. The star-shaped tunnels of *Ips, Pityogenes, Pityophthorus* in part, *Polygraphus*, and others, have a distinctly flattened nuptial chamber, usually relatively large, either entirely in the inner bark or engraving the wood surface. In the normal star-shaped type the egg-tunnels radiate from all sides of the chamber; in the modified type cut by *Ips calligraphus* Germ., *Ips perturbatus* Eichh., and others, the two or three tunnels arise from the chamber at the opposite upper and lower sides. The *unispinosus* group of *Eccoptogaster* cut a vertical tunnel above and below from opposite sides of a rather large nuptial chamber (Pl. 20, fig. 3). Two other types of tunnels are cut by the species of the genus *Eccoptogaster*, as at present constituted, one simple and vertical *E rugulosus*, the other forked and transverse (Pl. 4, fig. 1). The species of *Phloeosinus* cut a single vertical egg-tunnel, usually with a large nuptial chamber at the base of the entrance tunnel (Pl. 5, fig. 5). Many modifications of the chamber appear in the family, varying from the indefinite cave-tunnel with one or two irregular egg-tunnels, cut by some *Pityophthorus*, to the perfectly star-shaped tunnels of *Pityogenes* and some species of *Pityophthorus* and *Ips*.

The beetles utilize the chamber for several purposes. It serves as a temporary storage room for boring dust thrust into it by the females working in the egg-tunnels; it is also used by the beetles for turning or reversing their position, particularly by species which cut no ventilation tunnels; and it is used regularly for copulation. With polygamous species the male spends nearly all his time in the nuptial chamber and in the entrance tunnel.

The nuptial chamber is a special modification, and has apparently arisen independently in several groups of genera. The star-shaped tunnels of *Polygraphus*, with a distinct chamber, are closely similar to those of some *Ips* and *Pityogenes*; but the beetles are structurally so widely separated that no community of origin could account for their similarity in habit. The chamber is well developed in *Eccoptogaster* and *Phloeosinus*, and these genera are not only widely separated morphologically from each other but also from the two groups just mentioned.

In the genus *Pityophthorus* we find evidence that the star-shaped type may have arisen in this instance from the more primitive cave-like type still cut by some species of the genus; and the habit may be explained in allied genera by community of origin. In some species of *Dryocosmes* we find what appears to be a secondary degeneration from the star-shaped type to irregular tunnels without definite plan. The chamber has apparently arisen independently in *Eccoptogaster, Phloeosinus*, and others, as a simple enlargement of either the egg-tunnel or the entrance-tunnel, at or near the junction of the two.

FOOD-TUNNELS.

The feeding habits of the adults vary greatly with the species. In the process of cutting the egg-tunnels much of the excavated wood is swallowed, and many species apparently obtain sufficient nourishment in this way. Other species excavate special food-tunnels either before or after cutting the egg-tunnels. The young adults may feed extensively before emerging from the bark, cutting winding food-tunnels, "brood burrows," between the bark and the wood, as with species of *Ips, Pityogenes*, and others; or they may leave the parent tree directly from the pupal cell, and cut food tunnels in the bark of other trees, as with species of *Ips, Phloeosinus, Eccoptogaster*, and others. The parent adults may extend the egg-tunnels as winding food-tunnels, "terminal burrows," or cut short food-tunnels elsewhere before beginning their second set of egg-tunnels. This intermediate period of rest and feeding is needed, apparently, in order to mature the second lot of eggs.
The Types of Egg-tunnels.

The egg-tunnels present many variations in form, even in the same genus and interesting similarities in habit occur between species belonging to widely separated genera. Several arrangements for classifying the ipid egg-tunnels have been suggested. The variations in the tunnels are so numerous that a detailed classification must be cumbersome if at all complete, and the brief arrangement in the following table will perhaps be more useful for the purpose of this bulletin:

<table>
<thead>
<tr>
<th>Irregular Elongate Tunnels</th>
<th>Dendroctonus, Hylurgops, Hylastes, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregular Short Tunnels</td>
<td>Dryocetes (in part), etc.</td>
</tr>
<tr>
<td>Simple Longitudinal Tunnels</td>
<td>Philaeinus, Eccoptogaster (in part),</td>
</tr>
<tr>
<td></td>
<td>Chramesus, etc.</td>
</tr>
<tr>
<td>Simple Transverse Tunnels</td>
<td>Cryphalus, Eccoptogaster (in part); rare.</td>
</tr>
<tr>
<td>Cave Tunnels</td>
<td>Ips, Pityogenes, Pityophthorus (in part), Polygraphus, etc.</td>
</tr>
<tr>
<td>Pith Tunnels</td>
<td>Micracis, Stephanoderes, Pityophthorus (in part).</td>
</tr>
<tr>
<td>Ambrosia Tunnels</td>
<td>Simple; Anisandrus, Xyleborus. Compound;</td>
</tr>
<tr>
<td></td>
<td>Gnathotrichus, Pterocyclon, Trypodendron, Xyloterinus. Page 11.</td>
</tr>
</tbody>
</table>

PLATE 3.

AMBRASIA-BEETLE TUNNELS.

Fig. 1, *Anisandrus populi* Sw.; eggs, larvae and pupae; 1½ times natural size.*

Fig. 2, *Trypodendron retusus* Lec.; tunnel in poplar; about natural size, showing a pupa in its cradle.

Fig. 3, *Anisandrus obesus* Lec.; tunnel in beech, showing eggs lying in the inner end.**

Fig. 4, *Trypodendron retusus* Lec.; larvae; about natural size.*

Fig. 5, *Anisandrus pyri* Peck; tunnels in apple; about ½ natural size.*

Fig. 6, *Trypodendron retusus* Lec.; tunnels in poplar; about ½ natural size.

Fig. 7, *Trypodendron betulae* Sw.; tunnels in birch; ½ natural size.

Fig. 8, *Gnathotrichus machatarius* Fitch; tunnels in pine, showing larva, pupa, and adult; natural size.**

Fig. 9, *Anisandrus pyri* Peck; exit holes in apple limb; about ½ natural size.

Fig. 10, *Anisandrus populi* Sw.; tunnels in poplar.

Fig. 11, *Trypodendron retusus* Lec.; tunnels in poplar, showing small larvae.*

Fig. 12, Eggs, larvae, and pupae of *Anisandrus populi* Sw.; slightly enlarged.

PLATE 4.

BARK-BEETLE TUNNELS (ORIGINAL.)

Fig. 1, *Eccoptogaster subscaber* Lec.; tunnels in lowland fir; wood surface; ½ natural size.

Fig. 2, *Pseudiopterygophthorus minutissimus* Zimm.; tunnels in hazel; wood surface; natural size.

Fig. 3, *Dendroctonus monticole* Hopk.; pitch-tubes in western white pine trunk; much reduced.

Fig. 4, *Orthotomicus calatus* Eichh.; tunnels in white pine bark; about natural size.

Fig. 5, *Pityophthorus nitidus* Sw.; tunnels in pine twig, on the wood surface and in the pith; ½ natural size.

Fig. 6, Study-tunnels, covered with sheet celluloid.

Fig. 7, *Pityophthorus piceae* Sw.; tunnels in white spruce branch; ½ natural size.

Fig. 8, *Orthotomicus caalatus* Eichh.; tunnels in white pine, inner surface of bark, showing inner bark entirely reduced to powder.

Fig. 9, *Dendroctonus borealis* Hopk.; tunnels in white spruce, inner surface of the bark; (the right end of the figure should be uppermost, the (black) egg-tunnels vertical); the larvae feed in congress at first and finally separate to cut individual mines; much reduced.

Fig. 10, *Ips perturbatus* Eichh.; tunnels in white spruce bark; ½ natural size.

Fig. 11, *Eccoptogaster subscaber* Lec.; tunnels just commenced in balsam; ½ natural size.

Figs. 12 and 13, *Pityogenes hopkinsi* Sw.; tunnels in white pine limb; ½ natural size.

* Original ** Author's illustration
PLATE No. 4.
Irregular Elongate Tunnels.—The egg-tunnels of Dendroctonus, Hylastes, and Hylurgops are elongate, longitudinal, variably irregular, branched or winding, and frequently anastomosed.

Irregular Short Tunnels.—Several species of Dryocætes, and others, cut short irregular tunnels.

Simple Longitudinal Tunnels.—These are simple tunnels lengthwise of the grain, moderately short and turning-straight. They may or may not have a nuptial-chamber or turning-niche at the base of the entrance-tunnel, but they have no ventilation tunnels or turning-niches along the sides. Phlaosinus dentatus Say cuts a rather elongate egg-tunnel with a distinct nuptial-chamber. Eccoptogaster rugulosus Ratz., and E. 4-spinosus Say, cut shorter, simple tunnels without a distinct nuptial chamber. Eccoptogaster piceæ Sw., cuts an entirely different one; here the entrance-tunnel opens into a large nuptial-chamber, which gives off, above and below, but not opposite to each other, a longer or shorter egg-tunnel. E. unispinosus Lec., of the Pacific Coast, has tunnels very similar to those of piceæ; these are properly of the forked type. Chromesus icorïæ Lec. cuts short longitudinal egg-tunnels with a distinct turning-niche at the base of the entrance-hole. Individual tunnels are frequently more or less oblique.

Simple Transverse Tunnels.—These are cut by very few of our species, except as individual variations from a different type.

Forked Tunnels.—In this type, as here defined, the entrance-tunnel opens into two egg-tunnels, usually somewhat curved, and diverging at a very wide angle, or nearly in line. Apparently this type has been developed by the extension of a turning-niche, such as is now cut by C. icorïæ Lec., into a second egg-tunnel. The tunnels of Phthorophloeus piceæ Sw. (Pl. 4, fig. 7), illustrate well the transition from the simple egg-tunnel with a turning-niche into a regular forked type. In this species an egg-tunnel is cut from the base of the entrance-tunnel, usually nearly transverse, though frequently oblique, and a second much shorter egg-tunnel is cut from the base of the entrance-tunnel at a varying, though usually wide angle with the first; or in other words, the turning-niche has been extended somewhat and a few egg-niches cut on either side. The tunnels of Phthorophloeus liminaris Harris (Pl. 5, fig. 7) are usually well-developed, with two egg-tunnels, one often somewhat longer than the other, nearly in line, and slightly incurved to meet at the base of the entrance-tunnel. The latter is oblique and its base slightly engravés the wood at its junction with the two egg-tunnels. In the process of their development the tunnels of liminaris have probably passed through the stage in which we find those of piceæ to-day. Leperisinus aculeatus Say cuts somewhat similar egg-tunnels in ash, but the two branches are rather more distinctly arched from their junction with the entrance-tunnel. The tunnels of Hylurgopinus rufipes Eichh., in elm, are of the same type (Pl. 5, fig. 6). The species cutting the tunnels thus far described are usually monogamous.

The tunnels of Pseudopityophthorus minutissimus Zimm. are peculiar, straight and transverse, but crossed near the middle of their length by a short vertical tunnel. They may be included under the simple transverse tunnels (Pl. 4, fig. 2).

Radiate, or Star-shaped Tunnels.—These are cut by the genera Ips, Pityophthorus (in part), Pityogenes, Pityokteines, Polygraphus, and others. The entrance-tunnel opens below into a flat nuptial-chamber lying between the bark and the wood, or often chiefly in the former. From the sides of this cavity the egg-tunnels radiate in varying number, according to species and individuals, from three or four to eight or nine. The species cutting these tunnels are polygamous and each egg-tunnel is cut, usually, by a separate female, while a single male cuts and occupies the nuptial-chamber. The tunnels of Orthotomicus cælatus Eichh. are roughly star-shaped, with the nuptial-chamber entirely in the bark.
The tunnels of *Dryocates* are in some species, *affaber*, variably irregular, but are in others, such as *confusus* Sw., distinctly of this type.

Certain species of *Ips* and *Pityophthorus* have a preference for following the grain of the wood, and in some of these a few very long egg-tunnels are developed, more or less parallel to each other throughout much of the length, as with *Ips calligraphus* Germ., and *Ips perturbatus* Eichh. (Pl. 4, fig. 10). Certain species of *Pityogenes* and *Pityophthorus* cut elongate egg-tunnels in the bark of small twigs, and show a more or less distinct spiral arrangement.

Cave Tunnels.—Species of the genus *Cryptalus* excavate an irregular cavity in the bark, engraving the wood, in which the eggs are deposited (Pl. 23, figs. 6, 7). *Pityophthorus opaculus* Lec., and others, have a very similar habit, sometimes combining the cave type with short irregular egg-tunnels.

Pith Tunnels.—Certain species of *Pityophthorus*, *Stephanoderes* and *Micracis* cut their egg-tunnels through the pith of twigs (Pl. 4, fig. 5).

The Larval Mines.

The larval mines of the bark-beetles have been described briefly on page 9, and are dealt with in detail under their respective species in the remaining parts of this series.

Factors Influencing the Development of Bark-beetles.

It is very noticeable that at different altitudes and latitudes and in different seasons the broods of the Ipidæ develop at different rates. A species which is single-brooded in northern Canada may have two broods in the middle or southern States. Certain species which have normally two broods, may have but one or only a partial second brood in cold, wet seasons, in the same locality. In the same locality, and during the same season, over-wintered individuals may appear from cold, swampy sections or northern slopes several weeks later than others of the same species, which have wintered in a sunny situation. It is evident that the factors which influence the development of the larvæ and the time of appearance of the adults are of great interest, and are of particular importance in economic studies. The chief of these factors are the moisture content of the air in the tunnels, the temperature of the air and of the bark, and the sunlight. The beetles are particularly sensitive to any change in humidity; they will leave all other activities to fill any openings made in the tunnel roof.

Valuable experimental studies upon the effect of different degrees of heat and moisture upon the development of bark-beetles have been made by several European writers, especially by Hennings upon *Ips typographus* Linn. The results of these studies agree on the whole with more general observations made in our forests under natural conditions. It has been a matter of common observation in Canadian forests that the greater number of our bark-beetles breed most rapidly in hot weather with a moderate supply of moisture. On the other hand, broods developing in the bark in the open sunlight of clearings are not uncommonly destroyed by the high temperature and dryness of the bark, which render the latter unfit for food, and also directly affect the life processes of the larvæ. It may be noticed in very hot, dry seasons that while broods in the thin bark exposed to the open sunlight may be partly or largely destroyed, those breeding in the thick bark of the trunk or moister stump, or in thick bark about the edge of the clearing, where the moisture has been partly conserved by the shade, may breed successfully and with great rapidity. It appears also that sunlight, aside from temperature, has a stimulating effect upon growth. Hennings refers to a “heat paralysis” of the larvæ which was noticed sometimes at 24°C. dry (55 per cent to 56 per cent air moisture). The highest life processes were reached just before that point. The addition
of moisture raised the "heat paralysis" point, and so gave opportunity for more rapid development.

It is also well known that their development is retarded by periods of wet weather, such as prevailed in Central and Eastern Canada during the spring and much of the summer of 1912. Such periods of excessive humidity are, with us, invariably cold, so that we have both retarding influences in operation. There is also the important factor of fungus development which is so much more rapid in wet seasons, and both renders the bark unfit for food and at times destroys all stages of the beetles in large numbers.

We may safely conclude that warm and moderately dry seasons, with abundant sunlight, are the most favourable for bark-beetle development; and that cold and wet seasons are the most unfavourable.

Mating Habits.

This subject is treated in parts of this series dealing with the biology of the species, planned for later publication. With many species copulation takes place during the migratory flight from the old trees to the new, either on the bark of the old trees or after alighting. With Anisandrus, in which the males are unable to fly, paring takes place at the mouth of the old tunnel or possibly within it, but probably in most cases on the bark of the trunks containing the old tunnels during the later summer. Monogamous species pair often at the mouth of the new tunnel and one mating may be sufficient to fertilize the greater part of one lot of eggs; polygamous species usually mate at the entrance from the nuptial chamber into an egg-tunnel, and with these species mating occurs frequently.

The Oviposition.

With many species, oviposition takes place in the manner described for the following two. The oviposition of Pityogenes hopkinsi Sw. was observed. The egg-niche was cut at the extreme end of the egg-tunnel, and when the tunnel was examined, the female was in the tunnel end with ovipositor inserted into the niche. In a few seconds the egg appeared and adhered to the bottom of the niche. The time of passage was about one second. As soon as the egg was deposited the female moved forward to the nuptial-chamber, reversed her position, and entered the tunnel head foremost. When she reached the tunnel end she appeared to move the egg with the mandibles, probably placing it more evenly, and then turned her attention to filling a crack in the tunnel roof with boring dust. The tunnel had been previously opened and covered with sheet celluloid, so that the beetles within could be watched, and the celluloid had been moved just previous to oviposition. Some of this dust she pushed in from the nuptial-chamber (the male had been removed and the nuptial-chamber was partly filled with boring-dust), and the rest she removed from the tunnel end. This finished, she continued the excavation of the tunnel, placing the boring-dust thus obtained about the egg until the niche was filled.

The Dendroctonus simplex female cuts its short egg-groove or egg-pocket at the extreme end of the tunnel as then cut. It then backs out to the nearest turning-niche, or possibly ventilation-hole, reverses its position, proceeds backwards to the end of the tunnel, and inserts the tip of the abdomen into the egg-pocket. In one case observed by the writer, the tunnel end was opened, revealing the female in position for ovipositing. She remained in that position, almost motionless, for six minutes, until, suddenly, the egg appeared, or rather, as the ovipositor was placed against the bottom of the pocket, and the egg was large, the beetle appeared to walk away from about the egg, leaving the latter adhering to the wood. The female then moved forward to the nearest turning-
niches, reversed her position, and advanced head foremost into the tunnel to continue excavation and cover the egg with boring-dust. As the tunnel was by this time covered with celluloid, she first proceeded to close the cracks between it and the edges of the tunnel with boring-dust.

Removing the Boring-dust.

In removing the boring-dust, the female scrapes it backward with the mandibles, which make a very efficient hoe. If she wishes to pack boring-dust into egg-niches or to fill cracks in the tunnel wall, the dust is pushed forward with the mandibles and packed by them into the proper position, but when ejecting boring-dust from the tunnel it is always scraped backward, first with the mandibles and then with the legs, working it beneath and behind the body. By moving backward and at the same time revolving in the tunnel, the insect is able to remove the dust without difficulty, and to eject it into the nuptial-chamber, or to extrude it through the exit hole. The tarsi are retracted more or less, and the outer edge of the tibiae is used much in locomotion, and particularly in removing the boring-dust. The armature of the tibiae, of course, assists considerably in both operations.

A Method for Studying Habits.

(Pl. 4, fig. 6).

In studying the habits of Ipydæ, it becomes necessary to devise some method of watching the beetles at work. All their operations, with the exception of cutting the entrance-hole, are performed beneath the protecting cover of bark; and when the latter is largely removed they invariably cease work almost immediately and either leave the tunnels or retire to the uncovered portions. If the tunnels, with the beetles in them, are covered in the proper way with glass, celluloid, or mica, the excavation may be continued and much of the work may be observed. We have secured best results with smaller species working in thin bark, such as *P. hopkinsi* Sw., by removing the bark over the nuptial-chamber and a part of an egg-tunnel, and immediately pinning thereover

PLATE 5

BARK-BEETLE TUNNELS (Original).

Fig. 1, *Pityoekteines sparsus* Lec.; egg-tunnels in balsam fir; wood surface; twice natural size.
Fig. 2, *Dendrocronus obsesus* Mannh.; tunnels in Sitka spruce bark; very much reduced.
Fig. 3, *Pityophthorus canadensis* Sw.; Pupal cells in pine, showing larva and pupa in position; about natural size.
Fig. 4, *Hylaistinus obscurus* Mannh.; tunnels in red clover roots, showing a beetle, and the eggs in place in the niches; about natural size.
Fig. 5, *Phloecinus canadensis* Sw.; tunnels in arbor vitae, wood surface; two-thirds natural size.
Fig. 6, *Hylopharotonus raupipes* Eichh.; tunnels in elm, inner surface of bark; about natural size.
Fig. 7, *Phlorophloeus liminaris* Harr.; tunnels in peach limb, showing a portion of the brood; one-half natural size.
Fig. 8, *Lepesitrus aculeatus* Say; tunnels in ash, showing the brood in position; about natural size.
Fig. 9, *Pityophthorus nudus* Sw. tunnel in pine, wood surface; twice natural size.
Fig. 10, *Pityophthorus canadensis* Sw.; pupal cells in pine twig, showing full grown larvae and pupae; natural size.
Fig. 11, *Phloesius canadensis* Sw.; tunnels in arbor vitae, showing eggs in situ; one and one-fourth natural size.
a piece of sheet-celluloid, leaving a very small opening at one side of the nuptial-chamber for ventilation and the extrusion of the boring-dust. Better results are obtained with but one egg-tunnel, since in sets with several working females more dust is pushed into the nuptial-chamber than the male can handle under the abnormal conditions, and the chamber rapidly becomes blocked. With such an arrangement one may observe the removal of the boring-dust and its extrusion from the nuptial-chamber, the feeding habits of the male, copulation, and the reversal of position of the female before and after egg-laying. If the roof of the egg-tunnel is rapidly and carefully removed immediately after the female has been observed to back into the tunnel, the process of egg-laying may be studied. A bit of sheet-celluloid should be placed over the tunnel as soon as it is opened.

When the bark is thick, and the tunnels chiefly in the inner bark, the following method may be used with advantage. The bark is carefully removed from the wood, leaving the nuptial-chamber and the developing egg-tunnel as nearly uninjured as possible, with the beetles within them. A small sheet of moderately thick glass is placed over the inner side of the bark, closing in the tunnels. The glass should be held firmly in place by rubber bands or other means. When the tunnels are not under observation, the bark should be kept glass downwards upon dark cloth and weighted moderately with a block of wood to prevent warping.

Whether celluloid or glass is used to cover the tunnel, the male will immediately proceed to fasten all cracks about the edges of the chamber with boring-dust, and the female does the same in the egg-tunnel; excessive evaporation from the opened tunnels is thus somewhat checked. It is necessary to remove the glass or celluloid from time to time and clean away the boring-dust which has become attached to it.

The moisture content of sticks used in breeding experiments may be preserved to some degree, while the bark is intact, by coating the cut ends with melted paraffin.

Fig. 1—Eccoptogaster rugulosus Ratz.

Tunnels at right; adult above, viewed from the side, legs removed. (Author's illustration.)
II.

BARK-BEETLE INJURIES AND THE MEANS OF CONTROL.

Bark-beetle Injuries.

The majority of our bark-beetle species breed commonly in dying trees and slash, but many of these attack trees which have become weakened or unthrifty, or even at times healthy trees, and they are therefore distinctly injurious. Other species attack healthy trees readily when the beetles are present in sufficiently large numbers, and have killed an enormous quantity of timber in Canadian forests.

The injury to living trees is caused by the adult beetles cutting their egg-tunnels through the inner bark or upon the surface of the sap wood, and by the larvae excavating the larval-mines in the same location.

The multitude of tunnels and mines checks the flow of sap and rapidly kills the tree, or the part of it attacked. Direct injury to the timber is caused by the Ambrosia-beetles, since their small black tunnels penetrate the wood for several inches or, in some cases, for more than a foot.

PRIMARY ENEMIES.

Certain of our bark-beetle species are commonly found attacking and killing healthy timber. They attack perfectly sound trees and cause the chief or primary injury, and they are therefore known as "primary" enemies. Among our best known examples are: Dendroctonus brevicomis Lec., D. monticolae Hopk., D. piceaepera Hopk., D. borealis Hopk., and Dryocetes confusus Sw. These are also found breeding in slash, and in timber dying from various causes, but they are commonly and abundantly found attacking healthy timber in quantity.

A considerable number of our species breed everywhere in slash and dying trees and are usually secondary enemies, but upon occasion, the frequency varying with the species and the conditions for rapid breeding, they increase to immense numbers so that they successfully attack healthy trees and become important primary enemies. Polygraphus rufipennis Ky., the Four-eyed Spruce Bark-beetle, is abundant throughout Canadian forests in spruce bark of slash and dying trees; but it attacks and kills large numbers of over-mature trees, and those weakened by other causes, and at times becomes epidemic, killing large quantities of spruce, particularly black spruce. Pityokeine sparsus Lec., (Ips balsameus Lec.), the Balsam Fir Bark-beetle, is an important primary enemy of the balsam fir in Eastern Canada. It is an important factor in the present extensive injury to our eastern balsam, and is always active in killing the over-mature and weakened trees. It is everywhere abundant in dying fir bark. Dendroctonus pseudotsugae Hopk., the Douglas Fir Bark-beetle, is everywhere abundant in slashings of Douglas fir and western larch, but is at times an important primary enemy in restricted localities. D. obesus Mannh., the Sitka Spruce Bark-beetle, is rather more commonly found as an important primary enemy of Sitka spruce on the British Columbia coast, but it usually confines itself to dying bark if this is available. Several of our species of Ips, and many other species, while usually important secondary enemies, are at times of considerable primary importance in sporadic outbreaks. All these primary enemies, in order to overcome the resistance of the healthy trees, must attack in very large numbers, so that their numerous and rapidly excavated tunnels may check the sap flow in a short time. In an epidemic outbreak of
the Western White Pine Bark-beetle in western yellow pine more than 2,000 pairs of beetles were estimated cutting their egg-tunnels in the trunk of one tree. On the other hand, many examples of abandoned tunnels of various species are found, indicating that the beetles have entered the bark individually or in small numbers, and have been overcome or driven away by the excessive and sustained flow of resin.

SECONDARY ENEMIES.

The majority of our bark-beetles are found breeding in bark of dying trees and logs. Many of them readily attack weakened trees or those which have been injured by fire, primary bark-beetle attack, or other causes, and rapidly effect the death of the trees. They are therefore injurious in the sense that they assist other agencies in killing timber, without themselves attacking healthy trees, and are known as “secondary” enemies. Some of these species, usually secondary, when they become exceedingly numerous through favourable opportunities for breeding, do at times become primary and attack nearby healthy timber to a varying degree, causing local sporadic outbreaks. Some of the more important of these species have been mentioned in the preceding paragraph.

A few of our species normally attack healthy trees in individual pairs, and while their young may succeed in developing, only the part of the tree directly affected receives any serious injury. *Dendroctonus valens* Lec., the Red Turpentine Bark-beetle, often kills patches of bark at the base of pine and spruce without killing the trees outright. This species is responsible, however, for the death of considerable numbers of yellow pines in British Columbia, and is an important assistant of the Western White Pine Bark-beetle and the Western Pine Bark-beetle in the epidemic outbreaks.

Several species of *Pityophthorus* kill twigs of pines in considerable numbers. Species of *Phloeosinus* and *Eccoptogaster* cut food tunnels in the twigs of their host trees, causing more or less injury thereby.

Several secondary species of the genera *Polygraphus*, *Eccoptogaster*, *Pityogenes*, *Pityophthorus*, and others, hasten the death of the lower branches of pine and spruce, and to that extent may in a sense be considered beneficial in helping to produce cleaner trunks and, therefore, better logs.

NEUTRAL SPECIES.

Many bark-beetle species are found breeding only in dying bark and are not known to cause any injury to living trees. *Leperisinus aculeatus* Say, in ash; *Chramesus icorai* Lec., in hickory; *Hylurgopinus rufipes* Eichh., in elm; and *Pseudopityophthorus minutissimus* Zimm., in branches of oak and beech, are not known to injure living trees in our woods. *Lymantor decipiens* Lec., and a few others, breed in dead bark and sapwood.

THE IMPORTANCE OF BARK-BEETLE INJURIES IN CANADIAN FORESTS.

These injuries include the normal annual loss to weakened trees, minor sporadic outbreaks, and the extensive epidemic outbreaks.

THE NORMAL ANNUAL LOSS.

In addition to the more evident outbreaks where large numbers of trees die each year in the infested area, there is a very large and often unrecognized annual loss due to the normal activities of forest insects. Everywhere throughout the forest, injured, unthrifty, and overmature trees are attacked and killed by
various species of bark-beetles and wood-borers; and the normal loss from this cause is so very great, when large areas are considered, that it should receive serious consideration. When coniferous trees die without any apparent external injury, examination usually shows that their death has been hastened or caused by bark-beetles or other insects. When slashings are allowed to lie, the fresh bark and wood serves as a breeding ground for many destructive insects, and it is therefore only to be expected that the annual crop of scattered dying trees will be abnormally large in the neighbourhood of bodies of neglected recent slash. It unfortunately happens that nearly all these scattered dying trees are completely destroyed by boring beetles during the few years following their death, and they become an absolute loss; since, even though the limit is being logged, it is often considered unprofitable to collect the scattered dying trees. Properly conducted slash burning will almost invariably reduce the amount of this annual loss, and it must be regarded as a most valuable method of insect control.

SPORADIC OUTBREAKS.

From time to time small local bark-beetle outbreaks occur usually in the neighbourhood of slash from cuttings, wind falls, or fire-killed timber. The beetles concerned are frequently common secondary species, which, having had suitable opportunities for rapid breeding, find themselves numerous enough to attack the nearby green timber successfully; these have already been referred to under "Secondary Enemies," page 23. These minor outbreaks are easily controlled, and may die away without causing extensive injury; on the other hand, if they have been originated by some of the more destructive species, they may become epidemic, and devastate the whole countryside. Small outbreaks by a destructive primary enemy should not be disregarded.

EPIDEMIC OUTBREAKS.

Bark-beetle outbreaks may be considered epidemic when they spread rapidly over a wide area, involving the death of many hundreds or thousands of trees. Under these conditions the beetles occur in immense numbers, and attack the green timber with the greatest readiness. Often the largest and finest trees are selected. The one or more primary enemies really responsible for the spread of the injury are accompanied invariably by numbers of secondary species. Many examples of these extensive injuries have occurred in Canada and the United States during the last century. The Destructive Eastern Spruce Bark-beetle, *Dendroctonus picea*perda* Hopk., has killed many millions of feet of spruce timber in Maine and New Brunswick during a series of destructive outbreaks, the last of which occurred between the years 1897 and 1900. The best known Canadian examples are those still spreading in the yellow pine in southern British Columbia, caused by the Western Pine Bark-beetle and the Western White Pine Bark-beetle, and those in the western white pine and

PLATE 6.

BARK-BEETLE BREEDING GROUNDS (Original).

Fig. 1, A slashing on Vancouver Island; an ideal breeding ground for beetles.
Fig. 2, Beetle-killed yellow pine, Indian Meadows, B.C.
Fig. 3, Beetle-killed western white pine, B X Mountain, B.C.; the dead trees were killed by the Western White Pine Beetle many years ago.
Fig. 4, Beetle-killed lodgepole pine, Trepanier Creek, B.C.
lodgepole pine caused by the Western White Pine Bark-beetle. In parts of the infested country the trouble commenced nearly twelve years ago, and practically all the pines have been killed (P. 6, figs. 2, 3, 4). Injury to the mountain balsam by the Destructive Western Balsam Bark-beetle, Dryocetes confusus Sw., is sporadic in many localities over a wide area between Lesser Slave lake and the main line of the Canadian Pacific railway through the Rockies and Selkirs, but in certain districts it may be considered epidemic.

Conditions Favouring Bark-beetle Outbreaks.

In addition to the weather, latitude and altitude, there are various local conditions which favour the rapid development of the beetles, and, therefore, are directly concerned in the origin of sporadic and epidemic outbreaks.

Slash.

The refuse from cutting operations, culls, branches, tops, and stumps affords an ideal breeding-ground for practically all our injurious bark-beetles as well as for many other injurious species. Logging operations, settlers' clearings, and even cuttings for firewood and for trail-making, provide slash that may prove a positive menace to the surrounding healthy timber.

In order to control our destructive bark-beetles it is only necessary to reduce the numbers so that the normal amount of dying bark to be found in the woods will suffice for breeding purposes. Apparently all our bark-beetles have, normally, a preference for dying bark; and it is only when their numbers are very great that green timber is attacked in quantity. It therefore follows that so long as extensive cutting in a district continues, the slash and stumps serve as a breeding-place, and to a considerable extent, or for a time often entirely, protect the healthy trees from most species of beetles. Broods of our most injurious species which have bred in an epidemic outbreak in green trees have apparently a decided tendency towards green timber. Unless the amount of slash increases from year to year, certain species are bound to develop to such numbers that additional breeding-places are required, and then, or, with certain species, apparently before that stage is reached, they attack the surrounding green timber. When cutting ceases suddenly there is always danger that an outbreak may develop in the neighbourhood.

It is therefore evident that while slash may serve for a longer or shorter time as a partial protection to the standing timber, it is likely to become a nuisance, since it offers an abundant food supply for the beetles in which they may breed to immense numbers.

The slash can be made to serve as an effective trap. Many injurious species will pass the winter chiefly as young adults or larvae in the bark. If the slash of the previous summer's cutting is burned during winter and early spring, a sufficient number of the beetles will usually be killed to hold the injurious species in check. When there is but one brood each season, as with the Mountain Pine Bark-beetle, winter burning of slash of the previous winter's cut will be effective. When species with two broods are involved summer slash burning in early August, of the previous winter's cut, would assist in their control. The most important consideration, however, is the destruction of the slash by fire before the beetles can breed in it and emerge to infest nearby timber. Properly conducted slash burning will be exceedingly effective in averting injuries by both forest insects and fungi.

Ground Fires.

Light burns also provide an abundant supply of dying bark for breeding purposes. The injured and slightly burned trees are in some cases as dangerous
beetle breeding grounds as the slash, and this should be considered when the
burns are being logged. If the fire has occurred in the first half of the season
and has charred only the bark near the ground, the timber on a burn must be
cut during the first winter following the fire, or not later than the second winter,
if anything is to be saved from the grubs of the large wood-borers.* Since the
logs will contain these living grubs, even though cut the first winter after the
fire, they must be got into water or sawed before spring opens; and when the
latter is done the lumber should be dried as rapidly as possible. All green slash
and small dying trees on the burn should be piled and burned to prevent the
breeding of bark-beetles and other insects. Trees which have been thoroughly
charred from base to top may be disregarded in so far as beetle control is con-
cerned. Burns which were made late in the season are, of course, frequently
immune from beetle injury, although this is true to a smaller degree in British
Columbia than in Eastern Canada.

OTHER FACTORS.

Wind-falls, snow-breaks, and flood injuries provide more or less dying timber
for beetle breeding grounds each season, particularly in the mountain sections.
Whenever any extensive injury of this kind occurs in government parks or
reserves, or on valuable private holdings, it is desirable to have the dying timber
utilized or destroyed before it can give forth its crop of destructive beetles.

NATURAL CONTROL FACTORS.

The influence of weather conditions upon the broods has already been
discussed. The other natural agencies operating to check the development of
the beetles in our forests are, parasites of various kinds, predacious insects,
birds and fungi.

PARASITES.

Small hymenopterous parasites deposit their eggs on the larvæ or near
them in their tunnels, and the young parasites kill the beetle larvæ by feeding
upon their body juices (Pl. 19, fig. 2). The larger of these parasitic species
deposit their eggs through the thin bark overlying the larval mines in the tops
and branches; the minute species enter the egg-tunnels and lay their eggs often
in the egg-niches. They affect different species of bark-beetles in varying
degrees. The most destructive bark-beetles, breeding in heavy, thick-barked
timber, are but little affected by them. On the other hand, some species, such,
for instance, as Leperisinus aculeatus Say, are frequently very heavily parasitized,
and the minute round holes through which the adult parasites eventually emerge
from the bark are often thickly interspersed with the exit-holes of the beetles.
A few of our species are sometimes heavily parasitized by mites which breed in
the mines and destroy the larvæ about the time of pupation.

PREDATORS.

Predacious beetles and their larvæ are frequently abundant about and within
the egg-tunnels and mines, and feed upon the bark-beetle adults, their eggs,
and the larvæ.

The influence of parasites and predacious insects appears, on the whole, to
be of minor importance in controlling bark-beetles in our forests; although it is
possible that some of our secondary species, normally rather heavily parasitized,
might otherwise be of primary importance.

*Except the largest timber of the Pacific Coast.
Insectivorous birds, particularly the woodpeckers, are decidedly beneficial in destroying the broods of bark-beetles whenever their numbers are sufficiently great. Beetle-infested trees are often found with the bark largely riddled by woodpeckers, and the broods almost entirely destroyed. In the beetle-infested yellow-pine area of southern British Columbia the woodpecker work is sometimes strikingly evident, and the beetle trees may often be detected in this way (Pl. 7, fig. 4). There is evidence that the birds have at times a decided effect in reducing the numbers of the beetles over a limited area; but while their influence on the whole is decidedly beneficial, they are probably never sufficiently numerous in our woods to control more than very small sporadic outbreaks.

Parasitic fungi.

The effect of parasitic fungi in destroying broods of bark-beetles has been studied in several instances. This factor appears to be of minor importance in our forests.

Methods of Control.

Sporadic outbreaks by bark-beetles may usually be controlled without great difficulty; and even epidemic outbreaks, in which many hundreds of trees are dying, may be brought under control, often with very little actual loss. The peculiar habits of the beetles render them vulnerable to attack by the only methods the lumberman could feasibly employ. Our most destructive species have one brood, or one brood and a partial second one, each season; they pass the winter as adult beetles and larvae in the bark of the dying trees, entered by the parent adults in the early part of the same season. When in green timber the broods always pass the winter in the trees attacked by their parent beetles earlier in the same season, then usually with yellowing foliage and often with resin-tubes and woodpecker work showing on the bark of the trunk. The beetles never return to the old "red-tops," as the affected trees are called, nor remain in the trees longer than one year. If then, by modified logging operations, these green "beetle trees" can be removed during winter, kept separate, and so treated that the broods in the bark will be killed before their breeding season opens, it is possible to stop the outbreak in one season. If all the green beetle-trees could be treated and all the slash and broken trees burned it would be possible, at least in theory, to exterminate the injurious species from a limit in one winter's work. Practically, this would not be possible in dealing with an outbreak of any extent; but it is fortunately unnecessary. If over three-fourths of the broods in the infested trees can be killed before they emerge in the early season, the outbreak can be checked; and by similar work upon the relatively few trees attacked the succeeding season, it can be brought under nearly complete control, provided the entire infested section is treated, so that there will not be extensive reinfestation each year. The largest and most heavily infested trees and the most heavily infested sections should receive special attention. When only a portion of the infestation can be treated each season, it is usually considered advisable to direct the work towards reducing as rapidly as possible the chief centres of infestation in the whole infested section. What portion of the second year's work should be employed in new territory, and how much towards cleaning up more completely on the ground covered during the previous winter, must be decided by the conditions of the locality. The details of the control methods will depend upon the species of beetles involved, and partly also upon local conditions, and should be undertaken with the direction of a competent forest entomologist.
When it becomes necessary to undertake direct control measures, the broods in the bark of the infested trees can be destroyed by whichever of the following methods are best suited to local conditions:—

Floating the Logs.—Where water is available, the simplest method is to cut the infested logs during winter and float them as soon as cut or as early in the spring as possible; this will kill the greater part of the broods in the bark.

Sawing in Winter and Burning the Slabs.—Where it can be done profitably, the infested logs may be sawn during winter, and the slabs, which will contain the brood, burned before the spring opens.

Barking the Trees.—It is always possible to fell and bark the infested trees during winter, and when necessary, to burn the infested bark before spring opens. The presence of the greater number of the grubs in the middle layers of bark renders burning the bark necessary in the control of outbreaks involving the Western Pine Bark-beetle. Control operations should be completed usually during the period between the first of November and the following June, but the work should be finished as early in spring as possible.

When it is not possible to utilize the timber profitably, and control measures are necessary to protect valuable holdings against ravages of the beetles, the infested timber should be treated by the cheapest effective method so as to destroy the contained broods. The infested trees may be cut and burned or thoroughly charred before spring opens, frequently at less expense than by removing and burning the bark.

It will often be best to combine two or more of the available methods in order to complete the control work during late fall, winter and early spring.

This control work has reference solely to the freshly infested trees, with green, yellowish, or moderately reddened foliage, having the bark filled with the beetles and their grubs, and not to the old “red-tops” which have been dead for one and a half years or longer, and from which the beetles have emerged.

Trap-trees may be utilized in the control of some species. The importance of slash burning in bark-beetle control and the possibility of utilizing it as a trap has already been mentioned.

The Interrelations between Fire and Bark-beetles.

It has been shown that ground fires which injure and kill such large numbers of trees may provide material for the rapid development of bark-beetles. This is particularly true if the burns succeed each other year after year in neighbouring localities. This relation between fires and beetle development has probably always obtained, since fires have occurred in our forests for ages through the action of lightning and the agency of man.

When fires run through infested slashings, immense numbers of beetles may be destroyed and the fire may be very beneficial from that standpoint. When light fires run through beetle-infested timber the greater part of the broods are not affected by the heat, since only the bases of the trees are burned. If the fire is very hot so that the trees are burned far up the trunk, many of the

PLATE 7.

BARK-BEETLE BREEDING GROUNDS (ORIGINAL).

