DR. H. G. BRONN'S
Klassen und Ordnungen
des
THIER-REICHS,
wissenschaftlich dargestellt
in Wort und Bild.
Fortgesetzt von
C. K. Hoffmann,
Doctor der Medizin und Philosophie, Professor in Leiden.
Mit auf Stein gezeichneten Abbildungen.
Sechster Band. III. Abtheilung.
REPTILIN.
II. Eidechsen und Wasserechsen.
Mit Tafel XLIX—CVII und 10 Holzschnitten.
Leipzig.
C. F. Winter'sche Verlagshandlung.
1890.
II. und III. Eidechsen und Wasserechsen (Saurii und Hydrosauria).

A. Anatomischer Theil.

I. Integument und Skelet.

(3) Cuvier. Leçons d'Anatomie comparée. 2. Ed. 1. Partie. 1835.
(18) C. B. Brühl. Das Skelet der Krokodillen, dargestellt in zwanzig Tafeln. 1862.

(30) W. Kitzen Parker. Monograph. on the structure and development of the Shouldergirdle and Sternum in the Vertebrates; in: Ray Society. 1868.

(49) C. B. Brühl. Zootomie aller Thierklassen. Wien 1876.

Integument und Hautskelet.

Bei den Sauurien und Crocodilen ist die äussere Haut wie bei den Schildkröten und allen anderen Wirbelthieren aus zwei Theilen zusammengesetzt, erstens aus einem Theile, welcher aus dem oberen Keimblatte hervorgegangen ist: die Epidermis; und zweitens aus einem Theile, welcher aus dem mittleren Keimblatte stammend, die wichtigste Rolle bei der Entstehung der Schuppen spielt: die Cutis.

Levdig (31, 37, 46), der in seinen verschiedenen Arbeiten über die Reptilienhaut diese äussereste Schicht einer sehr eingehenden Untersuchung und Betrachtung unterzogen hat, fasst dies Oberhautchen als eine helle homogene, weder durch Essigsäure noch durch Kalilauge in Zellen zerlegbare Schicht, also als eine wahre Cuticula auf, eine Ansicht, welcher sich Cartier (40) mehr oder weniger angeschlossen hat, indem dieser Forscher nachzuweisen sucht, dass die oberste Lage aus einem Verschmelzungsprozess der Epidermiszellen hervorgeht. Die Cuticula ist nach
Leydig nicht einfach glatt, sondern zeigt eine zellige, wellige, man könnte sagen schuppige Sculptur.

Auch Batelli (59) und Todaro (58) bezeichnen in Uebereinstimmung mit Kerbert die äussere Schicht als Epitrichialschicht (pellicola epidermica Todaro) und betrachten dieselbe als aus Zellen zusammengefügt und nicht als eine wahre Cuticula.

Die Leisten, die nach Cartier auf der Oberfläche der äusseren Schicht mancher Arten ein zierliches Maschenwerk darstellen und die er ebenfalls als Cuticularbildungen bezeichnet, lassen sich nach Kerbert nicht unter der Rubrik Cuticularbildungen unterbringen, sondern sind nach ihm wahre Zellen, deren Ränder stark nach oben umgekrümmt sind.

Der unter der Epitrichialschicht von Kerbert, Batelli und Todaro, resp. Cuticula von Leydig und Cartier liegende Theil der Epidermis zerfällt auch hier in zwei Hauptschichten: zu oberst das Stratum corneum, zu unterst das Stratum mucosum.

Das Stratum corneum besteht aus abgeplatteten, verhornten Zellen, in welchen man entweder manchmal noch deutliche Kerne wahrnehmen kann (Platydaactylus, Chamaeleon), oder in welchen diese Kerne weniger
deutlich sind und erst nach Zusatz von Kalilösung hervortreten. Im letzteren Falle ist die Hornschicht scheinbar homogen.

Eine eigenthümliche Beschaffenheit besitzt die Zellenschicht, welche direct unter der Epitrichialschicht gelegen ist. Diese Zellen sind meist von unregelmässiger Gestalt, bisweilen mehr oder weniger polygonal und sind dadurch charakterisirt, dass sie einen fein- oder grobkörnigen Inhalt besitzen. Zuerst von Blanchard (17) erwähnt, hat Leydig (31) sie näher beschrieben. Leydig hält die Körnchen in den Zellen für eine eigenthümliche Fettsubstanz. Ker bert gelang es nie, diese Fettsubstanz nachzuweisen. Diese Zellen nun sollen nach Ker bert in den oberen Epidermisschichten nirgends fehlen. Ley dig theilt mit, dass bei Anguis fragilis eine eigenthümliche Krankheit vorkommt, wobei das Thier sich von der abzustreifenden Haut nicht befreien kann; eine Erscheinung, welche mit einer starken Wucherung der ebenbesprochenen Zellenschicht zusammenfällt. Ker bert nennt diese Schicht, ihrer Beschaffenheit wegen, „Körnerschicht“; auch Batelli (59) betrachtet diese Lage als eine eigene Schicht (Stratum granulosum superius), während Todaro sie nicht besonders bezeichnet, siehe Taf. XLIX. Fig. 1. 2 und 3h.

Die übrigen Zellen der Hornschicht bieten keine besonderen Eigenthümlichkeiten dar, sie sind lamellenartig angeordnet, so dass man auf Quer- und Längsschnitten die ganze Hornschicht mit der Nadel in einzelne Lamellen zerfasern kann. Diese Schicht, welche Ker bert einfach als Stratum corneum bezeichnet, wird von Batelli wieder in ein Stratum corneum compactum und ein Stratum corneum relaxatum getheilt.

Unter der Hornschicht kann dann entweder direct das Rete Malpighii auftreten, oder es tritt zwischen beiden noch die neue Hornschicht auf. Man findet den ersten Fall bei Thieren, die sich eben gehäutet haben, den zweiten Fall dann, wenn das Thier gerade in der Häutung begriffen ist.

Zwischen Rete Malpighii und Hornschicht zeichnet sich gewöhnlich eine helle, durchscheinende Schicht aus und unterscheidet sich hauptsächlich von den anderen Zellenschichten dadurch, dass sie sich gegen Farbstoffe anders verhält (Stratum lucidum Ker bert). Nach Ker bert scheint dasselbe immer einen Theil der eigentlichen Hornschicht auszumachen und nicht zum Rete Malpighii zu gehören. Es wird bei der Häutung in Zusammenhang mit dem Stratum corneum abgestossen. Was Cartier (40) als äussere Cylindrlage bezeichnet, ist vielleicht nichts anderes als die unteren jungen Zellen des Stratum lucidum. Nach Batelli dagegen zeigt das Stratum lucidum von Ker bert, welches er als intermediäre Schicht betrachtet, keine constante Existenz.

Dagegen traf er, namentlich in einer der Häutung unmittelbar vorhergehenden Periode, eine ziemlich starke Schicht granulirter Zellen, zwischen der untersten Schicht des Stratum corneum (des Stratum corneum relaxatum von Batelli) und dem Rete Malpighii gelegen.

An gewissen Körperstellen nimmt die Oberhaut in ihrer Dicke so zu, dass man von Hornplatten und Hornschuppen reden kann, so z. B. an den Scheiden für die Krallenglieder, um das stumpfe Ende der Schneauze u. s. w. Man kann also die stark verhornte Epidermis als Hornschuppe den eigentlichen Schuppen oder Papillarkörpern gegenüberstellen.

Pigment kommt in der Epidermis nur sparsam vor und zwar nach Umständen entweder in der Form kugeliger, dicht schwarzer Flecken, oder weit und zierlich verästelter Pigmentfiguren, diese haben die Bedeutung beweglicher Farbzellen oder Chromatophoren. An der vom lebenden Thier abgeschnittenen Haut haben sie die erstgenannte Gestalt, später werden sie zu weit und zierlich verästelten Pigmentzellen; diese Formveränderungen beruhen, wie wir gleich sehen werden, auf Contractilitätserscheinungen.
Eine besondere Erwähnung verdienen die Epidermizellen in den sogenannten Haftlappen bei den *Geckotiden*, welche sich an der Unterseite der Zehen finden. Sie zeichnen sich durch ihre ausserordentlich regelmässige und auffallende Form aus. Ihre Gestalt von der Fläche gesehen zeigt Fig. 4. Taf. XLIX; offenbar hat das klammertartige Umfassen ein festeres Gefüge dieser Zellenlage zur Folge. Die Unterseite der Haftlappen ist in eine oder zwei Reihen von hinter einander liegenden Blättern getheilt, welche nichts Anderes sind, als in der Breite der Zehen sehr ausgedehnte Schuppen. Auf derjenigen Hälfte der Schuppenoberfläche, die an den freien Rand der Schuppe stösst, stehen eigenthümliche Bildungen, welche *Cartier* (40) als Cuticularbildungen beschreibt. Dieselben sind Büschel von Haaren, die in ungemeiner Anzahl und Grösse in regelmässigen Reihen fast dicht nebeneinander stehen. Ein solcher Büschel löst sich leicht ab und zeigt dann an seiner Basis eine trichter-förmige Aushöhlung (Taf. XLIX. Fig. 5), welche auf einen kleinen, konischen Zapfen der Epidermisoberfläche passt. Auch gelingt es hier bisweilen durch Zerzupfen, einzelne Büschel in Zusammenhang mit einem kernhaltigen Theilchen der Schleimschicht zu isoliren, welches man vielleicht als eine Zelle ansprechen darf. Jedensfalls soll die Entstehung der Cuticularhaare aus einzelnen Zellen hier eine evidente Sache sein. In Uebereinstimmung mit den Resultaten von *Cartier* theilt *Braun* (54) mit, dass die Querleisten an der Unterfläche der verbreiterten Zehen von *Anolius* in ganz ähnlicher Weise wie Haaren besetzt sind. Sie stehen in grosser Zahl auf ganz homogenen, stark leichtbrechenden, etwas bräunlich gefärbten Platten, die nach *Braun* als echte Cuticularbildungen angesehen werden müssen.

Cutis. Aus den Untersuchungen von *Hensinger* (System der Histologie 1822), *Hyrtl* (5a) und hauptsächlich von *Leydig* wissen wir, dass die Schuppen der Reptilien nichts als Papillen der Lederhaut sind, welche entweder einfache, mehr oder weniger stark entwickelte Höcker bilden oder plattgedrückt und nach hinten umgebogen sind.

Es ist hauptsächlich *Leydig* gewesen, der sich eingehend mit der Untersuchung der *Cutis* beschäftigt hat. Aus seinen schönen Untersuchungen wissen wir, dass das Bindegewebe der Lederhaut in drei Hauptschichten zerfällt, nämlich in die Grundmasse und in zwei Grenzschichten. Die Grund- oder Hauptmasse (Tela subcutanea: *Batelli*) besteht aus einer Anzahl derber, wagerechter Lagen. Die obere Grenzschicht, also diejenige, welche unter der Epidermis folgt (Stratum limitans superius: *Batelli*) und jene, welche die Haut nach unten abschliesst (Stratum limitans inferius: *Batelli*), sind weicher, lockerer und setzen sich in charakteristischer Weise, mitten durch die wagerechte Lage, mittels senkrecht aufsteigender Züge in Verbindung. Auch die Enden der Querlagen biegen in diese säulenartige Bündel auf (Taf. XIL. Fig. 6). Um
sich zu überzeugen, dass die Schuppen wirklich nichts anderes als Hautpapillen sind, that man nach Leydig am besten, wenn man von Hautpartien ausgeht, wo die Papillen noch klein sind, wie z. B. an den Augenlidern, sowie in der Fläche der Fusssohle, indem hier die einfache vergleichende Betrachtung lehrt, dass diese kleinen Papillen, — die Körner, wie die systematische Zoologie sie nennt, — allmählich in das übergehen, was man Schuppen und Platten nennt, welche aber in der That die Eigenschaften grosser, niedergedrückter Papillen haben.

Wie es für die Amphibien gesetzmässig ist, dass das Pigment sich ausschliesslich in der oberen und unteren Grenzschicht, so wie in den beide verbindenden senkrechten Zügen absetzen, so wiederholt sich ähnliches bei den Sauriern; hier liegt ebenfalls die weitaus grösste Masse der Pigmente in dem Papillarkörper.

Nachdem man beim Chamaeleon durch Milne-Edwards und Wittich besonders durch die Arbeiten von Brücke (8) erkannt hatte, dass die Bewegungen des dunklen Pigmentes, das Aufsteigen aus der Tiefe der Haut und dann wieder das Zurücksinken in die Tiefe der Hauptgrund des Farbenwechsels seien, entstand mit Recht die Frage, was dann eigentlich sich bewege. Studiati's (12) Meinung, dass das Gewebe der Lederhaut (also die Rindensubstanz) sich zusammenziehe, braucht wohl nicht näher widerlegt zu werden. De Filippi (22) betrachtet dieselbe vielmehr als ausserhalb der Zelle selbst gelegen. Leydig dagegen schreibt die Ursache dem Protoplasma der Farbzellen zu, welches durch seine Bewegungen die Formveränderungen der Chromatophoren hervorrufe. Dass diese Auffassung Leydig's wohl die richtige ist, wird besonders durch das Factum gestützt, dass Leydig seine Ausläufer der Hautnerven mit den Ausläufern der Pigmentzellen sich verbinden sah (Taf. L. Fig. 2). Höchst merkwürdig ist jedenfalls die Thatsache, dass durch die Thätigkeit der Chromatophoren eine Verähnlichung der Hautfarbe des Thieres mit der Grundfarbe des Wohnortes zu Stande kommen kann.

Bei den einheimischen Sauriern fand Leydig ebenso wie de Filippi bei Stellio caucasicus, dass in Gegensatz zum Chamaeleon dieselben schwärzlich werden, wenn man sie im Dunkeln hält und sich wieder aufhellen bei voll einwirkendem Lichte. Bei Stellio caucasicus unterschied die mikroskopische Untersuchung zweierlei Pigmente, ein gelblich weisses, welches sich oberflächlich ausbreitet, und ein dunkles in der Tiefe der Haut gelegenes. Dass die Grundveränderung der Farbe von dem letzteren Pigment ausgeht, wird schon daraus klar, dass der junge Stellio dieses Pigment in seiner Haut noch nicht besitzt und auch die Farbe zu ändern ausser Stande ist.

Kerbert erwähnt, dass in der „oberen Grenzschicht“ der Cutis bei Platydactylus guttatus merkwürdige Gebilde vorkommen, indem das Bindegewebe hier nach der Epidermis zu grössere und kleinere Maschen zeigt, die überall mit bläschenförmigen Gebilden gefüllt sind und dann und wann einen gelben Anflug zeigen. Es kommen auch Bläschen vor, welche
Reptilien.

Nachher hat Todaro den Beweis geliefert, dass die Nervenenden sich direct mit Zellen der genannten Sinnesorgane verbinden.

Wie Leydig weiter bemerkt, verbreiten die Eidechsen und Blindschleichen, wenn man sie im frischen Zustande zergliedert, einen eigenthümlichen Geruch, ohne dass wirklich Hautdrüsen, mit Ausnahme der hier nicht in Betracht kommenden Schenkeldrüsen, zugegen sind. Der Geruch scheint hier von den becherförmigen Organen auszugehen, was dadurch noch wahrscheinlicher wird, dass frisch abgekochte Blindschleichen zunächst nichts von dem Geruch verspüren lassen, sobald man aber die Epidermis abreibt, lassen sie sofort noch die Spuren des in frischem Zustande so stark hervortretenden eigenthümlichen Geruchs wahrnehmen.

Später hat Leydig ähnliche Organe auch bei den Geckoliden gefunden, wo sie schon früher von Cartier (40) entdeckt waren. Cartier traf sie bei allen untersuchten Arten der Geckoliden über die ganze Oberfläche verbreitet. Die Stelle, wo ein solches Organ liegt, ist auf der Oberfläche der Epidermis bei den Geckoliden jedesmal durch eine eigenthümliche Bildung markirt, welche Cartier als „Cuticularhaare der Sinnesorgane“ bezeichnet hat.

Was die Zahl dieser Haare betrifft, so finden sich auf einem Epidermishügel, der einem Sinnesorgan entspricht, entweder eines oder zwei bis fünf und zwar nach Cartier entweder bei einer Art nur die erste Form, oder beide Formen gemischt. Die Haare selbst sind glänzend, stark lichtbrechend, zugespitzt, an der Spitze oft einfach oder selbst mehrfach verästelt, oder mit einem Härrchen ausgestattet. Sie haben durchschnittlich eine Länge von 22 Mikromillimeter. Auch bei anderen Sauriern (Stenodactylus, Draco) kommen diese Cuticularhaare und zwar noch entwickelter und in etwas anderer Weise vor.

Ob bei dem Vermögen zu phosphoresciren, welches manchen Arten von Gecko zugeschrieben wird, diese Sinnesorgane sich auch betheiligen, ist noch fraglich.

Schliesslich hebt Batelli (59) hervor, dass ihm stets die erhebliche Menge und die Stärke der Nervenfasern aufgefallen sei, welche sich bis zur oberflächlichen Lage der oberen Grenzschicht im Bereich der ganzen Haut der Reptilien begeben. Es gelang ihm an Goldpräparaten, namentlich der Unterkieferhaut von Lacerta viridis und Anguis fragilis, nachzuweisen, dass an vielen Stellen eine Menge Nervenfasern zur Epidermis

Dass wirklich die Kanäle der knöchernen Hautschilder von Anguis fragilis nicht Luft, sondern Blutgefäße enthalten, dafür lieferte auch Lataste (55) durch Injection den Beweis.