Fig. 1, Beetle-killed timber, a clump of red-top yellow pine near Princeton, B.C.
Fig. 2, Tunnels of Dendroctonus borealis, at base of white spruce in Jasper Park, Alta.
Fig. 3, Tunnels of Trypodendron bivittatum in white spruce, Jasper Park.
Fig. 4, Work of woodpeckers on a beetle infested yellow pine, Coldwater Creek Valley, B.C.
broods may be killed; but the uncertain benefit to be obtained by this burning is usually more than counterbalanced by the certain injury to healthy timber and reproduction. The control of bark-beetle outbreaks in green standing timber by fire should be undertaken only with the greatest caution and under expert advice. In our opinion this method of control would usually do infinitely more harm than good.

After the beetles have killed a large part of the timber, fires are able to obtain terrific headway in the masses of dead trees, and therefore to cause an unusual amount of damage. There are at present large areas in southern British Columbia where for miles all or nearly all the pines have been killed by bark-beetles. The trees have been dead from one to ten or twelve years. When fires occur in such material as this, often on a thin and rocky soil, the heat may burn through to the rock and reduce the section to a timberless waste for generations. It is not at all improbable that the large areas of rock and range land in southern British Columbia have been produced in past ages through this joint action of beetles and fire. Whatever has happened in the past, it is practically certain that fires will eventually ruin the extensive areas now existing in that region upon which the pine has already been largely or entirely killed, as well as upon that in which the beetles are still actively operating.

![Ips integer Eichh., antennae](Image)

Fig 5.—Ips integer Eichh., antennae. Original.
III

STRUCTURAL CHARACTERS.

The structures of the ipid beetles are discussed in this paper only very briefly for the purpose of illustrating the keys for determination. The terminology already employed in literature is made use of here so far as possible.

GENERAL CHARACTERS OF THE BODY.

The size varies in species of our fauna from 1 mm. in Crypturgus and Pityophthorus to 9 mm. in Dendroctonus. The shape is cylindric, varying from very stout, as in males of Anisandrus, to moderately elongate, Gnathotrichus, or elongate-oval in outline from above, as in Leperisinus.

The colour is usually dark reddish brown or black when mature; all species are yellowish when first transformed, and turn darker as the integument becomes more strongly chitinized. A few genera, as Leperisinus and Pseudohylesinus, have patches of scales of varying shades of brown and grey. Species of Trypodendron have the pronotum and elytra varied in black and shades of yellowish-brown.

The vestiture varies greatly and presents interesting characters. It varies from long slender hairs to very minute, fine, almost invisible pubescence, to very short bristles or to scale-like hairs, and finally to stout, flattened, plain or ribbed scales. The hairs may be simple or show many plumose and palmate or tuffed variations. Very stout spatulate setae as well as spines are developed on the tibia. In the ambrosia beetles of all genera, including Platypus, very long, slender sense-hairs are developed in patches on the labial palps. These hairs are evidently related to the habit of fungus-feeding and present an interesting case of convergence. Varying frontal or declival pubescence may be of secondary sexual significance.

The armature consists chiefly of stout setae and spines on the tibia; lunar rugosities or asperities on the front of the pronotum, more or less strongly developed; lunar rugosities about the base of the elytra, sometimes accompanied by an elevated elytral base; and teeth or spines on the interspaces of the declivity. The declival spines are particularly important in the classification of such genera as Pityogenes, Ips, and Xyleborus. An epistomal carina or process, and frontal tubercles, are developed in some species. The integument is nearly always strongly chitinized, except in such degenerate forms as the males of Anisandrus.

The Sculpture.—The surface of the body is pitted with setose punctures of varied structure; the longer setae or hairs of the elytra are almost invariably borne by the interstitial punctures, and the minute pubescence from the strial punctures. The margin of the punctures is invariably elevated into granules, rugosities or spines. The lunar rugosities of the pronotum and the declival serrations are enormously developed marginal granules; they seem always connected with a setose puncture of which they are the greatly elevated front margin. The elytra are variably striate with the interspaces often convex, or carinate behind, and variably rugose. In addition to bearing punctures, granules and setae, the head is frequently very finely aciculate, and any part of the integument may be finely reticulate.

THE HEAD.

The head is somewhat quadrate and prominent, visible from above in the Hylesininae and Eccoptogasterinae, subglobular and more deeply embedded in
the strongly convex pronotum so as to be invisible from above in the *Ipinoe* and *Micracina*. It bears many of the most important characters used in classification.

The *mouthparts* are only rarely made use of in the keys given in this paper, and need not be described in detail. The labrum is absent. The mandibles are powerfully constructed, without peculiar characters. The maxillæ and labium, on the other hand, present excellent constant and peculiar characters, some of which have been used in classification by earlier writers. The objection

![Diagram of Hylurgops pinifex Fitch; side view. Original.](image)

Fig. 2.—Hylurgops pinifex Fitch; side view. Original.

Ant., antenna; El., elytron, showing striae; El. dec., elytral declivity; Epis., epistoma; F. ex., fore coxa; Fr. front; Gen., gena; H. ex., hind coxa; M. cx., middle coxa; Md., mandible; M. epim., mesepimeron; M. epist., mesepisternum; Met. st., metasternum; Metepist., metepisternum; Mst., mesosternum; Mx., maxilla; Pn., pronotum; P.m.st., process of the mesosternum; Scut., scutellum; Sut. st., sutural stria.

to their general use applies to most internal structures; that they can be examined only after careful dissection requiring a microscope and a certain skill in manipulation. The characters of the maxillæ include the relations of the sclerites and the structure and arrangement of the setæ. The lobe is spinose in most species, but fringed with long slender hairs in ambrosia-beetle genera. The labium is deserving of more attention than it has yet received in literature, and if it were not for the difficulty in examination, would be used freely in these keys. The mentum, ligula, and palps bear excellent generic and specific characters.

The *eyes* are feebly convex, usually elongate-oval, with the margin entire or with the front margin more or less deeply emarginate. In the genera *Trypodendron*, *Xyloterinus*, and *Polygraphus*, the eyes are completely divided by the median emargination (Pl. 9, fig. 36). *Polygraphus* is otherwise very widely separated from these other two genera, and the condition of the eyes is an excellent example of convergence.

The *antennæ* are geniculate, with a well developed scape, funicle, and a prominent club. The latter may be regularly segmented with transverse or
arcuate sutures on each side, Pityophthorus (Pl. 10, fig. 22), or the inner margins of the segments may be thrust towards or to the apex of the club so that the segments lie obliquely and the sutures show only at the apex or not at all upon the inner face, Ips; when in addition to this condition the club is thickened towards the base with the apical segments more or less completely telescoped, an obliquely truncate club is produced, as in Xyleborus, Anisandrus, Dryocetes, Pityokteines, and Orthotomicus (Pl. 10, fig. 32), where almost the entire club is formed by the first segment. The distal segments are distinctly evident in Orthotomicus. In widely separated genera, Pityophthorus and Ecceoptogaster, the sutures of the club are very strongly chitinized, resulting in a partial or complete, distinctly visible septum. In a few genera the club is unsegmented, Chramesus (Pl. 10, fig. 36), Polygraphus (Pl. 21, fig. 1).

The funicle comprises that part of the antenna between the 1st segment, called the scape, and the club. The 1st segment of the funicle, known as the pedicel, is always enlarged; the remaining segments, comprising the outer part of the funicle (or the funicle of European writers) vary in number from one to six, usually widening towards the club. The number of segments in the funicle is usually a valuable character, but must be employed with caution since in some genera, Polygraphus, the number may vary in the same species. The scape is usually elongate, frequently strongly arcuate at the proximal end and elevate distally; sometimes short, Ecceoptogaster (Pl. 10, fig. 8); rarely much widen and flattened, Micracis (Pl. 10, fig. 19).

The antennæ bear many important characters, used repeatedly in the tables. They may often be examined satisfactorily with a good lens without removing them from the head, but very frequently it is necessary to remove and mount them in balsam.¹

The epistoma presents valuable characters in the median lobe, variably developed, as in Phloeosinus; the dorsal process, Dendroctonus (Pl. 9, fig. 37, 38); the median carina, and the punctuation and pubescence. The margin bears a fringe of stiff, light-coloured hairs.

The front bears important characters frequently used in the keys. Most important are the impressions, punctuation, granulation, median carina, and pubescence. Very often the sexes show marked difference in frontal characters.

The thorax.

The pronotum is somewhat depressed in the Hylesininae and Ecceoptogasterinae; usually strongly arcuate or gibbose in the Ipina and Micracinae, although in a few genera, Dryocetes and Xyloleptes, the convexity is less pronounced. The characters present in our genera concern the shape, punctuation, asperities of the frontal portion, granulation, pubescence, sub-basal line or margination, and the condition of the lateral margin.

On the ventral surface of the prothorax the length and concavity of the prosternum with the prosternal ridges are important, and also sometimes the punctuation of the lateral areas.

¹Pin the mounted beetle securely to a cork angle. With a needle, kept moist with clearing mixture until the antenna is secured, work the antenna loose under a dissecting microscope, or a strong lens held in the left hand. Transfer the free antenna on the moist needle point to a drop of 95 per cent alcohol on a clean slide. When the alcohol is nearly evaporated add a drop of carbol-xylene, (xylol, one-half, melted carboxylic acid crystals, one-half). When this is nearly evaporated add xylol-balsam and cover. The angle used by the writer for this purpose is made of sheet cork; it has a base 4½ inches long by 3 inches wide, covered above with soft white paper, with a vertical back ½ inches high, and a rim of Bristol board one-quarter of an inch high pinned securely about the sides and front. Exceedingly fine needles are necessary for removing very small antennæ, and for all fine dissection under high power. The best needles known to us are those used by dentists for extracting nerves. These may be obtained either plain or with serrated edges, together with suitable handles from any dentist, or dealer in dentist supplies. The plain needles may be bent into any desired curve by drawing the point between the thumb and fore finger. They are exceedingly durable.
The Legs.—The tibiae and tarsi present interesting modifications of great value in interpreting relationships. The third tarsal segment may be nearly normal or greatly widened and bilobed; the fourth segment may be distinct, or almost invisibly hidden in the bilobed third segment. The presence of elongate tarsal and tibial hairs is a secondary sexual character in some genera. The shape of the fore tibiae and the condition of their spines and serrations are of great importance in the relationships of the larger groups; the individual variations in the tibial serrations, however, are frequently very great.

![Diagram of leg](image)

Fig. 3.—Hylurgops pinifex Fitch; fore leg. Original.

The scutellum in these insects has the visible portion small, usually with the apex of the process at the level of the elytra, sometimes oblique or depressed and nearly invisible from above.

The thoracic sterna present important characters, but have been very little used. The condition of the mesosternum is important, particularly in the *Hylesininae*. The side-pieces of the metathorax are invariably exposed, and variably pubescent. The metepimeron is covered by the elytra or partly exposed; the metepisternum almost entirely exposed or nearly completely covered in a few genera.

THE ELYTRA.

The elytra are variably striate, punctured, granulate, and pubescent, with serrations in certain genera at the base or on the interspaces of the declivity. These characters are of the utmost importance in generic and specific arrangement. The strial punctures usually bear very minute setæ, while the longer hairs are almost invariably from the interstrial punctures. The elytral pubescence presents every gradation between slender elongate hairs and very short stout scales; the punctures of the striae and interspaces vary greatly in diameter, shape and depth; the interspaces may be flat or variably convex with granulations or rugosities. The "suture," the junction of the two elytra along the dorsum, is frequently more or less elevated, particularly behind, by the convexity of the first interspaces, and the first or sutural striae are frequently more deeply impressed than the others. The declivity is usually steep, sometimes truncate or concave, or almost absent with the elytra approaching the horizontal behind in a few genera, *Eccoptogaster* and *Leperisinus*, (Pl. 17, fig. 10).

THE ABDOMEN.

The apical tergites and sternites are of some importance, but will not be discussed here. The eighth tergites may be covered or exposed in one or both sexes. The five visible sternites vary considerably in the degree of fusion, relative length, and convexity; rarely they bear teeth or serrations, which may

36198—3
be smaller or absent in the female. The last sternite is variably impressed and carinate behind. It is considered by some that the first two sternites are fused and hidden in the metacoxal cavities; in this paper the five visible abdominal sternites are numbered from one to five.

Fig. 4. - *Hylurgops pinifex Fitch; ventral view. Original.*

C.C., coxal cavity; Cl., club; E, El., elytron; F., femur; Fun., funicle; Gen., gena; g.s., gular suture; L., labium; Md., mandible; M. cx., mesocoxa; M. epist., mesepisternum; M. epim., mesepimeron; Meta. st., metasternum; Metepist., metepisternum; M. st., mesosternum; mx., maxilla; Ped., pedicel; Pst., prosternum; P. m. st., process of the mesosternum; Sc., scape; Tr., trochanter.

INTERNAL CHARACTERS.

Considerable attention has been devoted to the application of internal characters to taxonomy. The characters of the male and female genitalia, and the alimentary canal, particularly the proventriculus, have been discussed in papers by Lindeman, Verhoeff, Sedlaczek, Nusslin, Fuchs, Hopkins, and others; and these characters have been employed in arranging keys for determination of genera and even of species. I have found these characters, especially the proventriculus, of the greatest interest and much practical value; but a wider study is apparently necessary, employing many genera and species, and particularly many specimens in each species, before definite conclusions can be drawn.

The chief drawback to the employment of these internal characters, and likewise of the mouth parts and hind wings, lies in the difficulty of their examination. While it is easy enough to make excellent mounts of the mouth parts, proventriculus and genitalia of *Crypturgus atomus*, if one has the proper equipment, it is quite impossible for the average student or forester, and a detailed discussion of these characters is therefore omitted from this paper.
IV.

CLASSIFICATION—A PRELIMINARY ARRANGEMENT OF THE CANADIAN BARK-BEETLES.

Introductory.

The genera of the Ipidæ have been arranged into tribes and subfamilies in so many different ways that now a tribal or subfamily name is indefinite unless followed by the name of the author. The four latest arrangements of the groups have been advanced by Hagedorn, Nusslin, Reitter, and Hopkins. Each differs radically from any of the others. The last, by Hopkins, representing an extensive study of world species, is an exceedingly valuable contribution; but there are sections of his arrangement with which I am as yet unable to agree. His family "Scolytidae" seems to me only a subfamily; his subfamily "Cryphalinae" to comprise two distinct and widely separated groups of genera; both the "Corhylinae" and the "Phloeotribinae" to group together genera that seem impossible in subfamilies of that extent, and Dendroctonus seems to me very widely separated from Crypturgus and Dolurgus.

A final acceptable arrangement of the Ipidæ can be made, I believe, only after a more complete study of the external and internal characters of world species, an exhaustive study of the larvae, and a close comparison of habits. It is of the greatest importance to study many individuals of each species, particularly in groups such as Trypodendron and Dryocetes, in which the species are notably variable. A study of scores or preferably of hundreds of individuals of each variable species, representing different localities, forms a basis for definite conclusions; the examination of a few specimens rarely even suggests the limits of variation. Tribal and even subfamily names are usually of minor importance, often a matter of personal preference, and very largely a nuisance. The relationships of the genera are usually indicated clearly enough by the grouping in the generic keys. The keys which follow are preliminary and far from perfect; they attempt a workable arrangement of the genera and Canadian species for the use of students and foresters. Many of the doubtful points will be settled eventually only by biologic studies. Internal characters have been included in the keys but rarely, although they have been utilized extensively as checks. Keys based upon the internal characters of such small insects are obviously quite useless to the average worker, and in so far as this family is concerned these internal characters seem usually to be no more reliable for phylogenetic studies than those of the exterior.

In the present paper the four leading groups of the Canadian Ipidæ are recognized as subfamilies; the Eccoptogasterinae, the Hylesininae, the Micracine, and the Ipinae.

The keys to the species include the species known to occur in Canada and those of the northern part of the United States in so far as they are represented in literature and in our collection. In a few genera, such as Ips and Pityophthorus, most of the North American species are included; but, in general, no attempt has been made to cover those genera peculiar to the southern and southwestern States. For instance, Hypothennemus and Stephanoderes, including many southern species, are not represented in Canada and are therefore disregarded. The Canadian species and others of special interest are treated briefly in the catalogue.

36198—3½
Paired Species.

We have to consider the status of the so-called "paired species," that is to say, species from neighbouring or widely separated areas, with the same habits and so closely similar in structure that a large section of the individuals are indistinguishable, while other individuals at the opposite ends of the series are easily separated by morphologic characters. We have, for example, a series of a species found in the spruce forests of northern British Columbia whose variations in certain characters intergrade from A to G, and a second series from Engelmann's spruce of the Rocky Mountain Region of southern British Columbia and Alberta with the same habits and the same characters as the first series, but with the variations in the characters already chosen varying from B to H. Individuals from either region lying between the points B and G on the curve are indistinguishable from those of the other region lying between the same points, while it is more or less easy to distinguish those about A from those about H.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
</table>

There are apparently two explanations for such a condition. We may have to deal with two distinct species which have arisen from distinct parent forms and which through convergence have now come to intergrade; or we may have to do with a single species, all descendants of a common parent species which have varied in different directions while intergrading in the same characters throughout the great bulk of the individuals. Either of these two hypotheses may be correct, but as the second appears to be far the simpler and at the same time "practical," it should be preferred.

Classification has two objects; to express biologic facts, and to assist in our study of the organisms themselves. It is more important to express the facts, if we can be reasonably sure of them; but if the truth is very doubtful, as it certainly is in the case of these "paired" or "overlapping" species, it appears to the writer that the simpler and more useful explanation should be chosen. If the individuals about A and H were the only ones known, we should describe two species; and it is proper to do so, if good judgment is used and the description sufficient, for it is only by the publication of such studies that rapid progress can be made. If intergrading forms are discovered later, and a few names reduced to synonymy, we still have a valuable record of variations, and synonyms are surely less troublesome than composite species. But when we find many intergrading individuals in each series so that the two series overlap and much of the material cannot be determined without the place labels, the writer can see no sufficient reason in retaining two names. In this paper several series in which no constant and distinguishing characters appear are left under their several names awaiting the completion of breeding experiments.

PLATE 8.

IPID STRUCTURES—ALL MUCH ENLARGED; ORIGINAL.

Fig. 1, Trypodendron retusus LeC.; larva.
Fig. 2, Pityogenes knechteli Sw.; male genitalia. (See Fig. 3.)
Fig. 3, Orthotomicus caelatus Eich.; male genitalia; Ap., apodemes; cc., central cavity; d.p., dorsal plate; Sp., spicule; Teg., tegmen; Tr., trough; Vp., ventral plate.
Fig. 4, Anisandrus populii Sw.; larva.
Fig. 5, Egg-tunnels of Conophthorus contiperda Sz. in white pine cone.
Fig. 6, Eccoptogaster picea Sw.; pupa.
Fig. 7, Anisandrus pyri Peck; male, side view (A. E. Kellett).
Fig. 8, Trypodendron retusus LeC.; pupa.
The Superfamily Ipoidea (Scolytoidea).

This subfamily is distinguished from the rest of the Rhynchophora, and from all other Coleoptera, by the following characters:—

The submentum not strongly produced behind; the beak very short or indistinct; the antennæ geniculate and clavate; the tarsi five-segmented; the maxillary palpi rigid; the tibæ usually serrate.

Families in the Ipoidea.

- Tarsi with segment 1 as long as the others united (Pl. 21, fig. 4). **Platypodidae**. Page 38.
- Tarsi with segment 1 much shorter than the others united (Pl. 9, fig. 34). **Ipidæ**. Page 38.

The family *Platypodidae* is represented in our area by one genus, *Platypus*, and one species, *wilsoni* Sw.

Length, 5.5 mm.; width, 1.3 mm.; the male elytra are individually produced at the apex (Pl. 21, fig. 3).

This is the most destructive Ambrosia beetle of the Pacific coast of British Columbia; its black tunnels penetrate the wood often for more than a foot. It attacks unhealthy and dying trees and felled logs of British Columbia Coast conifers except pine, cedar, and yellow cedar.

The Family Ipidæ.

Subfamilies of the Ipidæ.

A The anterior tibiae produced into a prominent process at the outer apical angle (Pl. 9, figs. 16, 17). **Eccoptogasterinæ**. Page 39.

AA The anterior tibiae not strongly produced at the outer apical angle (Pl. 9, figs. 23, 24).

B The head visible from above; the pronotum rarely more strongly roughened in front (Pl. 12, figs. 1, 2). **Hylesinæ**. Page 39.

BB The head subglobose, concealed from above by the pronotum; the pronotum usually distinctly more strongly roughened in front (Pl. 13, fig. 4).

C The anterior tibiae with the sides nearly parallel, not widened distally; the antennal funicle usually 6-segmented; the first two visible ventral segments of the abdomen subequal and each as long as the last three united, (Pl. 10, fig. 19). **Micracinæ**. Page 44.

CC The anterior tibiae widened distally and serrate on the outer margin (Pl. 13, fig. 3); the antennal funicle with less than six segments. **Ipinæ**. Page 44.

1 One doubtful record from Western White Pine.
This subfamily is represented in our territory by the single genus Eccoptogaster Herbst.

A The fore tibiae with the outer apical angle produced into a curved spine, the inner apical angle acute but not produced beyond the tarsal insertion (Pl. 9, figs. 16, 17).

B Venter of the abdomen ascending abruptly behind; the antennal scape very short (Pl. 17, fig. 10). **Eccoptogaster** Herbst. Page 50.

BB Venter of the abdomen normal, nearly horizontal. **Loganius** Chap.

AA The fore tibiae with the outer apical angle produced into a bifid process, with a tooth at the inner apical angle extending beyond the tarsal insertion, and one or more serrations on the outer margin.

B The pronotum transversely rugose in front, the outer margin of the fore tibiae strongly serrate. **Erineophilus** Hopk.

BB The pronotum not rugose in front.

C The pronotum with the side margin well defined. **Bothrosternus** Eichh.

CC The pronotum without a definite side margin.

D The sutures of the club curved; rostrum narrower than the front; body oval. **Pagiocerus** Eichh.

DD The sutures of the club straight; rostrum scarcely narrower than the front; body oblong. **Cnesinus** Lee.

The Subfamily Hylesininae.

Key to the Genera.

A The antennal funicle of two or three segments; the foretarsal segments cylindric; very small species (Pl. 10, fig. 9).

B The antennal funicle of two segments, the club with sutures only at the extreme apex. **Crypturgus** Er. Page 54.

BB The antennal funicle of three segments, the club segmented. **Dolurgus** Eichh. Page 55.

AA The antennal funicle of more than three segments; species of moderate or large size.

B The third foretarsal segment cylindric, not widened; forecoxae almost contiguous, (Pl. 21, fig. 1).

C The eyes divided (Pl. 9, fig. 36); the antennal club unsegmented, the scape much longer than the funicle (Pl. 10, fig. 27); the base of the elytra not much elevated and feebly crenulate (Pl. 21, fig. 1). **Polygraphus** Er. Page 55.

CC The eyes not divided; the club segmented, the scape stout, but little longer than the funicle; the base of the elytra elevated and strongly serrate.

D The eyes rather deeply, narrowly emarginate; the elytral declivity with carinate interspaces; the scape slightly longer than the funicle (Pl. 10, fig. 20). **Carphoborus** Eichh. Page 56.

DD The eyes feebly sinuate in front, hardly emarginate; the elytral declivity evenly convex; the scape shorter than the funicle.

E The anterior coxae in contact with the head beneath, the prosternum before them obsolete; the tibiae margined with short stout teeth. **Renocis** Csy.
EE The anterior coxae separated from the head by a very short prosternum; the tibiae margined with long slender teeth on the outer side. **Pseudocryphalus** Sw. Page 57.

BB The third foretarsal segment distinctly widened and emarginate or bilobed (Pl. 12, fig. 1).

C The antennal club unsegmented, the funicle attached to side of club (Pl. 10, fig. 36); beak extremely short, antennal scrobes circular, attaining the eyes; eyes entire; shape of body hump-backed (Pl. 9, fig. 28); pronotum much wider than long, strongly scabrous on the sides; elytra with declivity oblique, continuing the curve of the disc; the pubescence on the elytra of short scale-like hairs and stout bristles (Pl. 9, fig. 28a). **Chramesus** Lec. Page 58.

PLATE 9.

IPID STRUCTURES; ALL MUCH ENLARGED.

Fig. 1, *Orthotomicis cadalus* Eichh., labium.*

Fig. 2, *Hylobatrus pinifex* Fitch, egg.*

Fig. 3, *Dendroctonus valens* Lec., egg.*

Fig. 4, *Gnorathrus maderatus* Fitch, labium.*

Fig. 5, *Hylobatrus pinifex* Fitch, tarsus, showing wide and bilobed 3rd segment.*

Fig. 6, *Xylopterus politus* Say, labium.*

Fig. 7, *Micracis suturalis* Lec., labium.*

Fig. 8, *Anisandrus populii* Sw., labium.*

Fig. 9, *Pityogenes hopkinsi* Sw., labium.*

Fig. 10, *Trypodendron retusus* Lec., labium.*

Fig. 11, *Anisandrus minor* Sw., maxilla.*

Fig. 12, *Ips pini* Say, maxilla.*

Fig. 13, *Ips calligraphus* Say, labium.*

Fig. 14, *Dryocoetes septicentrionis* Mannh., labium.*

Fig. 15, *Pterocles malii* Fitch, tibia and tarsus.*

Fig. 16, *Eccoptogaster piceae* Sw., tibia, lower face.*

Fig. 17, *Eccoptogaster piceae* Sw., fore leg, tarsus retracted.*

Fig. 18, *Hylastes*, a portion of the tarsus showing emarginate 3rd segment.*

Fig. 19, *Xylocerus politus* Say, metepisternum.*

Fig. 20, *Pityophthorus*, metepisternum.*

Fig. 21, *Trypodendron retusus* Lec., metepisternum.*

Fig. 22, *Xylocerus politus* Say, showing divided eyes.*

Fig. 23, *Phthorophloeus piceae* Sw., tibia and tarsus.*

Fig. 24, *Pseudopityophthorus minutissimus* Zimm., fore leg.*

Fig. 25, *Leptosternus aculeatus* Say, venter of abdomen.*

Fig. 26, *Hylobatrus pinifex* Fitch, venter of abdomen.*

Fig. 27, *Xylocerus celsus* Eichh., labium.*

Fig. 28, *Chramesus tauri* Lec., side view.*

Fig. 28a, *Chramesus tauri* Lec., dorsal view.*

Fig. 29, *Conopsophorus coniperda* Sw., labium.*

Fig. 30, *Hylastes sp.*., dorsal view of head and pronotum.*

Fig. 31, *Hylobatrus pinifex* Fitch, dorsal view of head and pronotum.*

Fig. 32, *Pterocles fuscipennis* Lec., labium.*

Fig. 33, *Trypodendron biotatum* Ky., hind tibia and tarsus.*

Fig. 34, *Trypodendron betulae* Sw., hind tibia and tarsus.*

Fig. 35, *Hylobatrus pinifex* Fitch, side view of mesosternal process.*

Fig. 36, *Polygraphus rufipennis* Ky., side of head; male.*

Fig. 37, *Dendroctonus pseudotsugae* Hopk., epistomial process.*

Fig. 38, *Dendroctonus valens* Lec., epistomial process.*

Fig. 39, *Dryocoetes americanus* Hopk., prosternal process.*

Fig. 40, *Anisandrus minor* Sw., prosternal process.*

Fig. 41, *Ips concinnum* Mannh., labium, side view.*

Fig. 42, *Hylobatrus pinifex* Fitch, labium.*

Fig. 43, *Stephanoderes dissimilis* Zimm., labium.*

*Original. **Author's illustration.
CC The antennal club segmented; the funicle attached to the end of the club.

D The antennal club loosely segmented, the segments produced on one side, sublamellate (Pl. 10, figs. 4, 6).

Phthorophloeus Rey. Page 58.

DD The antennal club connate, the segments equal sided.

E The antennal funicle 5-segmented.

F The fore coxae very narrowly separated, practically contiguous; the metepimeron visible in part, variably distinct; the epistomal process basal and well-developed; the antennal club flattened, thickened at the base, as wide as or usually wider than long (Pl. 12, fig. 2); the eyes entire; the pronotum frequently wider than long, punctured; the elytral base not elevated, arcuate and finely crenulate; the scutellum oblique; the foretarsal segment 3 wide and deeply bilobed; the ligula in a wide band extending over the distal end of the mentum; the proventriculus with the diagonal lines of teeth very long, the transverse lines on the disc very strongly developed (Pl. 18, fig. 10).

Dendroctonus Erich. Page 60.

FF The forecoxae moderately or narrowly separated; the metepimeron covered by the elytra; the antennal club much longer than wide; the front without a basal epistomal process.

G The funicle with the outer segments distinctly broader; the club elongate, pubescent, compressed, with three more or less strongly oblique sutures; the eyes deeply emarginate; the forecoxae moderately distant; the prosternum moderately short; the alternate interspaces of the declivity usually serrate, more strongly in the male; the metepisternum wide, (Pl. 10, fig. 7).

GG The funicle with the outer segments hardly widened; the club compressed, obtuse at the tip; the forecoxae narrowly separated; the prosternum very short in front of the coxae; thickly clothed with coarse erect hairs. Cal. Chaetophloeus Lec.

EE The antennal funicle 7-segmented.

F Fore coxae rather widely separated; proventriculus with diagonal lines of discal teeth absent or very feebly developed.

G Antennal club strongly compressed; elytra gradually depressed behind without a steep declivity; venter of abdomen bent upwards behind; clothed above with scales; the disc of the proventriculus not finely granulate, (Pl. 10, fig. 15).

Leperisinus Reitter. Page 70.

GG Antennal club only moderately or slightly compressed; elytra with declivity distinct and abrupt; clothed chiefly with hairs.

H Antennal club hardly flattened, subconical, with 1st segment almost as long as 2nd and 3rd united;
the proventriculus with the diagonal teeth feebly developed; episterna scaly.

Scierus Lec. Page 73.

HH Antennal club distinctly but not strongly compressed, 1st segment much shorter than 2nd and 3rd united.

I Antennal club with first suture alone strongly chitinized, distinct; each of first and second segments longer than the third and fourth united (Pl. 10, fig. 14); the proventriculus with a short diagonal band of small costal teeth backwards from base of bristles, almost obsolete on disc which is not finely granulate; ligula widened distally and truncate at tip; the distance from the front of the eyes to base of mandibles much greater than width of eyes; antennal scrobes distinctly separated from the front of the eyes; meso- and metepisterna scaly.

Hylastinus Bedel. Page 73.

II Antennal club with first two sutures strongly chitinized and distinct, the two apical segments together longer than the second; the disc of the proventriculus finely granulate; the ligula rounded at the tip; the distance between the front of the eyes and base of the mandibles hardly greater than the width of the eyes, which are narrow and elongate, passing the base of the mandibles on the ventral side of the head.

J Segments of the club indistinctly subdivided by a constriction and a row of hairs, third and fourth segments very rapidly narrowed, segments of funicle more strongly widened distally (Pl. 10, fig. 2); meso- and metepisternum scaly; 9th elytral interspace strongly carinate; scutellum oblique.

JJ Segments of the club not so subdivided, third and fourth segments longer, segments of funicle not much widened distally; metepisternum not scaly; scutellum not depressed, (Pl. 10, fig. 1).

FF Fore coxae narrowly separated; the disc of the proventriculus with diagonal lines of teeth usually strongly developed (Pl. 18, fig. 10).

G Elytra with bases very strongly arcuate, slightly elevated and finely evenly serrulate; 1st, 2nd, and 5th ventral segments subequal in length (Pl. 9, fig. 25); ligula wide, from a convex chitinized base, narrowed distally; antennal hairs dense, stout and plumose; the metasternum somewhat inflated, (Pl. 10, fig. 3).

Pseudohylesinus Sw. Page 74.
GG Elytral bases at most but moderately arcuate and not regularly serrulate; 1st and 5th ventral segments subequal in length and longer than the others (Pl. 9, fig. 26); the ligula slender, from a box-like, strongly chitinized basal inflation; the venter of the abdomen horizontal, (Pl. 9, fig. 42).

H 3rd tarsal segment much widened and bilobed (Pl. 9, fig. 5); mesosternum protuberant in front (Pl. 9, fig. 35); bases of elytra usually rounded (Pl. 9, fig. 31).

Hylurgops Lec. Page 80.

HH 3rd tarsal segment but little widened and emarginate (Pl. 9, fig. 18); mesosternum not protuberant; base of elytra nearly straight.

Hylastes Er. Page 77.

The Subfamily Micracinæ.

KEY TO THE GENERA.

A The antennal club 5-segmented; abdominal segments 1 and 2 each about as long as 3 and 4 together; the pronotum with an elevated area projecting beyond the base of the thorax as a median lobe. In *Cereus giganteus*, Arizona. *C. hubbardi* Sz. **Cactopinus** Sz.

AA The antennal club 6-segmented; abdominal segments 1 and 2 each as long as 3, 4, and 5 together; the pronotum normal.

B The elytra acuminate at the apex; the antennal club distinctly annulated on both sides. **Micracis** Lec. Page 83.

BB The elytra not acuminate at the apex; the club not distinctly annulated on the inner side. **Thysanoes** Lec. Page 82.

This subfamily is apparently represented from Canada by only the three specimens of *Cryphalus* rigidus Lec. in the Leconte collection, although several species of **Micracis** occur in the northeastern United States, in twigs of various deciduous trees.

The Subfamily Ipinæ.

KEY TO THE GENERA.

A The eyes divided (Pl. 9, fig. 22); the antennal club without distinct sutures; metepisternum rather wide (Pl. 9, fig. 21).

B The antennal club with the corneous basal segment broadly arcuate in front (Pl. 10, fig. 11); the metepisternum narrowed and sinuate in front, the sides parallel behind (Pl. 9, fig. 19); the male smaller than the female, with the front convex. **Xyloterinus**, new genus. Page 83.

BB The antennal club with the corneous basal segment strongly angulate in front and produced towards the middle (Pl. 10, fig. 18); the metepisternum strongly sinuate behind on the inner side (Pl. 9, fig. 21); the male with the front deeply excavated, the sexes subequal in size. **Trypodendron** Stephens. Page 84.

AA The eyes not divided; the club with sutures at least at the tip.
B The antennal funicle with not more than three segments; the metepisternum covered on the posterior half, the fore tibiae but little widened distally (Pl. 9, fig. 15).

C The funicle of only one segment; the fore tibiae without transverse ridges or asperities on the outer face, strongly serrate distally on the outer margin; stout species; Eastern States. *Corthylus* Er.

CC The funicle of two segments, the second smaller and closely attached to the club (Pl. 10, fig. 38); the fore tibiae with transverse ridges or asperities on the outer face, serrate on the entire outer margin; elongate species (Pl. 9, fig. 15). *Pterocyclon* Eichh. Page 86.

BB The antennal funicle with more than three segments; the fore tibiae more or less strongly widened distally (Pl. 9, fig. 24).

C The body clothed with scales or short scale-like hairs; the pronotum armed with comparatively few, large, isolated, spine-like or tuberculate asperities; small species.

D The pronotum acutely margined on the sides; stout species with the antennal club but little longer than wide.

E The elytra deeply striate.

F The antennal funicle 4-segmented, the fourth segment narrow. Eastern United States, etc. *Hypothemenemus* West.

FF The antennal funicle 5-segmented, the fifth segment wide. Eastern United States, etc. *Stephanoderes* Eichh.

EE The elytra feebly striate; the funicle 4-segmented. *Cryphalus* Er. Page 87.

DD The pronotum without an acute side margin.

E The antennal funicle 4-segmented; the eyes simple.

EE The antennal funicle 5-segmented, the club much longer than wide; the elytra elongate; the pronotum with rather numerous isolated asperities, rather smaller than usual, (Pl. 10, fig. 26). *Trypophleus* Fairm. Page 90.

CC Body clothed with hairs, often nearly glabrous; pronotum with numerous small asperities or more or less distinct granules in front (Pl. 18, fig. 17).

D The pronotum finely margined with a transverse raised line near the caudal border; the metepisternum largely covered by the elytra, visible only in front (while the elytra are in the normal tightly closed position) (Pl. 9, fig. 20).

E The mouthparts, as seen from below, rather sparsely clothed with slender hairs, the maxillary lobe pilose (Pl. 9, fig. 11); the body slender, very smooth, punctures and pubescence nearly obsolete except on the declivity; the pronotum closely but feebly asperate in front, with an acute, arcuate, transverse, short carina at the summit, which is before the middle (Pl. 18, fig. 17). *Gnathotrichus* Eichh. Page 90.
EE The mouth parts, as seen from below, densely clothed with stiff hairs, the maxillary lobe spinose; the body slender or stout, usually rather strongly punctured and pubescent; the pronotum strongly asperate in front without a transverse carina at the summit, which is usually median in position.

F Body very stout; the pronotum with the marginal granules almost obsolete; the discal asperities extending over more than the cephalic half of the sides, and the disc evenly convex, without a transverse impression behind the summit; the antennal club not septate (Pl. 10, fig. 17). **Conophthorus** Hopk. Page 92.

FF Body slender to moderately stout, the pronotum with the front margin usually distinctly asperate, the sides punctured and without granules on the caudal half, the disc transversely, broadly impressed behind the summit; the antennal club usually separte (except *ramiperda*).

G Elytra and pronotum minutely and densely punctulate and densely clothed with very fine short pubescence; the club with the first segment narrower than the others; the prosternal process elongate-acute, the male with long hairs on the front, (Pl. 10, fig. 24). **Pseudopityophthorus**, new genus. Page 93.

GG Elytra and pronotum coarsely or finely and rather sparsely punctured and pubescent; the club with the 1st segment usually subequal in width to the others; the prosternal process short and wide; the special development of hairs on the front a female character. **Pityophthorus** Eichh. Page 94.

DD The pronotum not margined behind; the metepisterna distinct for the entire length.

E The antennal funicle 5-segmented.

F The pronotum precipitous or oblique in front, asperate before the summit; usually punctured behind (except *Ambrosiodmus* and *Xylocleptes*).

G The pronotum strongly declivitous and strongly asperate in front, not granulate behind (except in *Ambrosiodmus*).

H The fore tarsi only moderately widened distally; the mouthparts as seen from below clothed with many stiff hairs, the maxillary lobe spinose (Pl. 9, fig. 12); the elytral declivity usually toothed or excavated or both (Pl. 13, fig. 5). True Bark-beetles.

I The posternum very short and oblique in front of the coxae, with the intercoxal process short, wide, not extending far between the coxae (Pl. 9, fig. 40); the front of the female usually deeply excavated (Pl. 15, figs. 1, 2); the antennal club flat, compressed, sutured on both sides, the first segment subcircular, occupying the basal two-thirds on inner side (Pl. 10, fig. 25); [proventriculus with "closing teeth" longer than masticatory plate; the male genitalia with the
“trough” a long, spiral, longitudinally striate band. (Pl. 8, fig. 2)].

Pityogenes Bedel. Page 104.

II The intercoxal process of the prosternum long and acute (Pl. 9, fig. 39); the front not deeply excavated in either sex; the antennal club usually without sutures on the inner side or only at the extreme tip; [the “closing teeth” of the proventriculus shorter than the masticatory plate; the “trough” of the male genitalia not a longitudinally striate band].

J The concavity of the declivity separated from the apical margin of the elytra by the strongly produced, horizontal, plate-like, acute apical margin of the declivity (Pl. 14, fig. 2); the antennal club flattened, sutured throughout on the upper face (Pl. 10, fig. 10); the “trough” of the male genitalia divided into two short rods; the ligula depressed and the mentum very slender, (Pl. 9, fig. 13). Ips De Geer. Page 107.

JJ The declivity with the apical margin only slightly produced, at most forming a very short acute apical ridge, the plate dividing the declivital concavity from the apical margin of the elytra, when present, oblique and very short; the antennal club thickened at the base, and obliquely truncate distally on the upper face (Pl. 10, fig. 33); the ligula pine-cone-shaped, the mentum moderately elongate (Pl. 9, fig. 1).

K The front of the female not densely clothed with long yellow hair; the declivital concavity separated from the apical margin by a complete margin, usually acute and distinct though not strongly produced, the antennal club usually longer than wide, thick at the base with the oblique truncate distal face steep; the 7th abdominal tergite without spiracles. (Pl. 10, fig. 33).

Orthotomicus Ferr. Page 121.

KK The front of the female densely clothed with very long yellow hair (Pl. 16, fig. 3); the declivital concavity less pronounced, with the apical declivital margin almost absent towards the middle of the apex so that the sutural sulci extend to the apical margin of the elytra (Pl. 15, figs. 5, 6); the antennal club usually wider than long, strongly depressed distally; the seventh tergite with spiracles.

Pityok teines Fuchs. Page 123

HH The fore tarsi strongly widened distally (Pl. 11, fig. 2); the mouth parts with sparse slender
hairs, the maxillary lobe pilose (Pl. 9, fig. 11); the males smaller and usually differing markedly from the females (Pl. 11, fig. 1); the prosternum very short, linear in front of the coxae. Ambrosia-beetles.

The pronotum not serrate on the front margin, quadrate, granulate over the entire surface; the antennal club with the distal segments showing slightly as a suture at the tip of the inner side; the scutellum distinct, not depressed; the body moderately stout; the mesepimeron narrow, the metepisternum only feebly emarginate behind (Xyleborus tachygraphus Zimm.). Southeastern United States.

Ambrosiodmus Hopk.

PLATE 10.

IPID ANTENNAE; ALL MUCH ENLARGED.

Fig. 1, *Hylurgopinus rufipes* Eichh.*
Fig. 2, *Aminiphagus aspericollis* Lee.*
Fig. 3, *Pseudothlysemus nebulosus* Lee.*
Fig. 4, *Phthorophloeus frontalis* Oliv.*
Fig. 5, *Phloeophtorus rhododactylus* Rey.*
Fig. 6, *Phthorophloeus liminaris* Fitch.*
Fig. 7, *Phlocosinus canadensis* Sw.*
Fig. 8, *Eccoptogaster piceae* Sw.*
Fig. 9, *Crypturgus atomus* Lee.*
Fig. 10, *Ips pinet* Say.*
Fig. 11, *Xyloterinus politus* Say.*
Fig. 12, *Phthorophloeus spinulosus* Rey.*
Fig. 13, *Phthorophloeus piceae* Sw.*
Fig. 14, *Hylastinus obscursus* Marsh.*
Fig. 15, *Leperisinus aculeatus* Say.*
Fig. 16, *Hylurgops pinifex* Fitch.*
Fig. 17, *Conophthorus coniperda* Sz.*
Fig. 18, *Trypodendron bivittatum* Ky.*
Fig. 19, *Microscius, undec sp.*
Fig. 20, *Carphoborus bifurcus* Eichh.*
Fig. 21, *Gnatholothrixus materiarius* Fitch.*
Fig. 22, *Pityophthorus canadensis* Sw.*
Fig. 23, *Lymantor decipiens* Lee., inner face.*
Fig. 24, *Pseudopityophthorus minutissimus* Zimm.*
Fig. 25, *Pityogenes hopkinsi* Sw.*
Fig. 26, *Trypophloeus nitidus* Sw.*
Fig. 27, *Polygraphus rufipennis* Ky.*
Fig. 27b, *P. rufipennis* Ky., showing 2nd segment of funicle partly divided.*
Fig. 28, *Lymantor decipiens* Lee.; outer face.*
Fig. 29, *Cryphalus sp.*
Fig. 30, *Dendroctonus valens* Lee.*
Fig. 31, *Dryocoetes affabil Mannh.*
Fig. 32, *Anisandrus minor* Sw.*
Fig. 33, *Orthotomicus caelatus* Eichh.*
Fig. 34, *Dryocoetes septentrionis* Mannh.*
Fig. 35, *Ips concinnus* Mannh.*
Fig. 36, *Chramesus icoriae* Lee.*
Fig. 37, *Loganius fucus* Sz.*
Fig. 38, *Pterocyclon mali* Fitch.*

*Original. **Author's illustration.
II The pronotum asperate on the cephalic half, punctured but not granulate behind; the distal segments of the antennal club completely telescoped, rarely showing from the inner side.

J The body very stout; the pronotum subcircular with the cephalic margin serrate at the middle line in the female, the mesepimeron strongly widened laterally; the metepisternum only very faintly emarginate behind; the scutellum distinct, not de-dressed (Pl. 11, figs. 1, 2).

JJ The body slender, the pronotum not serrate on the cephalic margin; the mesepimeron feebly widened laterally, the sides sub-parallel; the metepisternum rather strongly emarginate on the inner side behind.

Xyleborus Eichh.* Page 126.

GG The pronotum feebly declivous and not very strongly asperate in front and somewhat granulate behind; the sides arcuate; the antennal club strongly compressed, the sutures arcuate, showing on both sides; the elytral declivity more or less deeply concave.

Xylocleptes Ferr. Page 128.

FF The pronotum feebly convex, subequally in front and behind, not declivous in front, granulate over the entire surface, usually somewhat more strongly in front; the antennal club obliquely truncate at the tip on the outer side, thickened basally; the declivity convex or somewhat flattened, never more than feebly granulate. Bark borers (Pl. 11, figs. 4, 5).

Dryocotes Eichh. Page 128.

EE The antennal funicle 4-segmented, the club compressed, with arcuate sutures on the outer and inner sides (Pl. 9, fig. 23, 28); the pronotum rather feebly declivous and asperate in front, punctured behind, arcuate on the sides.

Lymantor Löv. Page 133.

THE ECCOPTOGASTERINÆ.
The Genus Eccoptogaster Herbst
Die Käfer, 5: 124, 1793.

Scolytus Geoff.

The status of the names Scolytus Geoffroy, 1762, and Eccoptogaster Herbst, 1793, depends upon the acceptance or rejection of Geoffroy's description of Scolytus. Geoffroy's description seems entirely inadequate; he is not binomial, although binary, and he does not designate any species definitely as included in this genus Scolytus except by reference to an unnamed figure and by the local

* Reitter, 1913, has erected the genus Xyleborinus, with the type saxosocii Ratz. This genus is separated from Xyleborus by the indistinct, oblique, depressed and carinate scutellum. It is included in Xyleborus by Hopkins as his Division I in which he has described six new species. There are no Canadian representatives known.
name "le scolite." The figure, "Planch 5, fig. 5," is poor, and although it would be identified readily enough as probably belonging to the genus Scolytus, it could not possibly be definitely connected with any particular species. The genus Scolytus was erected, therefore, without any definite specific representative, and in my opinion should be replaced by Eccoptogaster Herbst, 1793.

Key to the Species.

A Elytra deeply, closely striate, interstriae as deeply impressed as the main striae; the disc of the elytra distinctly hairy; epistomal process almost obsolete. (Some specimens of muticus have the striae much less distinct than normal).

B Large, 3.5 to 4 mm.; elytra sparsely clothed with long hairs over entire surface. Ohio, Missouri, Pennsylvania; Celtis. **muticus** Say.

BB Smaller, 2.5 to 3 mm.; elytra with short hairs over entire surface. *rugulosus* Ratz. Page 52.

AA Elytral interspaces at least moderately wide and at most only feebly striate; disc almost glabrous.

B Elytra with deep wide striae of coarse, very closely placed punctures.

C Interspaces rather narrow; the interstrial rows finely impressed; the male with the front clothed with a fringe of long hairs, and the venter with four acute spines. **quadrisspinosus** Say. Page 53.

CC Interspaces wide; the front thickly clothed with long hairs; the venter without spines in either sex. Illinois, Texas; *Celtis, Fagus*. *fagi* Walsh.

BB Elytral striae not very deeply impressed and with small or medium-sized strial punctures separated usually by one or more times their diameter.

C Elytral striae distinctly (and variably) impressed; the interstrial punctures on the disc much smaller than those of the striae.

D The 2nd abdominal sternite with a well-developed spine in the male, and a spine or acute tooth in the female; the anterior or ventral edge of the 2nd segment rounded and feebly margined, except in *multistriatus*.

E The ventral declivity minutely and very densely punctured; the 3rd and 4th segments together much shorter than the 5th, and each with a trace of a median caudal granule; the spine arising from the upper part of the 2nd segment. *Elm. *multistriatus* Marsh.

EE The ventral declivity finely and sparsely punctured; the 3rd and 4th segments together subequal to the 5th, and without traces of a median caudal granule; the spine arising from the centre or from the caudal margin of the 2nd segment.

F The ventral spine from the centre of the perpendicular face (2nd segment) of the declivity (Pl. 17, fig. 10). *picea* Sw. Page 53.

FF The ventral spine from the caudal fifth of the 2nd segment. *unispinosus* Lec. Page 53.

DD The abdomen unarmed, except rarely a faint acute carina at the apex of the 2nd sternite or a granule at the apex of the 3rd and 4th sternites.

* Introduced into the Eastern States from Europe; not yet known from Canada.

36198—4 1/2
E The wide discal interspaces finely, confusedly punctured near the suture; with a median granule at the apex of the 3rd and 4th sternites. Cal., N. Mexico. **californicus** Lec.

EE The discal interspaces uniseriately punctured; the 3rd and 4th sternites unarmed.

F The elytral striae rather strongly impressed, with the punctures of medium size; the interspaces distinctly though feebly striate; the 2nd abdominal sternite opaque, very finely punctured. **tsugae** Sw. Page 53.

FF The elytral striae rather feebly impressed, with the punctures small; the interspaces hardly at all striate; the 2nd abdominal sternite shining, with deep punctures of medium size. **monticolae** Sw. Page 53.

CC Elytra usually with only faint traces of striae, the interstrial punctures usually as large or nearly as large as those of the striae.

D The discal interspaces somewhat confusedly punctured near the suture and feebly striate, the 2nd abdominal sternite very narrow and oblique. New York. **sulcatus** Lec.

DD The discal interspaces uniseriately punctured; the 2nd abdominal sternite large.

E The ventral declivity opaque, very finely and closely punctured. Cal., Idaho, Utah, N. Mexico. **praeceps** Lec.

EE The 2nd segment moderately shining and sparsely, moderately punctured. **ventralis** Lec. Page 53.

Length 2 mm. to 2.5 mm.; nearly black, with the antennae, legs and tips of the wingcovers reddish brown; the pronotum with coarse, rather close, elongate punctures; the elytra rather deeply, closely striate, the punctures moderate, larger in front, close, similar on the striae and interspaces, the interspaces striate along the row of punctures so that striae and interstrie are similar, interstrial punctures sometimes irregular; elytral pubescence short and sparse; the male with the front flattened rather than plano-convex as in the female; the ventral declivity strongly opaque but not excavated nor toothed.

Host trees.—Apple, Cherry, Plum, Peach, Quince, Nectarine, Black Cherry, and Wild Plum in North America.

Distribution.—In North America, Eastern United States and southern Ontario, from Texas to the Niagara peninsula. Not known from elsewhere in Canada. An injurious orchard pest.

PLATE 11.

IPID BEETLES—ALL GREATLY ENLARGED. (ORIGINAL.)

Fig. 1, **Anisandrus obesus** Lec., male.
Fig. 2, **Anisandrus pyri** Peck, female.
Fig. 3, **Dryocoetes affaber** Mannh.
Fig. 4, **Dryocoetes pseudotsugae** Sw.
Fig. 5, **Dryocoetes betulae** Hopk., female.
Length, 4·2 mm. to 7 mm.; black with pubescence brown, legs, antennae, and front margin of pronotum variably reddish. The male has the front broadly flattened, strongly aciculate, and fringed with long, incurved hairs; the ventral declivity deeply excavated, the cephalic margin of 2nd segment strongly produced, recurved and acute on the median line, with an acute median carina, the 3rd segment with three long caudal spines, the 4th segment with one median spine, the 5th segment very short, densely punctured and pubescent. The female has the front subconvex, slightly impressed in front and behind, finely aciculate, with moderate, erect, brownish hairs; the 2nd segment vertical, the 3rd and 4th segments normal, the 5th as long as the 3rd and 4th united, finely pubescent.

Host tree.—Hickory.

Distribution.—Widely distributed throughout the Eastern States as far west as Utah (our collection), but extremely rare in Canada; taken at Rigaud, Que., and Guelph, Ont., and may be said to occur in southern Quebec and southern Ontario.

A very destructive enemy of hickory.

Length, 2·7 mm. to 3·2 mm.; nearly black, readily identified by the characters given in the key, its host trees and its distribution (Pl. 17, fig. 10).

Host trees.—White Spruce, Balsam Fir.

Distribution.—Throughout Eastern Canada west to the Peace River Valley in northern Alberta. Breed's usually in half-dried limbs.

A small shining black species; length, 2·3 mm to 3 mm.; the elytral striae with small punctures, distinctly but narrowly impressed; the interspaces finely uniseriately punctured; the elytral punctures somewhat scabrous at the basal margin; the 2nd abdominal sternite with a spine at the caudal margin, long, flattened and blunt in the male, much shorter, conical and acute in the female.

Host trees.—Douglas Fir.

Distribution.—Generally distributed throughout the Douglas fir region of British Columbia, from Vancouver to Jasper park, Alberta.

Length, 3·4 mm.; the female front convex, aciculate-punctate and with fine hairs; the male front flat, more strongly and coarsely aciculate-punctate, the elytra hardly scabrous at the base, the 2nd abdominal sternite more coarsely margined.

Host trees.—Mountain Hemlock, Douglas Fir.

Distribution.—Cherry Creek valley, British Columbia; Glacier, B.C.; Jasper park, Alberta. Found in dying bark.

Length, 2·8 mm.; with the secondary sexual characters of *tsugæ*.

Host trees.—Western White Pine, Douglas Fir.

Distribution.—Arrowhead, B.C. (white pine); Creighton valley, B.C. (Douglas fir).

Eccoptogaster ventralis Lec.; Am. Ent. Soc. Trans. 2: 167,1868 (*Scolytus*).

Length 3·75 mm.; the type of ventralis Lec. is a male, apparently identical with a common form in British Columbia. The front is flattened, coarsely aciculate, punctured and conspicuously hairy; the elytral punctures rather small, somewhat coarser but only slightly rugose at the base; much less coarsely sculptured than in the female; the 2nd ventral segment strongly margined in front and with a decided median tooth-like carina at the caudal margin.
The female form which we have referred to this species has the front convex, finely punctulate-aciculate and very sparsely hairy, the elytra usually rather coarsely and rugosely punctured at the base and much more coarsely punctured throughout than the type; the 2nd segment of the abdomen occasionally with a minute median caudal granule.

E. subscaber Lec.; Am. Phil. Soc. Proc. 15: 371, 373, 1876. The type of subscaber is a male, with flattened, aciculate and hairy front, and shining, sparsely punctured pronotum. The elytra are scabrous at the base as in our female form, but very finely punctured behind, the interstrial punctures but little smaller than those of the striae; the striae hardly impressed but marked by a fine impressed line. The 2nd segment without a granule, and rather feebly acute in front; the 5th segment with a feeble median longitudinal carina. It was described from Vancouver but we have never taken a similar specimen in British Columbia. The other two types in Leconte's series are females identical with those just referred to as probably the female of ventralis.

It is possible that the type of subscaber Lec. is an abnormal individual of ventralis Lec., or it may be a distinct species. Although described from Vancouver it is not duplicated in our large collection.

Host tree.—Grand fir.

Distribution.—Vancouver island and the coast of British Columbia.

THE HYLESININÆ.

The Genus Crypturgus Erichson.

Wieg. Archiv., 1: 60, 1836.

Key to the Species.

A The sutural striae suddenly and strongly impressed on the basal fourth; the surface brightly shining, the pronotal punctures moderately large and deep; the interspaces nearly as wide as the striae, shining, smooth and sparsely punctured on the disc; the pronotum strongly rounded on the sides, suboval. atomus Lec. Page 54.

AA The sutural striae feebly impressed throughout; the surface feebly shining, the pronotal punctures very small and numerous; the interspaces narrower than the striae and strongly granulate; the pronotal sides nearly parallel on the caudal half, much more strongly narrowed in front than behind the middle.

B The pronotal punctures very feebly impressed; the elytral punctures very coarse and the interspaces extremely narrow. Pennsylvania. corrugatus Sw. Page 54.

BB The pronotal punctures rather strongly impressed; the elytral punctures moderately coarse, and the interspaces decidedly narrower than the striae. The Great Lakes to the British Columbia coast. borealis Sw. Page 54.

Length, about 1 mm.; moderately slender, brown to nearly black, shining; pronotum rounded on the sides, rather sparsely punctured; the elytra moderately punctate-striate, the sutural striae strongly impressed on the basal third; the interspaces convex, smooth, uniseriately punctured, sparsely on the disc; the male with the postepistomal area of the front plano-concave, coarsely setose-punctate, the female with that area plano-convex.

Host trees.—Pines, Spruces, Balsam, and Larch.

Distribution.—Eastern Canada from Nova Scotia to the Great Lakes, and Eastern United States. This species, like borealis, usually starts its tunnels from the side of those of Dendroctonus, Ips, Polygraphus, or Dryocates.

Length, 1.2 mm.; closely related to corrugatus from Pennsylvania, but with the elytra less coarsely punctured, and slightly but usually distinctly larger. The female front with the postepistomal region triangularly flattened, coarsely reticulate and setose-punctate, the elytral tip subcircularly spongy; the male with the postepistomal area more strongly flattened, slightly plano-concave, the elytral tip normal, granulate and setose-punctate.

Host trees.—Tamarack (Manitoba), White Spruce (northern Alberta), Sitka Spruce (British Columbia Coast region).

Distribution.—Manitoba, northern Alberta, Colorado. A common species in Sitka spruce of the British Columbia Coast region presents minor differences, but is probably not distinct.

The Genus *Dolurgus* Eichhoff.

Length, 1.6 to 2 mm. Its tunnels usually originate from those of *Ips concinnus*.

Host trees.—Sitka Spruce.

Distribution.—Alaska through the British Columbia Coast region and south to Oregon.

The Genus *Polygraphus* Erichson.

In 1911 Seitner separated the genus *Pseudopolygraphus* from *Polygraphus* on the basis of the 6-segmented funicle, with *grandiclava* Thoms. as type. In 1915 Hopkins employed *Lepisoma* Kirby for the American species, *rufipennis* Ky., and the European species *grandiclava*, as distinct from *Polygraphus* Er. on account of the same character, the 6-segmented funicle. *Lepisoma* Kirby would of course have preference over *Pseudopolygraphus* Seit. The number of segments in the funicle is usually a very important character in this family; but within the limits of the old genus *Polygraphus* Er. the variation in the number of funicular segments within the certain limits of individual species is so great that it would appear to be of doubtful value as a generic character. It has been pointed out by Rohrl that less than fifty per cent of *grandiclava* specimens examined had the funicle regularly 6-segmented. Our species, *rufipennis* Ky., appears to be more regular in this regard, having usually a 6-segmented funicle, but about one out of six in our material studied, have the funicle either 5-segmented or 5-segmented with the second segment partly divided (Pl. 10, figs. 27a, 27b). The other character given for *Pseudopolygraphus* by European writers, the lack of hairs on the second and third segments of the funicle, seems hardly of generic importance.

In view of the very close similarity in characters between the species concerned, and the intergrading variations in the generic characters proposed for *Lepisoma*, it seems desirable to include all the species under *Polygraphus* Er.

We have apparently but one species in our territory, *P. rufipennis* Ky.

Length, 2-3 mm.; a stout species, black with the elytra piceous. The divided eyes and unsegmented antennal club are quite distinctive. The *female* has the front flat, shining, finely and closely punctured, and rather densely clothed with short yellow hairs; the *male* has the front convex above, with one, or more commonly two, small approximate tubercles
arranged transversely on the middle line, impressed in front of the tubercles (Pl. 21, fig. 1).

Host trees.—Spruces, Larch, and rarely in Pine.

Distribution.—Abundant throughout the spruce forests of Canada and the northern United States from the Pacific coast of Alaska east to Newfoundland.

It is found everywhere in dying spruce bark, but frequently becomes a more or less important primary enemy to black and white spruce.

Kirby’s type of rufipennis was compared with our material by my assistant, Mr. R. N. Chrystal, and found to be the same. Kirby’s nigriceps appeared to differ only in having the head black with the pronotum and elytra light red. Mr. Chrystal examined Kirby’s type of brevicornis, but found it unrecognisable; only one elytron was present and the abdomen was badly shattered. The following notes were made from it: “Stout, cylindric, clothed with scales, black with the elytra very dark piceous, the front flat, without tubercles, the elytral striae almost invisible, the surface rougher than rufipennis, more coarsely punctured; a female; the antennal club thicker and more knob-like than in rufipennis.” Probably this name should be disregarded.

The Genus Carphoborus Eichhoff.

An undescribed species of this genus was collected by the Canadian Arctic Expedition on the Coppermine River. It will be described in the Report of the Expedition.

Key to the Species.

A The declivital interspaces 1 and 3 moderately or feebly, subequally elevated; the male with front concave, fringed with long yellow hairs.

B The declivital interspaces 1 and 3 feebly elevated and very feebly serrate in the female, distinctly so in the male; the antennal club nearly as wide as long, with the sutures strongly arcuate; pronotum black, shining, and the elytral interspaces feebly granulate, with the scales very minute, indistinct. California in Pinus ponderosa and P. lambertiana. simplex Lec.

BB The declivital interspaces 1 and 3 moderately elevated and distinctly serrate; the antennal club longer than wide, with the sutures nearly straight; the pronotum more elongate, less than twice as wide as long.

C The declivity moderately and subacutely serrate on the carinate interspaces; the elytra reddish, the interspaces roughened, convex, indistinctly clothed with very small yellowish scales not concealing the surface; the female front with a blunt median tubercle surmounting the convexity. California. radiatae, n. sp. Page 57.
CC The declivity acutely, rather feebly serrate; the elytra black, reddish on the declivity, the interspaces feebly granulate and feebly convex, densely clothed with greyish scales almost concealing the surface; the female front unarmed. **carri** Sw. Page 57.

AA Declivital interspace 3 much more strongly elevated than 1;

B The elytra lightly punctate-striate, the strial punctures minute, the interspaces wide, declivital interspace 3 very strongly carinate. The head densely clothed with long pale hairs in one sex. Middle and Southern States. **bicristatus** Chap.

BB The elytra strongly punctate-striate, the strial punctures coarse; the interspaces not wider than the striae; declivital interspace 3 strongly carinate. The front without long hairs in either sex. New York state, Tennessee, Washington, D.C. **bifurcus** Eichh.

Length, 1.6 to 2mm.
Host tree.—White Spruce.

Distribution.—Banff, Alta.; Edmonton, Alta; Aweme, Man. From the eastern slopes of the Rockies across northern Alberta and Saskatchewan into Manitoba; not yet found by us farther east.

Carphoborus radiate, n. sp.

Length, 2.1 mm.; black with the elytra dark reddish; the pronotum feebly constricted in front, densely, finely, deeply punctured, indistinctly carinate, the pubescence minute, indistinct, yellowish; the elytra strongly punctate-striate, the strial punctures coarse, the interspaces narrower, convex, roughened, inconspicuously clothed with yellowish scales; the declivity with the alternate interspaces subequally carinate and coarsely serrate, the 3rd little more strongly and the 1st less strongly serrate. The male has the front impressed, clothed with long yellow hairs; the female has the front broadly concave in front, with a blunt median tubercle surmounting the impression. Type; in *Pinus radiata*, Carmel, California; 2940; communicated by Mr. Ralph Hopping; three paratypes; Type No. 100.

The Genus **Pseudocryphalus** Swaine.

Pseudocryphalus brittaini Sw.; loc. cit., Bull. 14: 20, 1917.

Length, 1.9 mm.; stout, black, with brown and gray scales; the *front* plano-concave, with a strong, transversely arcuate impression behind the epistoma, the middle line impressed, clothed with stout pubescence, becoming long, dense and pale on the epistomal margin, with a rather coarse granule behind the impression on each side the middle line; the eyes long, narrow, extending upon the ventral surface.

The *pronotum* twice as wide as long; the sides very strongly rounded behind and very strongly constricted in front; the front margin broadly emarginate at the middle; very densely subgranulately punctured, clothed with brown and grey, very stout pubescence, the grey predominating on the sides and behind; the cephalic margin unarmed or nearly so, somewhat elevated, with pale fine pubescence and brown, elongate, elevated scales;
with three pairs of elongate recurved rugosites in a longitudinal row on the middle of each side in front, the first pair on the front margin.

The elytra as wide as the pronotum, slightly less than one half longer than wide; the basal margin very strongly elevated, recurved and coarsely serrate in the scutellar region; the sides subparallel on the basal half, broadly rounded behind; the striae distinctly, rather strongly impressed, the strial punctures rather coarse, not close, deep and distinct, bearing very minute setæ; the interspaces feebly convex, minutely punctured and with a median row of granules, bearing very small elongate scales which hardly cover the surface, and a median row of longer, erect, very stout bristles; the pubescence brown, with numerous scattered white scales, more abundant towards the base and forming a narrow band along the suture; the first two abdominal sternites subequal in length, each longer than the next two united.

Salmon Arm, B.C.; apple trees, in dying bark. First examined in company with Prof. W. H. Brittain.

Pseudocryphalus criddlei Sw.; loc. cit., Bull. 14: 20, 1917.

This species is very closely allied to *brittaini*; with the same size, form, and colour; but it is apparently distinct through the very feebly impressed elytral striae, and the small, very closely placed strial punctures.

We have very few examples of *brittaini* and a longer series may show intergradations with this species.

Described from a series of 108 specimens from Aweme, Man., *Prunus virginiana*; collected by Mr. Norman Criddle.

The Genus **Chramesus** Leconte.

Rhopalopleurus Chap.

Syn. Scol., 46, 1869.

Black, length, 1.5 to 1.7 mm.; the front of the *female* flat, that of the *male* deeply concave.

This is the only Canadian species of the genus discovered thus far, and cannot be confused with any other species of our fauna. Leconte described *Chapuisii* from Louisiana, and Schaeffer has described three species, *asperatus, dentatus, and subopacus*, from Arizona. (Pl. 9, figs. 28, 28a).

Host tree.—Hickory.

Distribution.—Eastern Canada and Eastern United States.

The Genus **Phthorophlœus** Rey.

The North American species heretofore included in *Phlaeotribus* Latr. have been referred recently to *Phloeophthorus* Woll.

The species included under these three generic names form a series presenting a remarkable gradation of characters, and they will probably be included eventually under one genus. The chief characters presented by the three groups are as follows:—
Phloeotribus Latr.—Antennae originating close together on the front; the three segments of the club produced unilaterally into very long slender lamellae; the elytra feebly striate and not strongly granulate; the pronotum not asperate. Type, *oleae* Fab. (*scarabaeoides* Bern.).

Phthorophleus Rey.—Antennae originating from the sides of the front; the three segments of the club moderately produced unilaterally; the elytra coarsely striate and serrate behind; the pronotum hardly asperate. Type, *spinulosus* Rey.

Phloeophthorus Woll.—Antennae originating on the sides of the front, the antennal club narrow, elongate, with the three segments only slightly swollen on one side; the elytra feebly striate and feebly granulate behind; the pronotum strongly asperate on the sides. Type, *perfoliatus* Woll. (*rhododactylus* Marsh).

If the three names are to be used, all our North American described species must fall in the genus *Phthorophleus*. Such species as *frontalis* and *piceae* are in all characters ecomgeric with *spinulosus* Rey, the type of *Phthorophleus*, of which we have a long series from Russia. The species *liminarius* and *texanus* Shaeff. are intermediate as regards both external and internal characters between the *spinulosus* and *scarabaeoides* types, with the antennae arising on the sides of the front but less widely separated than in *spinulosus* and *frontalis*, the segments of the antennal club less widened than in *scarabaeoides* (*Phloeotribus*), but more so than in *spinulosus*, *frontalis* and *piceae*, the pronotum unarmcd, and the elytra only feebly striate and granulate, as in *Phloeotribus*. Other characters such as the epistomal lobe and those of the proventricular are as decidedly intermediate (see also Can. Ent., 43: 221-223, Pl. II).

Key to Northern Species.

A Club with the laterally extended segments more than twice as wide as their length at the base. Hind tibiae rounded and toothed on the outer side; pronotum not coarsely punctured and not tuberculate; elytral interspaces nearly flat and roughly punctured (Pl. 10, fig. 6).

liminarius Harris. Page 60.

AA Club with the laterally extended segments not more than twice as wide as long (Pl. 10, fig. 13).

B Club with the laterally extended segments about twice as wide as long. Prothorax granulate-punctate, elytral interspaces elevated and serrate, more strongly behind. Atlantic States; *Celtis*, etc.

frontalis Zimm.

BB Club with the laterally extended segments about as wide as long.

C Elytral interspaces somewhat elevated; the serrations but little larger on the declivity than elsewhere; densely clothed with grey hairs, not less distinct on the declivity. Colorado. *puberulus* Lee.

CC Elytral interspaces strongly elevated and serrate with granules which become large and prominent on the declivity, especially about the sides; sparsely clothed with reddish hairs, shorter on the declivity.

piceae Sw. Page 59.

Phthorophleus piceae Sw.; Can. Ent., 43: 220, 1911.

Length, 2 to 2.25 mm.; brown to black; sparsely hairy; more slender than *liminarius*. The female front with a crescentic transverse ridge preceded by a pubescent, concave, epistomal area. The male with a transverse impression on the front immediately following the transverse ridge, with the long hairs on the antennal scape but little longer than in the female.

Host tree.—White Spruce.

Distribution.—Spruce forests of western Quebec and eastern Ontario; probably more widely distributed. Breeds in moderately dry branches.
Phthorophloeus liminaris Harris; Rept. Ins. Inj. Veg., p. 78, 1852 (Tomicus).

Length, 2-3 mm.; rather stout; the elytra rather feebly rugose; the antennal club with the segments very strongly produced laterally; the female with the front plano-convex, the epistomal region impressed and bounded behind by an arcuate transverse carina; the male with the front more deeply concave in front of the carina and subtriplanely concave behind it.

Host trees.—Peach, Wild Cherry.

Distribution.—Eastern United States, southern Ontario, southern Quebec (Montreal region, in wild cherry).

An injurious species in peach orchards.

The Genus Dendroctonus Erichson.

Generic Characters.—The body rather stout, cylindric; large for the family, from 3 to 9 mm. in length; the head broad, prominent, visible from above; the beak very short, with a well developed epistomal process; the eyes transverse, short or long oval, entire; the antennal funicle 5-segmented, with the club broad, thickened basally and flattened distally; the pronotum approximately one-half as long, and nearly or quite as wide as the elytra, punctured throughout, not closely asparte in front; the anterior coxae approximate; the tarsi with the third segment dilated and bilobed; the elytra crenulate at the base, with the striae slightly or distinctly impressed, with the strial punctures small to moderately coarse; the declivity abrupt.

Key to the Canadian Species.

A The pronotum only slightly narrowed in front, feebly constricted in the male, and as wide as the elytra; the elytra without long hairs, clothed with abundant, short, nearly erect pubescence, with a few slightly longer hairs intermixed; with a frontal tubercle on each side a distinct frontal groove in the male, less evident in the female. British Columbia, in Yellow Pine (Pl. 12, fig. 5). brevicomis Lec. Page 62.

AA The pronotum strongly constricted in front, and usually slightly but distinctly narrower than the elytra; the elytra normally always with long erect hairs extending nearly to the base (frequently abraded), without frontal tubercles and groove in either sex.

B The epistomal process narrow, with its sides nearly parallel, and extending to or beyond the anterior margin of the epistoma; the striae deeply impressed on the declivity.

PLATE 13.

IPID BEETLES—ALL GREATLY ENLARGED. (ORIGINAL.)

Fig. 1, Ips emarginatus Lec., declivity of the male.
Fig. 2, Ips emarginatus Lec., declivity of the female.
Fig. 3, Orthotomicus caelatus Eichh.
Fig. 4, Ips plastographus Lec.
Fig. 5, Ips emarginatus Lec.
C The pronotum finely, closely punctured, more finely, densely, and regularly on the middle of the sides behind; the epistomal process usually projecting slightly beyond the epistomal margin. British Columbia.

pseudotsugae Hopk. Page 62.

CC The pronotum coarsely, rather sparsely punctured; not more densely and regularly on the middle of the sides behind; the epistomal process not projecting beyond the epistomal margin. In Eastern Larch.

simplex Lec. Page 62.

BB The epistomal process wide, with the sides strongly oblique, the cephalic margin of the process concave, with the angles more or less evidently tuberculate, shorter than the epistoma.

C The punctures of the pronotum large and shallow, disclosing the bottom, fairly regular in size, without very small punctures intermixed; the front without a median, posterior impression; large species, 5 to 9 mm.

D The pronotal punctures only moderately coarse and shallow, and closely placed; the colour usually yellowish brown to dark reddish brown, rarely very dark piceous or black; the epistomal process usually with the oblique sides long so that the process is notably wide.

valens Lec. Page 63.

DD The pronotal punctures very large, very shallow, and rather sparse; the colour usually dark piceous or black; the epistomal process with the sides short, and the angles usually more strongly tuberculate. The Southern States, north to New Hampshire.

terebrans Oliv. Page 64.

CC The punctures of the pronotum deep and small, more or less evidently intermixed with larger punctures; the front impressed on the median line towards the vertex.

D The caudal half of the proepisternal area distinctly punctured.

E The declival striæ coarsely punctured.

punctatus Lec. Page 65.

EE The declival striæ finely punctured.

F The caudal half of the proepisternal area rather closely punctured and strongly roughened; the declival interspaces strongly punctured; the basal crenulations of the elytra slightly separated, hardly overlapping.

murrayanae Hopk. Page 64.

FF The caudal half of the proepisternal area rather sparsely punctured and only feebly roughened; the declival interspaces feebly punctured; the basal crenulations of the elytra close and overlapped.

rufipennis Kirby. Page 64.

DD The caudal half of the proepisternal area granulate, with the punctures indistinct.

E The pronotum as wide as the elytra; the punctures of the pronotum small and moderately regular in size.

monticola Hopk. Page 65.

EE The pronotum slightly but distinctly narrower than the elytra; the pronotal punctures decidedly irregular in size.

F The punctures of the discal striæ of the elytra frequently small and deep; Alaska, the Yukon, British Columbia and Alberta, in White and Engelmann’s Spruce.

borealis Hopk. Page 66.
FF The punctures of the discal striae of the elytra usually coarse.

G The average size smaller, 5.5 mm.; the elytral striae somewhat more commonly strongly impressed on the sides. East of the Great Lakes, in Eastern Spruce. *Dendroctonus pseudotsugae* Hopk. Page 66.

GG The average size larger, 6.5 mm.; the elytral striae more commonly faintly impressed upon the sides. The northern Pacific coast in Sitka Spruce. *Dendroctonus obesus* Mannh. Page 66.

Length, 3.2 mm. to 5 mm., average 4.2 mm.; colour dark brown to black; the front elevated on each side of a deep median groove in the male, faintly so in the female; sides of the epistomal process oblique; the pronotum shining, hardly constricted in front, feebly so in the male; the elytra as wide as the pronotum; the striae faintly impressed, the strial punctures very small, the discal interspaces densely, finely asperate, the declivital striae faint; broadly impressed on each side of the elevated suture; the pubescence rather abundant, everywhere short, erect, and inconspicuous, with a few slightly longer hairs intermixed on the declivity. The female has a narrow, transverse elevation across the pronotum behind the cephalic margin, continued across the sides; the male has a transverse depression similarly situated. (Pl. 12, fig. 5).

The egg-tunnels are winding, more or less transversely, the egg-niches separated, the larval mines in the inner and middle layers of bark.

Host tree, in British Columbia.—Western Yellow Pine.

Distribution.—Throughout the range of yellow pine in British Columbia and in the Western States.

Economic importance.—This species assists *monticolae* in extensive outbreaks in southern British Columbia.

D. barberi Hopk. (Arizona, North Mexico, Texas, Colorado, Utah), is described as distinct through coarser rugosities of the elytral interspaces and more distinctly impressed elytral striae.

Length, 3.5 mm. to 7 mm., average nearly 6 mm.; the colour dark brown to nearly black, and black with the elytra red; the epistomal process with the sides parallel and with its anterior margin usually projecting slightly beyond the margin of the epistoma; the pronotum shining, finely, closely punctured, with few larger punctures intermixed. Very closely allied to *D. simplex* Lec., but entirely distinct (Pl. 12, fig. 2).

Host trees.—Douglas Fir and Western Larch in British Columbia, and in United States, Big Cone Spruce, in addition.

Distribution.—It follows the range of its host trees in British Columbia, and apparently also in the United States.

Economic importance.—This species prefers dying bark and is found everywhere in British Columbia in slashings of its host trees. Small outbreaks in living timber are found in British Columbia, but these are easily controlled by proper disposal of slash. It may become an important primary enemy.

Length, 3.5 mm. to 5.2 mm., the average about 4.7 mm.; the front convex, densely, roughly punctured, with the median line finely impressed
in front and behind, the epistomal process with the sides nearly parallel, its front margin reaching but not passing the epistomal margin; the pronotum constricted in front with the punctures distinctly irregular in size, small, with a few coarse punctures intermixed, moderately close, small and more regular in size behind; the elytra slightly wider than the pronotum, the striae moderately impressed, the strial punctures small and deep, the inter-striatal granulations coarse and sparse; the declivity with the striae rather deeply impressed, the strial punctures very small and deep, the interspaces coarsely, sparsely, uniseriately asperate, and finely, very deeply punctured; the hairs are sparse, erect and moderately long, extending nearly to the base of the elytra, with the minute pubescence indistinct. The male has the elytral striae more strongly impressed on the declivity, the declivity brightly shining, not asperate except at the sides, smooth, but deeply, rather closely punctured.

The egg-tunnels are longitudinal, somewhat winding, variably branched and anastomosing, grooving the inner bark and the wood surface; the eggs are arranged in small groups, the larval mines and pupal cells in the inner bark.

Host tree.—Eastern Larch.

Distribution.—This species is abundant in dying larch throughout the larch areas of Eastern Canada from the Atlantic westwards across Manitoba, northern Saskatchewan, and northern Alberta. A rather distinct variation occurs about Lesser Slave Lake. It probably follows the eastern larch throughout its range in North America.

Economic importance.—This species prefers dying bark, but may become a serious enemy to trees weakened by the sawfly or through other causes.

Length, 5 mm. to 9 mm., usually 7 to 8; a large reddish species, sometimes piceous, or rarely black in old individuals; the epistomal process broad, concave, the sides oblique, the median line of the vertex black; the pronotum faintly narrower than the elytra, moderately constricted in front, the punctuation rather large, strongly impressed, fairly regular in size, and close, smaller and denser towards the caudal margin; the clytral striae distinctly impressed, the discal interstices convex, rather coarsely granulate; the striae impressed on the declivity, with small rather indistinct punctures, the pubescence sparse and short with a few long hairs on the declivity and disc, frequently denuded (Pl. 12, fig. 7).

The egg-tunnels are usually at the base of living or dying trees, or stumps; they are longitudinal, variably winding and branched, and may reach more than a foot in length; cut in the inner bark somewhat grooving the wood; the eggs are placed in layers at intervals along the tunnel walls; the larvae feed in congress, excavating chambers of varying size between the bark and the wood surface (Pl. 27, fig. 7).

Host trees.—Abundant in Western Yellow Pine and other pines and spruces of southern British Columbia, and in pines and spruces of Eastern Canada.

Distribution.—Throughout the pine and spruce forests of Eastern Canada and in southern British Columbia, and southward throughout the United States. We have no records from the northern parts of Saskatchewan, Alberta, and British Columbia, nor from the Yukon.

Economic importance.—An important assistant of monticola and brevicomis in outbreaks in British Columbia yellow pine. Frequently found killing patches of bark at the base of living pines and spruces.
Dendroctonus terebrans Oliv.; Ent. 4: 78, p. 6, pl. 1, fig. 6, a–b, 1795, Scolytus; Hopkins, The Genus Dendroctonus, 147, 1909.

Distinguished from valens by the very coarse, very shallow and sparser punctures of the pronotum; the colour is usually nearly black, and the epistomal process has the oblique sides much shorter with the angles usually more tuberculate.

Host trees.—Pines and Spruces.

Distribution.—It is apparently a southern form ranging north to New Hampshire; we have no records from Canada. In habits it is allied to valens Lec., from which it is barely distinct.

Length, 5 mm. to 6.5 mm. It is very closely allied to rufipennis Kirby, but appears to be distinct through the characters enumerated under that species. The proepisternal area is distinctly punctured, but rather coarsely granulate and roughened; the basal crenulations of the elytra are sparser than usual, distinctly separated and hardly overlapped.

Host trees.—Lodgepole Pine. Recorded by Hopkins also from Engelman’s Spruce.

Distribution.—It has been taken in Canada only in the Rockies of southern British Columbia, but it may follow the distribution of its host. Not uncommon in stumps at Banff, Alta.

Economic importance.—It is not at present a very injurious species in our forests.

Length, 6 mm.; black with the elytra dark red; the sides of the epistomal process oblique; the pronotum constricted in front, the punctures close, rather coarse, distinctly irregular in size, small and more regular behind, the caudal half of the proepisternal area distinctly punctured, with the punctures coarse, not close, shallow, not strongly granulate, so that the surface is not much roughened; the elytra slightly wider than the pronotum, the basal crenulations individually distinct but overlapping, the striae rather faintly impressed, the strial punctures rather coarse and distinct, the discal interspaces narrow, with the coarse granules irregular, sparse, and acute, except at the base; the declivital striae narrowly, decidedly impressed, with very small punctures, the declivital interspaces uniseriately finely granulate and very finely, sparsely, indistinctly punctured; the vestiture sparse, the long hairs extending to the base of the elytra; the male with the declivity more shining, the interspaces obseletely granulate and more distinctly punctured. This species differs from murrayanae Hopk., as here interpreted, in the smoother, less deeply and roughly punc-

PLATE 14.

IPID BEETLES—ALL GREATLY ENLARGED. (ORIGINAL.) A.E.K.