Durchschnittlich ergiebt sich, dass es schiefgerichtete Einstülplungen des Rete Malpighii sind. Ueber die Bedeutung dieser Einstülplungen weiss Batelli nichts weiter anzugeben.

Das bindegewebige Gerüst der Drüsen ist verhältnissmässig zart, streifig und von Kernen unterbrochen, es enthält weder nach aussen, noch nach innen aufgelagert muskulöse Elemente; hingegen trägt es Blutgefäss, welche in ziemlich dichten Maschen die beerigen und schlanchförmigen Abtheilungen der Drüse umspinnen und auch durch zarte, scheidenartige Vorsprünge der Drüsenhaut ins Innere geleitet werden.

An der Öffnung der Drüsen fehlt nach Batelli die Epithelialschicht, alle übrigen Schichten der Epidermis stützen sich indessen hier in die Tiefe ein, wobei die oberen Schichten der Hornhaut (das Stratum corneum compactum von Batelli) die Hauptrolle spielt. Dasselbe bildet einen Pfropf dicht gedrängter Zellen, die sich nur äusserst schwer isoliren oder tingiren lassen, wenngleich der ganze Pfropf leicht herausgehoben werden kann. Die obere Lage des Rete Malpighii setzt sich öfters nicht bis ins blinde Ende fort, stets aber die Cylinderzellen.

Entwicklung der Cutis. Die ersten genaueren Angaben über die Entwicklung der Reptilienhaut verdanken wir wohl ker bert. Er fand bei Embryonen in der Periode, in welcher sich die Kiemenspalten völlig schliessen, die äussere Haut oder die Epidermis zweischichtig. Unter der unteren Zellenschicht sieht man eine dritte Lage, die aus grossen, runden Zellen besteht, zwischen welchen sich einzelne Fasern befinden, und welche die erste Anlage der Cutis repräsentirt.

Untersucht man nun bei dem aus dem Ei gekrochene Thiere die Structur der Epidermis, so gibt uns dies den besten Aufschluss über die Vorgänge des Häutungsprocesses. Zu oberst hat man die Hornschicht mit der Epitrichialschicht (Taf. XLIX. Fig. 10), die letztere kenntlich an ihrem gezähnelten Aussene. Die Zähne oder Erhebungen ergeben sich als die Durchschnitte der „Längsleisten“. Unter der Hornschicht nun, welche bei der ersten Häutung abgeworfen werden soll, wird schon jetzt wieder die neue Hornschicht gebildet, und zwar ganz genau auf dieselbe Weise, wie überhaupt die Epidermis, oder besser die erste Hornschicht, entstanden ist. Wir sehen, direct unter der Hornschicht, zu oberst die neue Epitrichialschicht (e'), unter dieser die neue „Körnerschicht“ (k) und endlich die Zellen des Rete Malpighii, welche hier schon wieder ein Paar kleinere, runde Zellen gebildet haben.

Cutis. Bei Embryonen, deren Kiemenöffnungen schon vollständig geschlossen sind, sieht man hinter dem Kopfe, und zwar an den Seitentheilen des Halses, die ersten Anlagen der Schuppen als kleine Höckerchen, entstanden durch partielle Wucherung des unter der Epidermis liegenden Bindegewebes, auftreten; mit anderen Worten, es entstehen in dieser Periode die ersten Cutispapillen.

Zwischen Epitrichial- und Schleimschicht treten einige runde Zellen auf, die durch Querteilung der darunter liegenden cylindrischen Zellen der Schleimschicht entstanden sind. Zu gleicher Zeit mit der Entstehung der Papille entsteht also auch die erste Anlage des „Hornschuppen“ im engeren Sinne.

Die Längsaxe der Papille resp. Schuppe steht bis jetzt senkrecht auf der allgemeinen Richtung der Haut; mit anderen Worten, die Papillen wuchern radiär symmetrisch, später biegen sie sich etwas nach hinten um, werden mehr und mehr abgeplattet und wachsen also bilater symmetrisch weiter. Erst dann, wenn die wirkliche Schuppennatur deutlich ausgeprägt und nicht mehr zu erkennen ist, tritt das Pigment in der Haut auf, und wohl nicht zuerst in der Cutis, wo man ihn hauptsächlich beim ausgewachsenen Thier begegnet, sondern in der Epidermis. Und zwar tritt die Färbung in der Epidermis in Form von verzweigten Pigmentzellen auf. Diese verzweigten Pigmentzellen in der Epidermis sind nach Kerbert nichts anderes als wandernde Bindegewebsszellen, welche in die Epidermis eindringen, sich hier verzweigen und Pigmentkörnchen bilden. Bei dem ausgewachsenen Thier ist von diesen Pigmentzellen in der Epidermis keine mehr zu sehen, sondern sie sind hier alle in die Cutis hinuntergerückt, nur bei den Lacertinen werden sie dann und wann noch in der Epidermis angetroffen.

Beim Auskriechen aus dem Ei ist die Schuppe schon vollständig ausgebildet und hat schon genau dieselbe Beschaffenheit, welche wir früher für das ausgewachsene Thier beschrieben haben.

Der Modus der Häutung ist sehr genau von Todaro (58) dargestellt. Derselbe verläuft nach ihm in drei Perioden. Die erste Periode ist charakterisiert durch eine beträchtliche Neubildung der Epidermis; dieser Process verläuft einerseits in einer Proliferation der untersten Cylinderzellenlage, wodurch es zur Bildung von neuen polygonalen (Riff-) Zellen kommt, andererseits entwickelt sich aus den oberen Lagen der Malpighischen Schichten ein protoplasmatisches Stratum (Strato grassosos), das bald in eine der Hornschicht sich anschließende Lage (Strato corneo granuloso) übergeht, während sich zugleich unter derselben eine aus hellen Zellen bestehende Schicht (Strato lucido) und eine durch Körnchenreichtum der Zellen ausgezeichnete, aber nur auf den Convexitäten der Schuppen gebildete Lage (Strato glandolare) aus dem Rete Malpighii differenziert. Zu dieser Zeit besteht somit die Haut von aussen nach innen aus folgenden Schichten: 1) Pellicula (Epitrichialschicht); 2) Stratum corneum compactum und relaxatum; 3) Stratum corneum

Crocodile. Bei den Crocodilen begegnet man zwei deutlich verschiedenen Arten von Hautbewaffnung, die eine besteht aus Hornplatten, die aus einer Modification der oberflächlichen Schichten der Epidermis hervorgegangen sind, die andere aus Knochenscheiben. Dieselben sind durch eine eigenthümliche, an der äusseren Fläche zahlreiche kleine grubenförmige Vertiefungen zeigende Sculptur ausgezeichnet und entwickeln sich wie bei den Sau Riern in der Cutis selbst.

Bei den Gattungen Alligator (A. mississippiensis), Crocodilus (C. vulgarius, biporcatus, americanus, rhombifer, bombifrons), Mecistops (M. catastrophactus), Rhynechosaurus und Gavialis (G. gangeticus) sind die Ränder der Schilder, mit Ausnahme der zwei medialen longitudinalen Reihen, durch Nähte fest mit einander verbunden. Dagegen sind bei den Gattungen Caiman und Jacare die lateralen Ränder sowohl von Bauch- als Rückenschildern durch gezahnte Nähte mit einander vereint, und das Vorderende der äusseren Fläche eines jeden Schildes ist mit einer
deutlichen, glatten Facette versehen, welche von der glatten Unterfläche des vorhergehenden gedeckt wird.

Um den Bau des Integuments bei den Crocodilen gut zu verstehen, ist es gut, auch hier die Untersuchung bei Embryonen oder jungen Thieren anzufangen. Taf. L. Fig. 4 ist ein Querschnitt durch die Epidermis eines schon ziemlich alten Embryo von Alligator. Die Zellen des Rete Malpighii bilden ein einschichtiges Lager von kurzen Cylinderzellen. Dieselben haben eine Länge von 0,016—0,017 Millim.; darüber begegnet man einigen mehr oder weniger abgeplatteten, scheibenförmigen Zellen, die durch Quertheilung der darunter liegenden Zellen des Rete Malpighii gebildet sind. Zu äusserst liegt die Epitrichialschicht, dieselbe besteht aus einer recht schönen Mosaik polygonaler Zellen, welche durch einander genommen einen Diameter von 0,040—0,045 Millim. haben, in jeder dieser Zellen liegt ungefähr in der Mitte ein ovaler Kern, der einen longitudinalen Diameter von 0,009 Millim., bei einem transversalen von 0,006 Millim. hat.

Zwischen den Epitrichialzellen kommen kleine ovale Löcher vor, den Stomata in der Epidermis der Pflanzenzellen nicht mäthlich. Ich fand diese Löcher so regelmässig wieder, dass es mir nicht wahrscheinlich vorkommt, dass sie Kunstprodukte sind (vergl. Taf. L. Fig. 7), ihre Bedeutung ist mir durchaus unbekannt geblieben. Untersucht man die Epidermis junger und halb ausgewachsender Thiere, denn nur diese standen mir zur Verfügung, dann findet man, dass die Zellen des Rete Malpighii s. Stratum mucosum wie bei den Embryonen eine Lage mehr oder weniger deutlich ausgeprägte, cylindrische Zellen bilden, dieselben stehen immer nur in einer einzigen Schicht. Wie bei den Schildkröten ist das Protoplasma dieser Zellen, deren jede einen sehr grossen, mit einem Kernkörperehen verseheneen Kern einschliesst, fein granulirt, der Inhalt des Kernes dagegen mehr grobkörnig. Auf dieses Cylinderepithelium folgen sich abflachende und allmählich ganz platt werdende Zellen, die an der
inneren Grenze der Hornschicht ihre Kerne verlieren und so in die Hornschicht übergehen.

Ferner ist, wie Rathke angiebt, nach den Wahrnehmungen, welche er an Crocodilus vulgaris, biporcatus und acutus gemacht hat, wahrscheinlich bei allen Arten dieser Gattung auf einer jeden von den buckelförmigen Hervorragungen, die sich an der rechten und linken Seite des Halses und Rumpfes befinden, eine kleine und flache runde Grube
Anatomie.

Ich habe diese grubenförmigen Vertiefungen auf seinen Querschnitten etwas genauer zu studiren versucht, bin aber nicht weiter als Rathke gekommen. Anfangs glaubte ich, dass es sich hier vielleicht um Nerven-endigungen handelte, aber ich habe davon mit Bestimmtheit nichts sicherer auffinden können.

Was die Lederhaut betrifft, so ergiebt sich, dass dieselbe bei den Crocodilen ähnlich wie bei den Sauriern gebaut ist. Auch hier besteht sie aus drei Hauptschichten; der Grundmasse und zwei Grenzschichten. Die Grund- oder Hauptmasse besteht aus einer sehr grossen Anzahl dicht an einander liegender derber, wagnerchter Lagen. Die obere Grenzschicht, also die, welche unter der Epidermis folgt und jene, welche die Haut nach unten abschliesst, sind weicher und lockerer und stehen mittels jedoch nur spärlich vorhandener, mitten durch die wagrechten Lagen senkrecht aufsteigender Züge in Verbindung.

Die Hautknochen bei den Crocodilen, von welchen schon die Rede war, nehmen ihre Entstehung in dem Bindegewebe der Cutis. Untersucht man diese Hautknochen bei jungen Thieren, so ergiebt sich, dass dieselben gewöhnlich in den unteren und mittleren Schichten der Cutis ihren Ursprung nehmen, und so allmählich nach der Peripherie sich ausdehnen. —
Die Wirbelsäule und ihre Anhänge.

Wie bei den Schildkröten, so lassen sich auch bei den meisten Sauriern und bei den Crocodilien an der Wirbelsäule Hals-, Dorsolumbal-, Sacral- und Schwanzwirbel unterscheiden.

Anatomie.

unter in den Intervertebralknorpel über, nach vorn und hinten in den ringförmigen Wirbelkörper.

Was die Chorda angeht, so ist das Volum des vertebrale Abschnittes gänzlich unverändert, dagegen ist der intervertebrale Abschnitt beträcht-­lich länger und dünner geworden, so dass also das Einwachsen des Intervertebralknopels mit der gleichzeitigen Volumszunahme dadurch einfach constatirt wird. Die Verdrängung der Chorda erfolgt aber nur von den Seiten her, denn auf senkrechten Querschnitten erscheint die Chorda im intervertebralen Gebiete zwar sehr schmal, aber von ansehnlicher Höhe. Sie zieht also wie ein senkrechtstehendes Band durch den Intervertebralknorpel. Die Chorda selbst wie ihre Scheide ist dabei in ununterbrochenem Verlaufe. Im intervertebralen, engeren Theile sind die Chordazellen gestreckt, zum Theil auch etwas gerissen, im vertebalen Abschnitte besteht die Chorda in völlig unversehrter Lage.

Bei einjährigen Eidechsen hat jeder Wirbelkörper sich anscheinend nach hinten verlängert und es ist damit der centrale Theil gleichsan
Diese leren Intervertebralknorpel die einen oberen die dort, Bogen, steht. Reicht der, die der Gelenkkopf ab. In den Bogen finden sich gleichfalls Markräume vor, und zwar in der Regel ein einziger, weiter, bis dicht unter die secundären Faserknöchenschichten reichender, der aber mit denen im Wirbelkörper wenig in Zusammenhang steht. Die Körper der Wirbel sind bis auf jenes frühere Basaltstück der Bogen, die nunmehr in den Körper eingetreten sind, verkalkt, und vom Intervertebralknorpel ist nur noch der Gelenkflächenübergang im hyalen Zustande. Die Verkalkung setzt sich auf die Bogen fort, bildet aber dort, wie an den Querfortsätzen nur eine äussere Schicht.

überlagert wird, geht allmählich der definitive Wirbel aus der knorpeligen Anlage hervor. Die Knochenlamellen erstrecken sich vom Körper aus continuirlich auf die Bogen nebst Fortsätze, und indem dies sowohl aussen als vom Rückgratcanale aus erfolgt, wird noch mehr von den ursprünglichen Bogen zu dem Körper herangezogen. Wie der fertige Wirbel ausweist, sind die am Körper angelagerten Knochenschichten an der ventralen Fläche am mächtigsten.

Das völlige Verschwinden des Chordarestes im Innern des Wirbelkörpers steht im Zusammenhang mit den Veränderungen, die der verkalkte Knorpel im Wirbelkörper erleidet. So lange dieser fortbesteht, bleibt auch der Chordarest unversehrt. Durch Theilungen der Knorpelzellen gehen Haufen viel kleinerer, rund her Zellen hervor, welche die ursprünglich von je einer Zelle eingenommenen Hohlräume füllen. Dann werden die verkalkten Zwischenwände resorbirt und so entstehen die ersten Markräume im Knorpel des Wirbelkörpers; durch Zusammenfließen mehrerer infolge der Fortsetzung des vorhin erwähntes Vorganges bilden sich Markcanäle, alle mit jungen Zellen (embryonalem Marke) erfüllt. Dadurch wird der grösste Theil des Wirbelkörperrnkrupels umgewandelt. An den Wandungen der Canäle entsteht eine dünne Endostlage, die, indem sie durch Kalkaufnahme sclerosirt, die Bildung von concentrisch geschichteten Lamellen veranlasst. Die Markräume sind aber auch gegen den Chordarest eingewachsen und haben so die letzte Spur zerstört. An einem jungen, nur 8 Zoll langen Exemplare vom *Lacerta* fund Gegenbaur noch deutliche Reste der Chordascheide in den Gelenkknorpeln der Schwanzwirbel vor. Bei *Lacerta* verschwand die Chorda erst nach dem ersten Jahre. (Vergl. hierzu Taf. L. Fig. 10 u. 11 und Taf. LII. Fig. 1.)

Höchst eigenthümlich verhalten sich die Wirbel der *Gecko*. Jeder Wirbelkörper besteht aus einer ausseren Knochenscheide, die hinsichtlich ihrer Form am besten einem Doppelkegel verglichen wird. Sie wird aus continuirlichen Lamellen von Faserknochen gebildet und ist in der Mitte der Wirbelkörper am stärksten, indess sie gegen die Enden zu abnimmt. In der Mitte des Wirbelkörpers wird sie von Markcanälen durchsetzt, die eine gewisse Regelmaessigkeit in der Anordnung zeigen. Die Enden zweier Wirbelkörper sind durch Bandmasse unter einander verbunden und diese Bandmasse erstreckt sich nach innen, um unter den knöchernen Theil des Wirbels zu treten und einen Theil des von letzterem gebildeten kegelförmigen Raumes zu erfüllen. Zu äusserst ist diese Masse faserig, mit spärlichen Zellen versehen, nach innen, aber ohne scharfe Grenzmarke, wird die Grundsubstanz mehr homogen und zeigt bei schwacher Vergrösserung auf Querschnitten betrachtet concentrisch angeordnete spindelförmige Körper, die nach innen zu an Zahl und Volumen zunehmen und unter stärkerer Vergrösserung als Gruppen von Zellen sich kundgeben. Es kann nach Gegenbaur kein Bedenken getragen werden,

Der Intervertebralknorpel fällt nicht den ganzen Doppelkegelhohlraum aus, vielmehr lässt er eine centrale, durch die Axe des Wirbelkörpers hindurchziehende Partie frei, und diese wird eingenommen von der Chorda dorsalis.