Fig. 1, Ips pini Say, Declivity of the female.
Fig. 2, Ips pini Say, Declivity of the male.
Fig. 3, Ips grandicollis Eichh., Declivity of the male.
Fig. 4, Trypodendron retusus Lee.
Fig. 5, Ips perroti Sw., Declivity of the female.
Fig. 6, Ips perroti Sw., Declivity of the male.
Fig. 7, Ips concinnus Mannh., Declivity of the female.
Fig. 8, Ips concinnus Mannh., Declivity of the male.
tured proepisternal area, the narrower and more sparsely asperate discal interspaces, the more sparsely and finely punctured declivital interspaces, and the close and overlapped basal crenulations of the elytra.

Host trees.—White Pine and Jack Pine.

Distribution.—From northern Manitoba across northern Ontario, and northern Quebec, and probably to the Atlantic. Recorded from Michigan by Hopkins.

Economic importance.—We have taken it only in trees dying from other causes. The type of our description agrees with Kirby's type; compared by R. N. Chrystal.

Length, 3.7 mm. to 6.7 mm.; colour usually black or dark brown; the front convex, faintly impressed behind on the middle line; the pronotum as wide as the elytra, with the sides strongly constricted in front, the punctation close, small, not very evidently irregular in size (Pl. 7, fig. 7); the elytra with the striae distinctly impressed, more feebly on the sides, the striae punctures small, the interspaces slightly convex on the disc, with moderately close granules of varying size; the declivital striae rather strongly, narrowly impressed, with very small punctures, the 2nd and 3rd strongly sinuate; the pubescence of the elytra short and sparse, with a few longer hairs extending nearly to the base, and numerous short subrecumbent hairs on the sides, (the long hairs usually more or less abraded).

The egg-tunnels are vertical, elongate, straight to moderately winding, with the egg-niches arranged not very regularly in small alternate groups; the larval mines and pupal cells mostly exposed in the inner bark, grooving both bark and wood (Pl. 30).

Host trees.—Western White Pine, Western Yellow Pine and Lodgepole Pine in British Columbia. Also recorded from *Pinus lambertiana* and *Picea engelmanni* in United States.

Distribution.—Throughout the range of its host trees in southern British Columbia west of the Rockies, and in Western United States.

Economic importance.—This is the most destructive bark-beetle of British Columbia forests; it has already destroyed an enormous amount of timber in southern British Columbia.

D. ponderosae Hopk. has not been recognized from British Columbia. It is described as distinct from *monticolae* through "its average larger size, somewhat stouter form, with the elytral striae more distinctly impressed, and the punctures distinctly coarser."* It is destructive to pine forests in the central and southern Rocky Mountain region.

Dendroctonus punctatus Lec.; Trans. Am. Ent. Soc. II, 173, 1868; Hopkins, The Genus Dendroctonus, 72, 142; the only valuable description.

This species is recorded by Hopkins in *Picea rubens*, from New York to west Virginia. It is probably very rare, and has never been recorded from Canada.* The coarse punctures of the elytral striae, especially on the declivity, separate it from its allies, as indicated in the key.

This species was described from the Rocky Mountain region of the United States, and Canadian records were given from "(Horn) "H.B." (Northwest Territory, probably Mackenzie River region); "(H. & S) Calgary, Alta.; Glacier, B.C." These were probably similar to our more coarsely punctured specimens left in this paper under borealis.

*Hopkins, the Genus Dendroctonus.
†Since this was written a species has been collected on the Coppermine River near the Arctic Ocean by Mr. Johanssen of the Canadian Arctic Expedition which is either punctatus Lec. or a closely allied undescribed species.

The length varies from 5 mm. to 7 mm.; long series from the Rockies and Lesser Slave Lake are as large as the average of obesus, while from some localities the size is usually smaller; the punctures of the elytral striae are usually small and rather indistinct, but very many individuals have these dorsal punctures quite as coarse as in typical specimens of obesus; the elytral striae are more constantly distinctly impressed, but in this character also there is great variation. Much of our material from the southern Rockies, the Selkirks and the southern interior of British Columbia agrees with the characters given for engelmanni Hopk., but the intergradation with the typical borealis is so complete that the name borealis is employed for all our variations discussed here from Alberta and the interior of British Columbia.

Host trees.—White Spruce, Engelmann’s Spruce.

Distribution.—Alaska, the Yukon, throughout the interior of British Columbia and northern and western Alberta. We have also taken it in white spruce in northern Manitoba.

Economic importance.—An important secondary enemy and frequently a serious primary enemy to white and Engelmann’s spruce throughout its range. Incipient outbreaks should not be neglected. It has killed a large amount of timber in Northern Alberta.

This species is very closely allied to the obesus-borealis series. The head and pronotum are entirely as in borealis and obesus, with similar slight variations. The elytral striae are usually distinctly impressed and the punctures of the discal striae are usually rather coarse and distinct. The size is usually smaller than in borealis and obesus; a series from Newfoundland is constantly 5 mm. long; and another long series from Sydney, N.S., varies between 5.75 mm. and 6.2 mm. The writer has taken borealis, with small discal punctures, as far east as northern Manitoba; when long series are available from the region between Manitoba and northern Quebec, the relations between borealis and piceaperda can be discussed more satisfactorily. Individual specimens of piceaperda are best separated by the rather coarse and deep striae of the disc and the deeply impressed striae, but exactly the same conditions are commonly found in our series from the northern Rockies and Alberta.

The egg-tunnels are longitudinal, usually short, in the inner bark, grooving the wood surface; the eggs are closely placed in rather large groups, alternately, on the tunnel wall; the larval mines usually separate at a short distance from the tunnel; they are exposed in the inner bark and the pupal cells are usually exposed.

Host trees.—Red, White, and Black Spruce.

Distribution.—Michigan and central Pennsylvania (Hopkins), northwards through Maine and the Maritime Provinces to Newfoundland.

Economic importance.—This species is one of the most destructive in the genus. It has killed enormous quantities of spruce, particularly in Maine and south western New Brunswick.

Length, 5.5 mm. to 7 mm., the average about 6.5 mm. The colour when mature is usually deep black, rarely reddish. The punctures of the discal striae are usually coarse and distinct; the shape is frequently slightly more elongate than is usual in borealis, with the hairs often denser, but
these characters are hardly reliable; the elytral striae are usually faintly impressed, especially on the sides. *D. borealis* Hopk. usually has the elytral striae a little more evidently impressed, with the punctures of the discal striae smaller and less easily distinguished. The variations in *obesus* from the west coast, and in *borealis* from Alberta and the Rockies are so numerous that many individuals could never be determined if the place and host labels were removed. We have long series from the regions just named, but have made no collections in the section between Jasper Park and the Pacific Coast. When long series are available from that intervening region, the status of *borealis* may be more definitely decided. At present I am of the opinion that *obesus, borealis* and *engelmanni* form one variable species, with *piceaperda* only doubtfully distinct. (Pl. 12, fig. 6).

Host tree.—Sitka Spruce.

Distribution.—The Pacific Coast, from Alaska southwards into the United States throughout the range of the host tree.

Economic importance.—It evidently prefers dying bark under ordinary conditions, but readily attacks trees of the largest size, at most but slightly weakened, and is without doubt a destructive primary enemy when the right conditions obtain.

The Genus *Phloeosinus* Chapuis.

Chapuis, Syn. Seol., p. 37, 1869.

Key to the Species.

A The mesosternum precipitous, at least very steep, between the coxae; the intercoxal piece of the prosternum usually wide; the antennal club with the sutures subtransverse, only moderately oblique, (excepting *punctatus*.)

B The mesosternum transversely, acutely carinate between the coxae; the metasternum sparsely, feebly punctured; the declivital interspaces similar, feebly convex, uniseriately granulate; breeds in *Pinus banksiana.*

pini Sw. Page 69.

BB The mesosternum not carinate; the metasternum usually coarsely and roughly punctured.

C The strial punctures very distinct and coarse on the disc, in deeply impressed striae of moderate width; the 2nd interspace on the declivity evidently narrower than the 1st and 3rd.

D Very small species, the length, 2 mm. or less; the pubescence distinct; the discal interspaces with coarse uniseriate asperities in addition to the granules.

E The declivity reddish, minutely scaly, with 1st and 3rd interspaces strongly serrate and much more strongly elevated than the 2nd. California. **hoppingi** Sw.

EE The colour entirely black, declivital vestiture hairlike, with 1st and 3rd interspaces feebly serrate and but little more elevated than the 2nd. California. **minutus** Sw.

DD Of medium size, the length, 2·2 mm. to 3 mm.; the pubescence indistinct; the discal interspaces confusedly very coarsely granulate; the striae wide and the punctures very coarse.

punctatus Lec. Page 69.

For serratus Lec. see page 70.

36198—5
CC The strial punctures usually indistinct and always small; in very narrow, moderately impressed striae; the second interspace on the declivity nearly or quite as wide as the 1st or 3rd.

D The elytral interspaces on the disc and sides sparsely nearly uniseriately granulate; the declivital interspaces only faintly convex, with the granules uniseriate, almost obsolete. A very small, brightly polished western species; length, 2·2 mm. California. **Vandykei** Sw.

DD The elytral interspaces on the disc and sides densely or rather sparsely but confusedly granulate; the declivital interspaces moderately convex with the serrations well developed.

E The elytral interspaces rather coarsely sparsely granulate and somewhat convex; the striae distinctly impressed; the second interspace on the declivity slightly narrower than the 1st or 3rd and moderately narrowed distally, shining, smooth, feebly punctured, nearly flat, and unarmed; the serrations of the first interspace uniseriate in both sexes; the pubescence longer than usual and distinct. **Canadensis** Sw. Page 69.

EE The elytral interspaces closely granulate, wide and flat; the striae hardly impressed; the 2nd interspace on the declivity as wide as the others, closely roughly punctured and more or less serrate; the serrations of the first interspace confused in the female; the pubescence very short and not conspicuous.

F The pronotum densely finely punctured; the elytral interspaces densely, rather finely granulate, the pubescence of the declivity minutely hairlike in both sexes, hardly scale-like; a small species, less than 3 mm. in length. **Dentatus** Lec. Page 70.

FF The pronotum closely finely punctured; the elytral interspaces rather coarsely granulate; the pubescence of the declivity minutely scale-like; a larger species, length, 3·5 mm. Utah, **Utahensis** Sw.

AA The mesosternum oblique between the coxae; the antennal club very elongate with the sutures very strongly oblique; usually larger species; the intercoxal piece of the prosternum rather narrow.

B The elytral declivity with the second interspace narrower than the 1st or 3rd, at least towards the apex; the male with the 1st interspace on the declivity unarmed or serrate only at the top of the declivity; the smooth, shining area of the proepisternum large, extending nearly to the caudal margin.

PLATE 15.

IPID STRUCTURES—All Much Enlarged. (Original.)

Fig. 1, *Pityogenes hopkinsi* Sw., front of head, female.
Fig. 2, *Pityogenes knechelii* Sw., front of head, female.
Fig. 3, *Pityogenes hopkinsi* Sw., declivity of elytra, male.
Fig. 4, *Pityogenes carinulatus* Lec., declivity of elytra, male.
Fig. 5, *Pityokeine sparsus* Lec., declivity of elytra, male.
Fig. 6, *Pityokeine sparsus* Lec., declivity of elytra, female.
Fig. 7, *Phloeosinus sequoiae* Hopk., declivity, male.
Fig. 8, *Phloeosinus punctatus* Lec., declivity.
C The elytral striae strongly impressed on the disc, of moderate width, with the punctures coarse and very distinct; the female with the 1st and 3rd declivital interspaces subequally, strongly serrate; the male with the 1st declivital interspace coarsely serrate at the top of the declivity and unarmed behind. California. *cypressi* Hopk.

CC The elytral striae lightly impressed on the disc, very narrow, with very small punctures; the female with the 3rd declivital interspace much more strongly elevated and serrate than the 1st; the male with the 1st declivital interspace without coarse serrations.

D The interspaces of the disc and sides finely and densely granulate-punctate; the interspaces of the declivity closely, deeply and rather finely punctured, California. *cristatus* Lec.

DD The interspaces of the disc and sides rather sparsely and coarsely, transversely granulate, the punctures indistinct; the interspaces of the declivity very feebly punctured in the female, the punctures obsolete in the male. *sequoiae* Hopk. Page 70.

BB The elytral declivity with the 2nd interspace as wide as the others; the smooth, shining area of the caudal part of the proepisternum small and central.

C The elytral interspaces confusedly but rather sparsely granulate-punctate; the striae moderately impressed, punctured more coarsely than in *juniperi*, but distinctly less coarsely than *punctatus*; the median carina and lateral callus of the pronotum seldom distinct; a smaller species, length, 3 mm. California. *rugosus* Sw.

CC The elytral interspaces wider, confusedly, densely granulate-punctate; the discal striae slightly impressed, finely punctured; the median carina and lateral callus of the pronotum usually distinct; a larger species, length, 3.4 mm. California. *juniperi* Sw.

A small black species, 2.5 mm. long; the female with the front flattened, coarsely rugulose-punctate and finely carinate; the male with the front similar but broadly impressed, with an obtuse elevation on each side, and the pronotum strongly broadly constricted in front.

Host tree.—Jack Pine.

Distribution.—Riding mountains, Manitoba; probably more widely distributed.

Readily distinguished by the size, food plant, very coarse strial punctures, and narrow 2nd striae on the declivity (Pl. 15, fig. 8).

Host trees.—Giant Arborvitae in British Columbia; also recorded from United States in Incense Cedar and Port Orford Cedar.

Distribution.—British Columbia, extending south into California.

A black species, length, 2.5 mm. This is the common species in arborvitae in Eastern Canada and the adjacent northeastern States. The brood tunnels are very abundant in dying tops and branches, in weakened areas on living trees, and less commonly in apparently healthy trees. The
young adults cut short food tunnels in healthy cedar twigs. An important secondary enemy and at times a primary enemy of arborvitæ in Eastern Canada.

Host tree.—Arborvitæ.

Distribution.—Eastern Canada and Eastern United States.

Host tree.—Arborvitæ.

Distribution.—Represented in our collection from Texas, Tennessee, Virginia, Kentucky, Arkansas, Washington, D.C., and Massachusetts.

Phloeosinus sequoiae Hopk.; U.S. Bur. For., Bul. 38, p. 33-35, fig. 1, pl. 12, 1903.

A large dark species, 4 mm. long; probably the common larger *Phloeosinus* of British Columbia cedar. (Pl. 15, fig. 7).

Host tree.—Giant Arborvitæ in British Columbia, and Western United States.

Distribution.—British Columbia Coast region, southwards to California.

The front is concave and finely granulate-punctate; the pronotum is densely, rather finely punctured, less finely than in *utahensis*; the elytral interspaces are very wide, and finely densely rugulose, more strongly than *utahensis*; the declivital serrations are coarse, very stout and blunt and very closely placed. Allied to *dentatus* Lec.

Known to me only through the type.

Length, 2-5 mm., “Am. bor.” Unknown to me.

Phloeosinus graniger Eichh., same references.

Length, 2 mm., Texas. Unknown to me.

The Genus *Leperisinus* Reitter.

Bestimm. der Borkenkäfer, 39, 1913.

The genus *Leperisinus* was separated from *Hylesinus* Fabr. by Reitter upon the following characters: wing covers gradually descending behind; the venter of the abdomen elevated behind; the body scaly; the elytra finely striate on the sides; the first two sternites truncate; the second much shorter than the next two together; the tarsal furrow of the fore tibia long, attaining at least to the middle of the tibia. It was made to contain *fraxini* Panz., *orni* Fuchs, and *vachlii* Reitt., of which *fraxini* should be taken as the type. The genus is quite distinct from *Hylesinus* and *Ptelobius*, neither of which appears to be represented in our fauna.

Key to the Species.

A The antennal club oval; the pronotal and elytral colour markings transverse. *fasciatus* Lec. Page 71.

AA The antennal club elongate-fusiform; the pronotal colour-markings longitudinally, the elytral markings oblique, angulated or indistinct.
B The median interstrial row of the elytral pubescence much longer than the surrounding scales, hairlike on the sides, and broadly spatulate on the declivity; the sides of the prototum very strongly asperate.

C The elytral striae and strial punctures distinct; the interspaces feebly asperate; the colour-markings indistinct; the length usually more than 3 mm. Eastern States. \textit{imperialis} Eichh. Page 71.

CC The elytral striae and the strial punctures largely hidden by the scales; the interspaces strongly asperate; the colour-markings very distinct; the length less than 3 mm. California, Olive trees, \textit{californicus} Sw.

BB The median interstrial row of the elytral pubescence but little longer than the surrounding scales, not conspicuously hairlike on the sides.

C The asperities on the sides and cephalic margin of the pronotum very feebly developed.

D The scales very pale cinereous, the elytra and pronotum with indistinct, pale yellowish markings; the elytral interspaces only very feebly asperate; length, about 3 mm. \textit{cinereus} Sw. Page 72.

DD The scales forming well-defined dark and pale markings; the elytral interspaces coarsely, closely, uniseriately asperate; length 3–5 mm. to 4 mm. \textit{pruinösus} Eichh. Page 72.

CC The asperities on the sides and cephalic margin of the pronotum rather coarse.

D The pronotal asperities few in number, near the lateral margin, usually mostly before the middle, those of the submarginal row in front lunular; the pronotum only very feebly emarginate in front; the striae and strial punctures distinct, with a median row of scales on the interspaces slightly longer than the others, more distinct on the declivity; the basal transverse pale band on the elytra continuous. \textit{aculeatus} Say. Page 72.

DD The pronotal asperities numerous, extending to the caudal margin and upon the disc, those of the submarginal row in front elongate and subacute; the pronotum rather strongly emarginate on the middle line in front; the striae and strial punctures almost entirely hidden by the scales; the median row of slightly longer scales hardly visible on the interspaces even on the declivity; the basal pale transverse band on the elytra absent on the 3rd and 5th interspaces. \textit{criddlei}, n. sp. Page 72.

Length, 1.5 mm. A very beautiful little species; black, with whitish and yellowish-brown markings. It may be separated from the \textit{aculeatus} group.

\textit{Distribution}.—Pennsylvania (type); Clemmton, N.Y. (Blanchard collection).

A large species, the colour markings of the \textit{aculeatus} type but rather indistinct in our specimens. Apparently rare.

Recorded from Dakota, Arizona, Wisconsin, Georgia and New York. We have one specimen from New York State, and have seen a closely allied but possibly distinct species from Marin Co., California, in the collection of Mr. H. C. Fall.

\textit{Host trees}.—Ash.

Leperisinus \textit{pruinósus} Eichh.; Berl. Ent. Zeit., 149, 1868. The species accepted here as \textit{pruinósus} Eichh., heretofore confused with \textit{aculeátus} Say, agrees well with Eichhoff’s description.

Length, 2·3 mm. to 3 mm.; the colour-markings usually distinct, formed of greyish and dark scales in alternate subregular bands; on the pronotum the scales greyish except on a diamond-shaped median area and an elongate lateral area; on the elytra the pale markings in three subtransverse bands across the disc and a wide band along each side, the 1st band transverse, sub-basal, the 2nd and 3rd oblique on each elytron, forming two-angled bands, angled behind; the intervening dark areas with scales coloured like the background. The male has the front more distinctly flattened and more densely hairy than the female.

\textit{Host tree}.—Ash.

\textit{Distribution}.—Eastern Canada, following the distribution of its host tree from Manitoba to the Maritime Provinces; Eastern United States, represented in our collection from Michigan and Kansas eastward through New York state and Massachusetts.

The brood tunnels are very abundant in dying and recently killed trunks and limbs; short hibernating tunnels are cut in the middle bark of living trunks; a secondary enemy; often nearly exterminated in a limited locality by hymenopterous parasites and mites.

Leperisinus \textit{criddlei} n. sp.

Length, 2 mm. to 2·6 mm.; of smaller average size than \textit{aculeátus} Say, with distinct colour-markings and characters as given in the key.

\textit{Type}; Aweme, Manitoba; 21-VII-1915; 8178; N. Criddle, Type No. 102.

\textit{Host trees}.—Green Ash, White Ash.

\textit{Distribution}.—Aweme, Man.; St. Hilaire, Que.

PLATE 16.

\textbf{IPID STRUCTURES—ALL MUCH ENLARGED. (ORIGINAL.) A.E.K.}

Fig. 1, \textit{Dryocoetes confusus} Sw., head from the side, female.
Fig. 2, \textit{Ips tridentis} Mannh., head from the side, female.
Fig. 3, \textit{Pityokteines sparsus} Lec., head from the side, and pronotum from above, female.
Fig. 4, \textit{Pityophóthorús nudus} Sw., elytral declivity.
Fig. 5, \textit{Dryocoetes affáber} Mannh., head from the side.
Fig. 6, \textit{Pityophóthorús canadensis} Sw., head from the front; male and female.
Fig. 7, \textit{Pityophóthorús pulicárius} Zimm., elytral declivity.
Fig. 8, \textit{Pityophóthorús canadensis} Sw., elytral declivity, female.
The Genus **Scierus** Leconte

One described species in our fauna.

Scierus annectens Lec.; Am. Phil. Soc. Proc., 15: 390, 1876.

Length, 3-6 mm.; reddish brown, opaque; pronotum wider than long, strongly punctured; elytral striae deep, regular, with close, deep punctures; interspaces finely rugose, thinly clothed with short, yellow hairs.

Probably more than one species are represented in our collection, taken by the writer at Lesser Slave Lake and Jasper Park, Alberta, and Kelowna, B.C., but they are all left under *annectens* Lec. for the present.

Host trees.—White Spruce, Englemann’s Spruce, Lodgepole Pine; probably also in Sitka Spruce.

Distribution.—Anticosti (Lec.); Lesser Slave Lake, Alberta; Jasper Park, Alberta; Kelowna B.C.; Cariboo District, British Columbia; Vancouver island (Lec.).

The Genus **Hylastinus** Bedel

One described species in our fauna.

Hylastinus obscurus Marsham; Ent. Brit., 57, 1802, (*Hylesinus*); * trifolii* Muller, 1807.

Length, 2-5 mm.; shaped like *Hylurgops*; nearly black; pronotum slightly wider than long, coarsely closely punctured with smaller punctures intermixed, elytra deeply striae, punctures coarse, close and shallow, interspaces strongly rugose; side pieces of the meso- and metathorax densely clothed with yellow, fringed scales.

Host plants.—Red and Mammoth Clover, Alsike (less commonly), White Dutch, and Sainfoin (cutting tunnels but not breeding) in Canada.

Distribution.—Southern Quebec, southern Ontario, and Eastern United States.

A most injurious species, tunnelling the roots of clovers, particularly of the red and mammoth varieties (Pl. 5, fig. 4).

The Genus **Alniphagus**, new genus.

Of medium size, antennal funicle 7-segmented, club feebly compressed, with sutures 1 and 2 strongly chitinized, last two segments longer than 2 and rapidly narrowed, segments of club indistinctly subdivided by a constriction and a row of hairs; beak short; pronotum strongly muricate on the sides in front; side pieces of the meso- and metathorax densely scaly; forecoxæ widely separated; proventriculus without distinct diagonal lines, the costal teeth numerous at the base of the bristles, its disc finely sparsely granulate, chitinized on the sides, the transverse lines strong; the ligula rounded at the apex.

The type is *Hylesinus aspericollis* Leconte, 1876, the only species in our fauna.

Alniphagus aspericollis Lec.; Am. Phil. Soc. Proc., 15: 379, 1876, (*Hylesinus*).

Length, 3-5 to 4 mm.; the median epistomal lobe wide, the pronotum with small punctures and decidedly muricate, more strongly in front; scutellum minute, depressed; the elytral striae strongly impressed and
coarsely punctured; the interspaces convex, minutely granulate-punctate and uniserially asperate; the alternate intervals wider and strongly convex on the declivity; the side pieces of meso-and metathorax densely scaly.

Host tree.—Western Alder.

Distribution.—Coast and southern interior of British Columbia, and southward to California.

The Genus **Hylurgopinus**, new genus.

Of medium size; antennal funicle 7-segmented, club feebly compressed, sutures 1 and 2 strongly chitinized, last two segments longer than 2; beak short; pronotum coarsely, irregularly punctured, not impressed; forecoxae widely separated; metepisternum without dense scales; proventriculus with costal teeth almost obsolete, the disc finely, densely granulate, the transverse lines indistinct, chitinized on the sides.

The type is *Hylastes rufipes* Eichh., the only species known in our fauna.

Hylurgopinus rufipes Eichh.; Berl. Ent. Zeit., 147, 1868, (*Hylastes*); *opaculus* Lec., 1868 (*Hylesinus*).

Length, 3.25 to 3.75 mm., the epistomal lobe nearly as long as wide; the pronotal punctures coarse, close and irregular; elytral striae deep, punctures coarse, close and deep; interspaces minutely punctured and with an irregular row of asperities.

Host trees.—Elm, Basswood.

Distribution.—Eastern United States; less abundant in Eastern Canada.

The Genus **Pseudohylesinus** Swaine.

Key to the Species.

A The first segment of the antennal club much longer than the second; the 9th interspace not strongly serrate about the declivity.

B The antennal club hardly flattened, subconical, segment 1 as long as segments 2 and 3 together; the sides of the elytra parallel on about the basal two-thirds; a large species, 5.5 mm. in length.

granulatus Lec. Page 75.

BB The antennal club evidently flattened; stouter species, with the sides of the elytra parallel on about the basal half; smaller species.

C The vestiture slender and almost entirely hairlike on the pronotum; the scales of the elytra small and elongate, hairlike towards the base.

D The elytral interspaces strongly convex and coarsely, uniserially asperate; the striae punctures coarse and the striae wider; the sides of the elytra parallel on the basal half.

*E The elytra more strongly sculptured; the striae nearly as wide as the interspaces; the elytral scales small but rather wide behind. Oregon. **nobilis** Sw.

EE The elytral striae distinctly narrower than the interspaces; the elytral scales very elongate. **tsugae** Sw. Page 75.

DD The elytral interspaces flat on the disc and sides; the asperities confused on the wider 3rd interspaces of the disc; the striae punctures moderate; the elytra slightly inflated behind, slightly wider behind the middle than at the base. **obesus** Sw. Page 76.

* Barely distinct from **tsugae**; this may prove to be identical.
The vestiture of the pronotum of intermixed scales and hairs; the elytra densely scaly; the interspaces nearly flat, the striae narrow, with small punctures; the sides of the elytra parallel on the basal half; the pronotum with shallow punctures, the scales of the pronotum abundant on the disc.

The scales of the elytra elongate and subacuminate at the apex. Sitka spruce. *sitchensis* Sw. Page 76.

The scales of the elytra but little longer than wide, broadly rounded at the apex, smaller and more slender towards the base in the female of *grandis* (Pl. 21, fig. 5).

A moderately stout species with the interstrial hairs of moderate length; the basal teeth of the elytra closely placed and crescentic. Grand Fir and Douglas Fir. *grandis* Sw. Page 76.

A more slender species with much longer elytral hairs; the basal teeth of the elytra isolated and acute towards the sides. Shore Pine. *sericeus* Mannh. Page 76.

The segments of the antennal club subequal in length, the first hardly longer than the second; the basal margin of the elytra with isolated, acute, well developed teeth towards the sides. The ninth interspace strongly acutely serrate about the sides of the declivity; the elytral vestiture of small subcircular scales. *nebulosus* Lec. Page 75.

A slender species, with strong colour-markings in dark and light reddish-brown; the male very densely clothed with stout scales; the epi-stomial lobe strongly developed; length, 2·8 mm.; width, 1·2 mm. The supposed female has interspace 9 on the declivity less strongly serrate, and the elytral scales decidedly elongate and becoming plumose towards the base. This species should properly form the type of a separate genus.

Host tree.—Douglas Fir.

Distribution.—Southern British Columbia, south to California. Usually a secondary enemy.

Pseudohylesinus granulatus Lec.; Am. Ent. Soc. Trans. 2: 175, 1868.

A large species; length, 5·5 mm.; the beak carinate; the antennal club only slightly compressed, the 1st segment as long as 2nd and 3rd together; the pronotum narrower than the elytra and moderately constricted in front in the female, nearly as wide as the elytra and strongly constricted in front in the male; the elytral striae impressed, with coarse punctures; the interspaces strongly convex behind; the pubescence stout on the pronotum, scaly on the elytra, with scattered light-coloured patches; the scales small and frequently almost entirely abraded.

Host tree.—Grand Fir.

Distribution.—Nanaimo, Eberts, and Campbell River, in British Columbia, and probably more widely distributed. Recorded also from Washington, Oregon, and California.

Usually a secondary enemy.

A stout species of moderate size and reddish-brown colour, sparsely clothed with short stout hairs, with tufted hairs on the sides and narrow scales on the declivity. Distinct from *granulatus* Lec., in the decidedly stouter form, much less densely and less strongly roughened pronotum, and the sparser elytral vestiture which becomes tufted on the sides; *granulatus*
has the elytra everywhere normally scaly. Length, 4.5 mm.; width, 2 mm., varying to 3.5 mm. and even 3 mm. in length.

Host tree.—Western Hemlock.

Distribution.—Vancouver island and coast of British Columbia. Attacks and kills healthy hemlocks; also infests injured and dying trees and slash.

Length, 4.5 mm.; a stout species, gradually wider behind; the pubescence scale-like on the declivity. A rare species; known to us only from Inverness, B.C., from the collection of Rev. J. H. Keen.

Very closely allied to *grandis*, of the same size, but more slender, with the front coarsely and less closely punctured, and the transverse impression unusually deep; the elytral scales are less dense than in *grandis* and elongate, becoming tufted behind the scutellum and notably so on the sides.

Host tree.—Sitka Spruce.

Distribution.—Vancouver island and coast of British Columbia. Apparently a secondary enemy.

A moderately stout species, densely clothed with brown and grey scales, the lighter colour on sections of the interspaces and often forming an irregular V-shaped mark on the elytra. Length, 2.8 mm. to 3.8 mm.

Host trees.—Grand Fir, Douglas Fir.

Distribution.—The southern half of the western coast of British Columbia and southwards. Apparently also in Queen Charlotte islands, but the host tree there is unknown to us.

A destructive enemy of the grand fir in certain localities.

Pseudohylesinus sericeus Mannh.; Bull. Mosc. 296, 1843, (Hylurgus);

Leconte, Am. Ent. Soc. Trans.; 2: 170, 1868; Rhynch. 379, 1876 (Hylesinus).

More slender than *grandis* Sw.; with longer hairs; the pronotum of the male transverse, almost oval, the frontal lobe of the pronotum less distinct; the basal teeth of the elytra are isolated and acute; but the antennal club has the first segment distinctly longer than the second. It is in the series, *nebulosus, sericeus, sitchensis, grandis*.

Since the first part of this bulletin was published, the Leconte collection has been examined by the writer. The first specimen now in the Leconte series under *sericeus* Mannh. is evidently a specimen received from Mannerheim himself by Leconte; it bears the Sitka label, and may be accepted as definitely fixing the species. This specimen was not seen when the writer studied the Leconte collection some years ago. It is entirely distinct from *grandis* Sw.

PLATE 17.

IPID BEETLES—ALL MUCH ENLARGED.

Fig. 1, *Ips tridentes* Mannh., female*.
Fig. 2, *Ips chagoni* Sw.*.
Fig. 3, *Ips engelmanni* Sw., female*.
Fig. 4, *Ips pilifrons* Sw., female*.
Fig. 5, *Ips latidens* Lec*.
Fig. 6, *Hylastes salebrosus* Eichh.*, details of the elytra.
Fig. 7, *Ips pini* Say**.
Fig. 8, *Hylastes porculus* Er*, details of the elytra.
Fig. 9, *Ips calligraphus* Germ*.
Fig. 10, *Eccoptogaster picea* Sw., male**.
Fig. 11, *Ips calligraphus* Germ*.

*Original. **Author's illustration.
Host tree.—Shore Pine.

Distribution.—Coast of Alaska and probably southward along the coast to California.

The Genus Hylastes Erichson.

The names Hylastes Er., Tomicus Latr., 1802, and Myelophilus Eichh. (Blastophagus Eichh.) have been applied in different ways. The type of the genus Hylastes Erichson, 1836, is Bostrichus ater Paykull; the type of Tomicus Latreille, 1802, is H. piniperda Fabr.; the type of Myelophilus Eichh., 1878, is D. piniperda Linn. It is evident that Tomicus Latreille, 1802, should be used for the allies of piniperda Fab., and either that Hylastes Er. or Myelophilus Eichh. should be submerged.

Several prominent European writers, including Bedel, Tredl and Hagedorn, have considered piniperda Fab. distinct from piniperda Linn. and the same as ater Paykull. If this were accepted Hylastes Er. should give place to Tomicus Lat., 1802. Other authors, notably Hopkins, 1915, regard piniperda Fabr. and piniperda Linn. as the same, and consider ater Paykull a good species. According to this interpretation Tomicus would replace Myelophilus Eichh. and Hylastes Er. would stand, with ater Paykull as type.

In my catalogue, 1909, the former interpretation was accepted, and it is probably correct; in the present paper, however, Hylastes Er. is used, solely to avoid confusion, since it is not possible to be certain of the matter, and Hylastes has been used almost invariably by recent authors.

Key to the Species.

A The beak with a distinct median carina.
B Larger and stouter species, length, more than 4 mm.; the pubescence very minute, more distinct in the macer group.
C The strial punctures very small, at the bottom of very narrow deep striae which are separated by very coarsely rugose and strongly convex interspaces; the tibial teeth few and extremely coarse; the sutural striae hardly wider than the others (Pl. 17, fig. 6). Eastern and Southern United States. salebrosus Eichh.
CC The strial punctures coarse or small between moderately convex interspaces, or small between flattened wider interspaces; the tibial teeth only moderately coarse (Pl. 17, fig. 8).
D The interspaces distinctly convex on the disc and declivity; the pronotum usually at its widest part but little narrower than the elytra.
E The head and pronotum roughly, rather coarsely punctured, the body variably shining.
F The elytral interspaces densely coarsely rugose.
G The elytral striae strongly impressed; the strial punctures coarse, as wide as the narrow interspaces on the disc, the pronotal punctures very coarse and only moderately close. Southern United States. scaber Sw.
GG The elytral striae moderately impressed on disc and declivity, only very faintly on the sides; the strial punctures rather small, narrower than the interspaces on the disc; the pronotal punctures of medium size and very closely placed. Colorado. asper Sw.
FF The interspaces rather finely granulate.

G The pronotum widest at the middle, the sides straight, evidently narrowed from the middle to the caudal angles; the elytral interspaces rather strongly convex on disc and declivity, finely granulate, and usually distinctly wider than the striae; the last ventral moderately punctured not coarsely rugose. (Pl. 21, fig. 2). Eastern species. porculus Er.* Page 79.

GG The pronotum with the sides nearly parallel on the caudal half, broadly rounded at the hind angles, strongly narrowed in front; the elytral interspaces only moderately convex rather coarsely granulate, and usually narrower than the wide striae; the last ventral coarsely rugose-punctate. Western species. nigrinus Mannh. Page 79.

EE The head and pronotum very finely smoothly punctured, neither roughened nor granulate; very brightly polished. nitidus Sw.

DD The interspaces flat or nearly so on the disc and sides, wider than the finely punctured striae, which are only very feebly impressed; the sutural striae not much wider and deeper than the others; the pronotum much narrower than the elytra.

E The pronotum very elongate, nearly parallel behind, gradually narrowed in front, moderately and not very closely punctured on the disc; length 4.5 mm. Col., N. Mexico. longus Lec.

EE The pronotum long oval or nearly as wide as long, coarsely and rather densely punctured; seldom less than 5 mm. in length.

F A black, more elongate species; the pronotum long oval, distinctly longer than wide; the elytral interspaces faintly convex near the suture on the caudal half, and the striae there faintly impressed. macer Lec. Page 79.

FF A red, stouter species; the pronotum but little longer than wide, the sides subparallel for over two-thirds the length, then constricted in front; the interspaces perfectly flat on the disc and sides, with the striae not impressed. ruber Sw. Page 79.

BB Small, very elongate species; distinctly pubescent; length, 4 mm. or less.

C The pronotum a little narrower than the elytra, moderately, not closely and not roughly punctured; the strial punctures moderate, about as wide as the interspaces, which are coarsely granulate; the pubescence distinct but sparse and very short. Indiana, Montana, N. Mex. gracilis Lec.

CC The pronotum very much narrower than the elytra, strongly roughened and coarsely, closely punctured; the strial punctures coarse, quadrate, rather wider than the coarsely granulate interspaces; the pubescence rather long and suberect. longicollis n. sp. Page 79.

AA The beak not carinate; very small hairy species; the pronotum with coarse punctures and a few small punctures intermixed.

*H. scobinosus Eichh. is said to be distinguished from porculus Er. by the sides of the pronotum being gradually narrowed in front.
B A stouter species, the striae punctures coarse, the striae wider than the interspaces, which are finely granulate and finely uniseriately tuberculate. Fla., Va., N. Car. \textit{tenuis} Eichh.

BB Distinctly more slender; the striae punctures moderate, narrower than the densely rugose more hairy interspaces. Fla., N. Car. \textit{exilis} Chap.

A black species; length, 4·5 mm. The last ventral of the male impressed and pubescent on the middle line behind. The only species of the genus found in Eastern Canada. (Pl. 21, fig. 2).

\textit{Host trees}.—Pines.

\textit{Distribution}.—Eastern United States, from Maryland to Maine and Michigan; and Eastern Canada, west to Manitoba. Rare in Canada.

A black species; length, 4 mm. to 5 mm. The last ventral of the male more broadly rounded, with a densely punctured and pubescent, broad, median caudal impression. The common species of the genus in the southern interior and coast regions of British Columbia.

\textit{Host trees}.—Douglas Fir, less commonly in Western White Pine and Western Hemlock, and probably other conifers.

\textit{Distribution}.—The Rocky Mountain and Pacific Coast regions from Alaska to California.

A red species; length, 5 mm. Rare.

\textit{Host tree}.—Douglas Fir.

\textit{Distribution}.—Southern interior of British Columbia; Golden, Creighton Valley.

\textbf{Hylastes macer} Lec.; Am. Ent. Soc. Trans., 2: 175, 1868.

A black, elongate species; length, 5 to 6 mm. The last ventral of the male impressed and pubescent behind. Entirely distinct in our fauna.

\textit{Host tree}.—Engelmann’s Spruce (in litt.).

\textit{Distribution}.—Very rare in the southern interior of British Columbia, taken at Vernon and Kaslo; California, Nevada (our coll.), Utah, Nebraska (in litt.).

\textbf{Hylastes longicollis} n. sp.

Description of adult: Allied to \textit{gracilis} Lec., but with the pronotum much narrower, the striae punctures much coarser, and more distinctly hairy; length, 3·9 mm.; width, 1·3 mm. A female.

The head is much as in \textit{gracilis}, but more coarsely granulate-punctate, and abundantly clothed with rather short reclining hairs above, and denser, longer hairs below, with a few longest and erect; the basal segment of the antennal club comprising nearly two-thirds the mass; the beak widened at the tip; the transverse impression stronger at the middle; the carina well developed; the epistoma not much impressed and coarsely granulate. The pronotum is much narrower than in \textit{gracilis}, one-sixth longer than wide; very much narrower than the elytra; the sides straight behind, divergent to the widest point just before the middle, then arcuately narrowed to the very broadly rounded front margin; the hind margin nearly straight; the disc evenly, very coarsely and densely punctured, more finely in front and on the sides, not much roughened; with a long narrow, well developed median carina. The elytra are nearly straight at the base; with the sides straight for over two-thirds the length, then very strongly narrowed to the narrow but broadly rounded hind margin, as seen from above; the striae moderately impressed, faintly on the sides, with the striae margins unusually
regular; the punctures coarse, deep, quadrate, extremely close so that the partitions are thin transverse ridges, somewhat smaller at the sides; the interspaces narrower than the striae on the disc, wider on the sides, flattened although somewhat elevated on the disc from the depth of the striae; finely, densely granulate-punctate, more coarsely granulate on the declivity, and evidently pubescent with short yellow hairs, longer on the declivity.

The venter is coarsely, densely punctured; the last ventral slightly convex, densely, coarsely, roughly punctured, rather narrowly rounded behind, and pubescent towards the hind margin, probably impressed behind in the male as in gracilis Lec.; the prothorax below very coarsely, densely and roughly but distinctly punctured.

Host trees.—Unknown. Type locality, Atlanta, Idaho. Type No. 102. We have one doubtful record from southern British Columbia.

An undescribed species of *Hylastes* occurs in *Abies nobilis* in Oregon. We have only one specimen.

The Genus *Hylurgops* Leconte.

Key to the Species.

A Bases of the elytra only moderately arcuate and not serrate; the elytral interspaces subequally sculptured.

B The pronotum as wide as the elytra, margined at the sides, from acutely to subacutely, from the base nearly to the apex; densely clothed with long erect hairs on the upper surface. N. Mexico. grandicollis Sw.

BB The pronotum narrower than the elytra and not acutely margined at the sides; the long hairs sparse.

C Stout species; the elytra subinflated behind; the pronotum deeply sinuate on the sides in front; the mesosternum strongly protuberant; the third tarsal segment strongly widened and deeply bilobed; the pronotum rather strongly margined at the base.

PLATE 18.

IPID BEETLES—ALL MUCH ENLARGED.

Fig. 1, *Hylurgops pinifex* Fitch*. Fig. 2, *Hylurgops pinifex* Fitch*. Fig. 3, *Hylurgops rugipennis* Mannh*. Fig. 4, *Hylurgops subcostulatus* Mannh.* Fig. 5, *Platypus wilsoni* Sw., antenna**. Fig. 6, *Trypodendron betulae* Sw.; male above, female below*. Fig. 7, *Trypodendron retusus* Lec.; male above, female below.* Fig. 8, *Ips calligraphus* Germ.* Fig. 9, *Ips calligraphus* Germ.* Fig. 10, *Dendroctonus*; proventriculus, showing diagonal lines on the disc*. Fig. 11, *Leperisinus californicus* Sw**. Fig. 12, *Leperisinus aculeatus* Say, pair, starting a tunnel*. Fig. 13, *Anisandrus pyri* Peck*. Fig. 14, *Anisandrus minor* Sw.* Fig. 15, *Anisandrus populi* Sw*. Fig. 16, *Anisandrus obesus* Lec*. Fig. 17, *Gnathotrichus retusus* Lec**.

*Original. Author’s illustration."
D Larger and stouter species; the pronotum closely punctured with large and small punctures intermixed; strial punctures small, distinct, with sides approximately straight; interspaces rather sparsely, moderately rugose; epistomal carina distinctly acute (Pl. 18, fig. 2). **pinifex** Fitch. Page 81.

DD Smaller species, the pronotum densely, rather regularly punctured; strial punctures rather coarse and indistinct, interspaces closely, coarsely rugose; epistomal carina usually a narrowly convex ridge (Pl. 18, fig. 3). **rugipennis** Mannh. Page 81.

CC Rather slender species; not inflated behind; the pronotum at most only slightly sinuate on the sides in front; the mesosternum only moderately protuberant; the third tarsal segment only moderately widened; the pronotum rather feebly margined at the base.

D The pronotal punctures small and fairly regular in size; the elytral interspaces finely granulate on the basal half. **knausi** Sw. N. Mexico.

DD The pronotal punctures notably unequal in size; the elytral interspaces rugose on the basal half.

E The pronotum with many minute and numerous medium-sized punctures intermixed; the elytra deeply striate on the disc and declivity. **porosus** Lec. Page 82.

EE The pronotum with many large and a few minute punctures intermixed, the elytra rather feebly striate. **lecontei** Sw. Page 82.

AA Bases of the elytra strongly arcuate, subacute and irregularly sub serrate; the elytral interspaces alternately carinate, more strongly behind; the elytra and pronotum everywhere minutely scaly, frequently encrusted (Pl. 18, fig. 4). **subcostulatus** Mannh. Page 82.

Hylurgops pinifex Fitch; N.Y. Agric. Soc. Trans., 43, 1851 (*Hylastes*).

Length, 4.5 mm.; width, 1.8 mm.; colour reddish brown to nearly black; the pronotum a little narrower than the elytra, the sides strongly arcuate behind, strongly narrowed and constricted in front of the middle; the elytra slightly widened behind the middle, the striae deep, the interspaces convex, granulate and asperate, more strongly on the declivity; the vestiture of minute hairs, scale-like on the declivity, with a few long erect hairs behind; the male has the declivity more densely sealy, the arcuate impression on the front deeper and wider, and the carina of the 2nd ventral segment usually more strongly developed. This species is distinguished from the closely allied *H. glabrates* Zett. of Europe by the more sparsely and more irregularly punctured pronotum, and the less strongly arcuate bases of the elytra.

Host trees.—Pines, Spruce, and Eastern Larch.

Distribution.—Eastern Canada and Eastern United States; very widely distributed.

The tunnels are usually at the base of the trunk, often extending below the surface of the ground; a secondary enemy.

Hylurgops rugipennis Mannh.; Bull. Mosc., 297, 1843, (*Hylurgus*).

Slightly smaller and more slender than *pinifex*, with the pronotum more decidedly narrower than the elytra and the asperities of the declivital interspaces coarser.

Host trees.—Sitka Spruce, Engelmann’s Spruce, Western White Pine, and probably all pines and spruces within its range.

36198—6
Distribution.—Alaska, British Columbia, and southwards into California.

A common secondary enemy of pines and spruces.

Hylurgops porosus Lec.; Am. Ent. Soc. Trans., 2: 175, 1868, *(Hylastes).*

A large, elongate species, with a deep frontal impression, and coarsely sculptured, hairy elytra; length, 5 mm., width, 1.8 mm.; the pronotum nearly as wide as the elytra, widest at the middle; the elytral bases feebly arcuate; the male more coarsely sculptured and more densely scaly on the declivity.

Host trees.—Western White Pine, in British Columbia, and probably other pines.

Distribution.—British Columbia (Arrowhead); Western States, Washington, California, New Mexico (in our collection), Utah (a rather distinct variation). Rare in British Columbia.

Length, 4.1 mm.; width, 1.6 mm. Allied to *porosus* Lec., but smaller, with the pronotal punctures coarser and denser and the striae less deeply impressed on the declivity.

Host trees.—Western Yellow Pine, and apparently also Lodgepole Pine.

Distribution.—British Columbia (Okanagan Lake, Golden, Atlin); Colorado; Nevada; New Mexico.

Length, 3.4 to 4.5 mm.; easily distinguished by the characters given in the key; an aberrant species, removed from the true *Hylurgops* through the arcuate, subseriate bases of the elytra, the longer 2nd abdominal segment, and the alternately carinate elytral interspaces.

Host trees.—Lodgepole Pine, Western Yellow Pine, Western White Pine, and probably all species of *Pinus* within its range.

Distribution.—Coast region and southern interior of British Columbia, extending throughout Western United States into New Mexico and Arizona.

THE MICRACINÆ.

The Genus **Thysanoes** Leconte.

Thysanoes rigidus Lec.; loc. cit., 362 *(Cryphalus)*, 1876.

Dark brown, somewhat shining; the form stout, cylindric.

The head with the front closely punctured, with short pubescence, deeply concave and shining below; the antennal club large, outer face with suture 1 semicircular, 2 narrowly angled, 3 more broadly angled, the funicle 6-segmented, the scape densely hairy on the outer side.

The pronotum little wider than long, convex, anterior edge not toothed, disc with a few distinct, small, acute tubercles in front of the middle, rather closely and coarsely punctured behind; strongly rounded behind, very strongly narrowed towards the rounded front margin, subtriangular from above. The elytra coarsely punctured in rows, with fine strial setæ; interspaces roughly though finely punctured with uniseriate rows of bristles, granulate on the declivity; declivity rounded, oblique, the summit near the middle of the elytra. The first two ventral segments swollen and convex, subequal and each longer than the last three together. Fore tibiae slender,
subparallel, serrate distally on the outer margin, with a long process at the inner angle. There are three types in the Leconte collection labelled "Can.", and a fourth specimen from "Detroit, Mich."

I have seen no others of the species; it is left provisionally in Thysanoes.

Thysanoes fimbricornis Lec.; loc. cit. 370, 1876.

Length, 1·8 mm. The pronotum longer than wide, sparsely asperate in front, nearly smooth behind the middle; elytra with rows of small punctures, interspaces with a row of short clavate bristles; outer margin of tibiae not serrate.

Host tree.—Hickory, in twigs.

Distribution.—Pennsylvania, not known from Canada.

The genus *Micracis* is not known from Canada, although several species occur in the Northeastern States. *M. opacicollis* Lec. is abundant in New York State in dead twigs of oak and chestnut, and an undescribed species is found at Ithaca, N.Y., in poplar shoots. It is a slender species, 1·7 mm. long; the eyes narrowly separated beneath; the elytra finely punctured in rows and clothed with short scale-like pubescence. *M. rudis* Lec. was described from Detroit, Mich., but the few subsequent records are from Indiana, District of Columbia, and southwestern Pennsylvania. Our single specimen is from Georgia. It is a short, rather stout, very coarsely sculptured species; the head deeply excavated, eyes widely separated beneath, the sutures of the club broadly curved; the elytra scarcely pubescent, coarsely and roughly punctured; length, 2·5 mm.

THE IPINÆ.

The Genus *Xyloterinus*, new genus.

The male is smaller than the female and has the front convex, not excavated as in *Trypodendron*; the antennal club has the corneous first segment entirely basal, arcuate on its front margin, not narrowly angulate and produced towards the middle; the metepisternum is narrowed and sinuate in front, with the sides parallel behind.

The type is *Bostrichus politus* Say; hitherto included in *Trypodendron* (*Xyloterus*).

Xyloterinus politus Say; Acad. Nat. Sci. Jour., 5: 256, 1828; ed. Lec. 2: 318; (Bostrichus).

Length, 2·8 to 3·5 mm.; dark brown to nearly black, except the elytra which are usually a nearly uniform reddish-brown; the pronotum with four slender median teeth on the front margin; slightly wider than the elytra, the summit well behind the middle, asperate in front and smooth and very finely punctured behind the summit; the elytra with the striae nearly obsolete, visible on the sides, the stria punctures very small and not deep, not perfectly regular; the interstrial punctures smaller than but as numerous as those of the striae, uniseriate on the disc, confused on the wider lateral interspaces; the declivital striae impressed, the pubescence abundant but fine and rather short.

Host trees.—Beech, Maple, Birch, and other hardwood trees. In dying trunks and large branches.

Distribution.—Eastern Canada and Eastern United States.

36198—6½
The Genus *Trypodendron* Stephens.

Xyloterus Er.

Key to the Species.

A The elytra strongly and regularly striate, and rather coarsely punctured; the declivity with the second interspace normal, not sulcate; the pronotum asperate-punctate on the sides behind. D.C., Pa., W. Va., N.Y., N. Mex. *scabricollis* Lec.

AA The elytra at most rather faintly striate, the striae usually somewhat irregularly punctured; the declivity with the second interspace depressed to form a distinct sulcus; the pronotum finely punctured on the sides behind.

B The carina forming the lateral margin of the declivital sulcus wide and irregularly punctured, the pronotum entirely black, closely granulate on the median part of the disc behind; the elytral declivity distinctly hairy.

C A larger species, 3·5 mm–4 mm.; the declivital sulcus wide and deep, gradually narrowed on the caudal half; the elytra with brilliant lustre, the interspaces usually flat; the male with the cephalic margin of the pronotum broadly emarginate as viewed from above. *Populus* *retusus* Lec. Page 85.

CC Length, 3 mm. to 3·5 mm.; the declivital sulcus rather narrow and its sides nearly parallel; the elytra with rather dull lustre, the interspaces usually noticeably convex; the male pronotum broadly arcuate in front. *Betula* *betulae* Sw. Page 85.

BB The carina forming the lateral wall of the declivital sulcus narrow and uniseriately punctate or granulate-punctate; the pronotum punctured across the middle line near the caudal border, at most but sparsely granulate; the declivity sparsely and indistinctly hairy.

C Interspace 2 of the declivity distinctly punctured and usually as wide as interspace 1 and interspace 3, which are distinctly granulate; the pronotum and elytra normally marked with pale bands.

D The punctures of the elytral striae rather deep and usually rather coarse; the discal pale area of the pronotum usually extending from the base to the cephalic margin. British Columbia west of the Rockies. *cavifrons* Mannh. Page 85.

PLATE 19.

IPID TUNNELS (Original).

Fig. 1, *Dryocoetes confusus* Sw.; Tunnels in balsam, inner surface of the bark; three-fifths natural size.

Fig. 2, *Dendroctonus borealis* Hopk., Tunnels in white spruce, inner surface of the bark, showing parasitized larvae; about one-half natural size.

Fig. 3, *Ips perturbatus* Eichh.; Tunnels in white spruce, inner surface of the bark; much reduced.

Fig. 4, *Pityophthorus canadensis* Sw.; Tunnels in a white pine twig, surface of the wood; four-fifths natural size.
DD The punctures of the striae shallow and usually small; the pale band of the pronotum usually transverse and basal. **bivittatum** Kirby. Page 85.

CC Interspace 2 very narrow on the declivity and impunctate.

D The pronotum with a caudal, pale, transverse band extending to the side margins; the declival interspaces 1 and 3 distinctly granulate; the male pronotum broadly, strongly emarginate in front as viewed from above. **borealis** Sw. Page 85.

DD The pronotum and elytra without pale bands but with an obscure, smoky, reddish median area; interspaces 1 and 3 with granules nearly obsolete.

E The striae feebly impressed on the declivity, with the 2nd interspace only feebly sulcate; the interstrial punctures rather coarse. **rufitarsis** Ky. Page 85.

EE. The striae strongly impressed on the declivity, with the 2nd interspace deeply sulcate; the interstrial punctures small. **ponderosae** Sw. Page 86.

Trypodendron retusus Lec.; Am. Ent. Soc. Trans. 2: 158, 1868 (Xyloterus).

Host trees.—Poplars.

Distribution.—Abundant throughout Canada east of the Rockies, in dying trees; apparently less common in British Columbia. (Pl. 14, fig. 4).

Trypodendron betulæ Sw.; Can. Ent. 216, 1911.

Host trees.—Birches.

Distribution.—Ontario, Quebec, and probably in the Maritime Provinces.

Trypodendron cavifrons Mannh.; Bull. Mosc. 297, 1843 (Bostrichus).

Apparenty distinct from *bivittatum*, but presenting confusing variations. *Host trees.*—Spruce, Pine, Giant Arborvite, Birch, Western Alder.

Distribution.—The coast and southern interior of British Columbia and southwards.

Trypodendron bivittatum Kirby; Fauna Borealis Am. 4: 192, 1837 (Apate).

Length, 3 mm.; width, 1.2 mm.; black with antennæ, legs, a band on the median part of the caudal border of the pronotum, and two longitudinal stripes on the elytra yellowish brown. The common species throughout eastern Canada.

Host trees.—Spruce, Pine, Arbor Vitæ, Larch, Hemlock and Balsam.

Distribution.—Eastern Canada from the Atlantic coast to northern Alberta.

An important variation occurs in the Rockies of northern Alberta in white spruce. The colour is dark piceous to nearly black with the paler markings smoky-yellowish and often indistinct.

Closely allied to *bivittatum*, but distinct by the characters given in the key.

Host trees.—White Spruce.

Distribution.—Northern Saskatchewan and northern Alberta.

Trypodendron rufitarsis Kirby; Fauna Borealis Am. 4: 193, 1837 (Apate); Bethune, Can. Ent., 4: 152, 1872.

Similar in size and shape to *T. bivittatum*; distinguished by colour characters, the coarsely and rather sparsely granulate front, the shallow declival sulcus and impunctate 2nd interspace, the nearly obsolete
punctures on the sides of the pronotum behind, and the nearly obsolete declivital granules. Our type of description agrees with Kirby’s type; compared by R. N. Chrystal. Our series of 50 adults appear to be distinct from *bivittatum*.

Host trees.—Spruce, and probably Jack Pine.

Distribution.—Western Ontario and northern Manitoba. The tunnels and habits are similar to those of *bivittatum*.

Trypodendron ponderosae Sw.; Dom. Ent. Br., Dept. Agric.; Bull. 14: 22, 1917. “This species is very closely allied to *rufitarsis* Kirby, but is distinguished by its constantly darker colour, deep shining black, with an indefinite area on the disc of the pronotum and elytra very dark reddish brown; the interstrial punctures very small; the declivital striae very strongly impressed, with the second interspace deeply sulcate.”

Host trees.—Western Yellow Pine, Engelmann’s Spruce, Douglas Fir, and Mountain Balsam.

Distribution.—Southern coast and interior of British Columbia.

The Genus *Pterocyclon* Eichhoff.

Monarthrum Kirsch.

Key to the Species of Northern America.

A With a prominent, well developed, submarginal epistomal process, narrow and trifid in the female, broad in the male; length, 3.5 to 4.1 mm.; declivity of male concave, of female plano-convex. California. *scutellare* Lec.

AA Without a prominent, well developed epistomal process; smaller species, less than 3.5 mm.; with little sexual difference on the declivity.

B With the elytra rather densely hairy behind and on the declivity, the basal three-fourths or less or at least the central portion of the elytra pale yellow, the apex brown to nearly black. *fasciatum* Say. Page 86.

BB With the caudal part of the elytra at most with few and scattered hairs, the elytra light to dark brown.

C With two widely separated denticles near the middle of the declivital face of each side near the suture; declivity oblique. *mali* Fitch. Page 87.

CC With the dorsal margin of the declivity on each side swollen and bearing two small denticles; with a single minute denticle on the middle of each declivital face; the declivity vertical. California. *dentiger* Lec.

Length, 2.4 mm. to 2.7 mm., reddish to dark brown with the basal three-fourths of the elytra straw yellow, and densely hairy behind. The female has the front minutely punctured and slightly concave at the middle, the declivity more evidently swollen above, and the usual characters of antenna and fore tibia.
Host trees.—Maple, Beech, Hickory, and many deciduous trees; also recorded from pine in West Virginia.

Distribution.—Eastern United States and Eastern Canada; apparently very rare north of the St. Lawrence river.

Piceous; length, 2.2 mm. to 2.5 mm., slender; the female with the declivity rather more strongly toothed, with long hairs from the distal margin of the club, and the fore tibiae rather finely granulate, as usual.

Host trees.—Apple, Oak, Birch, and many deciduous trees; recorded also from Pine.

Distribution.—Eastern United States, Ontario, and Quebec.

The Genus Cryphalus Erichson.

Erichson, Wieg. Archiv., 1: 64, 1836.

We have a very small number of species of this genus in our Canadian fauna. C. balsameus Hopk. is exceedingly abundant in the east; C. approximatus Hopk. and C. subconcentrals Hopk., or closely allied species, occur in British Columbia; C. canadensis, described herewith by Professor Chamberlain, was taken in the Selkirks at Rogers’ Pass. In addition to these I have taken two variations or possibly distinct species in Abies grandis at Saanichton, Vancouver island. We have only a very few specimens of these western species from British Columbia. Our material had been sent to Prof. W. J. Chamberlain, who was monographing the genus. His studies have been interrupted, but in the meantime his description of the new species canadensis is given here.*

Key to the Species.

A The interstrial hairs of the elytra long, stiff, erect, conspicuous, very much longer than the remaining scale-like pubescence.

B The pronotal asperities confused and extending towards the base. Wash. pubescens Hopk.

BB The pronotal asperities in approximate, subconcentric rows. subconcentrals Hopk. Page 88.

AA The interstrial hairs of the elytra very short and fine, inconspicuous, but little longer than the remaining scale-like pubescence, and almost invisible except on the sides and base.

B The front feebly granulate, with a transverse, arcuate, smooth impression; the pronotum with the sides very strongly narrowed, the pronotal asperities rather small, the rugose area subtending a caudal angle of about 60°; the punctures very small and dense.

C The pronotum narrowly rounded in front; the fine interstrial hairs of the elytra somewhat more evident. canadensis, n. sp. Page 88.

CC The pronotum rather broadly rounded in front. Idaho. approximatus Hopk.

BB The front coarsely granulate, convex, with a median, shining, epistomal carina; the pronotum with the sides rather strongly arcuate, the pronotal asperities coarse, relatively numerous, the rugose area subtending a caudal angle of about 90°. balsameus Hopk. Page 89.

*Professor Chamberlain’s descriptions of C. amabilis and C. grandis have appeared too late to be inserted in these keys; Can. Ent., 49: 321-323, 1917.

Closely allied to *picea* Ratz. of Europe, with sparse long setæ from the elytral interspaces. Female: dark brown, length 1·8 mm.; only moderately stout, narrowly rounded in front and behind; moderately shining; the front roughly but not coarsely punctured to somewhat beyond the level of the eyes, with a strong, transverse, shining, epistomal impression, and an anterior median carina, the vertex and genæ subopaque, finely reticulate, indistinctly punctulate; the pronotum with the cephalic margin narrowly rounded, with two prominent, contiguous, median asperities supported by two smaller asperities on each side of them (these marginal elevations vary greatly in size and in number from 2 to 6), the rugose area reddish with the asperities rather coarse, rather sparse and hardly concentric, subtending a caudal angle of about 90°, the reddish colour extending towards the base but the rugosities not caudal of the summit, the sides and caudal area very finely punctured and granulate, with long hairs on the sides and in front; the elytra with the sides parallel beyond the middle then narrowed to the rather narrowly rounded apex; the striae hardly impressed but discernable, the strial punctures round, close and shallow, the interspaces with minute, densely placed punctures, only very feebly granulate, bearing minute scales, and with a median row of sparse, long, erect hairs from coarser, evidently granulate punctures, more numerous towards and upon the declivity.

The type of this description is from *Pseudotsuga taxifolia*, Saanichton, B.C.

Host trees.—Douglas Fir, Grand Fir.

Distribution.—Saanichton peninsula (Vancouver Island), British Columbia coast, and southwards.

Our species is doubtfully referred to *subconcentralis*; some individuals appear to approach *pubescens* Hopk. which is described as distinct though the confused pronotal rugosities.

Cryphalus canadensis Chamberlain, ante page 87.

"Length, 1·8 mm.; width, 0·8 mm. Body oblong, elliptical, symmetrical; brownish black, with the rugose area of the pronotum slightly reddish. Pronotum five-sixths as long as broad, rounded on the sides behind, then very strongly arcuately narrowed to the narrowly rounded front margin, broadest one-third from the base, base slightly narrower than the base of the elytra; six distinct teeth on the anterior margin of the pronotum, three on each side; pronotum with prominent asperities in a V-shaped mass, with the widest portion anteriorly and the apex near but not touching the base line; the hairs of the pronotum not very long and recumbant towards the posterior margin; the anterior edge of the pronotum with a fringe of long rather heavy bristle-like hairs; disc of the pronotum everywhere

PLATE 20.

IPID TUNNELS (ORIGINAL).

Fig. 1, *Pseudohylesinus nebulosus* Lec., Tunnels in Douglas fir, wood surface; one-third natural size.

Fig. 2, *Leperisinus aculeatus* Say, Tunnels in ash, wood surface; about one-third natural size.

Fig. 3, *Eccoptogaster piceæ* Sw., Tunnels in white spruce, wood surface; about three-fourths natural size.

Fig. 4, *Hylurgops pinifex* Fitch, Tunnels in white pine bark, inner bark surface; about two-thirds natural size.

Fig. 5, *Dryocoetes affaber* Mannh., Tunnels in white spruce bark; much reduced.
minutely closely granulate punctate and minutely pubescent. The elytra are densely clothed with short, recumbent scale-like hairs, the scales not so dense on the middle portions of the elytra, and with a small more or less shining area on the humeri which is devoid of scales, the striæ not evident, rows of punctures distinct; scattered, short, bristle-like hairs slightly longer than the general pubescence on the elytra; the ventral surface sparsely, faintly punctate and sparsely pubescent. Legs dark; antennæ lighter. Front flattened and roughened feebly."

Described from one specimen collected by me from Abies lasiocarpa at Rogers' Pass, British Columbia, September 28, 1915.

Length, 1 5 mm. to 2 mm.; moderately stout; dark-brown, subopaque with grey pubescence; the front plano-convex, closely roughly punctured, with rather coarse hairs, strongly transversely impressed, the epistoma with the median line wide, impunctate and slightly elevated in front, forming a coarse granule on the epistomal margin; the antennal funicle 4-segmented, 1st longer than the distal three, club nearly twice as long as the funicle, with 3 distinct sutures on each side and an indistinct fourth near the base, the segments oblique and the tip obliquely truncate; the pronotum subtriangular, very broadly rounded and finely margined behind, widest near the caudal angles, then aracately strongly narrowed to the rather narrowly rounded front, the cephalic margin with two wide adjacent serrations on each side, with one or two smaller lateral serrations, the median line very narrow, the disc strongly convex, the rugose area obscure reddish, delimited behind by an angle of about 90°, the asperities rather coarse, moderately numerous and not concentric, densely finely granulate-punctate on the sides and behind, the pubescence minute behind, coarser on the sides and in front; the elytra as wide as the pronotum and slightly more than twice as long, the sides subparallel for a little over half the length then aracately narrowed to the rather narrowly rounded tip, rather faintly punctate-striate, the striæ rather evidently impressed towards the base, the strial punctures close, shallow, moderate in size, bearing minute setæ; interspaces densely minutely granulate-punctate, bearing minute grey scale-like pubescence not completely concealing the surface, and a median row of minute but distinct sparse setæ slightly coarser than those of the strial punctures, and much coarser and conspicuous towards the lateral margin but not upon the declivity.

The male is usually smaller than the female, about 1 5 mm. long.

Host tree.—Balsam Fir.

Distribution.—Eastern Canada and Eastern United States; widely distributed. Not taken by the writer west of the Great Lakes, though it probably occurs throughout the range of its host.

This species has usually been referred to *striatulus* Mannh. It is probably Hopkin's *balsameus*, although the latter was described as "without interspalars hairs"; both the species before me and *abietis* Ratz. of Europe, to which it is very closely allied, have a row of minute hairs on the interspaces, very distinct at the base and on the sides.

Bostrichus terminalis Mannh., Bull. Mosc. II, 298, 1843, California, is unknown to me.

It is described as "oblong, closely and deeply punctured, brownish black, with greyish, erect, small hairs, the apex of the thorax and of the elytra reddish, the elytra entire, the antennæ and feet rusty red.

Length, \(\frac{3}{4} \) lin., width \(\frac{3}{4} \) lin. California."

It has been referred to *Cryphalus* in literature.
The Genus *Letznerella* Reitter.

Bestimmungstabelle der Borkenk., 68, 1913.

Included by Hopkins in his Genus *Ernoporides*.

L. jalappa Letzner is occasionally imported in Jalap root from Mexico and Brazil. Not recorded from Canada.

The Genus *Procryphalus* Hopkins.

Original Description: "Oblongus, fuscus, opacus, puber cinerea dense vestitus; thorace pulvinato, tuberculis exasperato, antorsum densioribus; elytris evidenter punctato-striatis, interstitii subtiliter ruguloso-punctatis; antennis pedibusque piecis.

"Var. b. fusco-eastanea; thorace rufescente, glabriuscelo; elytris opacis, subsericeis; antennis pedibusque rus-piecis.

"Longit, $\frac{3}{4}$ lin.; Latit, $\frac{3}{4}$ lin.

"Kenai.

"*Cr. granulato* Ratz. longior, thoracis tuberculis majoribus, densioribus et elytris evidenter punctato-striatis diversus."

This species is unknown to me; it has recently been placed in *Procryphalus* by Hopkins, loc. cit.

The Genus *Trypophloeus* Fairmaire.

One species in our fauna.

Length, 2 mm.; clothed with short, inconspicuous grey hairs of two lengths; pronotum small, subtriaangular from above; the elytra with rows of punctures, striae hardly impressed; the interspaces finely confusedly punctured, the whole body shining. The only species known from Canada.

Host tree.—Alder.

Distribution.—Weymouth, N.S.

The Genus *Gnathotrichus* Eichhoff.

Key to the Species.

A With the elytral declivity distinctly retuse; moderately to strongly sulcate along the suture (denticulate along the summit).

B The punctures of the pronotum and elytra very small but distinct and rather deep; the front of the head coarsely punctured; the interspaces of the elytra with the minute elytral rugulations rather sparse; the declivity very strongly retuse. *retusus* Lec. Page 91.
BB The punctures of the pronotum extremely minute, almost obsolete; the front of the head strongly convergently aciculate; the minute rugulations of the elytra very dense. *sulcatus* Lec. Page 91.

AA With the elytrial declivity not distinctly retuse; only very feebly sulcate along the suture.

B The pronotum moderately rough in front; the length about 3 mm. *materiarius* Fitch. Page 91.

BB The pronotum strongly roughened in front; a very small species, length, 1-5 mm. *asperulus* Lec. Page 91.

Gnathotrichus retusus Lec.; Am. Ent. Soc. Trans., 2: 155, 1868 (*Cryphalus*).

Of the form of *materiarius*, but usually larger; length, 3-6 mm. to 3-8 mm. The female has the front of the head moderately convex, delimited above by a curved line, coarsely not densely punctured, with a smooth, slightly elevated median space ending in an acute, minute epistomal process; the antennae with a few, long, slender, hairs from the dorsal margin of the funicle and club. The male has the front of the head with the smooth median space longitudinally, very finely and feebly aciculate towards the epistoma; with the antennal pubescence normal. (Pl. 18, fig. 17).

Host Trees.—Western Hemlock, Douglas Fir, Western Yellow Pine.

Distribution.—Generally distributed through southern British Columbia and southward through the Rocky Mountain and Pacific Coast regions.

Gnathotrichus sulcatus Lec.; Am. Ent. Soc. Trans., 2: 155, 1868 (*Cryphalus*).

Very closely allied to *retusus*, but differing in the aciculate front, more finely punctured pronotum and less strongly retuse declivity. The front of the head is convex, shining above, with a median carina on the vertex, very sparsely punctured, with the basal median area strongly, convergently aciculate, the lines meeting at the slight median emargination of the epistoma which bears a minute acute point at the base of which the median lines terminate; the antennal club and funicle with a few long, marginal hairs, in the female, with the antennal pubescence normal in the male.

Host Trees.—Grand Fir, Western Hemlock, Douglas Fir, Western White Pine.

Distribution.—Generally distributed throughout southern British Columbia, extending southwards. In sapwood and heartwood of dying and recently killed trees, and more rarely in those apparently sound.

Length, 2-5 mm. to 3-2 mm. The male with the median, smooth, carinate space on the front minutely aciculate, and without long hairs on the antennal club and funicle; the female with the aciculation on the frontal carina but with a few very long hairs on the dorsal margin of the club and funicle.

Host Trees.—Eastern Pines, Spruces, and Eastern Larch.

Distribution.—Throughout Eastern Canada and Eastern United States; apparently less abundant west of the Great Lakes.

Gnathotrichus asperulus Lec.; Am. Ent. Soc. Trans., 2: 155, 1868 (*Cryphalus*).

A very small, slender species, 1-5 mm. long; the head flat, feebly punctured; the pronotum one-half longer than wide, strongly roughened in front, very finely sparsely punctured behind; the elytra faintly punctured in rows; the declivity rather feebly sulcate.

Host Tree.—*Pinus inops*, (Sz.).
Distribution.—Virginia; Washington, D.C.
Undescribed species of this genus from the Western States, represented in our collection, are not likely to occur in Canada, and are omitted.

The Genus Conophthorus Hopkins.

Key to the Species.

The following key is adapted from Hopkins, loc. cit.:—

A Elytra with strial and interstrial punctures equal or subequal in size and density on the dorsal and lateral areas; elytral punctures coarse and impressed.

B 3rd interspace of the elytral declivity distinctly granulate; the declivity not strongly impressed.

C Elytra with strial punctures confused on the dorsal area; the declivity with the 1st interspace granulate. Dull black. resinosae Hopk. Page 93.

CC Elytra with the strial punctures in obscure to distinct rows on the dorsal area; the declivity with 1st interspace smooth, the 3rd granulate; the pronotum dark, the elytra reddish. Oregon, in cones of Pinus ponderosa. Length, 3•5-3•8 mm. ponderosae Hopk.

BB 3rd interspace of the elytral declivity unarmed or only obscurely granulate; the declivity not strongly impressed; the pronotum dark, the elytra reddish brown; the front broad. Colorado, New Mexico and Arizona, in cones of Pinus scopulorum, and P. ponderosa. Length, 3•2 mm. to 3•5 mm. scopulorum Hopk.

AA Elytra with the strial and interstrial punctures unequal in density and usually in size, those of the interspaces sparsely placed and usually smaller than those of the striae, especially on the dorsal area. Elytra with strial punctures in obscure rows on the lateral area; pronotum with punctures of posterior area fine; punctures of elytra distinct, those of the striae rather dense.

B The declivity with the 1st interspace granulate; the hairs moderately long and erect; black, shining; the front narrow. coniperda Schwarz. Page 93.

BB The declivity with the 1st interspace smooth except towards the apex; the hairs long.

C Blackish brown, shining. Newport, Oregon, in cones of Pinus contorta. Length, 3•1 mm. contortae Hopk.

PLATE 21.

IPID BEETLES—ALL GREATLY ENLARGED. (ORIGINAL.)

Fig. 1, Polygraphus rufipennis Ky. (Upper left).
Fig. 2, Hylastes porculus Er.
Fig. 3, Platypus wilsoni Sw., male, declivity of elytra.
Fig. 4, Platypus wilsoni Sw., female.
Fig. 5, Pseudohylesinus grandis Sw. (Lower right).
CC Pronotum black; elytra black to reddish brown. *monticolae* Hopk. Page 93.

Length, 2.75 to 3.25 mm.; recorded by Hopkins from the Harrington collection; cones of red pine; Ontario, Canada.

Length, 2.5 to 3.2 mm. Locally in cones of white pine from Ontario to Nova Scotia, and southwards; also less commonly in white pine buds and twigs.

Length, 2.9 to 3.8 mm. The species before me is probably Hopkins' *monticolae*. It is closely allied to the eastern *coniperda* Sz. and mines the cones of the western white pine in a similar way. It is usually larger than *coniperda*; clothed with longer and more conspicuous bright red hairs; with the pronotum more coarsely asperate; the elytra more coarsely and deeply punctured; the interstrial punctures less numerous on the disc, usually seven to ten between the declivital summit and the base, but variable and in less regular rows; the declivity broadly, distinctly sulcate, with the suture practically without granules.
One specimen has the pronotum very strongly compressed in front so that the front margin is very narrowly and acutely rounded at the middle, and with the declivital granules coarser. It is possibly the male.

Host Tree.—Cones of Western White Pine.

Distribution.—Southern coast region of British Columbia, and on Vancouver island; southwards into the United States.

The Genus *Pseudopityophthorus*, new genus.

The type is *P. minutissimus* Zimmerman, 1868.

Generic Characters.—The antennal club with strongly arcuate sutures, the distal segments much wider than the first; the tibiae coarsely serrate; the elytra not striate, irregularly finely punctulate; the intercoxal process of the prosternum elongate; the male with the front clothed with very long arcuate yellow hairs. Allied to *Pityophthorus* Eichh., in which it has been included.

Key to the Species.

A The pronotum subopaque; the elytral pubescence sparse, minute, slender, without noticeably longer hairs on the declivital face; the punctuation minute, rather sparse; the declivity only very faintly impressed on each side towards the apex; length, 1.8 mm. Eastern species. *minutissimus* Zimm. Page 94.

AA The pronotum shining; the elytral declivity bearing distinctly longer hairs.

B The longer hairs of the declivital face slender, long, closely placed and conspicuous; the elytral pubescence dense and slender, often abraded; the punctuation on pronotum and elytra dense and very fine; the sutures of the antennal club strongly curved. A larger rather stout species, length, 2.5 mm. Western States. *pubipennis* Lee.

BB The hairs of the declivital face longer than on the disc and subequal in length; the elytral pubescence sparse or very short and stout; the first two sutures of the club moderately curved; smaller species, not over 2 mm. in length.
C The elytral pubescence close, short and very stout, the longer hairs of the median row on the declivity numerous and little longer than the remaining pubescence; the declivity distinctly impressed on each side the pubescence. Eastern species.
Pseudopityophthus pruinatus Eichh. Page 94.

CC The elytral pubescence sparse, the longer hairs of the declivity slender, abundant; the declivity indistinctly broadly impressed on each side the suture, and sparsely granulate. Western States.
A common species in dying and dead branches and limbs.
Host Trees.—Oak and Beech in Canada; also in Hazel, and recorded from Dogwood in Eastern United States.
Distribution.—Eastern Canada and Eastern United States.

This species is destructive to oaks in the Eastern United States, but has not yet been recorded from Canada.
P. tomentosus Eichh. is unknown to me. It was distinguished from (*pusillus*) *minutissimus*, by Eichhoff, through its shorter form, thorax subtilated behind, and the elytral apex obliquely declivos and subretuse; "America borealis."

The Genus *Pityophthus* Eichhoff.

Key to the Species.

A The antennal club short oval, widest near the middle, only one-fifth longer than wide, with segments 1 and 2 together much shorter than 3 and 4 together; the sides of the club crenulate only at the base; the sutures 1 and 2 feebly arcuate, 3 very strongly arcuate (Pl. 1, fig. 4).

B The sutures of the club not septate, the margins feebly crenulate, the punctures of the elytral stria 2 distinct on the declivity, in a straight line, interspace 2 not widened; the apex of declivity very broadly rounded, subtrunclate.
Ramiperda Sw. Page 98.

BB The first two sutures of the club feebly septate; the punctures of stria 2 very feebly developed and divergent on the declivity, so that interspace 2 is somewhat widened behind; the apex of the declivity rather narrowly rounded. (Pl. 1, figs. 4, 5, 6).
Nitidus Sw. Page 98.

AA The antennal club with the segments 1 and 2 at least nearly as long as 3 and 4; the sides of the club coarsely crenulate on more than the basal half; the segments subequal in length and the sutures often similarly arcuate (Pl. 10, fig. 22).

B Elytral declivity with striae 1 and 2 punctured, interspace 2 not widened behind (Pl. 16, fig. 7).

C The declivity moderately or strongly sulcate along the suture, with interspace 2 impunctate, the strial punctures normally developed.

DD The elytra punctured in rows.

E The pronotal asperities distinctly separated.

F The declivity with the suture strongly elevated and the elytra individually, deeply sulcate; the declivity without granules. **laetus** Eichh.

FF The declivity with the suture moderately elevated, much less so than the sides, and the elytra therefore jointly broadly sulcate, not so deeply as in EE; the suture and sides on the declivity granulate. **rhis** Sw. Page 99.

EE The pronotal asperities united to form perfectly concentric semicircular ridges; the declivity with the elytra jointly, deeply sulcate, the suture only very feebly elevated.

F The elytral interspaces sparsely punctured near the suture; the front margin of the pronotum strongly asperate at the middle only, the declivity not granulate. Key West, Fla. **lateralis** Sw.

FF The elytral interspaces impunctate, the front margin of the pronotum feebly asperate throughout; the suture and the sides distinctly granulate on the declivity. **concentratis** Eichh. Page 104.

CC The declivity only very feebly sulcate along the suture; interspace 2 feebly punctured; punctures of striae 1 and 2 distinct but smaller than on the disc; the suture rather well elevated but smooth or nearly so; the elytra stout, one-half longer than the pronotum; minute species.

D The pronotum rather narrowly rounded and distinctly serrate on the front margin; the pronotum and elytra strongly punctured. **puberulus** Lec. Page 99.

DD The pronotum very broadly rounded and only obsoletely serrate on the front margin; the elytra very feebly punctured. **opaculus** Lec. Page 99.

BB The elytral declivity with the punctures of striae 1 and 2 becoming much smaller or nearly obsolete, with interspace 2 decidedly sulcate, shining, and usually distinctly wider than on the disc (Pl. 16, fig. 4).

C The declivity not acuminate at the apex, usually rather broadly rounded, with the suture narrow and feebly elevated (Pl. 16, fig. 8).

D The pronotum moderately or narrowly rounded in front and distinctly serrate; the declivity rather broadly rounded; the elytral interspaces with the punctures rather numerous.

E Rather slender species with the elytral punctures usually small and those of the interspaces usually moderately numerous; the female front clothed with very long yellow hairs, the male front with a well-developed transverse median carina, the vertical carina usually nearly obsolete.

F The declivital sulcus wide and shallow, with the lateral granules coarse or nearly obsolete.
G The pronotum narrowly or moderately rounded in front and with the two median marginal serrations distinctly larger than the others.

H The declivity closely granulate on suture and convexity; the long hairs of the female front dense and curved; the pronotal asperities coarse and subconcentric.

HH The declivity smooth with only faint traces of granules; the long hairs of the female front straight and rather sparse; the pronotal asperities fine and irregular.

carmeli n. sp. Page 100.

GG The pronotum moderately rounded in front with the marginal serrations subequal in size; the asperities moderate and subconcentric; the strial punctures regularly placed; the declival granules few, but distinct on suture and convexity.

pseudotsugae n. sp. Page 99.

FF The declival sulcus rather narrow and deep, particularly in the male; the pronotum moderately rounded and regularly serrate on the front margin, the median 6 to 10 granules subequal; the elytra strongly punctured, somewhat irregularly near the suture, the interstrial punctures rather numerous.

G The punctures of the elytral striae usually nearly regular; the declival sulcus with the lateral walls oblique; smaller species, 2 mm. or less in length.

GG The punctures of the elytral striae often evidently irregular near the suture, the declival sulcus very narrow, the lateral walls perpendicular in the male; length 2 mm. to 2.5 mm.

nitidulus Lec. Page 100.

EE Stout species with punctures usually coarse and dense, those of the elytral interspaces decidedly numerous; the female front densely, finely pubescent or with hairs of moderate length, the male front with an acute, well-developed median, longitudinal carina.

PLATE 22.

BARK-BEETLE TUNNELS (ORIGINAL).

Fig. 1, *Pseudohylesinus granulatus* Lec., in lowland balsam; one-third natural size.

Fig. 2, *Ips latidens* Lec., in western white pine; one-half natural size.