Bei Phyllodactylus zieht sich die Chorda durch die ganze Länge der Wirbelsäule, Erweiterungen in den intervertebralen Abschnitten, Verengungen in Mitte der Wirbelkörper darbietend. Die Dicke der Chorda beträgt im Intervertebralen fast gerade so viel als die Dicke des Wirbelkörpers in der Mitte. Auch bei Hemidactylus ist der intervertebrale Abschnitt erweitert und verjüngt sich allmählich gegen die Mitte des Wirbelkörpers zu. In beiden Gattungen, so wie bei Platydactylus ist die Chorda (an den Schwanzwirbeln) in ein Knorpelstück umgewandelt, über welches die Scheide hinwegzieht.

Der Intervertebralknorpel hat bei Phyllodactylus die geringste Dicke, was durch die intervertebrale Chorda-Entfaltung bedingt wird, dagegen erstreckt er sich mit einer dünnen Schichte durch den ganzen Wirbelkörper. Die dem Knochen anliegende Fläche ist verkalkt und gegen die Enden der Wirbelkörper dringt die Verkalkung noch tiefer vor.

Bei den Reptilien nämlich kommt eine beträchtliche Entwicklung des perichordalen Knorpels vor, der nicht bloss intervertebral sich entwickelt, sondern auch vertebral, und durch seine erste Verkalkung den knöchernen Wirbelkörper um die Chorda herum anlegt. Bei den Amphibien tritt die Bildung von Faserknochenlamellen dicht auf den vertebralen Abschnitt der Chorda. So ist es auch bei den Geckonen der Fall, bei denen der durch den Knorpel ausgezeichnete Abschnitt der Chorda nur durch eine dünne Knorpellage von den Faserknochenschichten getrennt ist. Bei dem Wachsthum des Wirbelkörpers sind bei den Geckonen drei verschiedene Stücke betheiligt, erstlich die knöcherne Scheide, die an

Brønns, Klassen des Thier-Reichs. VI. 3.
beiden Enden fortwächst, dann der intervertebrale Knorpel, der in denselben Grade, als die Basen der knöchernen Doppelkegel grösser werden, dieser Volumserweiterung sich adaptirt, und endlich drittens die Chorda selbst. Bei Phyllodactylus muss sie ein anschauliches intervertebrales Wachsthunm besitzen, denn abgesehen von der ausserordentlichen Verlängerung, die sie mit dem Längenwachsthunm der Gesamtwirbelsäule eingehen muss, besitzt man einen intervertebralen Querdurchmesser, der gerade um das Doppelte so gross ist, als der vertebrale, an dem die ursprüngliche Dicke der Chorda erhalten bleibt.

Bei den lebenden Sauriern findet man nicht mehr als neun Wirbel in der Halsgegend, und selbst diese Zahl ist selten; die Zahl war grösser in einigen ausgestorbenen.

Die Körper der letzten Schwanzwirbel sind bei den wahren Sauriern sehr verschmäuchigt und was besonders auffällig und wie L ey d i g hervorgehebt, erwähnenswerth ist, sie haben bei Lacerta vorne und hinten eine Concavität, also keinen Gelenkkopf mehr, mit anderen Worten, sie sind amphicoel.

Die oberen Bogen sämmtlicher Wirbel, vom Epistropheus an gerechnet, sind so verbreitert, dass sie den Rückgratscanal nach oben völlig schliessen. Der obere Dornfortsatz (Processus spinosus) der Halswirbel ist bei einigen (Lacerta) an seinem freien Ende deutlich, wenn auch
schwach gegabelt, gegen den sechsten und siebenten Wirbel verliert sich diese Bildung und der Processus spinosus geht mehr ins einfach Leisten-förmige über, an den Schwanzwirbeln ins einfach Spitzige. Bei einigen Sauen sind die Dornfortsätze an vielen Rückenwirbeln und an den vordersten Schwanzwirbeln ausserordentlich verlängert, indem sie die soliden Stützen des hohen Rückenkammes bilden, so z. B. bei *Lophura amboinensis* u. A.

Gewöhnlich vom Epistropheus an findet man an den Halswirbeln untere Dornfortsätze, die ich als „Hypapophysen“ bezeichnen werde. Nach Leydig sitzt bei *Lacerta* unten am Körper des Epistropheus ein solches Dornstück, welches seine Abgrenzungslinie gut behält. Rückwärts nehmen diese unteren Dornfortsätze an Grösse ab, am sechsten Halswirbel ist derselbe schon sehr winzig und am siebenten zu einem paarigen Knöchelchen geworden, das aber nochmals in wieder schwächerer Ausbildung sich am achten Halswirbel zeigt (vergl. Taf. LI. Fig. 1).

Bei *Anguis fragilis* trägt der Epistropheus an seiner unteren Fläche zwei hinten einander stehende Dornen, deren Grenzlinien nach Leydig am Körper deutlich bleiben. Beim dritten und vierten Halswirbel sind bei *Anguis* die unteren Dornen noch vorhanden und wie fest verwachsen mit dem Körper, an den folgenden Halswirbeln haben sie sich schon verloren. Bei *Lacerta* lösen sich die in Rede stehenden Knöchelchen nach Leydig bei der Maceration vom Wirbelkörper ebenso leicht ab, als solches mit den unteren Bogen der Schwanzwirbel der Fall ist. Diese Erscheinung, so wie die Thatsache, dass die unteren Dornfortsätze der Halswirbel in ihrer Entstehung paarig sind und wohl erst, indem sie sich vergrössern, zusammenschmelzen, lässt Leydig in diesen Bildungen die Homologa der unteren Bogen der Schwanzwirbel erblicken, wenn sie auch am Halsabschnitt der Wirbelsäule etwas anderes zu leisten haben, als am Schwanz. Gegenbaur (57) erklärt, dass er die sogenannten unteren Dornfortsätze auch bei den Eidechsen für ganz selbständige Fortsätze des Wirbelkörpers hält. Es ist dies eine natürliche Folge seiner Annahme, dass bei den Reptilien die unteren Bogen der Schwanzwirbel in Rippen homolog seien. Ueber diese unteren Dornfortsätze sagt Huxley: „Eine besondere Verknöcherung erscheint dann und wann auf der Unterseite der Wirbelsäule am Vereinigungspunkt jedes Wirbelpaares. Gewöhnlich ist eine solche besondere Verknöcherung, der untere Bogen, unter und zwischen den Zahnfortsatz und dem Körper des zweiten Wirbels entwickelt.“ Dem Namen nach zu schliessen scheint also auch Huxley die unteren Dornfortsätze der Halswirbel (untere Bogen: Huxley) den der Schwanzwirbel homolog zu halten. Die Rumpfgegend entbehrt der unteren Bogen, sie beginnen erst wieder am Schwanz, gewöhnlich am vierten, zuweilen erst am fünften, mitunter auch schon am dritten oder selbst zweiten Schwanzwirbel. An den letzten Schwanzwirbeln zeigen sich die unteren Bogen sehr zurückgebildet, sie sind nach unten offen, bis sie schliesslich vollständig schwinden.
Was die Stelle der unteren Bogen betrifft, so gibt Leydig an, dass sie da ansitzen, wo zwei Wirbel aufeinanderstossen, wobei sie jedoch eigentlich dem vorderen angehören. Dagegen gibt Gegenbaur an, dass sie in unmer zwischen zwei Wirbelkörpern sich befestigen, ähnliches theilt auch Owen mit. Umgekehrt findet man bei Huxley angegeben, dass sie in der Regel an den Köpfen der verschiedenen Wirbel, nicht aber in den Zwischenräumen zwischen auf einander folgenden Wirbeln befestigt sind.

In wie fern die Ansichten Leydig's richtig sind, dass die unteren Bogen — die Hypapophysen — der Halswirbel, mit den unteren Bogen der Schwanzwirbel — den Haemapophysen — homolog sind, wird nur durch das Studium der Entwicklung beider Bildungen festzustellen sein. Für Leydig's Meinung sprechen folgende Gründe: 1) dass die unteren Dornfortsätze auch an den unteren Halswirbeln paarig auftreten können (vergl. Taf. II. Fig. 1); 2) dass sie hier eine ähnliche Lage als an den Schwanzwirbeln einnehmen, indem sie hier wie dort an der Stelle den Wirbelkörpern angeschlungen, wo zwei Wirbel aufeinander folgen.

Was die Lage der unteren Bogen an den Schwanzwirbeln — die Haemapophysen — betrifft, so stimme ich mit Leydig und Huxley darin überein, dass sie nur scheinbar in den Zwischenräumen, zwischen aufeinander folgenden Wirbeln befestigt sind, sie treten aber wirklich von dem Wirbelkörper selbst ab, nämlich dort, wo sich der Gelenkkopf befindet; sehr deutlich liess sich dieses z. B. nachweisen an den grossen Schwanzwirbeln eines Goniocephalus dilophus (vergl. Taf. II. Fig. 2).

Bei jungen Embryonen fand ich, dass diese unteren Bogen in continuirlichem Zusammenhang mit dem Wirbelkörper standen, sie verknochern aber selbständig und gliedern sich dann von dem Wirbelkörper ab und bleiben darauf mit demselben durch ein dem Faserknorpel am meisten ähnliches Gewebe in einer beweglichen Verbindung. Bei den Geckonen dagegen fand ich sie mit dem Wirbelkörper (auch bei ausgewachsenen Thieren) in continuirlichem Zusammenhang stehen bleiben und die Markräume des Wirbelkörpers setzen sich unmittelbar in die der verknochten unteren Bogen fort (vergl. Taf. II. Fig. 3). Ähnliches giebt Stannius an für die fusslosen Saurier.

Wie sie bei noch jüngeren Embryonen, als ich zu untersuchen Gelegenheit hatte, sich verhalten, bleibt noch festzustellen.

Über die sogenannten Querfortsätze der beiden Sacralwirbel, so wie über die der Schwanzwirbel, wird bei der Rippe näher gesprochen werden.

Eine Untersuchung über die Entwicklung des Atlas und Epistropheus zeigt, dass dieselben bei ganz jungen Embryonen sich vollkommen so verhalten, wie die übrigen Wirbel. Erst in späteren Entwicklungsstadien tritt eine Differenzirung ein, die zu dem oben angegebenen Verhältniss führt, wie Schnitte am deutlichsten nachweisen. Auf Taf. LI. Fig. 4 habe ich einen senkrecht Querschnitt eines Monitor-Embryo abgebildet. In den Bogenstücken wie in dem Mittelstück hat die Verknöcherung schon angefangen; eine knorpelige Partie jederseits trennt die genannten Theile von einander (a). In dem späteren Dens epistrophi (b) hat ebenfalls die Verknöcherung angefangen, die Abgliederung ist aber noch vollständig, denn der Dens epistrophi hängt noch durch ein an Knorpelzellen reiches Bindegewebe mit Bogenstücken, Mittelstück und Ligamentum transversum continuirlich zusammen, und erst bei älteren Embryonen tritt gleichzeitig mit einer innigen Verbindung des Dens epistrophi mit dem Körper des zweiten Halswirbels eine vollständige Abgliederung desselben von Ligamentum transversum, Bogenstücken und Mittelstück ein. Wir finden hier also ähnliche Verhältnisse, wie ich sie für die Schildkröten
(vergl. Bronn's Reptilien. Schildkröten p. 32) beschrieben habe, und ich kann in dem Mittelstück (c) nur einen Theil des Atlaskörpers erblicken, während ein anderer Theil zum Dens epistrophei sich umgebildet hat, wieder ein anderer Theil zum Ligamentum transversum geworden ist und noch ein anderer Theil sich schliesslich vollständig zurückgebildet hat. Ob in dem Mittelstück auch noch eine Hypapophyse aufgegangen ist, wird sich erst dann entscheiden lassen, wenn uns die Ontogenie dieser Fortsätze besser bekannt ist.

Eine höchst eigenthümliche Erscheinung ist die wohl von Cuvier zuerst entdeckte normale Quertheilung, welche man bei zahlreichen Eidechsen an verschiedenen Schwanzwirbeln beobachten kann.

Obgleich sich a priori erwarten liess, dass nur durch das Studium der Entwicklung der Wirbel ein erklärendes Resultat dieser höchst merkwürdigen Erscheinung geliefert werden konnte, so hat Gegenbaur nachgewiesen, dass in der Anlage jedoch durchaus nichts gegeben sei, was jene Trennung bedingen könnte, so dass man das ganze Verhalten wohl nicht mit jenem vergleichen darf, welches Kölliker an der Schwanzwirbelsäule von Selachiern entdeckte (Heptanchus), und welches auf eine Quertheilung des Wirbelkörpers und damit auf eine Neubildung hinausläuft. Die Trennung der Wirbelkörper durch eine ihre Mitte senkrecht durchsetzende Spalte, die, wie auch Stannius (10) und Hyrtl (8a) angeben, den Wirbel in eine vordere kürzere und hintere längere Hälfte theilt, kommt erst nach dem völligen Verschwinden der Chorda im Innern des Wirbelkörpers zum Vorschein. Dass die Chorda, wenn auch nur in ihrem Verschwinden, mit dieser Einrichtung einiger Zusammenhang hat, wird nach Gegenbaur durch die Lage der Spalte angedeutet, denn sie trifft sich genau an der Stelle, an welcher die Verdickung der Chorda stattfindet. Mit der Differenzirung des Intervertebralknorpels liegt diese nämlich vor der Mitte des Wirbelkörpers, da derselbe durch die Gelenkkopfbildung sich ansehnlich zu verlängern hat. Sucht man nach Gegenbaur an jüngeren Exemplaren von Sauriern (Lacerta agilis und Iguana sp.), wenn die Chorda im Wirbelkörper bereits völlig verschwunden ist, auf senkrechten Längsschnitten jene Stelle auf, welche später die Spalte aufweist, so wird man hier einen grossen, breiten Markcanal gewahr, der senkrecht nach innen empordringt und mit den Markcanälen des inneren Theiles des Wirbelkörpers communizirt. Auch vom Rückgratscanale aus dringt an derselben Gegend ein Canal ins Innere, ist jedoch schwächer als der ventrale. Ist einem einmal das beständige Vorkommen dieser Markcanäle aufgefallen, so wird es nicht schwer, das Zustandekommen der Spalte am ausgebildeten Wirbel daraus abzuleiten. Man sieht nämlich, wie an älteren Wirbeln eine Verengerung des ventralen Canales von vorn nach hinten zu stattgefunden hat, dadurch, dass sich Knochenlamellen absetzen, welche die vorderen und hinteren Wand-
flächen des Canals überlagern und zugleich in die aussen am Wirbelkörper sich anlagernden Lamellen continuirlich übergehen.

Am ausgebildeten Wirbel existirt an der Stelle des Canals eine breite Querspalte, die knöcherne Wände besitzt. Alle an der ventralen Fläche des Wirbelkörpers abgesetzten Knochenlamellen biegen in die Wände der Spalte ein, woraus man schliessen muss, dass der ursprüngliche Gefäss-canal durch Verdickung seiner vorderen und hinteren Wand in jene Spalte übergeführt wurde. Dass das Resultat dieses Vorganges kein einfaches, nur engeres Loch, sondern eine Querspalte ist, leitet Gegenbaur von dem Wachsthum des Wirbelkörpers ab, der an seiner unteren Fläche um Vieles mehr sich verdickt als an den Seiten, so dass die anfänglich ovale Öffnung um ebensoviel mehr nach der Breite sich erweitert, als Lamellen von unten her sich anlagern. Die Spalte durchsetzt auf diese Weise nur die äussere Knochenschichte und trifft ihrer Lagerung gemäss auf jene Stelle, die früher von der vertebralen Chorda eingenommen ward. Dass sie nicht durch die ganze Dicke des Wirbelkörpers dringt, hat schon Hyrtl genau angegeben und wurde durch Gegenbaur bestätigt.

Die Angaben von Hyrtl, dass die Vereinigung der beiden Wirbelhälften durch eine Synchondroose geschieht, bestreitet Gegenbaur, höchstens ziehen sich nach ihm einige dünne Periostlamellen über die planen Knochenflächen des Spals hinweg. Die Theilung kann sich nicht allein auf den Bogen, sondern auch auf die Querfortsätze erstrecken, denn wenn der Wirbel mit Querfortsätzen versehen ist, so nehmen beide Segmente an der Bildung derselben Antheil, indem das hintere Segment den Hauptbestandtheil des Querfortsatzes abgibt, das vordere aber eine schmale Leiste aus sich herausschälen lässt, welche sich an den vorderen Rand des Querfortsatzes als Ergänzungsstück anlegt.

Bei den Scincoiden, Chalcididen, Geckonen und Lacertiden kommt nach Hyrtl (8a) die normale Quertheilung an allen Caudalwirbeln, mit Ausnahme der vordersten, bei den Iguanen der neuen Welt gewöhnlich nur an den mittleren, bei den Iguanen der alten Welt, Chamaeleoniden, Varaniden, Drachen und Annulaten gar nicht vor.

Unter den Scincoiden fand Hyrtl bei

<table>
<thead>
<tr>
<th>Art</th>
<th>Schwanzwirbel</th>
<th>Erste Hälfte</th>
<th>Zweite Hälfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycloids scincoides Wagl</td>
<td>29</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Gonagylus ocellatus Wagl</td>
<td>29</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Trachysaurus rugosus Gray</td>
<td>19</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Seps chalcides Wagl.</td>
<td>51</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Ophiodes striatus Wagl.</td>
<td>89</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

Bei Anguis fragilis erscheint auch der Querfortsatz des hinteren Becken- und ersten Caudalwirbels an seinem äusseren Ende gabelig ge- spalten. Ophiodes und Ptyodactylus Gronoii Merr. verhalten sich wie Anguis. Bei einem jungen Exemplar von Ptyopus lepidotus Merr., wo sämtliche Caudalwirbel noch der sphärischen Gelenkköpfe entbehrt, war die Anlage von 26 Caudalwirbeln in vordere und hintere, durch
breite Knorpelstücke der Chorda getrennte Segmente getheilt, deren jedes obere Bogenstücke trug, während die unteren in tiefen Gruben wurzelten, welche durch die sich erst später bildenden Gelenkköpfe der Wirbel ausgefüllt werden.