Fig. 3, *Pityogenes carinulatus* Lec., in western yellow pine twigs; two-thirds natural size.

Fig. 4, *Pityogenes knechti* Sw., in lodgepole pine; one-half natural size.

Fig. 5, *Dendroctonus simplex* Lec., in eastern larch; about one-third natural size.

Fig. 6, *Polygraphus rufipennis* Ky., in white spruce bark; portions of larger *Ips* tunnels also shown; two-thirds natural size.
F The female front clothed with a fringe of moderately long hairs, the declivity broadly sulcate; the male declivity more deeply, simply sulcate; the punctuation of the elytra unusually close and decidedly confused on the disc. Stouter than *cariniceps* and somewhat resembling *Conophthorus* in form and sculpture.

G The pronotum with the sides converging on the cephalic two-thirds or more, rather narrowly rounded in front; pronotum and elytra with punctures moderate in size and density.

torreyanæ n. sp. Page 101.

GG The pronotum with sides nearly straight on about the basal half, then constricted and broadly rounded in front; pronotum and elytra coarsely, densely and deeply punctured.

FF The female with the front densely clothed with short hairs or minute pubescence; the male with the declivity armed with a stout prominence or more elongate blunt horn from the summit of the lateral convexities.

G The female front very minutely pubescent, with a large concavity on each side of a very strongly developed acute median carina; the male with the declivital convexity of each side bearing a blunt horn directed mesad, the apices of the horns in contact at the suture. *cariniceps* Lee. Page 102.

GG The female front densely clothed with short hairs or very short pubescence, the pubescent area usually convex, in some individuals with a tendency towards the carina and concavities of *cariniceps* (Pl. 16, fig. 6); the male with the declivital convexity of each side bearing a stout prominence or sometimes a very short blunt horn, never long enough to reach the suture.

canadensis Sw. Page 102.

intextus Sw. Page 102.

DD The pronotum very broadly rounded on the front margin and only very feebly serrate; the elytral interspaces very sparsely punctured; the declivity rather narrowly rounded at the apex, and broadly sulcate; the female front densely clothed with short hairs on a circular, convex area; the declivity with the suture and lateral convexities distinctly granulate.

CC The declivity acuminate or at least acutely rounded at the apex, as viewed from above, with a shining sulcus on each side; with the suture strongly elevated and usually granulate; the antennal club with the sutures similarly arcuate below. (Pl. 16, fig. 4).

D The punctures of the elytral strigæ more or less confused towards the suture; the interspaces evidently punctured; the front of the female usually densely clothed with long hair; the last ventral deeply emarginate.

E The elytral interspaces sparsely punctured; the strial punctures in fairly regular rows, slightly confused near the suture; the declivital sulci wide and somewhat shallow.

pulchellus Eichh. Page 102.
EE The elytral interspaces closely punctured; the strial punctures irregular on the disc; the declivital sulci deep.

F The elytral declivity with the sulci very deep, the lateral convexities very strongly elevated and very closely strongly serrate along the summit.

serratus n. sp. Page 103.

FF The elytral declivity with the sulci of moderate depth, the lateral convexities moderately elevated and sparsely granulate along the summit, the punctures on the caudal half of the pronotum becoming nearly obsolete on the sides.

G The elytra twice as long as wide, the strial rows distinct on the sides and usually discernible even on the disc, the interstrial punctures rather sparse on the sides; the pronotum sparsely punctured behind.

pullus Zimm. Page 103.

GG The elytra distinctly less than twice as long as wide, the strial and interstrial punctures very close and strongly confused, those of the interspaces everywhere numerous; the pronotum closely punctured.

confertus Sw. Page 103.

DD The punctuation of the elytral disc in fairly regular rows, the interspaces impunctate or nearly so; the last ventral broadly emarginate.

E The sides of the pronotum evenly arcuate from base to apex.

bisulcatus Eichh. Page 103.

EE The sides of the pronotum more or less constricted before the middle.

F The declivity with the suture and lateral convexities strongly granulate-setose.

granulatus Sw. Page 103.

FF The declivity with only faint traces of granules and no setae.

nudus Sw. Page 104.

A rather stout species, $2\frac{1}{2}$ times as long as wide, pronotum strongly arcuate on the sides and asperate on the sides and front, the declivity very steep, broadly rounded behind and only slightly retuse, interspace 9 elevated, discl striæ hardly impressed, strial punctures small, interspaces finely sparsely punctured; length, 2·1 mm. Probably distinct generically from both *Pityophthorus* and *Conophthorus*.

Host tree.—White Pine.

Distribution.—Isle Perrot, Que., Ste. Anne de Bellevue, Que., Chelsea, Que., Stony Creek, Ont.; probably rather widely distributed in southern Quebec and Ontario. It kills twigs by excavating tunnels in the pith as well as in the bark.

The length, 2·1 mm., $2\frac{3}{4}$ times as long as wide; the *female* front flattened subcircularly, densely minutely punctured and densely pubescent with short, yellow hairs, the median carina in the form of a carinate tooth on the epistoma; the *male* front flattened but coarsely closely punctured, with the median carina well developed and pubescence indistinct.

Host tree.—White Spruce.

Distribution.—Southern Quebec, Nova Scotia.

Length, 1.5 mm. to 1.8 mm.; a very distinct species by the characters given in the key. Our northern specimens are usually similar to numbers 2, 3, and 6 in Leconte's series, with the pronotum more coarsely punctured behind than in Zimmerman's type. The female has the front broadly flattened, very closely, finely punctured, clothed with moderately long hairs in a rather loose frontal brush; the male front is more strongly convex, shining, glabrous, carinate behind, the epistomal region somewhat flattened, rather finely, not very closely punctured.

P. pulicarius Zimm. approaches Conophthus in habitus; but the antenial club is strongly septeate; the pronotum is distinctly though not strongly asperate on the front margin, with the sides asperate on the frontal half, as in Conophthus, but simply punctured behind the middle, and the transverse impression across the disc to be discerned, although very faint. This species and ramiperda are each intermediate in certain characters between typical Pityophthus and Conophthus.

Host trees.—Red Pine in Quebec, and probably other Pines.

Distribution.—Aylmer and Isle Perrot, Que., and probably also in Ontario; widely distributed in the Eastern States.

Length, 1.6 mm., width, 6 mm.; elytral striae moderately impressed, coarsely punctured; the declivity steep, deeply sulcate, with striae 2 impressed and strongly punctured.

Host tree.—Sumach, bark of dying and dead twigs and branches.

Distribution.—Eastern Canada and Eastern United States. A common species, heretofore usually confused with Leconte's consimilis.

A very small species, length, 1.3 mm., thinly clothed with short, erect, grey hairs.

Host trees.—Pines and Balsam Fir.

Distribution.—Eastern Canada and Eastern United States. Abundant in dying twigs but commonly found killing twigs on living trees after the manner of ramiperda.

Length, 1.4 mm., allied to puberulus Lec., but rather more slender, with the elytral punctures very much finer, finely granulate and in evident rows, with the pronotum more broadly rounded in front.

Host trees.—White Spruce, Larch, White Pine, Balsam Fir.

Distribution.—Eastern United States, and Eastern Canada west into northern Alberta.

Length, 1.7 mm. to 2.3 mm. It has the frontal characters of the nitidulus group, with small elytral punctures and widely sulcate and coarsely granulate declivity; the declivity is less broadly rounded behind than usual, with the suture more strongly developed, so that the declivital characters are intermediate between nitidulus and pullus.

Pityophthusr pseudotsugæ, n. sp.

Closely allied to tuberculatus Eichh.; of the same size, shape, and secondary sexual characters; but differing in having the serrations on the front margin of the pronotum numerous and only very slightly larger at the middle line, the strial punctures usually regular, and the declivity with 36198—7½.
sparsely placed and usually small granules on the lateral convexities, and very minute granules on the narrower, less elevated suture.

Type.—A female; length, 2-3 mm.; B X Mt., Vernon, B.C.; 29-VI-14, J.M.S.; *Pseudotsuga taxifolia*; 2617; fifteen paratypes, same labels. Type No. 105.

Host trees.—Douglas Fir, Alpine Fir.

Distribution.—Vernon District, British Columbia, taken in the trunk of a small dying Douglas fir, evidently a primary enemy; California.

Pityophthorus carmeli, n. sp.

Closely allied to *P. tuberculatus* Eichh. and *P. pseudotsugæ* Sw.; length, 2-6 mm.; a female: the front of the head very broadly moderately concave on the whole surface, finely closely punctured and somewhat sparsely clothed with nearly straight yellow hairs, shorter towards the centre and very long about the margin; the pronotum as long as wide, distinctly constricted in front of the middle and moderately rounded in front, the serrations of the front margin very feeble, the median pair longer, the asperities of the frontal half small and irregular, transversely impressed behind the summit, coarsely and closely punctured on the caudal half, with a smooth feebly convex median space, wider at the middle; the elytra twice as long as the pronotum, the striae feebly impressed, with the punctures close, of medium size, and fairly regular; the declivity broadly sulcate, smooth and shining, with only faint traces of granules.

The male has the front impressed on the epistoma, with a postepistomal transverse carina, the median line smooth, upper part of front covered in our single specimen.

Type.—A female; Carmel, California; Ralph Hopping; 2934; three paratypes, two females and one male, same labels. Type No. 104.

Pityophthorus nitidulus Mannh.; Bull. Mosc., 298 (*Bostrichus*), 1843.

The Sitka specimen in the Leconte collection, bearing the label "*Bostrichus nitidulus* Mannh.; Sitka," was probably received from Mannheimer himself, and may be accepted as fixing the species.

It is difficult to decide from Mannheimer's specimen of *nitidulus*, Leconte's descriptions and types of *atralatus* and *puncticollis*, and the available material whether we have to deal with one species, or two, or three. A study of the types of the last two species in conjunction with long series from Monterey pine of California, and pine and spruce of California, Oregon and British Columbia, leads me to believe that *atralatus* and *puncticollis* are the same. The variation in length is from 1-5 mm. to 2-4 mm. A short series from Queen Charlotte Islands, probably from Sitka spruce, slightly larger and stouter than Mannheimer's specimen are probably a variation of *nitidulus*. Until more material is available for study, especially from Northern British Columbia and Alaska, I am

PLATE 23.

BARK-BEETLE TUNNELS (ORIGINAL).

Fig. 1, *Alniphagus aspericollis* Lec., tunnels in western alder; three-fourths natural size.

Fig. 2, *Ips pini* Say, larva and pupa in the tunnels; twice natural size.

Fig. 3, *Crypturgus atomus* Lec., in white spruce bark; one and one-half natural size.

Fig. 4, 4a, *Dendroctonus simplex* Lec., in eastern larch, showing part of the brood; 4a, showing a predacious larva; one-half natural size.

Fig. 5, *Chramesus icorae* Lec., in hickory; about natural size.

Fig. 6, 7, *Cryptalus balsameus* Hopk., tunnel in eastern balsam twigs; twice natural size.

Fig. 8, *Ips pini* Say, tunnels in a weather worn white pine branch; one-half natural size.
applying Mannerheim's name to the larger specimens from Queen Charlotte Islands and uniting atratulus and puncticollis under the former name for the southern smaller specimens in our collection.

Host tree.—Sitka Spruce.

Distribution.—Alaska and southward.

Host trees.—Pines and Spruce.

Distribution.—Southern British Columbia and southwards to California.

Pityophthorus confinis Lec.; Am. Phil. Soc. Proc. 15: 354, 1876.

Length, 3 mm.; width, 1.1 mm.; piceous; coarsely, confusedly sculptured, the pubescence sparse and fine on the sides, almost invisible on the disc; a female.

The *front* is densely, deeply, rather coarsely punctured above with a flattened, somewhat semicircular area in front, densely, finely punctured and clothed with long reddish-yellow hair; the antennal club nearly as wide as long, the segments subequal, the last shorter, the sutures arcuate. The *pronotum* is about as wide as long, the sides straight and parallel on more than the caudal half, then constricted and broadly rounded in front; the front margin moderately serrate; the asperities of the cephalic half moderate in size and subconcentric; closely punctured behind; more coarsely on the disc, with a smooth median line; very strongly margined behind; the disc transversely impressed behind the summit. The *elytra* have the sides nearly straight and subparallel, moderately narrowed and broadly rounded behind; the punctuation coarse, close, and deep, decidedly confused on the disc, with the surface strongly roughened, the punctures much smaller behind near the declivity, smaller on the sides and less thoroughly confused; the declivity broadly and rather strongly sulcate, with the sulcus shining, the suture feebly elevated and finely granulate; the lateral convexities each with two rows of fine granules and fine setae. The male has the front convex, coarsely closely punctured, impressed and more finely punctured on the epistoma, almost glabrous, with a strongly developed, longitudinal, acute, median carina, less elevated on the epistoma, and the declivity rather more deeply sulcate.

Host trees.—Western Yellow Pine, Sugar Pine, Jeffrey's Pine.

Distribution.—California.

Two entirely distinct undescribed species, closely allied to *confinis*, are represented in our collection from New Mexico.

Pityophthorus torreyanæ, n. sp.

Length, 2.5 mm.; width, 1 mm.; piceous, the punctuation close, of medium size; the declivity broadly sulcate; the pubescence rather abundant on the sides; smaller and slightly more slender than *confinis*; a female.

The *front* has a wide, subcircular area rather strongly concave, closely, finely punctured and thickly clothed with long, slender, yellow hairs. The *pronotum* very little longer than wide; the sides subregularly narrowed from the base to the rather narrowly rounded apex, only faintly constricted in front of the middle; the front margin rather feebly serrate, the median teeth longer; the asperities of the cephalic half rather small, irregular and
sparse, small and numerous about the summit; a distinct, transverse impression behind the summit; the caudal half with the punctures very close, deep, moderate in size, with a complete, smooth median line and a small smooth spot on each side. The elytra have the sides nearly straight, sub-parallel, moderately narrowed on the caudal third, rather narrowly rounded behind; the punctuation moderate in size, deep, rather close, fairly regular except near the suture where it becomes somewhat confused; smaller behind near the declivity, smaller and very dense near the sides; the declivity broadly rather feebly sulcate, the sulcus smooth and shining, the suture slightly coarser than in confinis, very feebly granulate-setose, the lateral convexities similarly very feebly granulate-setose in two rows, the apex distinctly more narrowly rounded than in confinis.

The male has the front of the head convex, coarsely, closely punctured; the epistoma broadly impressed, more finely punctured; the pubescence sparse and fine, closer on the epistoma; with a shining, obtuse, longitudinal, postepistomal median carina (feebly developed in some individuals).

Type.—San Diego, California; Pinus torreyana, female, 2945, collected by Ralph Hopping; nine paratypes, same labels. Type No. 107.

Host tree.—Pinus torreyana.
Distribution.—San Diego, California.

Length, 2·5 mm. A large and very distinct species; connected with the nitidulus group through canadensis.

Host trees.—Pines.
Distribution.—Eastern United States; Nova Scotia.

Of the size and shape of cariniceps Lec., and apparently replacing that species in Quebec and Ontario.

Host trees.—White Pine and Red Pine.
Distribution.—Quebec, Ontario. Breeding in dying small branches.

The length, 1·8 mm.; the width slightly more than one-third the length; the declivity sulcato-retuse, with long bristles.

Host trees.—Spruce and Larch.
Distribution.—Northern Alberta and northeastern British Columbia.

P. pusio Lec. is known by the type and a short series from the Eastern United States. P. herticeps Lec. is probably the same species, and both are apparently synonymous with pulchellus Eichh., which is the oldest name.
The front of the male is coarsely punctured, and that of the female is densely clothed with long yellow hairs. The elytral declivity is moderately produced, with the suture well developed. It is allied to tuberculatus Eichh., but with the declivity more acute, the suture coarser, and the pronotum less narrowly rounded in front. Length, 1·6 mm.

Distribution.—Washington, D.C.; Pennsylvania; Long Island.
Pityophthorus serratus, n. sp.

A small, slender, strongly punctured species, strongly sulcate and serrate on the declivity, with the secondary sexual characters of the nitidulus group. A male; length, 2.2 mm.; colour, reddish-brown.

The front is closely, deeply, not coarsely punctured, broadly impressed on the epistoma, with the usual postepistomal, transverse carina. The pronotum is as wide as long, the sides straight and parallel on rather more than the caudal half, then constricted, broadly rounded and moderately serrate on the front margin; the asperities of the cephalic half coarse, acute, rather sparse and irregular; the punctures of the caudal half moderate, but deep and rather close, the median smooth line obsolete towards the summit. The elytra with the sides straight and parallel far beyond the middle, very strongly narrowed on the declivity, with the caudal margin prolonged, subacuminate; the strial punctures rather large and close, very deep, roughening the interspaces, which are similarly punctured, striae only moderately regular near the suture; the declivity very deeply, widely sulcate, the sulci smooth, widened behind, the suture moderately wide and elevated, feebly granulate above, the lateral convexities acute and strongly, closely serrate on the 3rd interspace, with a row of rather short, stiff setæ accompanying the row of serratia; the pubescence rather long on the sides behind.

The female has the front plano-concave, minutely, densely punctured and fringed with very long, incurved, yellow hairs; with the row of setæ on the 3rd interspace of the declivity long and conspicuous in our single specimen.

Type.—A male, Barkhouse Creek, Siskiyou county, California; yellow pine limb; 2933; collector, Ralph Hopping; one paratype, female, same labels. Type No. 108.

This species occurs throughout the Eastern States, north into Michigan, in bark of pines. I have never taken it in Canada.

Length, 2 mm.; width, 0.6 mm. The female with the front subcircularly plano-concave, closely, very finely punctured, closely pubescent with rather long yellow hairs, longer about the margin, with a faint median line; the male with the front flattened, semicircularly margined by a subtriangular callus behind, closely, deeply, not coarsely punctured, pubescence short and subequal in length.

Host tree.—Lodgepole Pine.
Distribution.—Adam’s lake, British Columbia.

It has not been possible for me to connect this name, with satisfaction, with any species represented in our collection. The densely hairy front in one sex, the evenly arculate sides of the pronotum, and the granulate and setose declivity separate it from nudus, and the two former characters would distinguish it from granulatus. It is entirely too small for pullus and the brief description does not apply very closely.

Very closely allied to nudus, differing chiefly in the more coarsely punctured pronotum and the strongly granulate-setose declivity.

Host trees.—Jack Pine, White Pine, Balsam Fir.
Distribution.—Manitoba, Quebec, and Nova Scotia.
Length, 1-6 mm.; width, 0-58 mm., nearly glabrous; the female with the front closely, finely punctured in front of a slight transverse ridge, and clothed with fine short pubescence; the male front closely, rather coarsely and roughly punctured, with a median carina ending in an epistomal granule, the pubescence fine and inconspicuous.

Host tree.—White Spruce.

Distribution.—Quebec, Ontario, New York State.

Pityophthorus deletus Lec. is unknown from our territory; it should be separated from Pityophthorus.

Pityophthorus comatus Lec. is unknown from Canada, and is apparently extremely rare in collections. It is distinguished from all other species known to me by the subcircular patch of yellow pubescence on each side of the pronotum before the middle.

Pityophthorus concentralis Eichh. was described from Cuba and is reported in literature from Florida in Rhus metropium. We have a short series from Biscayne and How Ck., Florida, that seem to be Eichhoff's species. They agree closely with his description in Rat. Tomic., except that the pronotum is rather too coarsely punctured behind. P. lateralis has the pronotum rather more finely punctured, but differs from the concentralis description in the punctured (sparsely) elytral interspaces.

Pityophthorus lautas Eichh. is apparently allied to concentralis and rhois. It has the declivity deeply sulcate on each side with the suture strongly elevated, and is apparently distinguished from rhois chiefly by that character. In rhois the suture is only slightly elevated on the declivity, and the elytra conjointly sulcate, although not so deeply as in concentralis and lateralis; otherwise rhois agrees with Eichhoff's description of lautas very closely. Dr. Hopkins has recognized lautas from W. Virginia in Pinus.

Pityophthorus consimilis Lec. was described from Michigan but we have not yet taken it to Canada. It is allied to granulatus; but has the pronotum strongly rounded on the sides behind, the discal interspaces of the elytra very sparsely punctured and the female front very densely spongy-pubescent.

Pityophthorus annectens Lec. was described from Tampa, Florida, and probably does not occur in our territory. The front is densely clothed with long hair in the female; the declivity is acuminate, feebly granulate and feebly pubescent, the elytral interspaces impunctate, the pronotum feebly constricted and feebly rounded on the sides behind.

Pityophthorus obliquus and P. seriatus were described from Florida, and apparently do not occur in our territory.

The Genus Pityogenes Bedel.

Key to the Species.

A The declivity oblique; the pronotum strongly narrowed on more than the cephalic half, and narrowly rounded in front; the declivity of both sexes with three small teeth on each side, considerably larger in the males (Pl. 15, figs. 1, 3).

PLATE 24.

BARK-BEETLE TUNNELS (ORIGINAL).

Fig. 1, Eccoptogaster unispinosus Lec.; in Douglas fir; nearly one-half natural size.
Fig. 2, Pityophthorus intectus Sw.; in white spruce; two-thirds natural size.
Fig. 3, Lepericus californicus Sw.; in olive; two-thirds natural size. Author's illustration.
Fig. 4, Carphoborus carri Sw.; in white spruce; three-fourths natural size.
Fig. 5, Pseudohylesinus grandis Sw.; in Douglas fir; one fourth natural size.
B The frontal pit of the female circular, undivided.

C The pronotum with the punctures close and regular in size; the elytra finely rather closely punctured, with very fine pubescence; the frontal pit of the female very large, occupying nearly the whole cephalic half of the front, extending behind the eyes; length, 2.3 mm. Vancouver Isl., B.C., and California.

fossifrons Lec. Page 105.

CC The pronotum with the punctures sparse and irregular in size; the elytra rather sparsely punctured on the disc; the interstriae hairs coarse and long; the frontal pit of the female covering about the median third, not extending behind the eyes; length about 2 mm. Eastern Canada and Eastern United States.

hopkinsi Sw. Page 106.

BB The frontal pit of the female longer than wide, divided into two fossae by a longitudinal median carina.

lecontei Sw. Page 106.

AA The declivity steep; the pronotum with the sides subparallel on more than the caudal half, broadly rounded in front; the declivity with two teeth on each side, representing 2nd and 3rd of the group A, small in the female, very large and curved in the male with the upper one elongate, the tooth at the end of the second interspace obsolete in the males, nearly so in the females.

B Rather stout species; the frontal cavity of the female very large, extending behind the eyes, not divided, suboval, wider in front; the acute ridge preceding the second declivital tooth of the male strongly developed; the punctures of the pronotum and elytra rather feebly impressed, small and seldom closely placed; the pronotal asperities few and coarse. (Pl. 15, fig. 4).

carinulatus Lec. Page 106.

BB Rather slender, the frontal cavity or pubescent spot of the female situated upon the cephalic half, and divided by a longitudinal obtuse median carina; the ridge preceding the 2nd declivital tooth of the male feebly developed.

C The declivital teeth of the male moderately slender; the front of the female with a divided, median, heartshaped cavity in front of the eyes. (Pl. 15, fig. 2). Western species.

knechteli n. sp. Page 106.

CC The declivital teeth of the male very stout; the front of the female with a subtriangular pubescent area. Eastern species.

Length, 2.3 mm.; black, with the declivity red. The front of the female is granulate about the sides, with the excavation very large and deep, occupying nearly the whole cephalic half; the pronotum is shaped as in hopkinsi Sw., much narrowed in front, coarsely, moderately closely and regularly punctured behind, more closely than in hopkinsi, with a narrow median carina; the elytral punctures are in approximate rows, the striae punctures fine and rather close, the interspaces rather more closely and finely granulate-punctate, the pubescence behind short and fine; the declivity with a row of three small teeth on each side, sulcate along the suture.

The type, a female, was described from British Columbia; apparently very rare. The only others I have seen are eight females, probably belonging to this species, sent by Ralph Hopping, Pinus monticola, Grassy Lake, Lassen Co., California; and a female and a male, sent by H. C. Fall, Sabrina Lake, Inyo Co., California.
The single male has the front convex, closely, rather finely granulate-punctate, with a fine, median, vertical carina; the elytral interspaces are less closely punctured than in the female, with a few coarse hairs behind; and the declivity is more coarsely toothed than in *hopkinsi*.

Length, 2 mm.; black, with the elytra reddish-brown on the caudal two-thirds, legs and antennae piceous; the female front with a deep sub-circular impression, the declivity retuse with the sutural striae rather deeply, widely impressed and shining, with a row of three, small, widely separated teeth on the declival prominence of each elytron; the male with the front convex, coarsely granulate and closely hairy, without the median impression, the declivity strongly retuse, with the three teeth on each side coarse, the 1st compressed, curved, acute behind, the 2nd and 3rd conical and acute.

Distribution.—Eastern Canada and Eastern United States.

The most abundant bark-beetle in limbs of eastern pines. Usually in collections under *sparsus* Lec.; see *Pityokeine sparsus* Lec.

Length, 2 mm. Very closely allied to *hopkinsi*, but readily distinguished by the different frontal pit of the female. The front of the female is shining, granulate-punctate, with two elongate approximate foveae with a combined outline longer than wide, situated on the median line at the base of the epistoma, the foveae separated by a narrow median carina; the frontal hairs sparse and fine.

I have seen only the unique type. Probably allied to *hopkinsi* in habits.

Length, 2.9 mm. to 3.5 mm. The female has the large deep excavation occupying the central part of the front; the elytral declivity very steep, with a row of three small teeth on each side, the 1st minute, the 2nd and 3rd moderate, conical-acute and incurved. The male has the front convex, shining, closely granulate-punctate, with a wide, shining median space; the declivity very different from the female, very broadly but not deeply concave, shining, minutely punctured, acutely margined, with two teeth on each side, the upper tooth very prominent, long, slender, hooked at the tip, at the upper margin of the declivity, the lower tooth small, acute, near the apex, preceded and followed by small serrations of the acute margin, which there bears a sparse fringe of long, stiff, obliquely erect reddish hairs.
Host trees.—Western Yellow Pine, Jeffrey Pine (Hopkins).
Distribution.—Southern British Columbia, through the Western States into California and Colorado.

A very abundant secondary enemy to yellow pine in British Columbia. The species is very abundant over an extensive range, and presents many variations. A race with rather distinct characters is represented in our collection from Colorado.

Pityogenes knechteli, n. sp.

Length, 2.8 mm.; rather slender; the front granulate-punctate, convex in the female with a divided median pit preceded by a reddish densely pubescent area; the pronotum emarginate on the sides in front, strongly
roughly punctured behind on the disc, the median line carinate, the smooth area on the side distinct; the elytra only very feebly striate, punctures in rows, those of the interspaces nearly as numerous and large as those of the striae; the female declivity feebly convex, deeply sulcate along the suture, with two acute teeth on each side and a minute granule at the summit. The male has the front flattened, densely granulate-punctate and hairy, with a small, median, epistomial carina.

Type.—A female; Beau Vert Lake, Jasper Park, Alberta; 30-VIII-15; Lodgepole pine; 2220, J.M.S. Type No. 109.

Host tree.—Lodgepole Pine.

Distribution.—Jasper Park, Alberta, probably of wider distribution in the Rocky Mountains and Selkirks; Nechako valley, British Columbia; Atlin, B.C.

Length, 2 mm.

Host trees.—“Scrub Pine” and Southern Yellow Pine (Hopkins); Red Pine and Jack Pine (Quebec province).

Distribution.—Maryland, New York, Washington, D.C., West Virginia. Abundant in West Virginia (Hopkins); apparently less common in the northern States and Canada. A species from northern Quebec in red pine and jack pine agrees with the Leconte types except that the female has the frontal triangular area concave and pubescent. It is not separated in this memoir.

The Genus Ips DeGeer.

DeGeer, Mem. Ins., 5: 190, 1775.

Tomus Lat.

Key to the Species.

A The sutures of the antennal club very strongly arcuate, not angulate at the middle nor bisinuate; the punctures of the elytral striae and interstriae very closely uniseriate. (Pls. 10, fig. 35).

B The caudal half of the disc of the pronotum finely, densely, granulate-punctate; the elytra rather finely punctured (Pl. 14, figs. 7, 8).

concinnus Mannh. Page 111.

BB The caudal half of the disc of the pronotum rather coarsely, less closely punctured, not granulate, the surface between the punctures smooth and shining; the elytra rather coarsely punctured, the interstrial punctures as large as those of the striae. radiate Hopk. Page 112.

AA The sutures of the antennal club nearly straight, bisinuate, or strongly angulate at the middle.

B The declivital margin with five or six teeth on each side; the produced apical margin forming much less than one-third of the circumference.

C The declivital margin with six teeth (Pl. 17, figs. 9, 11).

calligraphus Germ. Page 112.

CC The declivital margin with five teeth (Pl. 17, fig. 2).

D The punctures of the discal interspaces of the elytra very sparse or absent on the basal half and not very densely confused behind. Eastern species.
E A smaller, slender species; the pronotum decidedly elongate; the discal interspaces 2, 3 and 4 impunctate on usually the basal two-thirds, uniseriately punctured behind, but little confused near the declivity. Southern States, north to Massachusetts. (Pl. 14, fig. 3).

grandicollis Eichh. Page 113.

EE Larger and stouter and more coarsely sculptured; the pronotum only moderately longer than wide, the discal interspaces very sparsely punctured on the basal half, closely punctured on the caudal half and decidedly confused towards the declivity (Pl. 17, fig. 2). Eastern Canada.

chagnoni Sw. Page 113.

DD The discal interspaces, 2, 3 and 4, punctured throughout, the punctures uniseriate towards the base, more numerous and densely confused behind the middle. Western species.

E The hinder half of the pronotum sparsely, rather finely punctured on the disc, closely punctured on the sides; the interstrial punctures of the elytra small, much smaller than those of the striae, the first declival tooth about as near to the suture as to the second tooth; the declival face finely hairy.

confusus Lee. Page 113.

EE The hinder half of the pronotum closely coarsely punctured on the disc, densely punctured on the sides; the interstrial punctures more numerous and coarse, nearly as large as those of the striae; the first declival tooth placed very close to the second and distant from the suture; the declival face coarsely densely hairy.

vancouvereri Sw. Page 113.

BB The declival margin with four declival teeth; or, rarely, with only three declival teeth.

C The third declival tooth the longest, compressed, wide, emarginate at the tip.

D The discal interspaces impunctate; the conical fourth tooth usually obsolete (Pl. 13, figs. 1, 2).

emarginatus Lee. Page 113.

DD The discal interspaces closely, coarsely punctured; the fourth tooth normally present, between the third and the apical elevated margin. New Mexico.

knausi Sw.

CC The third tooth usually cylindric or conical, never flattened and emarginate at the tip.

D The declivity nearly vertical, three teeth on each side, the third tooth longest and the last, the second followed by an acute ridge but not joined to the third; the epistoma deeply emarginate in the male; the sutures of the club only faintly bisinuate; the elytral punctures decreasing in size towards the base.

E The interstrial punctures of the elytra about as coarse as those of the striae on the sides and on the caudal half of the disc; the pronotal punctures sparse; the female with the epistoma broadly emarginate. **longidens** Sw. Page 114.

PLATE 25.

Ips pini Say, in white pine, the inner surface of the bark; about one-third natural size (Original).
PLATE No. 25.
EE The interstrial punctures small except near the declivital margin; the pronotal punctures close upon the sides; the female with the epistoma entire. (Pl. 17, fig. 5). latidens Lec. Page 114.

DD The declivity more oblique, with four teeth on each side, of which the third is usually longest, at least in the male, and connected at the base with the second by an arcuate ridge; the club usually with one or more sutures strongly bisinuate or very strongly angulate at the middle; the epistoma entire; the elytral punctures not decreasing gradually in size towards the base (Pl. 17, fig. 7).

E The sutures of the club very strongly angulate at the middle (Fig. 5, p. 29.) Beetles of large size and coarse sculpture.

F A larger species with coarser sculpture; length usually 5 mm. to 5.5 mm.; the form stouter; punctation of the elytra deep, coarse and subquadrate; the declivital armature coarser.

integer Eichh. Page 114.

FF A smaller and more slender form, 4-3 mm. to 5 mm. in length; punctation of elytra moderate and armature finer. Doubtfully distinct. (Pl. 13, fig. 4).

plastograpbus Lec. Page 114.

EE The first suture of the club bisinuate or nearly straight, the second more or less strongly bisinuate or angled at the middle (Pl. 10, fig. 10).

F The discal interspaces impunctate except near the declivity, rarely punctured on the 1st and 2nd.

G Larger, 4 mm. to 5.5 mm., stout, elytral disc little longer than pronotum; striae usually impressed, with interspaces convex; pronotum very short and stout, not longer than wide; declival teeth stouter; 1st two interspaces granulate punctate, hairy to the base; the pronotum sparsely, finely punctured behind; the pubescence erect, abundant; the profile of the elytral suture on the disc strongly arcuate. perturbatus Eichh. (hudsonicus Lec.) Page 115.

GG Smaller, more slender species; the striae usually only slightly or not at all impressed; the first two interspaces not granulate and hairy to the base; the elytral suture in profile straight on the basal half.

H Size very small, length, 2.3 mm. to 2.8 mm.; the last three declival teeth subequal. Southern United States. avulsus Lec. Page 115.

HH Larger species, length usually over 3 mm.; the last declival tooth smaller than the 2nd or 3rd.

I The pronotum evidently longer than wide, the punctures of the discal striae much smaller near the declivity. Eastern species.

J The pronotum arcuate on the sides, the punctures small, the asperities of the cephalic half small, close and arcuate; the elytral striae usually not impressed, the 2nd inter-
space wide behind, not punctured except at the caudal extremity, so that the sutural striae are not much widened behind.

pini Say. Page 115.

JJ The pronotum with sides straight and parallel on the caudal three-fourths, the punctures and asperities usually coarse; the elytral striae usually impressed, the 2nd interspace punctured on the caudal half making the sutural striae evidently widened behind.

II The pronotum nearly or quite as wide as long; the punctures of the discal striae but little smaller towards the declivity; the sutural striae always widened behind by punctuations of the caudal half of the 2nd interspaces.

J The pronotum widest at the base, faintly arcuate on the sides, the punctures coarse and the asperities more commonly sparse and obtuse; the elytral striae usually distinctly impressed and the interspaces convex. **interpunctus** Eichh. Page 116.

JJ The pronotum with the sides parallel on more than the caudal two-thirds, the punctures usually small, and asperities usually small, close and acute; the elytral striae hardly impressed, except the sutural striae.

oregonis Eichh. Page 117.

FF All the interspaces punctured, uniseriately except near the declivity.

G The pronotum slender, distinctly longer than wide, with the punctures nearly obsolete on the disc; discal interspaces of the elytra very sparsely punctured (Pl. 14, figs. 5, 6). **perroti** Sw. Page 117.

GG The pronotum hardly longer than wide, strongly punctured on the disc; the discal interspaces with numerous punctures.

H The front of the head almost perfectly smooth and polished, minutely and sparsely granulate and pubescent in the male, the epistomal region never more than faintly elevated; length usually less than 4 mm. **borealis** Sw. Page 117.

HH The front of the head densely or coarsely granulate or distinctly elevated on the epistomal region; the length usually more than 4 mm.

I The front of the head evenly convex.

J The punctures on the alternate interspaces of the elytra decidedly confused towards the declivity; the first two interspaces only feebly granulate behind.

hunteri Sw. Page 118.
The punctures on the elytral interspaces uniseriate, at most only very little confused behind; the first two interspaces usually rather strongly granulate throughout.

The front of the head densely, finely granulate, the strial punctures usually close and of medium size.

interruptus Eichh. Page 118.

The front of the head very coarsely granulate, with abundant long hairs.

The punctures of the elytral striae of medium size and usually rather widely separated.

dubius, n. sp. Page 119.

The punctures of the elytral striae very coarse, quadrate, and very closely placed; very coarsely sculptured,

pilifrons Sw. ♂. Page 119.

The front of the head at least distinctly elevated on the epistomal region.

The front with a very strongly elevated, nearly naked geminate prominence on the epistomal region (Pl. 17, fig. 1).

tridens Mann. Page 119.

The front of the head moderately but distinctly elevated on the epistomal region.

The epistomal elevation stronger and clothed on the oblique cephalic face with a dense brush of hairs.

The brush of hairs on the rather small cephalic face of the frontal elevation long and incurved; the punctures of the elytral striae moderate in size; the length usually less than 4.5 mm. (Pl. 17, fig. 3).

engelmanni Sw. ♀. Page 120.

The brush of hairs on the rather large cephalic face of the frontal elevation short and extremely dense, resembling the pile on velvet; the strial punctures very large and deep; the length usually more than 4.5 mm. (Pl. 17, fig. 4).

pilifrons Sw. ♀. Page 119.

The epistomal elevation very moderately developed, only moderately normally pubescent, finely granulate.

yohoensis Sw. Page 120.

Length, 4-5 mm. to 5 mm.; rather elongate, with parallel sides; the sutures of the antennal club very strongly elongate-arcuate, strongly but
very narrowly recurved at the sides; the pronotum finely, densely punctured behind; the elytra shining, hardly striate, finely deeply punctured in numerous rows, the interstrial punctures nearly as large and numerous as those of the striae, and uniseriate except on the sides and the second interspace; the declivity nearly vertical, excavated, densely deeply punctured and pubescent, with three teeth on each side, the first smallest and close to the second, the third longest, straight and stout, the acute apical margin very wide. The male has a compressed median tubercle followed by a faint carina on the front of the head; the female has the faint median frontal carina only, and the declivital armature is less coarsely developed.

Host tree.—Sitka Spruce.

Distribution.—The coast region of Alaska and British Columbia, south probably throughout the range of its host tree.

Original description: “Pronotal and elytral punctures moderately coarse. Elytra with strial punctures not distinctly coarser than those of the interspaces.” “California to Idaho, in *Pinus radiata* and *Pinus contorta*.” It is closely allied to *Ips concinnus* Mannh.

This is possibly the species before me, represented from California in *Pinus radiata* and *P. contorta*; Grant Co., Oregon, in *Pinus contorta*; and British Columbia in *Pinus contorta*. It is apparently rare in British Columbia. It is of the size and shape of *concinnus* and differs specifically from it in the following characters: The pronotum with rather coarse punctures behind, closer on the sides, a little sparser on the disc, not granulate and not roughened on the disc; the elytral punctuation nearly as in *concinnus* but distinctly coarser, and deep so that the surface is variably rugulose, the punctures of varying size near the suture; the interstrial punctures nearly as coarse as those of the striae and somewhat irregular so that the rows of punctures are often less distinct; the declivital armature similar, but the 2nd and 3rd teeth of the male stouter than in the male of *concinnus*; the hairs on the face of the declivity minute and inconspicuous; the male front more densely granulate with the median fovea very deep and funnel-shaped.

Two specimens that are probably females of this species have the median funnel-shaped fovea of the front succeeded dorsally by a shining, shallow sulcus, and the epistomal tubercle minute; the pronotum as in the males described above, but more densely punctured; the elytral punctuation similar; the declivital teeth less coarse, the 2nd acute, followed by a faintly developed ridge, the 3rd tooth slender, cylindric, sub-capitate and sub-acute.

The largest species of the genus in eastern Canada; length, 4.8 mm. to 6.5 mm.; the sutures of the antennal club very strongly angulate; the pronotum sparsely, finely punctured on the disc behind; the elytral striae distinctly impressed, the sutural stria stronger; the strial punctures close and coarse; the interspaces convex, finely uniseriately punctured on the

PLATE 26.

Dryocoetes betula Hopk.; Tunnels in yellow birch; one-half natural size (Original).
disc, closely on the sides, densely confused and granulate near the declivity; the declivity concave, coarsely punctured, hairy, the hairs long about the sides and along the suture; with six teeth on each side arranged as shown (Pl. 17, figs. 9, 11). The male has the 3rd tooth stouter, subcapitate and curved downwards at the tip, and a shining median depression on the front of the head behind the median tubercle. There are many variations but apparently there is only one Canadian species.

Host tree.—White Pine.

Distribution.—Eastern Canada and Eastern United States. Usually found in dying trees and logs; it enters trees green enough to form pitch-tubes, and may be at times a primary enemy.

Length, 3 mm. to 3.7 mm.; a slender species with the pronotum one-third longer than wide. Represented in our collections from the southern States and as far north as Massachusetts. A closely allied undescribed species occurs in Montana and another in New Mexico. Represented in Eastern Canada by *chagnoni* Sw.

Length, 4 mm. to 4.8 mm.; very closely allied to *grandicollis* Eichh., but larger, stouter, and more coarsely sculptured.

Distribution.—The provinces of Quebec and Ontario southward into New York State.

Length, 4.5 mm. Readily distinguished from the Canadian species by the characters given in the key. There are several allied undescribed species in the Western States, one of which is probably Eichhoff's *Tomicus montanus*, long considered as a synonym of *confusus*. Our material is from California and Arizona.

Length, 5 mm. to 5.7 mm.; stouter than *confusus* Lec., and usually very coarsely sculptured. The face of the declivity is densely rather finely punctured and densely clothed with long slender hairs. The colour varies from dark red to black; the punctuation of the pronotum and elytral disc varies from coarse to medium.

Host Trees.—Sitka Spruce and Western White Pine.

Distribution.—Vancouver island and the coast region of British Columbia; Kaslo, B.C.; southward into the United States.

Ips emarginatus Lec.; Am. Phil. Soc. Proc., 15: 363, 364, 1876 (*Tomicus*).

A large elongate species; length, 6 mm. to 7 mm.; entirely distinct in the Canadian fauna by the arrangement of the declival teeth; that of the 5th interspace is wide, compressed, strongly produced, and emarginate at the tip so that it bears two distinct cusps; in some specimens a more or less distinct small tooth is developed between the tooth of the 5th interspace and the strongly produced apical margin. The male has the front more coarsely sculptured than the female, with a small epistomial tubercle.

Host tree.—Western Yellow Pine.

Distribution.—Throughout the yellow pine region of southern British Columbia, extending into the western United States.

36198—8
Very closely allied to latidens Lec. but distinguished by the secondary sexual characters, the coarser interstrial punctures, and usually by the more slender pronotum.

Host tree.—Eastern Hemlock.

Distribution.—New York State, Nova Scotia.

Ips latidens Lec.; Am. Ent. Soc. Trans., 5: 72 (*Tomicus*), 1874; *spinifer* Eichh., Rat. Tomic., 53, 499, 1878 (*Tomicus*).

A small slender species of the Western coast; length, 2-7 mm. to 3-5 mm. This species forms with longidens an isolated group, separated by the nearly straight sutures of the antennal club, the deeply, closely punctate-striate elytra, the arrangement of the declivital armature, the secondary sexual characters, and the short though acute apical projection of the declivity.

Host tree.—Western White Pine.

Distribution.—The coast region of British Columbia, extending into the United States.

A large, stout species, from 4-5 mm. to 6 mm. in length; with almost the entire front coarsely, closely granulate-punctate and hairy, a shining median space with a longitudinal pair of small epistomal tubercles, the sutures of the antennal club all very strongly angulated; the pronotum distinctly longer than wide, finely closely asperate in front, rather coarsely punctured behind; the elytral striae usually strongly impressed, with coarse, deep, quadrate punctures, the discal interspaces convex, the first granulate-punctate to the base, the second with an oblique row of granules on the caudal half and an internal row of punctures of the same length, the remaining discal interspaces impunctate on the basal two-thirds; the declivity coarsely punctured; the 2nd and 3rd teeth in the female conical acute, from a common thickened base and connected by a lateral crescentic ridge, the male with the 3rd tooth longer, subcapitate and somewhat curved; the pubescence of the dorsal surface abundant, long, stiff and reddish. A very abundant species in yellow pine of southern British Columbia. Readily distinguished by its large size and the characters given in the key.

Host tree.—Western Yellow Pine, and recorded from Western White Pine in United States.

Distribution.—Throughout the range of yellow pine in the interior of British Columbia, extending south through western United States into Mexico. A secondary enemy, very abundant in slash and dying trees; apparently also a primary enemy under favourable conditions.

A series in our collection from California agrees with Leconte's type of *plastographus* in the Agassiz Museum. It is doubtfully distinct from *integer*. The length, 4-5 mm.; black, with the elytra dark red, usually smaller and distinctly more slender than *integer*; clothed with rather short, fine, gray pubescence; the pronotum coarsely, sparsely asperate in front, finely, closely punctured behind; the elytral striae slightly impressed, the strial punctures small and close; the interspaces nearly flat, the 1st granulate and very narrow, the 2nd with a longitudinal row of granules on the caudal half supported by an internal row of punctures extending to the base of the elytra, the remaining discal striae impunctate on the basal two-thirds, the declivital armature similar to *integer*, but less strongly developed.
Host tree.—Recorded by Hopkins from Pinus radiata (Monterey Pine).

Distribution.—Our specimens are from California, some from San Diego county. We have a series from British Columbia yellow pine that is barely distinct from plastographus type, but is left at present in integer. Probably we have to deal with only one variable species.

Length, 4 mm. to 5·5 mm. Distinguished from its allies by the stout form and usually large size; long, erect, abundant pubescence; short and stout pronotum; the punctuation and pubescence of the first two elytral interspaces; the deep, wide and posteriorly widened sutural striae; the usually convex interspaces, and the stout rather short declivital armature. The male has the third declivital tooth more acutely pointed.

Host tree.—We have taken this species only in White Spruce.

Distribution.—Newfoundland, Quebec, Ontario, and across Canada, extending north of the prairies in Saskatchewan and Alberta to the Peace river, and through northern British Columbia into the Yukon. It apparently follows the northern range of its host tree. Baek’s "Bostrichus typographus Fabr.," taken on the Great Fish River, was probably this species.

An important secondary enemy but apparently at times of primary importance.

Ips avulsus Eichh.; Berl. Ent. Zeit., 402, 1867 (Tomicus); Rat. Tomic., 225, 1878.

Length, 2·8 mm. This very small species is apparently limited to the southern portion of the United States. It is distinguished from its allies by the small size, more feebly developed declivital armature, with the last three teeth subequal, the declivity less excavated, more strongly oblique, and the apical margin but slightly produced.

Ips pini Say, Jour. Acad. Nat. Soc. Phil. 5: 257, 1826; ed. Lec. 2: 319 (Bostrichus); Leconte, Am. Phil. Soc. Proc. 15: 363, 365, 1876 (Tomicus); Eichhoff, Rat. Tom., 252, 1878 (Tomicus).

Length, 3·5 mm. to 4·2 mm.; the front convex and coarsely granulate; the pronotum slightly but evidently longer than wide, finely punctured behind, the punctures smaller towards the middle line, finely, closely, acutely, subconcentrically asperate in front, the sides slightly, arcuately narrowed on the basal three-fourths, emarginately narrowed on the cephalic fourth and narrowly rounded in front; the elytral striae usually slightly or not at all impressed, with the strial punctures small, the sutural striae usually but little more evident, the declivity with the 2nd and 3rd teeth acute and similar. The male has the front more coarsely granulate, and the 3rd declivital tooth longer, stout, and slightly curved. There are frequent variations in nearly all the external characters; the pronotal punctures vary from moderate in size to small, and nearly obsolete on the middle line; the sides are sometimes distinctly angled at the cephalic fourth; the sutural striae and less often the other discal striae are sometimes distinctly impressed, and the elytral punctures are sometimes moderately coarse. The majority of the specimens in our very large collection conform to the characters given in the key.

The egg-tunnels radiate from a central nuptial chamber, in number from three to six, engraved on the inner bark and deeply on the wood surface; the eggs are placed singly in niches; the larval mines are mainly on the inner bark, usually short and rapidly widened, the pupal cells en-36198—8\frac{1}{2}
graving the wood. The young adults cut irregular, winding food tunnels deeply engraving the wood surface.

Host trees.—White Pine, White Spruce, and other pines and spruces of its range.

Distribution.—Eastern Canada, from the Atlantic to northern Saskatchewan, and in Eastern United States. A series from Fort Yukon, Alaska, does not differ specifically, and it will probably be found across northern British Columbia and Alberta.

Economic importance.—Everywhere abundant throughout eastern pine and spruce forests in slashings and dying trees; at times apparently an important primary enemy.

Ips laticollis, n. sp.

Length, 4 mm.; width, 1·6 mm.; very closely allied to and only doubtfully distinct from pini Say. The pronotum is almost as wide as long, with the sides parallel for more than three-fourths the length, then rather distinctly sinuate behind the front margin; very coarsely asperate in front, moderately punctured behind, very densely on the sides; the elytral striae usually impressed, the sutural striae more strongly impressed and widened behind, through the second interspace being strongly punctured on the mesal side of the caudal half; the first two sutures of the antennal club rather strongly bisinuate.

The type series was taken near Ottawa, Ont. Type No. 110.

Length, 4 mm. to 5 mm.; the head convex and coarsely granulate; the pronotum as long as wide (sometimes slightly longer), usually rather coarsely and deeply punctured behind, the elytra usually rather deeply striate on the disc, with the interspaces narrow and distinctly convex; the 2nd interspace punctured on the caudal half making the sutural striae widened behind.

The Jasper race, from Jasper Park region, have the elytral striae more often lightly impressed, except the sutural striae, which are almost invariably wide and deep, and the interspaces more often nearly flat.

In pine and spruce of southern British Columbia the typical interpunctus is less common and is intergraded with the oregoni type. The two forms are there taken in the same trees and apparently from the same tunnels. Breeding experiments and biological studies should determine the relationships between these series. Our very large collection from many parts of British Columbia, Alberta, the Yukon, and a smaller collection from the Western States, indicates that interpunctus is typically a northern form, tending strongly to vary in Alberta and apparently crossed with oregoni in southern British Columbia.

Host trees.—Engelmann’s Spruce, White Spruce, (Sitka Spruce).

PLATE 27.

INNER FACE OF THE BARK OF A BEETLE-INFESTED WESTERN YELLOW PINE; ALMOST THREE-FOURTHS NATURAL SIZE (AUTHOR’S ILLUSTRATION).

1, Egg-tunnels of Dendroctonus valens Lec.
2, Work of the larvae of D. valens Lec.
3, Egg-tunnels of Dendroctonus brevicomis Lec.

Rather larger and stouter than the typical *pini*; length usually about 4.5 mm.; the pronotum as wide as long with the sides straight and parallel, broadly rounded in front, finely punctured behind; the elytral striae hardly impressed, the second interspace with a row of punctures on the caudal half making the sutural striae evidently widened behind; the sides of the elytra rather coarsely punctured. Secondary sexual characters as in *pini* Say. There are variations in southern British Columbia that intergrade with *interpunctus*, and others that can hardly be distinguished from *pini* Say.

Host tree.—Western Yellow Pine.

Distribution.—In British Columbia probably throughout the range of its host; Western United States.

Economic importance.—Usually a secondary enemy in British Columbia, in slashings and weakened trees, but evidently at times an important primary enemy.

Length, 4 mm.; the declivital teeth of the male larger than in the female, the 3rd stoutest and capitate. This species differs from *tridens*, *borealis* and *interruptus* by the characters of the front, which lie between the much sparser granulation of one sex of *borealis* and the extremely dense granulation of *interruptus*; from *borealis* in the longer, much more finely punctured pronotum, more sparsely punctured elytral interspaces and distinctly much more strongly developed declivital armature; from *interruptus* in the usually much smaller size and more slender form, finer and sparser punctuation, the much more abrupt declivity with strongly marked sexual variation, and the fewer and smaller granules on the first and second interspaces.

Host tree.—Red Pine.

Distribution.—Isle Perrot, Que. Rare.

Length, 3.25 mm. to 4 mm.; more slender than *interruptus*; the female with the front and vertex of the head convex, remarkably smooth and polished, with a few extremely minute punctures, the anterior portion of the front and the region about the eyes extremely minutely, more closely punctured and bearing minute inconspicuous hairs; with a very faint, broad, transverse impression between the eyes; the epistoma faintly depressed; the first two sutures of the antennal club broadly bisinuate, the second more strongly; the pronotum with the caudal half shining, coarsely, deeply, roughly, rather sparsely and irregularly punctured; the elytral striae faintly impressed, excepting the sutural striae which are wide, deep and broader behind; the strial punctures on the disc round, deep, moderate in size, not close; the declivity with four teeth on each side, of the *pini* type, the third tooth
but little longer than the second, more cylindric, blunt and incurved; the **male** with the front **minutely** granulate-punctate and hairy, rather closely in front of the eyes, with a very small median tubercle, the granules and punctures usually separated with the background distinct. This is vastly different from **interruptus**, with the front very densely and much more coarsely granulate and hairy, or from **dubius** in which the frontal granules are much coarser than in **interruptus** and isolated. There is considerable variation in the size of the punctures of pronotum and elytra, and in some the elytral striae are distinctly impressed.

Host trees.—White Spruce, Red Spruce, Engelmann’s Spruce; doubtfully recorded from Balsam Fir and Eastern Hemlock.

Distribution.—Newfoundland, Nova Scotia, through the northern forests across Manitoba, Saskatchewan, and Alberta, and in the Rocky mountains of Alberta and British Columbia.

It is known to me only as a secondary enemy.

Ips interruptus Mannh.; Bull. Mosc., 357, 1852; 234, 1853 (*Bostrichus*); Eichhoff, Rat. Tomic., 238, 1878.

The original description and Leconte’s notes are very meagre. There are probably four species in the Leconte collection under this name. The first was probably received from Mannerheim, and fixes the species.

The length varies from 4 to 5 mm.; the head has the front rather coarsely punctured above, very densely, finely granulate and closely hairy on the cephalic half, the granulate portion strongly convex, a transverse impression behind the epistoma, succeeded by a small median fovea; the pronotum slightly longer than wide, rather coarsely and sparsely asperate in front, usually coarsely not closely punctured behind; the elytral striae slightly impressed, the sutural striae wide and deep, regularly widened behind, the striae punctures moderate in size and closely placed; the discal interspaces moderately convex, rather finely and uniserrately punctured; the declival armature of the male *pini* type, with the third tooth stouter than the second and blunt in the female; the male has the third tooth coarser and capitate, and the front a little more coarsely granulate.

Host trees.—Sitka Spruce, Western White Pine.

Distribution.—Alaska and the Pacific Coast region of British Columbia.

Very closely allied to *I. interruptus* Mannh. in size and sculpture, from which it differs most noticeably by the regularly impressed elytral striae, the feebly granulate first and second elytral interspaces, and the confused punctures of the alternate interspaces on the elytra.

The front of the head is convex, opaque, densely granulate, with fine and coarser granules intermixed, and closely hairy; the club with the first two sutures bisinuate; the pronotum about as wide as long, narrowly rounded in front, slightly wider at hind angles (this character variable); rather finely and densely asperate in front, moderately, not closely punctured behind, more closely and coarsely on the sides; the elytral striae narrow, regularly, distinctly impressed, the sutural striae deeper; the striae punctures small and close; the interspaces finely, uniserrately punctured in front, decidedly confused and feebly granulate near the declivity, the punctures of interspaces 1 and 2 feebly granulate behind but hardly so on the basal half; the declivity coarsely punctured, not closely, with four spines, the third stout, capitate and acute in the male, more slender and less distinctly capitate in the female.

Described from a series of about 180 specimens collected by Prof. S J. Hunter, at Creede, Colo., 8,844 ft.
Ips dubius, n. sp.
This species agrees closely with tridens and engelmanni in the characters of the pronotum and elytra, although the punctures are usually rather smaller and the striae less impressed; the front of the head is entirely distinct, evenly convex and coarsely, sparsely granulate, the epistoma slightly, transversely impressed, the median line smooth towards the vertex, less roughened than the sides, and shining cephalad to the epistomial impression. It is to be separated from interruptus by the same character and by the sparser elytrial punctures; in interruptus the front is usually very densely, finely granulate, and the elytral punctures small and close. Ten specimens were dissected, representing variations; all were males. The forms here discussed as tridens, engelmanni and dubius are taken in the same sticks and even together in the same tunnels. This may be due, as is indicated elsewhere, to the wandering of the late-feeding young adults, or it may be that dubius is the male of engelmanni, or less probably of tridens. *I. pilifrons* Sw. is closely allied to engelmanni, and has a somewhat similar frontal structure; the form taken with pilifrons and described by the writer as probably the male, differs from pilifrons exactly as dubius does from engelmanni. Biologic studies must be depended upon to determine the relations between these forms. For the sake of convenience dubius is given a name; the other form may be referred to as pilifrons ♀ until its status is settled.

Type.— A male; Rogers Pass, B.C.; *Picea engelmanni*; 28-IX-15; J.M.S., 2254. Type No. 111.

Host trees.—Engelmann’s Spruce, and possibly also White Spruce.

Distribution.—Known to us from the Selkirs and Rockies between Glacier, B.C., and Banff, Alta.

Abundantly distinct by the characters given in the key. The form described as probably the male was taken with the type, but may be the male of another species; it differs only in having the front convex and coarsely, densely granulate and moderately thickly clothed with long, yellow hairs. Our specimens are mostly from the Cornell University collection and are all from Colorado.

Ips tridens Mannh.; Bull. Mosc., 357, 1852 (*Bostrichus*).

The length varies from 3·8 mm. to 4·8 mm.; with the upper part of the front convex, shining, coarsely and deeply but not densely punctured, with a wide, minutely punctured, transverse impression between the eyes, the region between this impression and the epistomal margin occupied by an enormous, transverse, elevated, subacute, finely granulate, nearly glabrous mass, concave behind, oblique, impressed along the middle line, flattened and minutely pubescent in front; the pronotum with the sides moderately, arcuately narrowed on the sides, rather strongly narrowed in front of the middle and narrowly rounded in front; moderately, deeply punctured behind; the elytrial striae usually distinctly though variably impressed, with the striae punctures round, of medium size and deep, the declivity of the male *pini* type, but with the third tooth rather small and usually hardly capitate. The race in the Selkirs and Rockies has the pronotum usually rather coarsely and closely punctured behind. A series from the Yoho Valley, B.C., has the frontal elevation of the same shape but somewhat smaller. Leconte’s type is probably a Mannerheim specimen.

Host trees.—Engelmann’s Spruce, Sitka Spruce, and probably White Spruce.

Distribution.—Alaska; Inverness, B.C.; the Selkirs and Rockies of central British Columbia between Glacier, B.C., and Banff, Alta.

This species agrees with tridens in all characters of the pronotum and elytra; it differs only in the nature of the frontal tumulus, which is much less elevated, with its cephalic face densely clothed with very long, incurved, light yellow hairs. Ips pilifrons Sw. is entirely distinct from englemanni in its larger size, with the strial punctures very coarse, close and usually quadrate, the frontal tumulus still less elevated, with its cephalic face more oblique, longer, and clothed with extremely dense, short, orange to brownish hairs, resembling the pile on velvet. Englemanni has variations in punctuation, depth of striae and in the stoutness of the third declivital tooth. Ten specimens were dissected, representing all variations, but all were females. The male is thus far unknown. This species is found in the same sticks with tridens, and probably through the wandering of the autumn-feeding adults, even in the same tunnels during the winter.

The egg-tunnels were not distinguished from those of tridens.

Host trees.—Picea engelmanni, and probably also P. canadensis.

Distribution.—Known to us from the Selkirks and Rockies of central British Columbia and from Alberta.

A species with the pronotal and elytral characters of tridens Mannh., but distinct by the characters of the front. The front is very finely and very densely granulate and finely pubescent on the cephalic half; slightly but distinctly transversely elevated behind the epistoma, which is broadly triangularly impressed medially, immediately in front of the elevation; the epistomal margin and the median impression bearing long yellow hairs; the elevation more evidently pubescent than the remainder of the granulate part of the front, with a trace of a smooth median line. The punctuation of the pronotum is usually coarse and close; the elytral striae are usually deeply impressed and coarsely punctured with sparser interstrial punctures nearly as large as those of the striae. The male has the front somewhat more strongly granulate and the third declivital tooth usually somewhat longer and more evidently capitate.

Variations in the size of the punctures are found and also in the depth of the striae. The median line on the front is in some individuals smooth, shining, sulcate from the epistomal impression to the vertex, and guarded on each side by a small tubercle at the summit of the epistomal elevation. A considerable number of our specimens have the front entirely or almost entirely free from pubescence. They were taken from the same sticks as the typical series and are probably abraded.

Host trees.—Picea engelmanni and probably P. canadensis.

Distribution.—Known to us only from the Yoho valley, British Columbia.

PLATE 28.

Dendroctonus pseudotsugae Hopk.; Tunnels on the inner face of the bark of Douglas fir; one-half natural size (Author's illustration).
The Genus Orthotomicus Ferrari.

Ferrari, Borkenkäfer, 44, 1867.

Neotomicus Fuchs.

Key to the Species.

A The apical margin of the declivity acute, entire, and well defined; the 2nd visible segment of abdomen much shorter than the 3rd and 4th together; the prosternal process elongate and very acute; larger and moderately stout species, the length usually over 2.5 mm.

B The elytral striæ rather strongly impressed; the strial punctures rather coarse and very close; the interstrial punctures deep and uniseriate, nearly as large and numerous as those of the striæ on the caudal half of the disc, making the interspaces rough; the face of the declivity coarsely punctured. cælatus Eichh. Page 121.

BB The elytral striæ feebly impressed.

C The strial punctures coarse and not very close, the interstrial punctures nearly as large and close as those of the striæ. punctipennis Lec. Page 122.

CC The strial punctures rather small and only moderately close; the interstrial punctures very small on the disc, becoming more numerous and nearly as large as those of the striæ near the declivital margin; the discal interspaces rather smooth and shining; the declivital face finely punctured. vicinus Lec. Page 122.

AA The apical margin of the declivity rather ill-defined towards the suture and very narrowly separated from the elytral apical margin; the 2nd visible segment of the abdomen as long as the 3rd and 4th together; small species, slender, usually less than 2.5 mm. in length.

B The front densely granulate; the pronotum elongate, with the sides parallel far beyond the middle and finely punctured behind; the elytra finely regularly striate, the strial punctures very close and moderate in size, the interstrial punctures small, larger and granulate towards the declivity; the declivity decidedly concave, strongly punctured, coarsely toothed, the 2nd and 3rd teeth very coarse in the male. ornatus Sw. Page 122.

BB The front coarsely punctured; the pronotum arcuate on the sides, rather coarsely, densely punctured behind; the elytra not striate, the strial and interstrial punctures very small and not close, the interstrial nearly as numerous and as large as the strial and hardly larger or granulate behind; the declivity broadly sulcate, very feebly punctured, feebly toothed, very feebly in the female. lasiocarpi Sw. Page 123.

Length, 2.3 mm. to 3.4 mm., usually about 3 mm. The declivity of the male is distinctly concave, with three teeth on each side, the 2nd and 3rd coarse, slightly within the margin; that of the female is less concave, less distinctly margined, with the teeth smaller, (Pl. 13, fig. 3).
Host trees.—Eastern Spruces and Pines, Eastern Larch.

Distribution.—Eastern Canada and Eastern United States.

Usually an important secondary enemy, working in the thicker bark at the base of the trunk.

Orthotomicus decretus Eichh., Berl. Ent. Zeit., 402, 1867 (Tomicus), is stated by Eichhoff to be distinct from caelatus. It is apparently not represented in our collections. Eichhoff says, Rat. Tom., 272, 1878:

"Leconte has united this insect (Syn. Scol. p. 177) with T. caelatus. The tubercles of the posterior declivity, however, are arranged in one straight line, so that, looking from above and in front, they are seen to be placed on the continuation of the first interspace, and not on the second interspace as in caelatus. The depth of the excavation in the female is, just as in the other species, subplanate, the second and third teeth not near the circumference but situated nearly midway between the margin and the suture."

Orthotomicus vicinus Lec.; Am. Ent. Soc. Trans., 5: 72, 1874 (Xyleborus).

Under this name there are four specimens in the Leconte collection labelled "985," "B. Col." The same species is represented in our collection by long series from northern Alberta and Manitoba, and also by one specimen from Colorado. It has been submerged under caelatus Eichh. The pronotum is rather finely and not very densely, punctured behind; the elytral striae only faintly impressed and less well defined, the elytral punctures usually small, and less numerous than in caelatus; the interspaces flat; the declivity sparsely finely punctured and shining; the male declivity with the 2nd and 3rd teeth usually distinctly farther from the margin than in caelatus; the female declivity more strongly convex on the sides, with the 2nd and 3rd teeth distinctly nearer the suture than in caelatus, the 2nd tooth closer to the suture than to the margin.

This species is doubtfully distinct from caelatus Eichh. The great majority of our specimens from the region west of the Great Lakes are distinctly of the vicinus type, while the eastern specimens are almost invariably of the true caelatus type. The true caelatus is also represented from Alaska.

Host trees.—Spruce, Larch.

Distribution.—Manitoba to the Rocky mountains in Canada; described from British Columbia, but not represented from there in our collection; Colorado.

The length, 2.5 mm.; known to me only from the description and the type. The front of the head is entirely retracted in the type. The declivity is much as in the female of Pityokteines sparsus (balsameus), but more acutely margined and more densely, coarsely punctured. The antennal club is slightly longer than wide, rather thick at the base, and truncate distally as in caelatus Eichh.

The length, 2.3 mm., decidedly slender; allied to the typical Orthotomicus in the normal front of the female, and in the fairly distinct and complete apical margin of the declivity, but rather closely to the typical Pityokteines in the small size, the long second abdominal sternite and the characters of the antennal club.

Host trees.—Western Yellow Pine, Jeffrey’s Pine.

Distribution.—Williams, Arizona; Whitman, Oregon; Tulare county, California; possibly extending northward into British Columbia.

The length, 2 mm.; slender. This species is allied to the typical Pityokteines in the small size, the long second abdominal sternite and the characters of the male genitalia; but is definitely related to the typical Orthotomicus in the distinctly, though very obtusely, margined apex of the declivity and the normal front of the female. The antennal club approaches the condition found in Pityogenes; it is flattened, with the upper face obliquely truncate on the distal half, the sutures visible only on the distal half and slightly procurred, the outer segments showing distinctly from below.

Host tree.—Alpine Fir.

Distribution.—Rogers Pass, British Columbia. Taken in recently felled trees with the foliage still green.

The Genus Pityokteines Fuchs.

Key to the Species.

A Moderately stout species, with the pronotum very little longer than wide and rather sparsely punctured behind; the interspaces of the elytra rather sparsely punctured on the disc, the declivital teeth moderate in the females and very coarse in the males (Pl. 15, figs. 5, 6).

B The elytral stripes hardly at all impressed, except the sutureal stripe, and the strial punctures not very closely placed; the interstrial punctures of the disc as large as those of the stripe (Pl. 16, fig. 3).

sparsus Lec. (*balsameus* Lec.). Page 123.

BB The elytral stripe finely, regularly impressed on the disc; the strial punctures very closely placed; the interstrial punctures smaller than those of the stripe.

elegans Sw. Page 124.

AA Slender species, with the pronotum decidedly longer than wide, and rather closely punctured behind, the interspaces of the elytra rather closely punctured on the disc, the declivital teeth small in the males and minute in the females.

B The elytra elongate, with the interstrial punctures much smaller than those of the stripe; the female declivity rounded behind as viewed from above, sulcate along the suture, densely deeply punctured, the teeth almost obsolete, represented by extremely minute granules; the male declivity moderately concave, with distinct but poorly developed teeth.

minutus Sw. Page 124.

BB The elytra with the strial punctures nearly as large as those of the stripe; the declivity broadly rounded behind; the teeth of the female declivity very small but distinct, the male declivity concave, with the 2nd and 3rd teeth rather strongly developed and recurved.

jasperi Sw. Page 124.

Length, 2·3 mm. The female has the front of the head flattened, finely carinate, densely punctured and both this area the apical margin of the pronotum densely clothed with very long, incurred yellow hairs, and the elytral declivity deeply sulcate, with three small teeth on each side. The male has the front plano-convex, rather closely granulate-punctate, carinate, lacking the long hairs of the front and apical pronotal margin; with the teeth of the concave declivity much larger, the 2nd pair largest and incurred (Pl. 15, figs. 5, 6).
Host trees.—Balsam Fir, Eastern Larch.

Distribution.—Eastern Canada and Eastern United States, probably throughout the range of the eastern balsam.

An important primary enemy of balsam fir.

Length, 2·5 mm. This species is known to us only from Hood river, Oregon, and Hayfork, Cal., but possibly extends into British Columbia. It probably breeds in one of the western balsams, with habits similar to those of sparsus Lec., to which it is closely allied.

Length, 1·7 mm. to 2·3 mm. This species was described from the female; owing to the almost complete absence of even granules on the type it was placed erroneously in the genus Dryocoetes. The type is from Colorado; the host tree unknown.

Length, 2·3 mm.; very slender; the female with the front plano-convex, densely finely granulate and densely hairy as in minutus; the front of the male plano-convex, densely, deeply granulate-punctate and sparsely hairy. The elytra are slightly but constantly shorter than the type of minutus Sw. Recent collections indicate that jasperi is only doubtfully distinct from minutus.

Host trees.—Mountain Balsam (Alberta); Douglas Fir (Oregon).

Distribution.—Jasper Park, Alberta; probably extending southward in the Canadian Rockies; Oregon.

The Genus Anisandrus Ferrari.

Ferrari, Borkenkäfer, 24, 1867.

Key to the Canadian Species.

A The body stout, cylindric, with the hind wings well developed. The pronotum asperate in front, nearly smooth behind; the 2nd and 3rd interspaces of the declivity without teeth. Females (Pl. 11, fig. 2).

B The elytra with the sides strongly angled behind as viewed from above, and the apex subacute (Pl. 18, fig. 16).

C The declivital ridge of the 7th interspace with a few elongate teeth intermixed with granules; a much larger species, length, 3·3 mm. to 3·7 mm. (Pl. 18, fig. 16). obesus Lec. Page 125.

CC The declivital ridge with granules only; the form more slender, a smaller species; length, 3 mm. to 3·2 mm.

populi Sw. Page 126.

BB The elytra with the sides behind and the caudal margin evenly arcuate.

C A larger species; length, 3 mm. to 3·25 mm.; the pronotum as long as wide; the strial punctures of the elytra closely placed, the distance between the punctures equal to or less than their diameter (Pl. 11, fig. 2). pyri Peck. Page 125.

PLATE 29.

Dendroctonus brevicomis Lec., The Western Pine Bark-beetle; pitch-tubes on the bark surface of an infested western yellow pine; near Princeton, B.C. (Author's illustration).
PLATE No. 29.
CC Length, 2.35 mm. to 2.5 mm.; the pronotum slightly wider than long as viewed from above; the punctures of the elytral striae more widely spaced, the distance between the punctures usually greater than their diameter, (Pl. 18, fig. 14).

minor Sw. Page 125.

AA The body much smaller, depressed and curved into the arc of a circle; very strongly convex; oval in outline from above; the wings functionless; the pronotum smooth behind; the declivity without teeth. Males (Pl. 11, fig. 1).

B The pronotum without asperities, at most with minute granules.

C Usually distinctly larger, stouter; the interstrial punctures of the elytra small; with fine punctures on the front of the head.

obesus Lec. Page 125.

CC Usually distinctly smaller and more slender; length, 1.6 mm.; the interstrial punctures of the elytra nearly as coarse as those of the striae; with coarse, sparse punctures on the front of the head.

populi Sw. Page 126.

BB The pronotum with the cephalic half asperate or distinctly coarsely granulate.

C The pronotum narrowed in front, rather closely asperate; the disc of pronotum and elytra nearly glabrous. **pyri** Peck. Page 125.

CC The pronotum subcircular, coarsely granulate in front; the disc of pronotum and elytra hairy; very much smaller.

minor Sw. Page 125.

Anisandrus obesus Lec.; Am. Ent. Soc. Trans., 2: 159, 1868 (Xyleborus);

serratus Sw., Can. Ent., 42: 162, 1911.

Female.—Length, 3.3 mm. to 3.7 mm., stout, black when mature, sparsely clothed with long slender, gray hairs; allied to *pyri* but distinctly stouter, with the acute ridge of the seventh declivital interspace sparsely, strongly serrate. *Male:* length, 1.65 mm. to 1.75 mm.; dark brown when mature, smaller and more fragile than the male of *dispar* (Pl. 18, fig. 16).

Host trees.—Birches, Oaks, Maples, Beech.

Distribution.—Southern Ontario, southern Quebec, Eastern United States.

Anisandrus pyri Peck; Mass. Agric. Jour., 4: 205-7, 1817 (Scolytus).

Length, female, 3 mm. to 3.25 mm.; male, 2 mm. to 2.2 mm. Doubtfully distinct from the European *dispar* Fabr. There appears to be no satisfactory specific difference between our Canadian species and the short series of both sexes of *dispar* from Europe in our collection (Pl. 18, fig. 13).

Host tree.—Apple.

Distribution.—Nova Scotia, southern Ontario, Eastern United States.

The female, length, 2.25 mm. to 2.5 mm.; the male, length, 1 mm. to 1.2 mm. An examination of the type of *obesus* Lec. confirms Hopkins’ statement that *minor* is a distinct species.

Host trees.—Maples, Beech.

Distribution.—Southern Ontario, southern Quebec, and Eastern United States. In dying trees.

Host trees.—Poplars.

Distribution.—Ste. Anne de Bellevue; Chelsea, Que.; probably well distributed through southern Quebec and southern Ontario. Abundant locally in unthrifty and dying trees, with T. retusus Lee. (Pl. 18, fig. 15.)

The Genus Xyleborus Eichhoff.

Key to the Species, based on Females.

A The scutellum indistinct, oblique, carinate, and depressed (Xyleborinus Reitter). The apex of the elytra very broadly rounded, with a prominent acute marginal granule on each side the apex, at the end of the 3rd interspace; the elytra strongly narrowed on the caudal half, rather closely serrate on the 1st and 3rd interspaces, with about six well-developed acute points on each, the 2nd interspace slightly impressed; the declivity subopaque. saxesceni Ratz. Page 127.

AA The scutellum distinct, horizontal, smooth, not depressed. The apex of the elytra rather narrowly rounded, without a distinct marginal granule at the end of the 3rd interspace; the sides parallel beyond the middle of the elytra, only moderately narrowed behind, the declivital granules sparser, usually three or four on the declivital face.

B Declivity of the elytra with the 1st interspace granulate or finely tuberculate.

C Elytral declivity flattened.

D Rather elongate; the pronotum decidedly longer than wide; the elytra evidently narrowed behind with the apical margin rather narrowly rounded; the flattened area of the declivital face narrower, hardly including the 4th interspace, the declivity usually strongly opaque.

The Harris metatype of xylographus Say. Page 127.

DD Moderately stout; the pronotum slightly longer than wide; the elytra only very faintly narrowed just before the declivity, the apical margin broadly rounded; the flattened area of the declivity wider, including the 4th interspace; the declivity semi-opaque. canadensis Sw.* Page 127.

CC Elytral declivity evidently convex as seen from above, shining; strial punctures of the declivity very coarse and shallow; the 1st and 3rd interspaces with about four very small, widely separated granules; the pronotum roughly punctured behind; the elytral striae strongly impressed and the interspaces convex.

BB Declivity of the elytra with the first interspace unarmed except at the summit.

C Declivity with the 2nd interspace bearing two large subequal teeth, the four at the angles of a square; the 3rd unarmed; the 4th and outer interspaces with acute granulations; the declivity flat, obliquely truncate, with the margin acute and serrate on the sides below; size much larger, 4 mm.—4·5 mm.

celsus Eichh. Page 128.

* propinquus Eichh. has the pronotum lightly punctured behind, the elytral striae faintly impressed and the declivity subopaque. Not known from Canada.
CC Declivity with the 3rd interspace tuberculate, 2nd unarmed except at top of declivity, length less than 4 mm.

D Punctures of pronotum rather sparse, variable in size, mostly fine; declivity with one well developed, acute spine near middle of 3rd interspace, with a second nearly or quite obsolete below, the 2nd interspace nearly flat.

Eichhoff. Page 128.

DD Punctures of pronotum close, variable in size, rather coarser than fusatus; declivity with three acute spines on 3rd interspace, the 2nd largest, the 1st well developed, and the 3rd smaller to nearly obsolete; the 2nd interspace sulcate.

Eichhoff. Page 128.

Xyleborus saxesceni Ratz.; Forstins. 1: 167, 1837 (Bostrichus).

Length, 2.5 mm., slender.

A species that is apparently identical in every way with our European specimens of saxesceni Ratz. is represented in our collection from New York State, Michigan and Indiana. It is not known to occur in Canada. (Xyleborinus Reitter).

X. Arbuti Hopk. is distinguished from saxesceni by the shining declivity, the length 2.4 mm., striae 1 and 2 impressed, punctures distinct, declivity subconvex, shining, interspaces 1 and 2 elevated. Walker, Cal., in Arbutus menziesii. This species may occur in the same host in British Columbia.

So far as we can learn the type is not in existence and has apparently not been seen since the time of Dr. Harris. There is a single metatype in the Harris collection at Boston, labelled, "744, N.C.", "Tomnicus xylographus Say 744, teste Say." This specimen should apparently be accepted as fixing the species.

Length, 2.7 mm., rather slender, the pronotum rather strongly and closely punctured behind, the punctures of varying size, the elytral striae slightly impressed, strial punctures moderate, interstitial punctures smaller, uniseriate, punctures distinct on the sides; declivity flattened, decidedly opaque, the suture wide and slightly elevated, with about three widely separated, small acute granules, the 2nd interspace flat, hardly impressed, with small granules above the face of the declivity; the 3rd interspace slightly elevated and granulate as upon the first. Would fall under "inermis Eichh." in Hopkins' key to Xyleborus.

Host trees.—Probably various hard wood species.

Distribution.—New York state from Buffalo to New York City; New Jersey; Wisconsin; Washington, D.C.; North Carolina; Virginia and Missouri. Not known to occur in Canada.

Xyleborus inermis Eichh. is very closely allied to and possibly identical with xylographus Say. The lateral interspaces of inermis are described by Eichhoff as "sparsely, lightly punctured."

Xyleborus affinis Eichh. has the pronotum very lightly and sparsely punctured behind, and is apparently distinct thereby. I have not recognized either inermis or affinis from Canada or the Northern States.

Length, 2.6 mm.; moderately stout, differs from xylographus chiefly in the distinctly stouter form, the sides of the elytra parallel far beyond the middle, hardly narrowed before the declivity, rather broadly rounded
behind, broadly flattened on the declivity, the striæ only very faintly impressed.

Host tree.—Oak stump, species not determined.

Length, 2.7 mm., slender; the pronotum strongly punctured behind, the elytral striæ distinctly impressed; the declivity moderately convex, shining, the striæ impressed, the strial punctures very coarse, shallow, and not very regular, the 1st and 3rd interspaces slightly elevated and armed each with three or four rather coarse, acute granules.

Described from material compared with the type of *pubescens* Zimm. in the Leconte collection. Allied to but distinct from *inermis* Eichh.

Distribution.—Represented in our collection from Virginia, Florida, and Alabama. It will probably not occur in Canada.

Length, 4 mm. to 4.5 mm.; a large and very distinct species. Breeds in hickories in the Eastern and Southern States; it may occur in southern Canada but has not been recorded.

Length, 3.2 mm., female; 2.1 mm., male. Occurs in the Southern United States, north to New Jersey; recorded from oak and other hardwoods; not known from Canada.

Length, 2.7 mm., female. Occurs in the Southern United States, north to Massachusetts; not known from Canada.

The Genus *Xylocleptes* Ferrari.

Ferrari, Borkenkäfer, 37, 1867.

Several species occur in the United States, chiefly in the south and west, usually in *Cucurbita*. None recorded from Canada.

The Genus *Dryocoetes* Eichhoff.

Key to the Canadian Species.

A The sutural striæ strongly impressed on the disc and declivity, very small species, not much exceeding 2 mm. in length; the strial punctures of the elytra much larger than those of the interspaces.

PLATE 30.

Dendroctonus monticolae Hopk.; tunnels on the inner face of the bark; from a Western Yellow pine killed by the beetles; about four-fifths natural size (Author's illustration).

1, Egg-tunnels.
2, Larval-mines.
3, 3a, Egg-tunnels of *Ips integer* Eichh.
B The declivity flat, with the 2nd striae also distinctly impressed; the form moderately stout, 2-5 times as long as wide, the pronotum as wide as long and strongly convex. British Columbia.

sechelti Sw. Page 130.

BB The declivity convex, the 2nd striae there hardly impressed; the strial punctures on the declivity as coarse as on the disc; the form more elongate; the pronotum longer than wide. Pennsylvania.

granicollis Lec. Page 130.

AA The sutural striae not very widely and deeply impressed on either disc or declivity; larger species, usually well over 2 mm. long.

B The ventral surface with coarse, round, shallow punctures; the pronotum widest usually at or near the middle, the interstrial punctures of the elytra much smaller and sparser than those of the striae; the antennal club with the basal corneous part usually evidently wider than long, the pubescent apical surface projecting beyond the distal margin of the basal corneous part.

C The female with the front only sparsely hairy; the pronotum with the punctures more or less obscured by the asperities on the frontal half, but distinct from the base to considerably beyond the middle, variably but distinctly punctured, and finely granulate to moderately asperate on the sides behind; the declivity convex or rather strongly flattened.

D The declivity evidently flattened, with the 2nd interspace impressed; the odd interspaces of the elytral disc wider and confusedly punctured from the top of the declivity usually to the base, with the strial punctures usually rather small; the pronotum with punctures of varying size, large, usually as wide as the elytra, with the sides frequently nearly parallel on the median third, broadly rounded on the front margin (Pl. 11, fig. 4).

pseudotsugae Sw. Page 130.

DD The declivity convex (rarely slightly flattened in *septentrionis*); the elytral interspaces rather regularly and uniseriately punctured (frequently somewhat confused near the declivity in *septentrionis*).