Unter den Chalcididen fand Hyrtl bei Gerrhonotus laevicatus Wieg. m. 49 Schwanzwirbel, von welchen nur die fünf vorderen ungetheilt waren; Chirocolus imbriatus Wagl. verhält sich als Pygopus, mit dem Unterschied, dass auch die Beckenwirbel Spuren von einer Trennung in vordere und hintere Segmente zeigt.

Bei den Gekkoniden ist die Quertheilung am deutlichsten und ergreift alle Wirbel des Schwanzes mit Ausnahme der vier bis fünf vorderen.

Unter den Lacertiden fand Hyrtl bei Crocodilurus amazonicus 64 Schwanzwirbel und die Quertheilung vom achten Wirbel an, bei Podicnemus Poguixin Wagl. 65 Schwanzwirbel und die Quertheilung vom zwölften Wirbel an, und endlich bei Trachydromus sexlineatus, bei welchem er 79 Caudalwirbel zählte und die Quertheilung vom fünften an.

Nach Leydig (37) beginnt bei Anguis fragilis die Quertheilung am siebenten Schwanzwirbel, wo der Körper auf einmal doppelt so lang ist als vorher, es geschieht die Sonderung hinter dem Querfortsatz und oben bildet sich eine Art von secundärem Dornfortsatz.

Eine ähnliche Assimilation fand Hyrtl bei Individuen von Lophura amboinensis Wagl.; bei Grammatophora barbata D. et B.: bei Chryso-

Im unteren Schwanz ist ein vollkommener Wirbel mit seinen Fortsätzen erhalten, dann sitzt wieder mehr in der ursprünglichen Richtung die Axe des unteren Schwanzes fest, aber scharf abgegrenzt an. Der Knorpelstreifen lässt sich aus einer faserigen Membran, die ihn zunächst um-giebt, leicht ausschälen und läuft sich verjüngend bis in die äussere Spitze hinaus.

Anatomie.

bezüglich jedoch gewebslage vertritt, cylindrischen fand als durch mit haft. H. Müller eine Vergleichung mit dem Rückgratscanale weniger statthaft. Dagegen ist nach ihm eine grosse Analogie mit der Anlage der Wirbelsäule an die Chorda dorsalis vorhanden. Der Canal entspricht somit der Chorda, das Knorpelrohr der innern und äussern Knochenschichte als Wirbelanlage.

zu bestehen, so dass eine Regeneration der Medulla spinalis nicht stattfindet. Das Knorpelrohr erscheint als nichts anderes, als ein neugebildetes, ungegliedertes Rückgrat, eine Hülle für das in der Fortsetzung des Rückenmarks neugebildete Gewebe, entspricht somit einer Summe von Wirbelkörpern und oberen Bogenstücken.

Dass das im Innern des Knorpelrohrs liegende Gewebe nichts mit dem Rückenmark direct zu schaffen hat, geht aus dem Umstande hervor, dass der Canal im Knorpelrohr bei den Eidechsen nirgends regelmässige Communicationen nach aussen besitzt, sondern unter allmählicher Verjüngung bis ans Ende des Knorpelrohrs hinführt.

Aehnlich wie bei Lacerta fand Ge gen b a u r das neugebildete Schwanzskelet bei Hemidactylus. Das Knorpelrohr war hier aber viel dickwandiger als bei Lacerta und hat nur eine ganz dünne äussere und innere verkalkte Schichte aufzuweisen. Der Canal zeigt hier und da nach oben gehende, die Wandung senkrecht durchsetzende Communicationskanäle. Was hier aus- oder eintritt, vermochte Ge gen b a u r nicht festzustellen. An Nerven möchte nach ihm jedoch nicht leicht gedacht werden können, denn im Canale fand er ausser lockerem Bindegewebe nur 2 bis 3 Röhren von verschiedenem Caliber, die er für Blutgefässse hält.

3 Halswirbel (1—3) ohne Rippen,
5 Halswirbel (4—8) mit Rippen,
3 Dorsalwirbel (9—11) mit Rippen, welche zum Sternum reichen,
11 Dorsalwirbel (12—22) mit Rippen und Abdominalrippen,
3 Lumbalwirbel (23—25),
2 Sacralwirbel (26—27),
36 Schwanzwirbel (28—63).

Der Atlas besteht aus drei Stücken, einem unpaaren, ventralen Stück (Hypapophyse: Günther) und aus den paarigen Bogenstücken (Neurapophyser: Günther). Ersteres hat die Gestalt eines querliegenden, bogenförmigen Schlussstücks, der obere Rand ist concav; der vordere Rand ist schräg abgeschnitten, um den unteren Theil des Condylus occipitis aufzunehmen; der hintere Rand ist convex und schliesst in der kleinen Grube, welche sich an der vorderen Fläche des Processus odontoideus befindet. Die oberen Bogen haben an dem vorderen Theil ihrer
Basis eine kleine Gelenkfläche für den Condylus occipitis und eine zweite an der hinteren Fläche für den Processus odontoideus.

Oberhalb des Rückenmarkes berühren die oberen Bogen einander, ohne mit einander zu verschmelzen. Der Processus odontoideus ist mit dem Körper des zweiten Halswirbels verwachsen. Ihre oberen Bogen verschmelzen sowohl unten mit dem Wirbelkörper, als oben mit einander und setzen sich hier in einen kräftig entwickelten Processus spinosus fort. Die Hypapophyse des zweiten Halswirbels liegt als ein Keil zwischen dem Körper des zweiten und dritten Halswirbels eingeschoben und bildet ein selbständiges Knochenstückchen (vergl. Taf. LIV. Fig. 1c). Die Bogen der folgenden Halswirbel verhalten sich wie die des Epistropheus, sie tragen kleine Processus transversi und die Hypapophysen verhalten sich wie die des zweiten Halswirbels. Die Dorsalwirbel zeigen nichts besonderes.

Die drei Lumbalwirbel charakterisieren sich nach Günther durch die Kürze der Haemapophysen, welche das Abdominalsternum nicht erreichen, ihre Pleurapophysen bilden horizontale Querfortsätze, nicht vollständig mit den Diapophysen ankylosirt, sondern durch eine Naht verbunden, obgleich sie nicht beweglich scheinen. (Siehe hierüber weiter bei den Rippen.) Günther versteht hier unter den Haemapophysen der Lendenwirbel die freien sternalen Rippenstücke. Die sogenannten Querfortsätze der beiden Sacralwirbel werden später bei den Rippen besprochen.

Die unteren Bogen treten zuerst zwischen dem dritten und vierten Schwanzwirbel auf und strecken sich, allmählich abnehmend, bis zu den sechs oder sieben letzten Schwanzwirbeln aus, sie sind dort angefützt, wo zwei Wirbel an einander stossen (Taf. LIV. Fig. 5).

Wie bei zahlreichen Saurierarten tritt auch an der Schwanzwirbelsäule die normale Quertheilung der Schwanzwirbel auf (Taf. LIV. Fig. 7). Auch scheint sich der Schwanz regeneriren zu können, obgleich er nicht so leicht abbricht als bei den Lacertiden und Gekkoniden.

Crocodile. Ueber die Entwicklungsgeschichte der Wirbelsäule bei den Crocodilen, besonders was die früheren Stadien betrifft, liegen bis jetzt noch keine Mittheilungen vor. Zwar verdanken wir Rathke (24) über diesen Gegenstand sehr werthvolle Mittheilungen, doch beziehen sich diese mehr auf die späteren Entwickelungsstadien. Bei den zwei jüngsten von Rathke untersuchten Crocodil-Embryonen verlief die Chorda dorsalis noch ohne Unterbrechung durch die ganze Wirbelsäule, reichte hinten bis an das Ende des Schwanzes und drang vorn eine kleine Strecke in die Schädelbasis ein. Vorn und hinten erschien sie verjüngt und zugespiitzt, in ihrem Verlaufe aber stellenweise gleichsam ein wenig eingeschnürt, indem sie von der Mitte eines jeden Wirbelkörpers gegen dessen Ende immer mehr an Dicke verlor, mithin auf der Grenze je zweier benachbarter Wirbelkörper dünner war, als innerhalb derselben. Am stärksten zeigten sich diese Verengerungen in den Schwanz, doch waren sie auch hier nur mässig gross. Im Ganzen aber
war die Chorda, wenn sie mit dem Umfang des Embryo oder auch nur mit der Dicke des Wirbelkörpers verglichen wurde, von einer ähnlichen Dicke, wie bei gleich entwickelten Schildkröten, Schlangen, Eidechsen und Vögeln, also verhältnissmässig viel dünner als bei den Fischen und nackten Amphibien. Bei den weiter entwickelten Embryonen von Crocodylus acutus und Alligator scelerops war die Rückenseite auf der Grenze je zweier Wirbel, zumal der Wirbel des Halses und Rumpfes, schon in solchem Grade resorbirt und verdünnt, dass sie an diesen Stellen nur als ein kaum erkennbarer zarter Faden erschien, indess ihre in den einzelnen Wirbelkörperrn liegenden Reste, die durch jene fadenförmigen Theile unter einander zusammenhingen, auch ziemlich gross waren und die Form von Ellipsoiden oder auch von kurzen Spindeln hatten. — Bei Crocodilen, die über das Eileben schon hinausgelangt waren, liess sich von der Chorda keine Spur mehr auflinden.

Diese Angaben von Rathke kann ich vollständig bestätigen. Bei dem jüngsten von mir untersuchten Embryo verlief die Chorda ebenfalls noch ohne Unterbrechungen durch die ganze Wirbelsäule. Auf Taf. LII. Fig. 2 habe ich einen Längsschnitt durch einen Theil der Rumpfwirbelsäule eines Embryo aus diesem Entwickelungsstadium abgebildet. Der der Mitte des Wirbelkörpers entsprechende Theil (a) ist nicht allein schon verkalkt, sondern zeigt ausserdem auch schon grosse Markräume und in der Peripherie eine dunne Knochengeschicht. Nach vorn und hinten gehen diese in Rede stehenden Theile in hyalinen Knorpel über (b) und so in eine Schicht (c), welche man am besten als Fasernknope bezeichnen kann. Die Chorda zeigt vertebrale Erweiterungen und intervertebrale Einschnürungen, doch ist der Unterschied zwischen den verteboralen und intervertebralen Partien viel weniger in das Auge springend als bei den Schlangen. Es kommt nun bei den Crocodilen zu einem sehr frühzeitigem, vollständigen Verschwinden der Chorda, denn nicht allein fand ich, dass bei denjenigen, welche über das Eileben schon hinausgelangt waren, keine Spur von Chorda mehr vorhanden war, sondern auch bei Embryonen, welche dem Ausschlüpfen nahe sind, ließ sich dieselbe nicht mehr nachweisen.

Während bei den Sauriern und zum Theil auch bei den Schildkröten der Intervertebralknorpel die bei den Anuren schon vollendete, bei den
Anatomie.

Salamandrisen nur angedeutete Theilung ausführt und an jedem Wirbel eine vordere Pfanne und einen hinteren Gelenkkopf bildet, ist die Differenzirung des Intervertebralknorpels bei den Crocodilen etwas complicirter geworden, indem aus ihm nicht blos der Gelenkknorpelüberzug des Wirbelkörpers, sondern auch eine Intervertebralbandscheibe hervorgeht. Der Intervertebralknorpel theilt sich also hier nicht wie bei den ungeschwänzten Amphibien, den Eidechsen und zum Theil auch bei den Schildkröten in zwei, den beiden benachbarten Wirbelkörpern zufallende Abschnitte, sondern es geht noch ein dritter intermediärer Abschnitt daraus hervor. Genaue Aufschlüsse über die von den meisten übrigen Reptilien abweichenden Zwischenwirbelverbindungen gibt erst Rathke. Wenn sich, so giebt er an, bei den Crocodilen die Wirbelkörper schon ausgebildet haben, sind sie nicht etwa durch Gelenkkapseln, sondern immer je zwei durch eine zwischen ihnen liegende, mit ihnen innig zusammenhängende und aus einem Faserknorpel bestehende Scheibe verbunden. Die Scheibe geht aus einer Differenzirung eines Knorpelrohrs hervor, dessen Höhle von der Chorda ausgefüllt ist.

Bei reiferen Embryonen ist diese Scheibe an ihren beiden Seiten ein wenig concav, weil bei solchen Embryonen die Körper der Wirbel mit Ausnahme der des ersten und letzten, an ihren beiden Enden schwach abgerundet sind. Wenn aber späterhin die Körper aller Wirbel, mit Ausnahme der des ersten und letzten, an ihren beiden Enden immer mehr an Convexität zunehmen, um daselbst einen Gelenkkopf zu bilden, da gegen an ihrem vorderen Ende sich in der Art verändern, dass sie dort eine grubenförmige Vertiefung erhalten, passen sich auch die Enden derselben den dazwischen gelegenen Knorpelscheiben an, indem sie allmählich die Form von einem mässig grossen Abschnitte einer Hohlkugel annehmen. Die Grundsubstanz dieser Knorpelscheiben war nach Rathke bei Embryonen, die nicht völlig reif waren, noch durchweg gleichartig und ohne eine Spur von Faserung.

Bei Crocodilen, die schon über das Eileben hinausgelangt waren, und zwar bei Exemplaren von den verschiedensten Grössen, fand Rathke in der Grundsubstanz der angeführten Scheiben sehr deutlich auf der Mitte zwischen den beiden Seiten dieser Scheiben eine zarte Faserung, die um so ausgebildeter war, je näher nach dem Rande der Scheibe hin, und deren Fasern sich als Abschnitte von Kreisen darboten.

Es lassen also — wie Gegenbaur hervorhebt — nach dem angeführten bei solchen Crocodilen, die nicht mehr ganz jung sind, die Wirbelkörper in einer ähnlichen Weise wie bei den Säugethierein, an ihren Enden eine dünne Schicht von einem dichten Knorpel bemerken, der aber mit einem Faserknorpel, der zwischen je zwei Wirbeln ein Ligamentum intervertebrale darstellt, gleichsam verschmolzen ist. Doch bemerkt Gegenbaur noch dazu, dass selbst bei den grössten Exemplaren, welche er untersuchte, diese Ligamenta intervertebralia lange nicht so weich und saftig waren, wie sie etwa bei dem Menschen sind. Aus dem
Reptilien.

Hiegegen bringt Gegenbaur aber in Erwägung, dass erstlich jener Bandring von den äusseren Ligamenten, an welche er befestigt ist, sich entwickelt, sowie er zuweilen mit der einen oder anderem Fläche auf eine Strecke weit mit dem centralen Meniscus in unmittelbarem Zusammenhang steht. Dadurch wird man nach Gegenbaur sich genöthigt sehen, den Bandring aus dem Zwischenknorpel selbst hervorgegangen zu betrachten.
Meine Untersuchungen stimmen hierin mit Gegenbaur vollkommen überein. Auf Taf. III. Fig. 3 habe ich einen Theil eines horizontalen Querschnittes durch zwei Halswirbel eines fast vollständig entwickelten, aber noch nicht ausgeschlüpften Embryo von Crocodilus abgebildet. Von einem Chordarest war nichts mehr zu bemerken, der peripherische Ring (a) hingegen sehr deutlich schon vorhanden. Derselbe bestand aus einem an Knorpelzellen sehr reichen Faserknorpel, der aber noch kontinuürlich in den fast noch vollständig hyalinen Knorpelüberzug jeder Endfläche des Wirbelkörpers überging. Bei einem noch sehr jungen Exemplar von Alligator war schon das Verhältniss eingetreten, wie es Gegenbaur beschreibt, dass nämlich der in Rede stehende Ring vom Gewebe des Meniscus durch einen Zwischenraum getrennt war.

Die Querfortsätze sind an der grössten Zahl der Dorsal-, sowie an den Lumbalwirbeln stark entwickelt; über die sogenannten Querfortsätze der Schwanzwirbel wird bei den Rippen näher gehandelt werden. Vom zweiten Halswirbel an kommen an den meisten Halswirbeln sogenannte Hypapophysen vor, dieselben bilden nur wenig stark hervorragende Fortsätze, die von der unteren Fläche des Wirbelkörpers entspringen. Bei jungen Embryonen zeigen sie sich als unmittelbare Fortsätze des Wirbelkörpers selbst, verknöchern von diesem aus und bleiben mit dem
Wirbelkörper in continuirlichem Zusammenhang. In wie fern auch hier die unteren Bogen als ganz verschiedene Bildungen zu betrachten sind, die bekanntlich an den vordersten Schwanzwirbeln, von dem zweiten an gerechnet, vorkommen und sich ähnlich wie bei Hatteria verhalten, indem sie nämlich auch bei den Crocodilien zwischen zwei Wirbelkörpern sich befestigen und zur Herstellung eines Caudalcanales beitragen, kann nur durch ausführlichere morphologische Untersuchungen festgestellt werden.

Bei ganz jungen Thieren, bei welchen die Wirbelsäule noch knorpelig war, zeigten sich die unteren Bogen als unmittelbare Fortsätze der Wirbelsäule selbst. Bei älteren Embryonen, bei welchen schon Verknüpfung eingetreten war, ergab sich, dass diese unteren Bogen selbständig ossifizirt und mit der fortschreitenden Entwicklung sich allmählich mehr von der Wirbelsäule abgliederten. Schon bei jungen Thieren sind sie mit der Wirbelsäule beweglich verbunden, und diese Verbindung geschieht durch straffes Bindegewebe.

Eine besondere Erwähnung verdienen noch die beiden vordersten Halswirbel, der Atlas und der Epistropheus. Bei halb ausgewachsenen Thieren — vollständig ausgewachsene standen mir nicht zur Verfügung — besteht der erste Halswirbel, der Atlas, aus einem zum grössten Theil knorpelig bleibenden Stück — welches ich den vorderen Theil des Atlaskörpers nennen werde —, und aus den oberen Bogen. Das vorderste Stück des Atlaskörpers ist an der vorderen Fläche sehr stark concav, an der hinteren Fläche fast plan (Taf. LI. Fig. 4). Durch diese starke Convexität ist die Mitte ausserst dunn und an getrockneten Skeletten gewöhnlich so gescrumpt (indem dieser Theil immer knorpelig bleibt), dass dies Stück sich als ein Ring zeigt. Die untere Partie desselben ist breit und verknöchert. Von dem oberen Raüde dieses Stückes entspringen die oberen Bogen, die nach hinten bedeutend verbreitert sind und an ihrer unteren Fläche Gelenkflächen tragen zur Articulation mit den Processus articulares anteriores des Epistropheus. Dieselben verknöchern wie bei allen andern Wirbeln selbständig, bleiben aber sehr lange Zeit, wenn nicht zeitlebens durch sehr grosse knorpelige Partien von dem vorderen Theil des Atlaskörpers getrennt (vergl. Taf. LI. Fig. 4). Sie unterscheiden sich von denen der übrigen Wirbel dadurch, dass sie in der Mittellinie einander nicht berühren, sondern durch Bandmasse mit einander vereinigt sind. Gewöhnlich gehen die in Rede stehenden Knorpelpartien allmählich in Faserknorvpel über. Vor dem Atlas liegt zwischen den eben erwähnten oberen Bogen des vorderen Theiles des Atlaskörpers und den Occipitalia lateralia noch ein unpaares Stück, das sogenannte Dachstück von Brühl (vergl. Taf. LI. Fig. 5 u. 6).

Der zweite Halswirbel, der Epistropheus, trägt an seiner vorderen Fläche einen stark entwickelten Fortsatz, den Dens epistrophei, oder den hinteren Theil des Atlaskörpers, er bleibt immer auch bei alten Thieren durch eine Knorpelnahdt von dem eigentlichen Körper des zweiten Halswirbels getrennt. Dass die Sachen sich wirklich so verhalten, als ich
angegeben habe, geht, wie ich glaube, aus der Untersuchung von Embryonen hervor, wenn auch die Verhältnisse bei ganz jungen Embryonen vorläufig noch nicht bekannt sind. Taf. LII. Fig. 8 ist ein Längsschnitt durch Occipitale basilare, ersten und zweiten Halswirbel eines Embryo, bei welchem die Chorda zwar noch vorhanden, dennoch in Be- griff war zu verknorpeln. Das knorpelige hintere Ende des Occipitale basilare (a) geht noch ohne bestimmte Grenzen in einen an Knorpelzellen sehr reichen Faserknorpel (b) über, der auf ähnliche Weise in das Knorpelstück c (den vorderen Theil des Atlaskörpers) übergeht. Dies Stück geht wieder auf ähnliche Weise durch einen an Knorpelzellen reichen Faserknorpel (d) in das Stück (e) über (den hinteren Theil des Atlaskörpers oder den Dens epistrophei), der ebenso in den Körper des zweiten Halswirbels (f) übergeht.

Stannius giebt an, dass bei den Crocodilen der Ring des Atlas aus einem basilaren Stücke, zwei aufsteigenden Schenkeln und einem dachförmigen oberen Schlussstücke besteht.

Owen (25) betrachtet den Theil des Atlas, welchen ich als das vor- dere Stück des Atlaskörpers beschrieben habe, als eine „Hypapophyse“.
und das dorsalwärts von den Neuralhöhen des Atlas gelegene Stück als „the neutral spine of the atlas which remains distinct, like that of the occiput“.

Bei einem etwas älteren Embryo von Alligator selerops hatte sich der Körper des Atlas von den übrigen Theilen dieses Wirbels schon abgelöst. Die Bogenschenkel erschienen noch durchweg knorpelig, hatten sich aber nach unten zu sehr verlängert. Das Schlussstück bestand in einem ziemlich dicken Knorpelbogen, der ungefähr den vierten Theil eines Kreises beschrieb. Die fibrösen Stränge zwischen dem Schlussstück und dem Bogen hatten sich so verkürzt, dass diese drei Knorpelstücke durch sie enge verbunden waren. Diese Angaben Rathke’s aber sind mir nicht deutlich und ich weiss nicht, was er unter „Bändern“ versteht, welche von den oberen Bogen zum Schlussstücke sich begehen. Der Atlas der Crocodile bildet doch keinen Ring, wie Taf. LI. Fig. 5 deutlich zeigt. Das untere Schlussstück Rathke’s ist nur der verdickte, untere Theil des vorderen Stückes des Atlaskörpers, und es bildet kein selbstdändiges Stück.

Genauer sind Rathke’s Mittheilungen über das sogenannte Dachstück von Brühl. Bei Embryonen fand er, dass an die vorderen Ränder und äusseren Seiten der oberen Hälften der Bogenschenkel durch fibröses Gewebe zwei etwas kürzere Skeletstücke angeheftet waren, die von den selben convergirend nach oben und vorn gingen, mit ihren oberen Enden dicht über dem Hinterhauptloche die Schuppe des Hinterhauptbeins bekräfteten und an diesen Enden beinahe zusammenstießen. Beide waren etwas bogenförmig gekrümmt, im Ganzen schmäler, als die Bogenschenkel,

Bei den Phäosauriern kann die Zahl der Halswirbel mehr als vierzig sein, wiewohl sie im Allgemeinen geringer ist; da keine Rippe, wie es scheint, mit dem Brustbein verbunden war oder wenigstens eine solche Verbindung, wenn sie bestand, nicht mehr nachzuweisen ist, wird es schwer, zwischen Hals- und Rückenwirbeln eine Grenze zu ziehen und man ist, um beide Arten von Wirbeln auseinander zu halten, auf einen anderen Weg als den gewöhnlich betretenen angewiesen. Nun bleibt die Naht zwischen Wirbelkörper und oberen Bogen bei diesen Thieren eine beträchtliche Zeit, wenn nicht das ganze Leben hindurch bestehen, und die Flächen für die Gelenkung der Halsrippen, welche zuerst durchaus unter dieser Naht liegen, erheben sich allmählich in den hinteren Theilen des Halses, bis sie von derselben durchschnitten werden und endlich über sie zu liegen kommen. Es stimmt nach Huxley sehr gut mit dem Bau
der Crocodile, wenn man den letzten der Wirbel, an welchem die Rippen-
gelenkfläche von der genannten Naht durchschnitten wird, als den letzten
in der Reihe der Halswirbel auffasst.

In der so umschriebenen Halswirbelsäule bilden die zwei vordersten
Wirbel den Atlas und Epistropheus und sind häufig mit einander ver-
wachsen. Die Körper der übrigen Halswirbel haben leicht concave Vorder-
und Hinterflächen, wohl entwickelte obere Bogen, vordere und hintere
Gelenkfortsätze von gewöhnlicher Beschaffenheit und kräftige, wiewohl
etwas kurze Dornfortsätze. Der Wirbelkörper zeigt jederseits eine ovale,
ranhe Vertiefung, welche oft mehr oder weniger in zwei Facetten getheilt
ist. Dies ist der Einlenkepunkt der Rippen, welcher so eben erwähnt
ward. In ihn passt sich der verdickte Kopf einer Costalrippe ein, welcher
mit entsprechenden Facetten versehen sein kann, im übrigen aber un-
getheilt erscheint. Nach hinten setzt sich die Rippe in einen kurzen,
geraden Körper fort und der Winkel, in welchem Rippenhals und Rippen-
körper zusammentreffen, ist nach vorn ausgezogen, so dass die Halsrippen
der Plesiosaurier denen der Crocodile im Allgemeinen sehr ähnlich sind.
In der hinteren Hals- und vorderen Rückengegend werden die Rippen
ein wenig länger und verlieren ihre vorderen Fortsätze, auf diese Art all-
mählich in die gerundete, gebogene Form gewöhnlicher Rippen über-
gehend. Ihre proximalen Enden bleiben einfach und die Facetten, an
denen sie gelenken, erheben sich und werden ausgezogen, als Querfort-
sätze, welche von den oberen Bogen entwickelt sind.

An den vorderen Rückenwirbeln erlangen diese Querfortsätze rasch
ihre volle Länge und sie setzen sich in dieser Gestalt bis zum Ende der
Rückenregion fort, indem sie gegen das Sacrum hin etwas an den oberen
Bogen herabsteigen. Die oberen Dornfortsätze werden länger, die Gelenk-
fortsätze sind wohl entwickelt und die Gelenkflächen der Wirbelkörper
behalten die Beschaffenheit, welche sie in der Halsgegend besessen, bei.
Gewöhnlich zählt man zwischen zwanzig und fünfundzwanzig Rücken-
wirbel. Der Sacralwirbel sind es zwei und ausgenommen, dass die
Sacralrippen behufs Anheftung des Iieum stärker und breiter sind, gleichen
sie den übrigen. Die Schwanzwirbel, in der Regel zwischen dreissig und
vierzig, werden wie gewöhnlich gegen das Ende des Schwanzes hin fast
ganz zu blossen Wirbelkörpern reducir; aber im vorderen Theil des
Schwanzes haben sie wohl entwickelte Dorn- und Gelenkfortsätze sammt
Rippen, welche mit den Wirbelkörpern erst in einer späteren Periode des
Lebens verwachsen. Zwischen den ventralen Rändern aufeinanderfolgen-
der Körper der Schwanzwirbelsäule sind gut ausgebildete Bogen befestigt
(Huxley).

Bei den Ichthyosauriern zerfällt die Wirbelsäule bloss in zwei Ab-
schnitte, einen caudalen und einen praceaudalen, da die Rippen am
Vordertheil des Halses beginnend und ohne Verbindung mit dem Brust-
bein sich bis ins Hinterende des Körpers fortsetzen; ein Sacrum fehlt.
Die Schwanzregion ist bezeichnet durch das Auftreten der unteren Bogen,
welche der Unterseite ihrer Wirbel ansitzen. Die Wirbel der Ichthyosauri haben gewisse allgemeine Charaktere, durch welche sie sich von denen aller übrigen Wirbeltiere unterscheiden. Nicht nur sind die Wirbelkörper abgeplattete Scheiben, bedeutend höher und breiter als lang und tief biconcav (Charaktere, in denen sie den Wirbeln gewisser Labyrinthodonten und Fische ähneln), sondern es sind auch die einzelnen Querfortsätze, die sie besitzen, Knöchchen, die an den Seiten der Wirbelkörper auftreten; auch sind die oberen Bogen jederseits der Mittellinie der oberen Wirbel-fläche an zwei abgeflachten Stellen durch blose Synchondrose verbunden. Die oberen Bogen sind gabelförmige Knöchchen mit blossem Rudimenten von Gelenkfortsätzen und treten im grösseren Theile des Körpers in gar keine Gelenkverbindung mit einander.

Während bei den lebenden Crocodilen, wie wir gesehen haben, der allgemeine Wirbeltypus der procoele ist, zeigt die Mehrzahl der vor die Kreidezeit fallenden Crocodile die entsprechenden Wirbel amphicoel, wobei die Aushöhlung der Wirbelkörper sehr seicht ist. Bei der Gattung Styr科普lospodylus, welche vielleicht zu den Crocodilen gehört, sind die vorderen Wirbel opisthocoel. Bei den Ornithosceliden (Dinosauriern, Compsognathus) sind die Gelenkflächen der Wirbelkörper in geringem Grade amphicoel, oder fast platt, aber es scheinen die der vorderen Rücken- und Halsgegend in einigen Fällen opisthocoel gewesen zu sein. Das Sacrum scheint aus wenigstens vier Wirbeln bestanden zu haben, welche in einigen (Scelidosaurus) dem Crocodilen-, in andern (Megalosaurus) mehr dem Vogeltypus folgten. Die Schwanzregion hatte viele, lange Wirbel, zwischen denen die unteren Bogen angebracht waren. Die vertebalen Enden der Aeste dieser Bogen waren durch Knochen vereinigt.

Rippen.

Anatomie.

Eine ganz ausserordentliche Länge erreichen die falschen Rippen bei der Gattung Draco, wo sie den seitlichen als Flughaut verwendbaren Hautduplicaturen zur Stütze dienen.

Ueber die Rippenbildung bei den Sauriern liegen nur wenige und unbestimmte Angaben vor. Bei Claus (44) finde ich nur die kurze Bemerkung, dass in den meisten Fällen bei den Sauriern Rippenrudimente über die ganze Lendengegend hin erhalten sind, und dass der äusseren Form nach weder in der Bildung der Sacralregion, noch in dem Verhalten der Schwanzwirbel fundamentale Abweichungen von den Crocodilen zu erwarten sein dürften.

Nach Gegenbaur (36) erscheinen bei den Eidechsen die lateralen Fortsätze der beiden Sacralwirbel am schwersten zu verstehen, da sie bei der Vergleichung mit dem praesacralen Wirbelsäulenschnitte den hier sehr mächtigen Querfortsätzen homolog gelten können. Man würde also hier zu dem Ergebniss der Homologie von Rippen und Querfortsätzen kommen, und es würden die beztüglichen Fortsätze der Sacralwirbel beliebig aufzufassen sein. Es ist klar, dass dies keine Lösung der Frage wäre. Dass die Querfortsätze an der Caudalwirbel säule, wenigstens so weit an letzteren die sogenannten unteren Bogen vorkommen, nicht als Rippen angesehen werden können, ist sicher, sobald jene unteren Bogen die Bedeutung von Rippen haben. Demnach müssen nach ihm diese Zustände bei den Eidechsen vorläufig ausser Frage bleiben, bis die Entwicklungsgweise der bezüglichen Theile Anknüpfungspunkte aufdeckt.

Was ich über die Entwicklung der Rippen wahrzunehmen im Stande gewesen bin, bezieht sich auf folgendes. Bei einem Monitor-Embryo bildeten Wirbelkörper, Wirbelbogen und Seitenfortsätze noch einen continuirlichen Zusammenhang (vergl. Taf. LII. Fig. 6) und bestanden alle noch aus hyalinem Knorpel. Nur rings um die Chorda hat die Um bildung von hyalinem Knorpel in Kalkknorpel angefangen. Bei a, wo der Seitenfortsatz — die Rippe — an den Bogen und Wirbelkörper
grenzt, zeigt der hyaline Knorpel eine etwas andere Beschaffenheit, indem die Knorpelpflatten hier wieder eine leicht geschlängelte, quergerichtete Gestalt haben und nicht in einer homogenen, sondern in einer feinkörnigen Grundsustanz eingebettet liegen; ich habe dies also als die Stelle bezeichnet, wo ab und zu die Rippe sich abgliedern wird. Querschnitte älterer Embryonen lehren folgendes, wie Taf. LIII. Fig. 1 zeigt. Rings um den Wirbelkörper, so wie rings um den noch in die Schnittfläche fallenden Bogen hat sich schon eine peristal Knochenlamelle gebildet, während sonst alle Theile noch aus Kalkknorpel bestehen. Die Differenzierung des intervertebralen Abschnittes in Gelenkkopf und Gelenkpfanne hat schon deutlich angefangen, wie die betreffende Figur zeigt. Die Rippe hängt mit dem Wirbel in ihren peripherischen Theilen noch continuirlich durch ein Gewebe zusammen, von welchem es schwierig zu sagen ist, ob es dem Knorpel oder dem Bindegewebe zugehört, das also jedenfalls als eine höhere Differenzierung des ursprünglichen, hyalinen Knorpelgewebes aufzufassen ist; in den mittleren Partien dagegen ist die Trennung fast schon vollkommen.

Es ergiebt sich also, dass auch bei den Sauriern die Rippen mit den Wirbeln ein Continuum bilden und dort abtreten, wo Bogen und Wirbelkörper an einander grenzen, später nach eingetreterer Abgliederung mit kleinen, querfortsatzartigen Fortsätzen beweglich verbunden bleiben; aber zugleich zeigt sich auch, dass die Stellen, wo sie abtreten, den intervertebralen Abschnitten entsprechen, indem wir wissen, dass in den intervertebralen Theilen die Gelenkköpfe und Pfannen sich bilden, und eben an den Stellen die Rippen mit der (intervertebralen) sceletogenen Schicht bei Embryonen ein Continuum bilden. Dass auch hier die Rippen ihre ursprüngliche intervertebrale Stellung nicht beibehalten können, ist leicht begreiflich, indem sich eben aus dem Theil der sceletogenen Schicht, aus welcher die Rippen hervorwachsen, später die Gelenkköpfe und Gelenkpfanne bilden, und die Rippen demnach auch vertebral, d. i. vom Wirbel selbst abgehend erscheinen müssen.