E The pronotum large, usually as wide as the elytra, sides usually subparallel on the median third, feebly rounded behind, a little more strongly in front and broadly rounded on the front margin; the strial punctures of the elytra usually coarse, the striae evidently impressed on the disc and declivity, and as wide as the rather narrow interspaces, length usually less than 4 mm. Eastern America.

americanus Hopk. Page 131.

EE The pronotum apparently rather small, usually narrower than the elytra, very strongly arcuate on the sides, strongly narrowed behind, more strongly in front, narrowly rounded on the front margin; the strial punctures of the elytra usually rather small, the striae faintly impressed, the interspaces wide, the length usually more than 4 mm.

Northern Alberta to Alaska.

septentrionis Mannh. Page 131.

CC The females with the front densely pubescent with long reddish-yellow hairs; the pronotum with the punctures on the frontal half almost entirely obscured by the asperities, and considerably obscured by the strongly developed asperities on the sides; the
declivity strongly flattened, with the first two striae impressed
(Pl. 11, fig. 5).

betulae Hopk. Page 131.

BB The ventral surface finely punctate; the pronotal widest well behind
the middle and much more strongly narrowed in front than behind;
the interstrial punctures of the elytra at least nearly as coarse and
numerous as those of the striae; the antennal club with the basal
corneous part as long as or longer than wide, with the apical pubescent
surface only slightly convex, and hardly projecting beyond the distal
margin of the basal part.

C The elytral interspaces confusedly punctured on the disc and sides;
the frontal hairs of the female straight, rather short, and forming
an extremely dense brush almost completely hiding the surface;
the interstrial punctures evidently smaller than those of the striae,
particularly on the sides; the size large, length about 4 mm.

confusus Sw. Page 131.

CC The elytral interspaces rather regularly uniserially punctured; the
interstrial punctures practically as large and numerous as those
of the striae on the disc and sides; the front of the female very
closely hairy, but with the hairs long and rather uneven, not in a
dense brush, and not concealing the surface at the middle line;
density, 3.2 mm. or less.

D The punctures on the declivity as coarse in both sexes as those
on the disc.

pubescens Sw. Page 132.

DD The punctures of the declivital striae and interspaces much
smaller and sparser in the male, and in both sexes distinctly
smaller than those of the disc (Pl. 11, fig. 3).

affaber Mannh. Page 132.

The eastern race has a slightly smaller average size; from
Manitoba eastward to the Atlantic coast.

piceae Hopk.

It is known to us only by a series sent from Sechelt, B.C., by the late
Tom Wilson.

Dryocoetes granicollis Lec.; Am. Ent. Soc. Trans., 2: 162, 1868 (*Xyleborus*).

It is known to us only by the specimens in the Leconte collection.

Dryocoetes pseudotsugae Sw.; Can. Ent.; 47: 360, 1915.

The length varies from 3.5 mm. to 4.9 mm., with very few less than
4 mm. The pronotal punctures and asperities are small and dense; the
strial punctures of the elytra usually small; the declivity is sometimes less
flattened than usual, and the discal interspaces rarely with the punctures
confused at the base and towards the declivity only; such variations could
easily be mistaken for *septentrionis*. The male has the front very wide,
strongly granulate, with a broad, shining, transverse impression; the front
of the female is moderately wide, less shining, the declivity less strongly
flattened; the front in both sexes is clothed with rather abundant long
hairs (Pl. 11, fig. 4).

Host trees.—Douglas Fir. It may occur also in Balsam and Spruce.

Distribution.—Very abundant in the coast region of British Columbia,
probably throughout the range of its host tree in that province, southward
to Oregon.

Length, 3 mm. to 4 mm. Doubtfully distinct from autographus Ratz. of Europe. Several rather distinct variations could be described. The so-called species of this section of the genus are little more than well marked varieties.

Host trees.—White Spruce, Engelmann’s Spruce, White Pine, Larch, and probably all Spruces and Pines within its range.

Distribution.—Eastern North America, west into the Rocky Mountain region.

Length, 3-5 mm. to 4-7 mm., usually over 4 mm. Very closely allied to americanus, with which it appears to intergrade, particularly in the Rockies and Northern Alberta; usually distinguished by the smaller pronotum with the sides strongly arcuate, strongly narrowed in front and behind, more strongly in front, and narrowly rounded on the front margin, and by the wide elytral interspaces. The male has the front very wide; the declivity often somewhat flattened and frequently obscurely granulate.

Host trees.—Sitka Spruce, Engelmann’s Spruce, White Spruce.

Distribution.—Alaska and the northern coast of British Columbia, eastwards throughout northern Alberta into the eastern spruce forests of Northern Canada; less common in southern British Columbia.

The female has the front plano-convex, densely granulate-punctate, rather densely clothed with long, erect, yellow hairs, longer about the margin, with a rather distinct median smooth space; the male has the front sparsely granulate-punctate and sparsely clothed with long, erect, yellow hairs, the beak very wide and transversely impressed, with the median line subcarinate. Length, 2-5 mm. to 4-5 mm. (Pl. 11, fig. 5).

Host trees.—Birches, probably all Canadian species.

Distribution.—Our largest collections are from Newfoundland, Quebec, Ontario, and British Columbia. Hopkins and Felt record it from various places in the Eastern States. Throughout Canada and probably throughout the northern United States.

Closely allied to betulae; distinguished by Hopkins as follows:—

"Pronotal punctures limited to median dorsal area. Grant county, West Virginia, in Betula sp. betulae Hopk.

"Pronotal punctures not limited to median dorsal area. Virginia Beach, Va., in Liquidambar styraciflua." liquidambaris Hopk.

Host tree.—Liquidambar styraciflua.

Distribution.—Virginia Beach, Virginia, U.S.A.

The species is unknown to us. The host plant is not indigenous to Canada, but the beetle may possibly be found in Hamamelis.

Length, 3-4 mm. to 4-2 mm., clothed with erect reddish hairs. The female has the front entirely covered by a circular, very dense brush of short, reddish-yellow hairs, longer about the margin; the declivity has the 36198—912
first two striae strongly impressed, the strial punctures very small, the 1st interspace convex, the 2nd less prominent and flattened apically, the outer part of the declivity strongly convex, the interspaces shining, rather coarsely granulate and setose-punctate uniseriately. The male has the front somewhat wider than the female, plano-convex, densely, coarsely, roughly punctured, with a shallow, transverse, postepistomial impression and a faint median carina in front and behind, sparsely clothed with long hairs; the declivity more polished, the punctures minute and the granules small and sparse on the first two interspaces.

Described from Colorado, and since found to be very abundant in the Canadian Rockies and Selkirks; the Canadian series presents variations but is probably not distinct. Hopkins’ abietis, described from Abies of Montana, is apparently the same species.

Host trees.—Alpine Fir, Eastern Balsam Fir.

Distribution.—Colorado; Montana (abietis Hopk.); Rockies and Selkirks of British Columbia, and in northern Alberta.

Attacks and kills healthy balsam in eastern British Columbia and northern Alberta.

Closely allied to affaber Mannh., from which it is doubtfully distinct in the more slender form and densely, coarsely punctured declivity. It will probably prove to be only a well marked race of affaber.

Distribution.—Colorado; habits unknown.

Dryocoetes affaber Mannh.; Bull. Mosc., 359, 1852 (Bostrichus).

The species of this section of Dryocoetes are very closely allied. D. piceæ Hopk. was separated from affaber through its smaller average size, 2·3 mm. to 2·75 mm., and its eastern distribution. Our specimens from the Maritime Provinces and Quebec are constantly small, less than 2·75 mm. in length, and rather more coarsely punctured than the western specimens; our specimens from Manitoba are very faintly larger, a long series from Edmonton ranging between 2·5 mm. and 3 mm. in length; seventy-five specimens from south central British Columbia vary between 2·6 mm. and 3·1 mm.; over two hundred from northern Alberta range between 2·3 mm. and 3·2 mm., with many 2·8 mm., and our typical affaber from the northern coast of British Columbia varies between 2·5 and 3·2 mm. with an average of nearly 3 mm. Our collection indicates a gradual increase in size towards the north and west but presents no definite specific distinction between the typical affaber and our eastern race which is apparently piceæ Hopk., left in this paper as doubtfully distinct. (Pl. 11, fig. 3).

Host trees.—Sitka Spruce, all spruces and probably all pines within its range.

Distribution.—Alaska, throughout British Columbia and western and northern Alberta, eastward through the northern spruce forests; recorded by Hopkins through the Western United States south to Mexico.

PLATE 31.

Dendroctonus brevicomis Lee., The Western Pine Bark-beetle; egg-tunnels on the wood surface of Western Yellow Pine; near Princeton, B.C. (Author’s illustration).
PLATE No. 31.

"Pronotum with sides nearly straight, and basal angles not rounded."

"Pronotum with posterior area distinctly punctured; antennal club with one faint recurved suture on anterior face and two faint recurved sutures on posterior face." "Length, male type, 2.15 mm.; body oblong, ellipitical, ferruginous; pronotal rugosities fine, densely placed, and changing to rugose punctures to base; front flat, shining, distinctly and evenly punctured, with a few long hairs toward the sides, and with faint median line; declivity steep, subconvex, interspace 1 elevated, 2 and 3 flat, striae with coarse punctures. Camp Caribou, Maine, in Picea sp., May 25, 1900; Austin Cary, collector; Hopk. U.S. No. 332c. Type, Cat. No. 7629, U.S. National Museum."

Female.—"Front flattened, slightly more pubescent than in the male; declivity more opaque and interspace 1 not so strongly elevated."

This species is unknown to us. Since it occurs in Maine it will probably be found in Eastern Canada.

Host tree.—Spruce.

Distribution.—Camp Caribou, Maine.

The Genus Lymanior Løvendal.

Length, 1.8 mm.; the front punctured, with a transverse postepistomal impression; the pronotum longer than wide, feebly asperate in front, rather coarsely and deeply punctured behind; the elytra coarsely and deeply, not very closely punctured, not striate, the punctures rather irregular, the rows hardly evident. There is sometimes a fairly distinct fifth segment in the funicle.

Host trees.—Hicoria, Pyrus, Acer (literature). Taken by the writer only in dead and dry maple limbs. The egg-tunnels and larval mines are entirely in the outer wood, sometimes below the surface; both adults and larvae find an important food in certain black wood fungi, which are always abundant in the limbs they frequent.

Distribution.—Eastern Canada and Eastern United States.
LIST OF CONIFEROUS HOST TREES.

Balsam, Eastern (see Fir, Balsam).
Balsam, Mountain (see Fir, Alpine).
Balsam, Lowland (see Fir, Grand).

†Cedar, Incense. Lophocedrus decurrens Torrey.
†Cedar, Port Orford (Lawson’s Cypress). Chamaecyparis Lawsoniana (Murr) (Parlatore). Cedar, Western Red (Red Cedar). Thuja plicata Don.

Fir, Balsam (Eastern Balsam). Abies balsamea (Linn.) Miller.
Fir, Alpine (Mountain Balsam, White Fir, Balsam Fir). Abies lasiocarpa (Hook) Nuttall.
Fir, Grand (Lowland Balsam, White Fir). Abies grandis Lindley.

Hackmatack (see Larch).
Hemlock, Mountain (Black Hemlock). Tsuga mertensiana (Bong) Sargent.
Hemlock, Western. Tsuga heterophylla (Raf.) Sargent.
Hemlock, Eastern. Tsuga canadensis Engelm.

Larch, Eastern (Tamarack, Hackmatack). Larix americana Michx.
Larch, Western. Larix occidentalis Nuttall.

Pine, White. Pinus strobus L.
Pine, Western White (Silver Pine). Pinus monticola Dougii.
†Pine, Sugar. Pinus lambertiana Dougii.
Pine, Western Yellow (Bull Pine). Pinus ponderosa Lawson.
†Pine, Jeffrey. Pinus jeffreyi “Oreg. com.”
†Pine, Monterey. Pinus radiata Don.
†Pine, Scrub (Jersey Pine). Pinus virginiana Mill. (Pinus inops Ait.)
†Pine, Southern Yellow. Pinus taeda Linn.

Spruce, Sitka (Tideland Spruce). Picea sitchensis (Bong.) Trautvetter and Mayer.
†Spruce, Big Cone. Pseudotsuga macrocarpa (Torr.) Mayer.
Spruce, Engelmann’s. Picea engelmannii Engelmann.
Spruce, Red. Picea rubens Sarg.
Spruce, White. Picea canadensis (Mill) B., S., and P.
Spruce, Black. Picea mariana (Mill) B., S., and P.

Tamarack (see Larch).

GLOSSARY.

Abraded: rubbed, denuded of vestiture.
Aciculate: applied to a surface bearing minute subparallel scratches as though made with a needle point.
Acuminate: tapering to an acute point.
Alutaceous: of colour, pale brown; covered with minute cracks.
Anastomosing: running together, applied to surface markings in colour, or minute ridges, and to tunnels.
Annulate: ringed; of a club, sutured.
Apex: the acute or narrowed portion of a segment or selerite opposite the basal attachment; of the elytra, the caudal portion; of the pronotum, the cephalic portion; of the antennal club, the distal portion; the portion of an appendage farthest from the body, the distal part.
Appendage: a part attached by a joint to the body or to a larger appendage; e.g., antennae, legs and wings.
Approximate: placed close together.
Armature: the chitinous teeth, processes, or coarse roughenings.
Asperate: with the surface finely or moderately roughened with acute or subacute elevations.
Asperities: small or moderate surface roughenings, particularly when acute; from coarse granules to rather prominent elevations; especially the lunular elevations of the anterior half of the pronotum in the Ipine.

†In United States.
Base: the portion of a segment or selerite nearest the middle of the body; of the elytra, the cephalic portion; of the pronotum, the caudal portion; the portion of an appendage nearest the body, of the antennal club the proximal portion.

Beak: the rostrum, a prolongation of the head in front of the eyes bearing the mouth parts at the apex.

Beetle-trees: trees which have been killed or are attacked by bark-beetles.

Bifid: deeply emarginate or split.

Bifurcate: forked.

Bisinate: with two sinuations or broad double curves.

Bristle: a short, stiff hair.

Brood: the progeny of a single pair of adults developing from the same lot of eggs. The same parent female of the first generation may deposit a second lot of eggs later in the season; the individuals developing therefrom will form a second brood of the first generation.

Callosity: a broadly convex or flattened elevation.

Callus: a small callosity.

Capitate: applied to an antenna with the distal segments swollen to form a subglobular mass.

Carina: a narrow ridge or keel.

Caudal: the direction from the head towards the posterior end of the body along the median line.

Caudal: pertaining to or towards the posterior end of the body.

Cephalad: the direction from the posterior end towards the head along the median line.

Cephalic: pertaining to or towards the head.

Chitin: a horny substance forming the hard portions of the insect's body.

Chitinized: hardened with chitin.

Cinereous: ash-gray in colour.

Clavate: club-shaped.

Club: the distended apical segments of the antenna.

Compressed: flattened from side to side.

Confusedly: irregularly; of punctures and pubescence, not in regular rows.

Constate: applied to segments which have fused into a more or less solid mass.

Constricted: suddenly narrowed and more or less dilated on each side the constriction.

Contiguous: touching when in the normal position.

Convergence: the development of similar characters in species of separate origin often through the effect of similar habits or environment.

Corneous: resembling horn.

Crenulate: applied to a margin forming a waved line with small, regular, and rather deep curves.

Cusp: an acute prominence or tooth.

Concavity: a broad impression or excavation, larger than a fovea; e.g., the declivital concavity in the genus *Ips*, and the frontal concavity in the males of *Trypodendron*.

Declivitous: sloping rather steeply downwards.

Declivity: a steep slope; the usually steep caudal face of the elytra in ipid beetles; also the steep cephalic face of the pronotum in the *Ipinæ* and *Micraciniæ*.

Declivous: sloping gradually downwards.

Dehiscent: split or separated along a suture.

Dense: applied to pubescence or punctures very thickly crowded, the margins of the punctures nearly contiguous.

Dentate: toothed.

Denticle: a small tooth.

Depressed: flattened vertically, from above and below.

Disc: the central portion of any outer surface.

Distal: applied to the portion of an appendage or segment farthest from the body.

Distal: the direction away from the body along the middle line of an appendage.

Dorsad: the direction from the venter towards the dorsum, on the meson, at right angles to the longitudinal axis.

Dorsal: pertaining to the dorsum.

Dorsum: the upper surface.

Emarginate: with a notch cut from the margin.

Emargination: a broad or narrow angular or rounded notch breaking the margin.

Epistoma: the cephalic portion of the front of the head between the eyes and the mouth cavity or the base of the labrum when the latter is present.

Epistomal Lobe: a flat depressed lobe directed cephalad from the median portion of the epistomal margin.

Epistomal Margin: in ipid beetles, the dorsal margin of the mouth cavity, that is, the cephalic margin of the epistoma.

Epistomial Process: a flattened dorsal prominence with converging or parallel sides arising from the base of the epistoma with its apex reaching towards or to the epistomial margin.

Face: the outer surface of any part.

Ferruginous: reddish brown.
Form: applied to seasonal, dimorphic, or sexual, constant variations from the normal type of the species.
Fossa: a deep, well-defined groove, as those in which the antennae lie.
Fovea: a small, well-defined impression.
Front: the dorsal face of the head between the vertex and the epistomal margin.
Frontal: pertaining to the front.
Fumose: smoky.
Fused: grown together at a joint, ankylosed; applied to markings run together.
Fumicle: the portion of the antenna between the first segment or scape and the club, composed of between one and seven segments in the ipid beetles, the first of which is called the pedicel.

Geminate: in two similar parts; with the apex emarginate, forming two similar cusps or prominences.
Gena: the sides of the head, the selerite on each side between the front and the gular suture on the ventral surface.
Generation: all the broods from one series of parent adults, all the progeny of the hibernated young beetles and larvae will form the first generation; all the progeny of these young adults comprising this first generation will constitute the second generation.
Geniculate: jointed at an angle, knee-like.
Glabrous: smooth, normally without vestiture of any kind.
Granulate: having small elevations or granules on the surface.
Granule: a fine, acute or blunt grain-like prominence on a surface.
Griseus: light gray.
Group: an indefinite section in classification.
Gum-tube: a pitch-tube or resin-tube.

Habitat: the location frequented by an insect or in which it was collected.
Habitus: the aspect or general appearance.
Hair: a slender, thread-like filament.
Hirsute: clothed with long coarse hairs.
Hispid: bristly, with sparse stiff hairs.
Humerus: the basal exterior angle of the elytra, usually with a distinct elevation in ipid beetles.

Insertion: the place or line of attachment of an appendage.
Interspace: the area between two elytral striae.
Interspatial: pertaining to the interspaces; e.g., punctures, granules and hairs.
Interstria: a secondary stria along the median line of an interspace between two striae.
Interstitial: interspatial; less commonly, pertaining to the interstria.

Joint: an articulation.
Labial: pertaining to the labium.
Labium: the lower lip in insects.
Labrum: the upper lip; absent in the ipid beetles.
Lamella: a thin, more or less plate-like process.
Lamellate: composed of closely placed lamellae; applied to the antennal club of Phthorophloeus, in which the segments of the club are laterally produced, although not truly plate-like.
Lanate: woolly, covered with fine long hairs.
Lumular: crescentic.
Ligula: a somewhat tongue-like labial process arising from the upper face of the mentum.

Maculate: with colored spots or patches.
Mandible: the 1st pair of jaws in mandibulate insects, used for biting.
Margin: the portion of the segment adjoining the edge.
Marginal: pertaining to the margin, near the edge.
Margined: bounded by a finely elevated marginal line.
Maxilla: the second pair of jaws in mandibulate insects.
Maxillary: attached to the maxilla; maxillary lobe.
Meso-: middle, belonging to the mesothorax, e.g. mesosternum, mesepimeron, mesepisternum.
Mesothorax: the second or middle segment of the thorax.
Mesad: the direction from the side towards and at right angles to the meson.
Meson: the median, longitudinal, vertical plane of the body; the mesial plane.
Meta-: posterior, belonging to the metathorax, e.g., metasternum, metepisternum, metepimeron.
Metathorax: the 3rd segment of the thorax.
Metatype: a specimen named by the author of the species after comparison with the type.
Muco: a long, pointed process.
Mucronate: bearing an acute process.
Muricate: armed with coarse, acute elevations.

Notum: the dorsal part of a segment, the tergum.
Obtuse: blunt; an angle of more than 90 degrees.
Occipital Foramen: the great opening in the caudal face of the head.
Occiput: the caudal sclerite of the head.
Ogival: curved like the head of a projectile.
Opaque: dull, applied to a surface without lustre.
Ontogeny: the development of an individual organism.

Palp: a finger-like process, hand-shaped.
Palp ——: a palp.
Parasite: a species that lives in or upon another organism, called the host, from whose tissues it obtains its nourishment, or from which it derives some other advantage without making adequate return.
Paratype: applied to all specimens studied and definitely chosen by the author in the series from which the type was selected.

Pennate: feather-like in shape.

Phylogeny: the evolution of a group.
Phylogenetic: pertaining to the evolution of groups.
Precious: pitch coloured, very dark brownish to black.
Pithec-tube: a cylinder of resin surrounding the entrance-hole.
Pilose: clothed with very fine hairs.
Planconcave: applied to a plane surface very faintly, broadly concave.
Planoeconvex: applied to a plane surface very faintly, broadly convex.
Plumose: feathered like a plume.
Plate: any broad, flattened sclerite or area.
Predaceous: predatory, living by preying upon other animals; insects which feed upon other insects from the exterior.

Pro ——: anterior; applied to the 1st segment of the thorax, as prosternum.
Process: a prolongation of any part of the surface without an articulation.
Procurved: arcuate with the convexity in front.
Produced: drawn out into a rather wide protuberance or prolongation.
Pronotum: the dorsal piece of the prothorax.
Prosternal Process: the median, caudal, intercoxal extension of the prosternum.
Prothorax: the 1st segment of the thorax.
Post ——: behind.

Postepistomial: lying immediately behind the epistoma.
Proventriculus: the posterior masticatory portion of the fore intestine, armed with a chitinous internal structure.
Proximad: the direction towards the body along the median line of an appendage.
Proximal: of an appendage, the portion nearer the body.
Pruinose: hoary.
Pseudo ——: a prefix meaning false or resembling.
Pubescence: short, soft, fine hair; indefinitely for vestiture.
Pubescent: densely or sparsely covered with fine hair.
Punctate: punctured.
Puncture: a small impression as though made by a sharp or moderately sharp point.
Punctured: applied to a surface marked with punctures.
Punctulate: applied to a surface marked with minute punctures.
Punctate-aciculate: punctured and aciculate.
Punctate-striate: with punctured striae.

Race: a group of individuals in a species presenting more or less constant and peculiar but minor characters, not of specific importance; often geographic, from another region than the type locality.
Recline: reclining, not erect, applied to hairs.
Recurred: arcuate with the convexity behind.
Red-top: a recently killed coniferous tree bearing reddened foliage.
Resin-tube: pitch-tube.
Reticulate: marked with a network of fine impressed or elevated lines.
Retractile: capable of being drawn in or backwards.
Retuse: with the margin or the visible margin when viewed from above broadly rounded and deeply, arcuatly emarginate at the middle; e.g., the cephalic margin of the pronotum in some species of Trypodendron, and the elytral declivity of species of Pityophthorus when deeply sulcate along the suture and the sides of the declivity elevated.
Rostrum: the beak or snout-like prolongation of the front of the head.
Rufous: brick-red.
Rugose: wrinkled, marked with coarse elevations.
Rugositites: moderate or coarse surface wrinkles or strong, usually blunt elevations; equivalent to coarse and blunt asperities.
Rugulose: finely rugose.
Scabrous: rough with numerous small elevations.
Scale: a broad, flattened, scale-like hair.
Scape: the elongate first segment of the geniculate antenna.
Sclerite: a piece of the segment wall, bounded primitively by sutures.
Scolex: a groove, as that on the side of the beak to receive the antennal scape.
Sculpture: the elevated or impressed markings on the surface.
Scutellum: the subtriangular piece between the bases of the elytra.
Segment: a primary transverse division of an articulate's body, e.g., the prothorax; a section or division of an appendage, bounded primitively by sutures, e.g., the segments of the antennal funicle.
Segmented: divided into evident segments.
Septate: divided by an internal partition or septum.
Sericeous: with a silky lustre from dense, minute pubescence.
Serrate: armed with a row of saw-teeth.
Serrulate: armed with many small saw-teeth.
Seta: a rather short, stiff, pointed hair.
Setigerous: with setae.
Setose: setigerous.
Setose-punctate: with setae arising from the punctures.
Sinuate: undulating.
Solid: applied to organs made up of fused segments; applied to an antennal club of apparently only one segment.
Spatulate: shaped like a spatula, applied to an appendage or process, flattened, moderately widened distally and broadly rounded at the apex.
Spine: an elongate, acute process.
Spinose: with spines.
Spiracle: breathing pore, stigma.
Spur: a short, blunt process.
Squamoso: scaly.
Sternite: the ventral piece or sclerite of a body segment.
Sternum: the breast piece, the middle ventral sclerite of the thoracic segments.
Stereite: a narrowly impressed line, usually longitudinal, especially the parallel impressed, usually punctured, lines on the elytra from base to apex.
Stereum: marked with striae.
Sub: nearly but not quite the same as the term to which the prefix is applied; e.g., subequal = almost equal, subovate = nearly but not quite oval; also beneath, subcortical = beneath the bark.
Submarginal: an indefinite area well within but not far from the actual edge, within but near the margin.
Subtent: to lie opposite to.
Sulcate: marked with a broad furrow or with parallel grooves.
Sulcate-retuse: applied to the elytral declivity when the median sulcus is broad and deep and the lateral prominences more than usually pronounced; strongly retuse.
Sulcus: a groove or furrow.
Sutural Striba: the first stria on each elytron, usually wider and deeper than the others.
Suture: the longitudinal line along the dorsum marking the junction of the elytra. The name is frequently applied to the two first interspaces, which are commonly conjointly elevated, especially towards the declivity; in this case the suture is said to be elevated or convex.
Tergite: the dorsal part of the segment, especially when it consists of one segment as in the abdomen.
Tergum: the back, the dorsum of the primitive segment.
Tomentose: clothed with densely matted fine hairs.
Tooth: a short acute process, often conical.
Truncate: cut off squarely or though sectioned with a knife.
Tubercle: a small or moderate knob-like prominence, a coarse granule or small blunt tooth.
Tuberculate: marked with tubercles; like a tubercule.
Type: a single specimen selected from a series by the describer to bear his name and label and from which his description of the species is written.
Typical: agreeing with the type of the species in all important characters, without variations.
Uniseriate: in a single row.
Venter: the lower surface of the abdomen; the belly.
Ventral: pertaining to the venter.
Vertex: the top of the insect's head between the occiput and the front.
Vestiture: all the surface clothing, including all hairs, scales, and excrescences.
Villoses: clothed with short soft hairs.
Vitta: a longitudinal coloured line or band.
Vittate: striped.
139

BIBLIOGRAPHY.

1879 Eichhoff, W., Ratio. Tomoeinorum.
1881 Eichhoff, W., Die Europ. Borkenkäfer.
1894 Reitter, E., Bestimmungs-tabelle der Borkenkäfer.
1896 Verhoeff, C., Ueber das Abdomen der Scolytiden; Archiv. fur Naturgesch., Jahrg. 62, Bd. 1, 109-144.
1898 Lowendal, E. A., De Danske Barkbiller.
1907 Tredl, R., Nahrungs und Verbreit der Borkenk. Europas; Ent. Blatter, Bd. 3.
1910 Hagedorn, M., Coleopterorum Catalogus; Ipidae.
1910 Hagedorn, M., Genera Insectorum, Coleopt., Ipidae, Fase III.
1913 Nüsslin, O., Leitfaden der Forst Insectenkunde, 201-293.
1913 Barbey, A., Traite d’Entomologie Forestière.
INDEX.
Alniphagus Sw
aspericollis Lee, pi.
Ambrosiodmus Hopk
tachygraphus

8, 11, 16, 30, 32, 50, 124

pi. 2, figs. 17, 18;

125

pi. 9, fig. 11;

pi.

10,

fig.

32; pi.

pi.

22, 61, 62
61, 65
61 , 64
23, figs. 4, 4a,
12, 14, 19, 61, 62
61, 64
9, figs. 3, 38; pi. 10, fig. 30; pi. 12,

pi. 22,

125

terebrans Oliv
valens Hopk., pi.
fig. 1; pi. 27

pi. 3, figs. 1, 10, 12; pi. 8, fig. 4; pi. 9,

124,
fig. 8; pi. 18, fig. 15
pi. 3, figs. 5, 9; pi. 8, fig. 7; pi. 11, fig. 2;
124,
,
pi. 18, fig. 13

126

pyri Peck,

125
125
55, 85
85
55
85
77

Sw

tenatus

(Apate Ky.)
bivittatum

Ky
nigriceps Ky
rufitarsis Ky

Blastophagus Eichh
(Bostrichus Fabr)
ater Payk. (Htlastes)

bicristatus Chap
bifurcus Eichh., pi. 10. fig. 20
carri Sw. pi. 24, fig. 4
,

radiatae Sw
simplex Lee

CHiETOPHLOEus Lec

Chramesus Lec
asperatus Schaeffer
chapuisii

Lec

dentatus Schaeffer
icoriae

Lec,

pi. 9,

figs.

28, 28a; pi.

pi. 23, fig. 5

10,

fig.

9, 10, 11,

58

subopacus Schaeffer

Cnesinus Lec
CoNOPHTHORUs Hopk
fig.

pi. 9, fig. 29;

pi.

17

Hopk
Hopk
Hopk
resinosae Hopk
scopulorum Hopk
contortae

monticolae
ponderosae

•.

.

.

balsameus Hopk.,

(rigidus) (Thysanoes)
(striatulus Mannh.), (Procryphalus)

subconcentralis Hopk
terminalis Mannh

Crtpturgus Erichs
atomusLec, pi.

10, fig. 9; pi. 23, fig. 3

borealis Sw
corrugatus Sw
Erichs.,

Dendroctonus
barberi

»

pi. 18, fig. 10;

pi. 31

engelmanni
monticolae
30

;

pi. 19, fig. 1

131
129, 130

Lec

Hopk

131
130, 132

132
129, 130
pi. 11, fig. 4
130
129,
sechelti Sw
^
.."...
131
semicastaneus Mannh
septentrionis Mannh., pi. 9, fig. 14; pi. 10, fig; 34
129, 130, 131
^ccoPTOGASTER Herbst (Scolytus Geoff.), 15, 16, 23, 33, 39, 50
52
californicus Lec
53
caryce Riley
51
f agi Walsh
52, 53
monticolae Sw
51
multistriatus Marsh
51
muticus Say
piceae Sw., pi. 8, fig. 6; pi. 9, figs. 16, 17; pi. 10,
.

fig. 8;

pi. 17, fig. 2;

10,17,51,53

pi. 20, fig. 3

52

praeceps Lec
quadrispinosus Say
rugulosus Ratz

17, 51, 53
10, 17,51, 52

52

subscaber Lec
sulcatus Lec

tsugae

93
92
93

Sw

unispinosus Lec, pi. 24, fig. 1
ventralis Lec, pi. 4, figs. 1, 11
Erineophilus Hopk
Ernoporides Hopk
Gnathotrichus Eichh., pi. 2, fig.
asperulus Lec
corthyloides Eichh.

materiarius Fitch, pi.
fig.21
retusus Lec, pi. 18,

Hylastes

62

22, 61, 65, 66, 67
Lec, pi. 12, figs. 3, 5; pi. 27; pi. 29;
22, 60, 62, 63
65, 66, 67
Hopk., pi. 1, figs. 1, 2; pi. 4, fig. 3; pi.
22, 61. 62, 63, 65

,

exilis

.

39
16

11, 16, 30, 45,

90
90
^J
91

3, fig. 8; pi. 9, fig. 4; pi. 10,

fig.

91
90, 91

17

figs.'is,' 30.'.'.'.'.'.i6, 17, 44, 77, 80, 81,

(Bostrichus)

Chap

gracilis

53
52

52, 53
17, 51, 53
52, 53

w

Lec

82
77
77
79

^070

longicoUis Sw
longus Lec

77- 78

macer Lec

70'

nigrinus Mannh., pi. 21, fig.
nitidus Sw
porculus Er., pi. 17,-fig. 8

ruber Sw
salebrosus Eichh.,
scaber S w
scobinosus Eichh

14, 16, 17, 30,
32, 35, 42, 54, 60

pi. 1, fig. 3; pi. 4, fig. 9; pi. 7, fig. 2;

Er., pl.'g,

asper S
ater Payk

1

70

J°

'°'
pi. 17, fig.

79
79
70

78, 79

6

12
77
^7
78
79

tenuis Eichh
Htlastinus Bedel

„'

15

14
9, 73
16, 70, 73, 74, 76
43, 74
(Hyl.\stes) pi. 5, fig. 6; pi. 10,

obscurus Marsh.,

pi. 19, fig. 2

brevicomis

pi. 16, fig. 1

pubescens Sw
pseudotsugae Sw.,

87
90
88
87
44, 82
89,90
87, 88
89
30,35,39, 54
34, 54
54
54

Hopk

borealis Hopk.,

130, 131

26

Hopk

piceae

87, 89.
87, 88

pi. 23, figs. 6,7

canadensis Chamb
grandis Chamb
granulatus Ratz
picea Ratz
pubescens Hopk

131
fig. 5; pi.

133

liquidambaris

89
87
87

amabilis Chamb
approximatus Hopk

14, 129, 131

39

9, fig.

Hopk

granicollis

93
92
92
11, 45
8, 16, 18, 45, 87, 94

29

18,130,132

5

10,18,22,25, 130, 131
eichhoffi

92,

10, fig.

55

pi. 20, fig.

caryi Hopk
confusus Sw.,

10,

92,

CORTHTLTJS Er
Crtphaltjs Er., pi.
abietis Ratz

fig. 5;

39
9, 46, 92, 97, 99

pi. 8, fig. 5;

Hopk

americanus Hopk., pi.
autographus Ratz
betulae Hopk., pi. 11,

17,23,58
58

coniperda Sz.,

35, 39, 55

affaber Mannh.,

36;

Chap

lecontei

14,23,61,63

16, 17, 32, 35, 50, 54
131, 132
pi.
pi. 10, fig. 31;
11, fig. 3; pi. 16,

abietis

89
39
44
39, 56
57
57
57
56, 57
56
42
32, 40, 58
58
58
58

BoTHRosTERNUs Eichh
Cactopinus Sz
Cabphoborus Eichh

pi.

5;

Dryocoetes Eichh

77
112
112
112
113
83
131

Dej
conformis Dej
chloroiicus

fig.

DoLURGus Eichh
pumilus Mannh

83, 85, 86, 115, 131

exesus Say
pini Say
politus Say
semicastaneus Mannh
terminalis Mannh

65
9, fig. 37; pi. 12, fig. 2;

Ky

simplex Lec,

67

22, 24, 62, 66, 67

28

rufipennis

pi. 3, fig. 3; pi. 11, fig. 1; pi. 18, fig. 16; 124,

populi Sw.,

2; pi. 12, figs. 4, 6; 22, 62, 66,

punctatus Lec

18,

125

obesus Lee,

61, 64

obesus Mannh., pi. 5, fig.
piceaperda Hopk
ponderosae Hopk
pseudotsugae Hopk., pi.

48

14

fig.

murrayanae Hopk

73
73

46, 48

Zimm

Anisandbus Ferr.,
dispar Fabr
minor Sw.,

43,
10, fig. 2; pi. 23, fig. 1

pi. 5, fig. 4; pi. 10,

fig.

Hylesinus Fabr. (see Leperisinus)
Hylurgopinus Sw

Hopk

141

rufipes Eichh.
fig. 1

opaculus Lec. (Hylesinus)

17,23,74
17, 23,

74


jasperi Sw. 123, 124
minutus Sw. 123, 124
spirae Lee, pl. 8, fig. 1; pl. 15, figs. 6, 7; pl. 16, fig. 3; pl. 10, figs. 2, 3; pl. 9, fig. 8; 22, 106, 122, 123
PLATYPUS Herbst 11, 39
wilsoni Sw., pl. 18, fig. 5; pl. 21, figs. 3, 4; 38
POLYGRAPHUS Er., 15, 16, 17, 23, 31, 32, 39, 54, 55
breviscornis Ky. (LEPIDOPTERA) 56
grandilava Thoms. (PSEUDOPOLYPHYTUS) 56
nigricpe Ky. (LEPIDOPTERA) 55, 56
rufipennis Ky., pl. 9, fig. 36; pl. 16, figs. 27, 27b; pl. 31, fig. 2; pl. 22, fig. 6; 22, 55, 56
saginatus Mannh. 55
PROCHITHALUS Hopk. 45, 50
striatus Mannh. 90
PSEUDOPOLYPHYTUS Sw. 40, 57
brittiani Sw. 57
E. perlae Lee. 85
PSEUDOPOLYPHYTUS Sw. 16, 30, 43, 74
grandis Sw., pl. 21, fig. 5; pl. 24, fig. 5; 75, 76
grandulatia Lee., pl. 22, fig. 1 74, 75
nubilis Lee., pl. 10, fig. 8; pl. 20, fig. 1; 74, 75
nobilis Lee. 75
obbus Sw. 75, 76
sericinus Mannh. 75, 76
sitchensis Sw. 75, 76
tusca Sw. 75, 76
PSEUDOPOLYPHYTUS Sw. 46, 93
minuteus Zimmer, pl. 4, fig. 2; pl. 9, fig. 24; 17, 23, 93, 94
piphus Lee. 94
pruinosus Eichh. 94
pubepennis Lee. 93
pulchellus Eichh. 94
quercipera Sa. 94
tomentosus Eichh. 94
PSEUDOPOLYPHYTUS Sw. 52
grandilava Thoms. (POLYGRAPHUS) 55
PETHIUS Bedel. 70
PTEROCLYDON Eichh. (Monarchium Kirsch), 11, 16, 45, 86
dentiger Lee. 86
fasciatum Say, pl. 9, fig. 32 86
gracil Lee. 86
longilatus Eichh. 57
mali Fitch, pl. 2, fig. 14; pl. 9, fig. 15; pl.10,fig. 36 86
scutellare Lee. 86
similis H. 86
RENOCUS Cry. 39
(REPODOPHLEURUS Chap.), CHROMESUS 58
SCIRUS Lee. 43, 73
(Scolytus Geoff.,) 50, 53, 54, 64
STEPHANODES Eichh. 16, 18, 33, 45
THYSANUS Lee. 44, 82
fimbriornis Lee. 83
rigida Lee. 82
TOMICUS Latr. 1802 (HYLASTES Eichh.) 77
(TOMICUS Latr., 1807) Ives DeGeer, 77, 107, 111, 122
thalassus Lee. (HYLASTES Eichh.) 123
caricographus Lee. (Eich.) 113
montanus Eichh. (Eich.) 113
praemorsus Eichh. (Eichh.) 113
spinifer Eichh. (ORTHOTOMICUS) 114
timeline Eichh. (Eich.) 116
xylographus Say, (XYLOBORUS) 127
xylographus (Fitch) (ORTHOTOMICUS) 121
TRYPONIONSTEMDORON Stephens 11, 12, 14, 30, 31, 44, 53, 84
135, 137
butilias Sw., pl. 3, fig. 7; pl. 9, fig. 34; pl. 18, fig. 6; 84, 85
bivittatum Ky., pl. 7, fig. 3; pl. 9, fig. 23; pl. 10, fig. 18. 85, 86
borealis Sw. 85
cavifrons Mannh. 85
ponderous Sw. 85, 86
ruftarsis Ky. 85, 86
retusus Lee., pl. 3, figs. 2, 4, 6, 11; pl. 8, figs. 1, 8; 9, figs. 10, 21; pl. 14, fig. 4; pl. 18, fig. 7; 9, 84, 85, 126
scabrirostris Lee. 84
TRYPOPODOPHLEUS Fain, 45, 90
nitus Sw., pl. 10, fig. 26. 90
XYLOBORUS Eichh. 8, 11, 12, 16, 30, 32, 50, 121, 122, 126
arthri H. 8, 11, 12, 16, 17, 50, 121, 122, 126
affinis Eichh. 127
canadensis Sw. 125, 127
celsus Eichh., pl. 9, fig. 27. 125, 128
fascatus Eichh. 125, 128
pons Eichh. 125, 128
impressus Eichh. 125, 128
inermis Eichh. 125, 128
propinquus Eichh. 126
poelescens Zimm. 126, 128
tachygraphus Zimm. (AMBROBIODOMUS) 48
saxesceni Ratz., pl. 2, fig. 13. 11, 126, 127
xylographus Say. 126, 127
XYLOBORUS Reit. 80, 120, 127
XYLOCLETES Ferr. 9, 32, 46, 50, 128
XYLOTERINUS Sw. 10, 31, 44, 83
pollitus Lee., pl. 9, figs. 19, 22; pl. 10, fig. 11. 10, 33
(XYLOBORUS Eichh.) (TRYPODENDRON), (XYLOBORUS) 84, 85
Swaine, James Malcolm, 1878-
Canadian bark-beetles: Ent. Part I