Grosse Schwierigkeiten haben mir die Sacralrippen gemacht. Taf. LIII. Fig. 9 ist ein senkrechter Querschnitt durch den fünften Schwanzwirbel eines Monitor-Embryo. Bogen, Seitenfortsätze (Rippen) und Wirbelkörper bestehen aus Kalkknorpel. Die drei verschiedenen Abschnitte werden durch eine noch mehr oder weniger hyalinknorpelige Partie von einander getrennt. Zwischen Wirbelkörper und Seitenfortsatz (Rippe) war der Knorpel noch sehr deutlich hyalin, zwischen Bogen und Seitenfortsatz (Rippe) ging der hyaline Knorpel allmählich in eine höhere Differenzierung über, indem die Knorpelzellen hier voluminöser als in dem hyalinen Knorpel und theilweise schon rundlich geworden sind und die sie enthaltenden Höhlen scharfe Ränder haben.

Indessen war doch die Umbildung von hyalinem Knorpel in Kalkknorpel in dem Bogen, wie an dem Seitenfortsatz (Rippe) schon viel weiter fortgeschritten als zwischen Wirbel und Rippe, und jedenfalls
konnte man sich noch sehr gut überzeugen, dass die Verknöcherung des Seitenfortsatzes nicht von dem oberen Bogen ausging, sondern selbständig auftritt. Ich glaube demnach, dass der Seitenfortsatz wohl ohne Zweifel eine Rippe repräsentirt, und ich stütze mich hier hauptsächlich auf den bei den Crocodilen erzielten Befund. Während dagegen, wie wir bei den Crocodilen näher sehen werden, Rippen, Bogen und Wirbelkörper in den Schwanzwirbeln längere Zeit hindurch durch eine knorpelige Partie getrennt werden, kommt dagegen bei den Sauriern eine sehr frühe Verwachsung von oberen Bogen und Rippen vor, und so zeigt sich also auch bei schon älteren Embryonen die Rippe als ein mit dem Bogen kontinuierlich zusammenhängender Fortsatz, somit als ein Querfortsatz. Die Trennung der Rippe von dem Wirbelkörper vermittelst einer Knorpelsehne bleibt längere Zeit als die von dem Bogen fortbestehen, doch auch bei vollständig ausgewachsenen, aber noch in der Eihaut eingeseellosenen Embryonen hatte die Verknöcherung dieser Knorpelnaht schon angetroffen und bei noch ganz jungen Thieren waren obere Bogen, Rippen und Wirbelkörper schon vollständig mit einander verwachsen.

Was nun endlich die das Becken tragenden Sacralrippen betrifft, so stellt Taf. LIII. Fig. 8 einen senkrechten Querschnitt durch den Sacralwirbel vor und ist demselben Embryo entnommen als der senkrechte Querschnitt durch den Schwanzwirbel auf Taf. LIII. Fig. 7. Jüngere Stadien standen mir nicht zur Verfügung. Die betreffende Figur zeigt, dass die Entwicklung schon ziemlich weit fortgeschritten ist. Wirbelkörper und Wirbelbogen bestehen schon aus Kalkknorpel, in welchem schon unter Resorption der kalkigen Scheidewände die Bildung von Markräumen angefangen hat. Bogen und Wirbelkörper sind noch deutlich durch einen dünnen, hyalinen Streifen von einander getrennt. Aber auch an den Sacralwirbeln scheint sehr früh eine vollständige Verschmelzung von Bogen und Wirbelkörper einzu treten, denn bei sehr jungen Thieren war keine Spur von Trennung mehr zu sehen. Während hier aber Bogen und Wirbelkörper durch den eben erwähnten Knorpelstreifen noch deutlich von einander getrennt waren, ist zwischen Seitenfortsatz und Wirbelbogen keine Continuitätstrennung mehr zu sehen. Beide bilden ein Continuum. Doch ist es im hohen Grade wahrscheinlich, dass auch hier in jüngeren Entwicklungsstadien eine Knorpelnaht vorhanden gewesen, welche jetzt schon verknöchert ist; mit anderen Worten, dass der Seitenfortsatz nicht vom Wirbelbogen aus, sondern selbständig ossifizirt, somit keinen Querfortsatz, sondern eine Rippe repräsentirt. Wenn man bedenkt, dass die Seitenfortsätze an den Schwanzwirbeln noch deutlich zeigen, dass sie selbständig ossifieiren und somit Rippen repräsentiren, welche aber sehr frühzeitig durch Synostose mit Bogen und Wirbelkörper verschmelzen, dann darf man wohl fast mit Bestimmtheit annehmen, dass ähnliches bei den Sacralwirbeln vorkommt, und dass der ebenerwähnte Querschnitt einem Embryo entnommen ist, bei welchem die Verwachsung des Seitenfortsatzes, d. i. der Sacralrippe mit dem Wirbelbogen schon
eingetreten ist; denn wäre dies nicht der Fall, ossificierten hier die Seitenfortsätze von den Wirbelbogen aus, dann könnten sie natürlich nicht Rippen, sondern müssten Querfortsätze entsprechen, was um so weniger anzunehmen ist, indem dann das Ieuum nicht vermittelst Rippen, sondern unmittelbar den Sacralwirbeln angefügt sein sollte. Bedenkt man weiter, dass bei den Sauriern in den meisten Fällen über die ganze Lenden-gegend hin Rippenrudimente erhalten sind, dann würden die Sacralwirbel die einzigen sein, bei welchen die Rippen sich verloren hätten, was kaum denkbar ist, und dies um so weniger, als bei der den Sauriern so nahe verwandten Hattertia, wie bei den Crocodilen und den Schildkröten, die das Becken tragenden Seitenfortsätze der Sacralwirbel durch eine deutliche Naht vom Wirbel abgesetzt sind, also zweifellos Rippen entsprechen.

Nach den Untersuchungen von Günther fehlen bei der Gattung Hattertia die Rippen an den drei vorderen Halswirbeln. Die erste Rippe tritt also erst am vierten Halswirbel auf, dieselbe bildet jederseits nur ein kleines Knochenstück, dessen proximales Ende bifurcirt ist zur Articulation mit dem Processus transversus und dem Wirbelkörper selbst, ähnlich verhält sich auch die zweite Rippe. Die dritte und vierte Rippe sind nicht viel länger als die erste und zweite, aber ihre distalen Enden sind mehr verbreitert, die fünfte Rippe ist dünner, aber zweimal länger als die vorhergehende, sie endigt in ein kurzes, knorpeliges oder halbverknöchertes Stück (Haemapophysis: Günther).

Eine höchst merkwürdige Erscheinung tritt schon an diesem Knochenstück auf, nämlich, dass es an seinem hinteren Rande und ungefähr in der Mitte der Länge mit einer Apophyse versehen ist, welche schräg nach hinten und oben gerichtet ist, dem Processus uncinatus an den Rippen der Vögel homolog, und ebenso verhalten sich die folgenden Rippen.

Die erste Apophyse ist fibro-cartilaginös, die zwei oder drei folgenden sind halb verknöchert, die darauf folgenden vollständig, die letzten wieder weniger als die mittleren verknöchert. Keine derselben ist mit der Rippe vollständig ankylosirt, sondern mit ihr durch eine Naht verbunden. Alle vollständigen Rippen, vierzehn an Zahl, haben ein breites, zusammen-
gedrücktes Capitulum zur Articulation mit dem Wirbelkörper; sie sind dünn und werden an ihrem distalen Ende etwas breiter. Jede Spur von Tuberculum fehlt. Die vorderen sind nur wenig, die hinteren anscheinlich kürzer als die mittleren. Die sternalen Theile (Haemapophyses: Günther) aller Rippen, mit Ausnahme der zwei letzten, sind in zwei halb verknöcherte Stücke vertheilt, die durch eine Naht zusammenhängen. Nur die drei vorderen Rippen erreichen das Brustbein, die beiden vordersten zeigen nichts besonderes, die dritte zeichnet sich dadurch aus, dass sie ventralwärts ein wenig verbreitert ist. Dies ist noch mehr der Fall für die folgenden Rippen, weniger dagegen wieder für die beiden letzten, dieselben bestehen einfach aus einem langen, gebogenen halbverknöcherten Stück.

Dass bei Hatteria auch die Sacralwirbel Rippen tragen, ergiebt sich wohl daraus, dass die das Becken tragenden Fortsätze durch eine Naht vom Wirbelkörper abgesetzt sind, somit keinen Querfortsätzen, sondern Rippen entsprechen. Die Rippen an den Lendenwirbeln stehen, wie schon früher angegeben, mit den entsprechenden Querfortsätzen durch eine Naht in Verbindung (vergl. Taf. LIV. Fig. 1, 4, 8 und 9).

Crocodilie. Um die Deutung, dass die Rippen unter Verlust ihrer Selbständigkeit in der Caudalregion zu untern Bogen werden, auch für die Reptilien wahrscheinlich zu machen, hat Gegenbaur (28) hauptsächlich die Crocodile herangezogen, wo die genetischen Verhältnisse durch Rathke (24) festgestellt sind. Durch den Nachweis eines selbständigen Auftretens, so wie nicht minder durch die Art der Anfügung der unteren Bogen zwischen je zwei Wirbeln stellen sie sich nach ihm als Theile heraus, die den Wirbeln als solchen nicht angehören können. Vergleicht man sie nun, nachdem durch ersteres Verhalten die Möglichkeit

Durch die Verkümmerung des letzten lumbalen Querfortsatzes, so wie durch die selbständige, nicht von den Bogen wie sonst erfolgende Ossification der Querfortsätze der Sacralwirbel wie der folgenden zwei Wirbel geht hervor, dass die ganze Kategorie von querverzweigten Bildungen nicht jener der echten Querfortsätze angehört. Beachtet man ferner — wie Gegenbaur hervorhebt, dass der Lateralfortsatz des ersten Sacralwirbels sich an einer dem Querfortsatz des letzten Lendenwirbels entsprechenden Stelle befestigt, dass dieser Wirbel somit noch einen, wenn auch sehr kurzen Querfortsatz besitzt, so wird die Folgerung nothwendig, dass die fraglichen vier Querfortsatzpaare keine wahren Querfortsätze sein können, dass sie vielmehr Rippen vorstellen. Dass die darauf folgenden Querfortsätze sich den querverzweigten Rippen ähnlich verhalten, ist wiederum eine Anpassung.

Aus dem dargelegten Sachverhalt zieht Claus den Schluss, dass: 1) die Querfortsätze der Caudalregion mit den Wirbeln verschmolzenen Rippenanlagen entsprechen; dass 2) die unteren Bogen, welche ausnahmslos an der hinteren Grenze des zweiten Schwanzwirbels beginnen, eine von den seitlichen zu den Querfortsätzen gehörigen Rippen morphologisch ganz verschiedene Bildung darstellen.
Vielleicht mit Ausnahme der drei bis vier hintersten Praesacralwirbel trifft man bei den Crocodilen an allen Wirbeln Rippen an, wenn auch die Gestalt, unter welcher sie sich zeigen, eine sehr verschiedenartige ist.

Die beiden vordersten Rippen bilden eigentlich längs, dünne, platte Knochenstücke. Das erste Rippenpaar entspringt von dem vorderen Theil des ersten Wirbels, welchen ich als das vordere Stück des Atlaskörpers beschrieben habe, und es steht mit diesem Stück durch Knorpel in continuirlichem Zusammenhang. Das zweite Rippenpaar steht ebenfalls durch Knorpel mit dem zweiten Wirbel in continuirlichem Zusammenhang (vergl. für die beiden vorderen Rippen Taf. I.H. Fig. 9 und Taf. LIII. Fig. 2). Wir haben gesehen, dass das hintere Stück des Atlaskörpers, der Den's epistrophei durch eine Knorpelnaht mit dem Körper des zweiten Halswirbels in Verbindung steht und es ist eben an dieser Stelle, dass das zweite Rippenpaar vom zweiten Wirbel abtritt; dasselbe hat also hier seine intervertebrale Stelle beibehalten. Das erste und zweite Rippenpaar steht also mit dem ersten und zweiten Wirbel nur durch eine einfache Verbindung in Zusammenhang, dagegen ist dieselbe mit den folgenden Halswirbeln eine doppelte und zwar verbinden sich die folgenden Rippen sowohl mit dem Wirbelkörper als mit dem vom oberen Bogen abtretenden Querfortsatz; auf diese Weise umschliessen sie also einen Canal, den Canalis intertransversarius.

Bei sehr jungen Embryonen (vergl. Taf. LIII. Fig. 3) geben Querschnitte folgendes Bild. Oberer Bogen, Wirbelkörper, Hypapophyse und Halsrippe sind noch vollständig hyalinknorpelig, nur bei e zeigen die Knorpelzellen eine etwas andere Beschaffenheit, indem sie hier dichter aufeinander gedrängt stehen und durch ihre leicht geschlängelte, quer-gestaltete Form sich auszeichnen und ausserdem durch die mehr oder weniger feinkörnige Beschaffenheit ihrer Grundsubstanz von den angrenzenden Knorpelzellen sich unterscheiden. Es ist dies die Stelle, wo alsbald die Rippe sich abgliedern wird. Die Halsrippen bilden also bei Embryonen mit den Querfortsätzen und den Wirbelkörpern ein Continuum und erst in späteren Entwickelungsstadien tritt eine Differenzierung und Abgliederung der Rippen auf. Aus der Continuität der Halsrippen nicht allein mit den Querfortsätzen, sondern auch mit den Wirbelkörpren selbst geht hervor, dass die Rippen nicht als einfach dem Systeme der Querfortsätze angehörig zu betrachten sind. Untersucht man bei halb ausge-wachsenen Thieren auf Querschnitten die Verbindungsstellen der Rippen mit den Querfortsätzen und den Wirbelkörpren, so ergiebt sich, dass die Rippen durch eine Knorpelnaht mit den in Rede stehenden Stücken in Verbindung stehen.

Die dritten, vierten, fünften, sechsten und siebenten Halsrippenpaare sind nur kurze, kleine Knochenstücke, an welchen man eine weitere Gliederung nicht wahrnimmt. Das achte Rippenpaar ist schon bedeutend länger und besteht schon aus zwei Stücken, einem langen Knochenstück, welches auf doppelte Weise an dem achten Halswirbel artienuirt und, an

Vom dritten Halswirbel ab haben wir gesehen, dass die Rippen in doppelter Verbindung mit den Halswirbeln stehen, indem sie scharf ge- sonderte, lange Capitula und Tubercula besitzen, die letzteren setzen sich am Querfortsatz des oberen Bogens über der Naht, die zwischen diesem und dem Wirbelkörper besteht, die ersten am Wirbelkörper unterhalb der genannten Naht an. Der Körper der Halsrippen, von der dritten bis zur siebenten oder achten, ist kurz und vom Vereinigungspunkte des Capitulum und Tuberculum aus sowohl nach vorn als nach hinten verlängert; die einzelnen Rippen laufen nahezu parallel mit der Wirbelsäule und schieben sich über einander. Die Rippen des achten und neunten Halswirbels sind länger und nehmen mehr den Charakter von Brustrippen an. Die Punkte, an denen Capitula und Tubercula der Rippen sich anlegen, sind zu Knötchen aufgewölbt, die schrittweise sich zu eigenen Capitular-,- resp.
Tubercularfortsätzen verlängern, zwischen denen, an den Wirbeln vom dritten bis zum zehnten, die neurozentrale Naht verläuft. Bei der zehnten und elften Rippe aber erhebt sich der Capitularfortsatz, welcher an den hinteren Halswirbeln der neurozentralen Naht näher liegt als an den vorderen, auf dem Wirbelkörper zum Niveau dieser Naht, von der er durchsetzt wird, und der Tubercularfortsatz wird länger als er.

Beim zwölften Wirbel greift ein plötzlicher Wechsel im Wesen der Querfortsätze Platz; nicht länger steht ein besonderer Capitularfortsatz neben einem Tubercularfortsatz, sondern ein einziger, „Querfortsatzz" tritt an die Stelle beider. Eine Art von Staffel an der Basis dieses Fortsatzes nimmt das Capitulum der Rippe auf und entspricht dem Capitularfortsatz der Halswirbel, während das mit dem Rippentuberculum articulirende Aussenende desselben dem Tubercularfortsatz entspricht (Huxley).

Eine Untersuchung der Brustrippen bei Embryonen ergibt folgendes. Taf. LIII. Fig. 4 ist ein Querschnitt durch einen Wirbel eines noch sehr jungen Embryo von Crocodilus. Wirbelkörper, Bogen, Querfortsätze und Rippen sind noch vollständig hyalin-knorpelig. Der hyaline Knorpel ist überall von vollkommen gleichartiger Beschaffenheit, nur bei a zeigen die Knorpelzellen eine etwas von den übrigen abweichende Form. Untersucht man diese Stelle etwas genauer und bei starker Vergrösserung, so bemerkt man, dass die Knorpelzellen hier eine leicht geschlängelte, quergerechte Gestalt haben, und dass die Grundsubstanz, in welcher die Knorpelzellen eingebettet liegen, nicht hyalin, sondern feinkörnig ist. Die quergereichteten, leicht geschlängelten Knorpelzellen sind in einer Art bogenförmiger Streifen angeordnet und gehen allmählich in das Perichondrium über. Der bogenförmige Streifen giebt die Stelle an, wo alsbald der laterale Fortsatz sich in zwei Stücke gliedern wird, das laterale Stück r bildet die Rippe, das mediale noch vollkommen mit Bogen und Wirbelkörper zusammenhängende Stück den Querfortsatz y.

Bei einem Embryo von Crocodilus, der noch von der Eihaut umschlossen, sonst vollständig entwickelt war, bestand der ganze Wirbelkörper,
Bogen und Dornfortsatz zum grössten Theil aus Kalkknorpel. Der Kalkknorpel des Querfortsatzes geht ohne Spur einer Unterbrechung in den des Wirbelbogens über. Bogen und Querfortsatz werden aber durch eine kleine, noch vollkommen hyalin-knorpelige Partie von dem Wirbelkörper getrennt (vergl. Taf. LIII. Fig. 5). Es ist dies die Partie, welche bekanntlich auch bei schon ausgewachsenen Thieren als eine Naht zwischen Wirbelkörper und Bogen incl. Querfortsatz besteht. Rings um die Chorda hatte unter Resorption der verkalkten Scheidewände die Bildung von Markräumen angefangen und zugleich auch die ersten Anlagen von Knochenbalken. Rings um den Wirbelkörper bemerkt man eine perichondrale Knochenkruste, welche sich bis zu der Knorpelpartie (α) fortsetzt.

Darans folgt also, dass die Abgliederung der Rippe von dem Querfortsatz bei den Crocodilden überraschend langsam vor sich geht.

Es folgen nun einige Wirbel, deren Zahl zwischen zwei bis fünf wechselt, an denen keine Rippen angebrochen werden, ab aber bei Embryonen hier ebenfalls keine Rippen vorkommen, dürfte noch näher untersucht werden, und es ist höchst wahrscheinlich, dass dies wohl der Fall sein wird, um so mehr, da die Zahl der Lendenwirbel eine sehr variable ist. Dass beim Menschen auch an den Lendenwirbeln Rippen vorkommen, hat Rosenberg (Über die Entwicklung der Wirbelsäule und des Centrale Carpi des Menschen, in: Morphol. Jahrb. Bd. 1. S. 83. 1876) nachgewiesen, indem er Rippenanlagen an den proximalen Enden der Quer-
fortsätze an den fünf Lendenwirbeln beim Embryo fand, und höchst wahr-
sehentlich wird ähnliches wohl für alle Säugethiere gelten, obgleich hier
selbst bei jungen Individuen keine Spur mehr von Rippen aufzufinden ist.

Sacral- und Schwanzrippen. Bei jungen Crocodil-Embryonen, bei
welchen ich Wirbelkörper, Bogen und die von diesen abtretenden
Fortsätze noch vollständig hyalin-knorpelig antraf, bildeten alle in Rede
stehenden Theile noch ein Continuum, und nirgends zeigte der hyaline
Knorpel auch nur die geringste Spur einer Differenzirung. Nur in der
Umgebung der Chorda dorsalis hatte die Umbildung des hyalinen Knor-
pels in Kalkknorpel angefangen (vergl. hierzu Taf. LIII. Fig. 6). Bei
einem älteren Embryo bestand der Wirbelkörper schon aus Kalkknorpel
und rings um die Chorda hat die Verknöcherung schon angefangen; auch
in den Bogen, wie in der Sacralrippe ist der hyaline Knorpel in Kalk-
knorpel umgebildet. Die Sacralrippe (r) wird aber sowohl vom Wirbel-
körper als von den Bogen durch eine hyaline knorpelige Partie abgesetzt
und wie überall, wo hyaliner Knorpel an Kalkknorpel grenzt, vermitteln
eine Reihe dicht aufeinander gedrängter Knorpelzellen den Übergang
des hyalinen Knorpels in den Kalkknorpel (vergl. Taf. LIII. Fig. 7).

Bei einem 50 Centim. langen *Alligator*, wo Bogen, Wirbelkörper und
Rippe zum Theil noch aus Kalkknorpel, zum Theil aber schon aus Mark-
räumen und Knorpelknochenbalken bestanden, liess sich diese hyalin-
knorpelige Partie — obgleich etwas geringer von Umfang — noch sehr
deutlich nachweisen (Taf. LIII. Fig. 8), und bekanntlich bleiben auch
bei schon ziemlich grossen Thieren die Sacralrippen durch eine Naht vom
Wirbelkörper und Bogen abgegrenzt. Das Becken ist dann auch der
Wirbelsäule niemals unmittelbar, sondern immer vermittelst der Sacral-
rippen verbunden.

Das Verhalten der Schwanzrippen ist dem der Sacralrippen überaus
ähnlich. Bei sehr jungen Thieren bilden Neuralbogen, Seitenfortsätze
(Rippen), Wirbelkörper und untere Bogen noch ein Continuum und be-
stehen überall aus hyalinem Knorpel, welcher nirgends auch nur die Spur
einer Differenzirung zeigt. Taf. LIII. Fig. 9 ist dem vierten Schwanz-
wirbel eines älteren Embryo entnommen. Bekanntlich sind an diesem
Wirbel die unteren Bogen schon deutlich vorhanden, und auch bei schon
ziemlich alten Thieren ist die Caudalrippe vermittelst einer Naht dem
Wirbelkörper angefügt. Die betreffende Figur zeigt, dass Neuralbogen,
Seitenfortsätze (Caudalrippen) und Wirbelkörper aus Kalkknorpel bestehen
und dort, wo sie auseinander grenzen, durch eine knorpelige Partie von
einander abgesetzt sind. Daran folgt also zugleich, dass die Seitenfort-
sätze, wie die an den Sacralwirbeln, aus den schon erwähnten Gründen
Rippen und nicht Querfortsätze entsprechen, indem die Querfortsätze un-
mittelbar von den Wirbelbogen aus ossifizieren; aber zugleich geht daraus
auch hervor, dass die Rippen nicht dem System der Querfortsätze an-
gehören, denn an den Schwanzwirbeln haben sich noch keine Querfortsätze
gebildet und auch an den Sacralwirbeln kann man kaum von Querfortsätzen sprechen.

Wie bei Hatteria kommen auch bei den Crocodilen an der Bauchwand Rippenartige Gebilde vor (7—8 Paare), die in der Linea alba nahe zusammentreten und von denen das letzte breitere Paar dicht vor dem Becken lagert. Da diese Stücke keine knorpelige Anlage besitzen, sondern unmittelbar als Bindegewebsverknöcherungen auftreten, werden sie von den Rippen ausgeschlossen und vielmehr als Ossificationen schneller Theile (Inscriptiones tendineae) betrachtet werden müssen. Schon Rathke verdanken wir über diese Bauchrippen bei den Crocodilen sehr eingehende Untersuchungen. Er gibt bereits an, dass sie ihrer Lagerung und Verbindung nach in der innigsten Beziehung zu den geraden Bauchmuskeln
stehen. Sie liegen nämlich zunächst der unteren Seite dieser Muskeln, die eine verhältnismässig bedeutende Breite, dagegen nur eine mässig grössere Dickc haben, in der Substanz derselben und gehen über diese Muskeln seitwärts nicht binaus, sondern reichen mit ihren Enden nur bis an die Seitenränder derselben, oder auch, wie wohl nur selten, nicht einmal so weit. Eingeschlossen ist eine jede in einer besonderen und mässig dicken und zart gefaserten fibrösen Scheide, die als eine Beinbaut derselben und auch als eine Inscription tendinea zu betrachten ist. Die Scheiden aber, welche die Rippen eines jeden geraden Bauchmuskeln enthalten, sind fest verwachsen mit einer aus groben Faserbündeln bestehenden und ziemlich dicken Fascie, die den Muskel von unten bekleidet, dem unteren Blatt der Fascia recta abdominis der Säugethiere entspricht und zusammen mit der Substanz des Muskels vorn an ein Horn des Brustbeins, hinten an ein Schambein angeheftet ist.

In der Regel stehen die Bauchrippen einer jeden Seitenhälfte des Körpers mit ihren äusseren Enden ziemlich weit von einander ab. In ihrer Verbindung mit der unteren Fascie der geraden Bauchmuskeln erscheinen die Bauchrippen als einfache Knochenstücke. Wenn man sie aber aus derselben löst, so ergiebt sich, dass in der Regel jede von ihnen aus zwei Knochenstücken besteht, deren eines das äussere (hintere), das andere das innere und gewöhnlich die kürzere Hälfte derselben darstellt und von denen das erstere über das letztere eine mässig grosse Strecke so hintübergeschoben ist, dass sein nach innen gekehrtes Ende vor denselben liegt. Ihre Entstehung nehmen die Bauchrippen schon frühzeitig, denn bei den jüngsten von Rathke untersuchten Embryonen waren sie schon vorhanden. Auch bestand bei ihnen eine jede aus zwei Stücken,
weshalb er sagt, dass es ihm sehr wahrscheinlich ist, dass in der Regel eine jede nicht ursprünglich aus einem einzigen Stück bestand, sondern gleich in zwei Stücken auftrat. Zudem spricht für eine solche Entstehungsweise auch der Umstand, dass bei den jüngsten Embryonen nur von der hintersten Bauchrippe einer jeden Seitenhälfte die beiden Stücke einander schon berührten, von den übrigen aber einen geringen Zwischenraum zwischen sich bemerken füllen.

Brustbein.

Rathke (11), besonders aber Götte (52) verdanken wir ausführlichere Mittheilungen über die Entwicklung des Brustbeins.

Bei einer nicht näher zu determinirenden *Cnemidophorus*-Art fand Götte in dem jüngsten von ihm untersuchten Stadium das Brustbein noch aus zwei Stücken zusammengesetzt. Jede Brustbeinhälfte bestand in einer kleinen dreieckigen, hinter dem Coracoideum liegenden und nur mit einer Rippe in Verbindung stehenden Platte. Ihr Vorderrand ist der lateralen Hälfte des Hinterrandes vom Coracoideum angefügt (vergl. Taf. LV. Fig. 1); der schräg nach hinten gerichtete mediale Rand ist am wenigsten scharf gegen das Grundgewebe, die Membrana reunions inferior, abgesetzt. Am Seitenrande der Brustbeinplatte geht eine Rippe continuirlich und ein wenig verbreitert in dieselbe über, welche daher als das in Form einer Lanzenspitze verbreiterte Ende jener Rippe sich darstellt. Die folgende Rippe steht noch deutlich von der Brustbeinplatte ab; die vordere Seitenecke der letzteren ist aber in einen Zipfel ausgezogen, welcher gerade dem Ende der letzten Halsrippe entsprechend. Götte glaubt, dass diese in Rede stehende Halsrippe mit der Brustbeinanlage früher zusammenhing und der genannte Zipfel die letzte Andeutung der erst vor kurzem gelösten Continuität ist. Die vorletzte Halsrippe von *Cnemidophorus* liegt aber völlig ausser dem Bereich der Brustbeinanlage und den ganzen Befund deutet Götte nun also, dass die verbreiterten Enden der letzten Hals- und ersten echten Rippe mit einander verschmolzen und so die dreieckige Brustbeinplatte bildeten, worauf die unveränderte Theil der Halsrippe sich von der Platte völlig trennte, während der gleich Theil der folgenden Rippe seine Continuität mit derselben erst später aufgibt.

Mit der fortschreitenden Entwicklung nimmt auch jede Brustbeinplatte jederseits an Grösse zu (vergl. Taf. LV. Fig. 2), ihr Vorderrand ist am Coracoideum weiter vorgeschoben, der seitliche Zipfel verkürzt; der verlängerte Seitenrand endlich steht mit drei Rippen in fortlaufendem Zusammenhang, deren sternale Abschnitte von hinten schräg nach vorn gerichtet sind. Götte dentet diesen Befund so, dass die Enden auch der zweiten und dritten echten Rippe median- und vorwärts wachsend successive die Brustbeinplatte erreicht und nach der Verschmelzung mit derselben sie um das ihr unmittelbar angefügte Stück vergrössert haben.
Eine merkliche Verbreiterung dieser Rippenenden vor ihrer Verschmelzung mit der schon vorgebildeten Brustbeinplatte findet nicht statt. Ein selbständiges Auswachsen der Brustbeinanlage an den Rippenenden vorbei, um sich erst secundär mit ihnen zu verbinden, fand Götte nie.

Die Continuität der Rippen mit der im Entstehen begriffenen Brustbeinplatte, das successive Wachsthum der letzteren in dem Maasse, als sich ihr neue Rippen anschliessen, endlich der Umstand, dass die unveränderten Rippenheile sich erst spät vom Sternum abgliedern und dadurch demselben erst seine Selbständigkeit verleihen, sind nach Götte's Ansicht hinlängliche Zeugnisse, dass das Brustbein nicht aus selbständiger Anlage, sondern aus der Verschmelzung mehrerer Rippenenden hervorgeht. In noch späteren Entwickelungsstadien haben die Brustbeinhälften im Verein mit dem Schultergürtel ihre Lage verändert: sie sind nicht nur der Medianebene genähert, sondern haben sich auch mit ihren etwas geschweiften medialen Rändern einander mehr gegenüber gestellt. Immerhin besteht zwischen ihnen noch ein anschaulicher Zwischenraum (vergl. Taf. LV. Fig. 3). Mit dem Seitenrande jener Hälfté sind vier Rippen verbunden; die Abgliederung derselben ist noch nicht eingetreten, doch lässt sich eine Einleitung dazu vielleicht daraus vermuten, dass an den Stellen, wo sie in das Brustbein übergehen, die munterbrochen zusammenhängende Knorpelmasse etwas trüber erscheint. Dass dieses Merkmal noch nicht der unmittelbare Vorläufer der Abgliederung ist, ergibt sich daraus, dass jener Zusammenhang noch am Schluss des Fruchtlebens besteht.

Auf der vierten Entwickelungsstufe (Taf. LV. Fig. 4) rücken beide Brustbeinhälften einander so nahe, dass ihre vorderen Enden unter dem stiletförmigen Theil des Episternum zusammenstossen und verschmelzen, worauf diese Verbindung sich längs der medialen Brustbeinränder nach hinten fortsetzt. Da jedoch die letzteren concav ausgeschnitten sind, lassen sie eine Lücke in der Naht zurück, welche vom Ende des Episternum zum Theil ausgefüllt wird. Im Bereich der drei vorderen, ersten Rippen bilden die dreieckigen Brustbeinplatten eine rautenförmige Platte, in welcher sich die mediane Lücke befindet; ihre hinteren Verlängerungen bleiben schmal und vereinigen sich daher zu einem bandartigen medianen Fortsatz, welcher die zwei hinteren echten Rippen aufnimmt.

Auch über die Entwicklung des Brustbeins bei Anguis fragilis verdanken wir Götte ausführlichere Mittheilungen. In dem frühesten untersuchten Stadium war jede Brustbeinhälfte dieser Embryonen (vergl. Taf. LV. Fig. 7) nur durch das verbreiterte und medianwärts ausgezogene Ende der ersten Rippe dargestellt, welches dicht am Hinterrande des Epicoracoideum sich hinzog und ohne scharfe Grenze verlor, mit dem unveränderten Rippenkörper aber durch eine schmälere Brücke zusammenhing. Eine solche Verbreiterung des Endes kommt auch an den folgenden Rippenpaaren, nur in geringerem Grade vor, und da bei Anguis jede Brustbeinhälfte nur von jener ersten Rippe gebildet wird, so ist nach
Anatomie.

Götte unzweifelhaft jedes folgende Rippenende der betreffenden Brustbeinhälfte homodynam und von ihr nur dadurch unterschieden, dass es, wie es scheint, durch Anpassung an einen Theil des Schultergürtels bedeutend stärker auswächst. In einem späteren Entwickelungszustande sind die beiden Brustbeinhälften ebenfalls gewachsen und zu beinahe dreieckigen, quer gestreckten Platten geworden, welche einander sehr nahe gerückt, zunächst doch nur durch Vermittelung des Episternum zusammenhängen. Die Verbindung der Brustbeinhälfe mit der zugehörigen Rippe kann auf dieser Entwickelungsstufe noch bestehen oder sich bereits gelöst haben, wie Taf. LV. Fig. 8 zeigt. Die abgelöste Rippe behält ein dünnnes Ende und bleibt im Wachsthum gegen die anderen Rippen zurück, so dass sie weiterhin sich vom Brustbein stetig entfernt.

Bei noch älteren Embryonen sind die beiden Brustbeinhälften in der Medianebene zusammengestossen, um alsbald zu einem Stück zu verschmelzen, dessen vordere Convexität in den Winkel sich einfügt, welchen die beiden Epicoracoidplatten mit einander bilden. In dem vorderen Abschnitt, der in die Fuge beider Brustbeinhälften führt, liegt das noch kleine, etwas rautenförmige Episternum, dessen Knochenbildung noch deutlich die paarige Anlage verrath und eben über die Bauchfläche des Sternum sich auszubreiten beginnt.

Aus dem Mitgetheilten ergiebt sich also, dass das Brustbein der Saurier paarig entsteht, aber nicht mit besonderer Anlage, sondern aus den verbreiterten Enden eines (Anguis) oder mehrerer Rippenpaare (typische Saurier); im letzteren Falle verschmelzen die Rippenenden jenseits successive mit einander. Die Abgliederung der unveränderten Rippentheile vom Brustbein erfolgt theilweise erst nach der Vereinigung beider Brustbeinhälften. Mit seiner Bauchseite geht das Episternum eine feste Verbindung ein. Wir können daher das eigentliche Brustbein als das „costale Sternum“ bezeichnen. Dagegen entsteht das Episternum, wie wir bei der Behandlung des Schultergürtels genauer sehen werden, weder in selbständiger Anlage, noch im Zusammenhange mit dem costalen Sternum, sondern gleichfalls als Theil des Schultergürtels, aus den rückwärts umgebogenen und mit einander verschmolzenen medialen Verlängerungen der Schlüsselbeine; bei den typischen Sauriern wird diese Anlage in ihrer ganzen Länge zum Episternum verbraucht, bei Anguis und wahrscheinlich Pseudopus, Ophisaurus nur ihr hinterster, das Brustbein behält über Abschnitt, unter gleichzeitigem Schwund der vorderen Hälfte.

Der Episternalknochen, den wir also als „claviculares Sternum“ bezeichnen können, entsteht aus zwei Knochenrinnen mit eingelagerten Zellensträngen, welche in die zu einer Röhre verwachsenden Knochen eingeschlossen werden. Es ist höchst wahrscheinlich, dass diese Bildung auf knorpelige Anlagen zurückzuführen ist.

Brustbein und Rippen hingen bei den jüngsten von mir untersuchten Embryonen noch continuirlich zusammen, der Knorpel der Rippe setzte sich fast ohne irgend wahrnehmbare Grenze in den des Brustbeins fort,
nur standen an der Stelle, wo später die Abgliederung des Brustbeines von den Rippen eintreten wird, die Knorpelzellen etwas dichter aufeinander. Bei älteren Embryonen ist die Trennungslinie deutlicher wahrzunehmen (Taf. LII. Fig. 8), indem dann an dieser Stelle die Knorpelzellen länger und schmäler sind, in longitudinalen Reihen dicht aufeinander gehäuft stehen und nicht mehr in einer homogenen, sondern in einer äusserst feinfaserigen Grundsubstanz abgelagert sind, die durch Behandlung mit Pikrocarmin intensiv roth gefärbt wird, während bekanntlich die Grundsubstanz des hyalinen Knorpels, auf ähnliche Weise behandelt, farblos bleibt. Die Umwandlung des hyalinen Knorpels in Bindegewebsknorpel leitet also die Abgliederung ein. Bei älteren, fast vollständig entwickelten Embryonen war die Abgliederung des Brustbeins von den Rippen schon zu Stande gekommen, wie Querschnitte nachweisen (vergl. Taf. LII. Fig. 10).

Bei den Sauriern hängen also Brustbein und Rippen mit einander durch hyalinen Knorpel erst continuirlich zusammen, und erst in den späteren Entwicklungsstadien tritt eine Trennung zwischen beiden Stücken ein, indem an der Stelle der Abgliederung die Umwandlung des hyalinen Knorpels in Faserknorpel und so in Bindegewebe die in Rede stehende Abgliederung einleitet, auf welche dann erst eine Trennung in dem Zusammenhang folgt.

das Sternum etwas breiter als lang und nur mit je einer seitlichen Sternocostalleiste, die der fünften Rippe angehört, verbunden.

Bei *Acontias melacrinis* wird das Sternum durch zwei sehr kleine Knochentäfelchen repräsentirt, die eine ellipsoidische Form haben und dicht neben einander in einer Schicht fäbrösen Gewebes zu beiden Seiten der Linea alba eingebettet liegen.

Bei *Acontias uiger* und bei *Typhlosaurus aurantiacus* fehlt z. B. das Sternum vollkommen (Fürbringer).

Das Brustbein von *Hatteria* weicht nicht bedeutend von dem der anderen Saurier mit wohl entwickelten Extremitäten ab (Taf. LIV. Fig. 9). Der ziemlich breite hintere Rand geht in ein breites Band über, das mit der ersten Bauchrippe zusammenhängt. Die Seitenränder stehen jederseits in ihrem hinteren Umfang mit den Rippen in Verbindung, in ihrem vorderen Umfang mit dem Coracoidenn. Nach vorn läuft das Brustbein spitz zu. Das Episternum (claviculares Sternum) ist kräftig entwickelt und hat ungefähr die Gestalt eines T.

Crocodile. Über die Entwicklung des Brustbeines bei den Crocodilen verdanken wir Rathke sehr wertvolle Mittheilungen. Bei den jüngst entwickelten Embryonen von *Alligator lucis* fand Rathke (24), dass das Brustbein aus zwei schmalen, ziemlich geraden und einander in Form und Grösse gleichen Knorpelstreifen bestand, die in der vorderen Hälfte des Rumpfes von vorn nach hinten verliefen, auf die beiden Seitenhälfte des Körpers vertheilt waren, in je einer Seitenhälfte mehrere Rippen (die dritte bis zehnte des Rumpfes) unten mit einander vereinigten und hinten über diese Rippen hin nicht hinausragten. Ganz vorn, wo sie etwas breiter und dicker waren als weiter nach hinten, auch über die mit ihnen verbundenen Coracoidea ein klein wenig hinausragten, stiessen sie unter einem rechten Winkel zusammen, waren also selbst an dieser
Stelle mit einander nicht verschmolzen. Von da aus divergirten sie nach hinten sehr bedeutend, indem sie an den beiden Seitenrändern der unteren Vereinigungshaut sich hinzogen und liessen also einen verhältnissmässig recht grossen dreieckigen Raum zwischen sich.

Bei einem älteren Embryo hatten sich die Seitenhälften schon auf einer etwas grösseren Strecke von vorn nach hinten an einander angeschlossen. Bei zwei jungen Embryonen von Crocodilus acutus hatten sich die beiden knorpeligen Seitenhälften des Brustbeins so vereinigt, dass sie von ihrem vorderen Ende bis zu der Gegend hin, wo die Rippen des sechsten Paares an sie angeheftet waren, völlig verschmolzen erschienen. Aber über diese Gegend hinaus liessen sie einen Raum zwischen sich bemerken, der bis zu der Stelle, wo mit ihnen die Rippen des achten Paares zusammenhingen, nur sehr schmal und von Bindegewebe ausgefüllt war, weiterhin eine immer grössere Breite zeigte und daselbst hauptsächlich von einem Theile des Gewebes der geraden Bauchmuskeln ausgefüllt war.

Aus dem Mitgetheilten ergiebt sich also, dass der Entwicklungs-vorgang hier in ähnlicher Weise stattfindet als bei den Sauern.

Bei den Crocodilen entsteht die Abgliederung des Brustbeines von den Rippen noch viel später als bei den Sauern. Bei einem fast vollständig entwickelten Embryo von Crocodilus ging die Rippe noch continuirlich in das Brustbein über (vergl. hierzu Taf. LIII. Fig. 11), nur bei Anwendung starker Vergrösserungen konnte man die Stelle, wo später eine Abgliederung eintreten wird, erkennen, indem die Knorpelzellen etwas dichter aufeinander gehäuft stehen, während die Grundsustanz, in welcher die Zellen abgelagert sind, farblos ist, die der Rippe und des Brustbeins dagegen eine blasse, gelbe Farbe zeigt. Bei Alligatoren, welche eine Länge von 150 Millim. hatten, bingen Brustbein und Rippen noch continuirlich zusammen (vergl. hierzu Taf. LIII. Fig. 12), und das einzige, was auf eine Abgliederung beider Stücke deutet, ist, dass die Knorpelzellen mehr oder weniger Plattgedrückt, in longitudinalen Reihen angeordnet sind und zugleich dichter aufeinander gehäuft stehen.

Bei den Plesiosauriern haben die Halsrippen einen verdickten Kopf, welcher mit Facetten versehen sein kann, die in entsprechende Facetten an den Wirbelkörpern passen, im Uebrigen aber sind sie ungetheilt. Nach hinten setzt sich die Rippe in einen kurzen, geraden Körper fort und der Winkel, in welchem Rippenhals und Rippenkörper zusammen treffen, ist nach vorn ausgezogen, so dass die Halsrippen der Plesiosaurier denen der Crocodile im Allgemeinen sehr ähnlich erscheinen. In der hinteren Hals- und vorderen Rückengegend werden die Rippen etwas länger, verlieren ihre vorderen Fortsätze und gehen auf diese Art allmählich in die gerundete, gebogene Form gewöhnlicher Rippen über. Ihre proximalen Enden bleiben einfach und die Facetten, an denen sie gelenken, erheben sich und werden ausgezogen als Querfortsätze, welche von den oberen Bogen entwickelt sind.

Sternalrippen scheinen nicht vorhanden zu sein; dagegen besteht ein vollständiges System von Bauchwandverknöcherungen, die von vorn nach hinten in Querreihen angeordnet sind. Jede Reihe besteht aus einem medianen, leicht eingebogenen Knochen, der in der Mitte dick, an beiden Enden dünn ist und aus sechs anderen Knochen, jederseits drei, welche verlängert und am Ende zugespiitzt sind und eine solche Länge haben, dass sie mit ihren zugespitzten Enden sich decken. —

Bei den Ichthyosauriern entspricht die Gestalt des proximalen Rippenendes der Verhältnissen der an den Wirbeln beschriebenen Knöchchen, denn wo diese getrennt sind, ist jenes gegabelt. Der untere Gabelast, Capitulum, geht zum Capitulare, dem unteren Knöchchen; während der obere, das Tuberculum, zur oberen oder tubercularen Erhöhung geht. In der Caudalregion, wo die Gelenkfläche eine einzige ist, ist auch das proximale Rippenende ungetheilt; in derselben sind die Rippen kurz und gerade, aber in der prae-caudalen Region sind sie stämmig und gebogen und viel länger in der Mitte der Reihe, als an einem der beiden Enden.
Das Brustbein hat entweder vollständig gefehlt oder muss, wenn es vorhanden war, sehr klein gewesen sein.

Bei den Ornithoseeliden waren die Vertebralrippen der Brust sehr stark, aber die Sternalrippen und das Brustbein sind noch sehr wenig bekannt. Abdominale Hautrippen sind in einigen, wenn nicht in allen Arten vorhanden.

Ob bei den Pterosauriern Halsrippen vorhanden gewesen sind, ist zweifelhaft. Von den Lumbo-dorsalwirbeln entbehren nur einer oder zwei unter ihnen der Rippen (Huxley).

Schultergürtel.

Saurier. Am Schultergürtel der Saurier kann man drei Stücke unterscheiden, von welchen eins dorsalwärts, die beiden anderen ventralwärts gerichtet sind. Ueber die Entwickelung des Schultergürtels verdanken wir Günther (52) genauere Mittheilungen, die er an Embryonen einer Gephyrodeosaurus-Art angestellt hat. An den jüngsten Embryonen stellt jede Hälfte des Schultergürtels eine längliche, schräg von vorn und oben nach hinten und unten gerichtete dünne Platte dar, die durch eine beträchtliche Verschmälerung ohngefäh in der Mitte ihrer Länge eine vordere dorsale Hälfte von einer hinteren ventralen abscheidet. In der grösseren ventralen Hälfte befindet sich parallel dem Vorderrande und dicht hinter demselben eine lange, medianwärts freie auslaufende Spalte, wodurch ein vorderer schmaler Streifen, die Anlage des Schlüsselbeins von dem beiförmigen hinteren Hauptstück geschieden wird, in welchem Scapula und Coracoiden gemeinsam enthalten sind (Taf. LV. Fig. 1). Die Grenze dieser beiden letzteren Theile wird zunächst nur durch die am Hinterrande gelegene Gelenkgrube für den Humerus angedeutet, das kleine Nervenloch neben der Gelenkgrube ist dann bereits vorhanden.

Das Schlüsselbein besteht mit Ausnahme eines inneren Streifens, welcher aber die beiden Enden nicht erreicht, aus demselben Gewebe wie der übrige Schultergürtel, so wie denn auch sein dorsales Ende kontinuirlich in das Suprascapulare übergeht. In seiner Mitte ist das Schlüsselbein ein wenig convex nach vorn gebogen, das ventrale Ende erscheint verbreitet mit einem gegen die Medianlinie aufgebogenen vorderen und einem hinteren Zipfel. Der erwähnte innere Streifen, welcher an Masse gegen die weiche Rindenschicht noch zurücksteht und die beiden Enden nicht erreicht, besteht ans verkalktem Gewebe, die Anlage eines sogenannten secundären Knochens. Auf Durchschnitten zeigt dieses Gewebe eine sehr reichliche Interzellularsubstanz mit rundlich spindelförmigen Zellen, welche zum Theil noch durch Anläufer zusammenhängen; der Verknöcherungsrand ist noch uneben, indem die feste Interzellularsubstanz unregelmässig zwischen die dicht gedrängten Zellen der weichen Rindenschicht eingreift. Es unterliegt also wohl keinem Zweifel, dass die ganze Schlüsselbeinanlage ursprünglich durchweg aus demselben Gewebe bestand,
welches noch die Rindenschicht und die anderen continuirlich damit zusammenhängenden Schultersstücke bildet, und dass jene Knochenablagerung in seinem Innern secundär durch Bildung und Verkalkung einer reichlichen Intercellularsubstanz entstand.

Demnach ergibt sich, dass der Schultergürtel dieser Eidechse seine Entwicklung als ein durchaus zusammenhängendes Stück beginnt, so dass das Schlüsselbein nicht in selbständiger Anlage — wie dies nach Gegenbaur (23) stattfinden würde, sondern als ein Ast oder Fortsatz des Schulterblattes erscheint, wie dies schon von Rathke (11) angegeben ist, welcher aber darauf nicht in Knorpel, wie bei den Schildkröten, sondern wie Götte nachgewiesen hat, gleich in einen secundären Knochen sich zu verwanelden beginnt.

Auf der zweiten Entwicklungsstufe (Taf. LV. Fig. 2), welche Götte an den Embryonen von Cnemidophorus unterscheiden konnte, war das Gewebe in den meisten Theilen fester und in der Umgebung des Schultergelenkes knorpelähnlich geworden. In dem Scapulo-coracoideum, d. h. der noch angesonderten Anlage dieser beiden Stücke hat die Bildung der ovalen Fenster begonnen, von denen das mittlere dicht vor und medianwärts von dem kleinen Nervenloch, ein zweites davor und lateralwärts, das dritte dahinter liegt. Das erste und dritte gehören dem Coracoideum an, das laterale der Scapula. Alle diese Fenster sind nach den obigen Befunden in der ersten Anlage des Schultergürtels nicht vorhanden, sondern gehen gleicherweise secundär aus einer histologischen Sonderung der ursprünglich homogenen und continuirlichen Platte hervor. Genau genommen sind also die Fenster nicht als eigentliche Lücken, sondern als bindegewebsige Theile des Scapulo-coracoideum aufzufassen. Das Schlüsselbein derselben Embryonen ist zugleich mit der Scapula länger geworden und schwach S-förmig gebogen, sein verbreitertes, mit divergirenden Rändern auslaufendes, mediales Ende überragt und verdeckt von unten her die Vorderercke des Coracoideum merklich, um sich gegen das Brustbein hin zu verlieren.

Das laterale Ende des Schlüsselbeins geht noch wie vorher ohne jede Absonderung in das Suprascapulare über. Sein innerer Knochen ist breiter geworden auf Kosten der Rindenschicht, welche eben immer mehr in die Knochenbildung hineingezogen wird.

In der dritten Entwicklungsstufe (Taf. LV. Fig. 3) haben die beiden Hälften des Schultergürtels sich noch mehr der queren Lage genähert und sind so weit gegen die ventrale Mittellinie vorgerückt, dass sie mit ihren vorderen Ecken, d. h. den medialen Enden der Schlüsselbeinanlagen zusammentreffen. Da dieser Zusammenstoss immerhin unter einem nach vorn offenen Winkel erfolgt, so ist es natürlich, dass die dickeren, weichen Zipfel, in welche der verknöcherte Haupttheil jener Anlagen ausläuft, bei ihrem Zusammentreffen nach hinten umbiegen und nunmehr dicht nebeneinander und parallel der Medianebene zwischen den genäherten Coracoidealplatten sich rückwärts ausziehen. Die vorderen Enden dieser
Zipfel sind bereits verschmolzen und bilden ein längere Zeit weich bleibendes Verbindungsstück der beiderseitigen Schlüsselbeinknochen; im übrigen Verlauf sind sie aber noch getrennt und ihre Sonderung bleibt noch lange dadurch kenntlich, dass in jedem von ihnen als bald ein schmaler Streifen von secedärem Knochen sich zu bilden anfängt, welche beide erst sehr spät der Länge nach zusammenfließen. Diese ganze paarige mediane Bildung ist nun die Anlage des Episternum, die eigentlichen Schlüsselbeine entstehen also nur aus den lateralen Hauptabschnitten der sogenannten Schlüsselbeinanlagen. Das Episternum entsteht also nicht als unpaare Bildung, sondern aus einer Doppelanlage, nicht selbständig, sondern aus den medialen Enden der ursprünglichen Schlüsselbeinanlagen, und zwar nicht nach der Verbindung der beiden Brustbeinhälften auf diesen, sondern einige Zeit vorher und vor den letzteren. In dem Schlüsselbeinknochen ist die Knochenbildung weiter fortgeschritten und die periostale Rindenschicht ist so weit zur Knochenbildung verbraucht, dass sie sich nur noch als fibröse Haut darstellt.

In dem übrigen Schultergürtel (Taf. L.V. Fig. 4) derselben Embryonen war die Knorpelbildung weiter gediehen, trotzdem war eine Abgliederung des oberen oder lateralen Schlüsselbeinendes vom Suprascapulare noch immer nicht eingetreten, indem das embryonale Knorpelgewebe des letzteren durch ganz allmähliche Uebergänge sich an die periostale Rinde der Clavicula anschliesst.

Auf der vierten Entwickelungsstufe haben die beiden Hälften des Schultergürtels schon so ziemlich die bleibende quere Lage eingenommen, so dass die hinteren Ränder der beiden Coracoidealplatten zu medialen und nach vorn stark convergirenden geworden sind. Ihre vorderen Ecken nähern sich unter dem Episternum allmählich bis zur Berührung, worauf sie sich übereinander schieben.

Der Entwicklungsverlauf des Schlüsselbeins lässt sich, wie Götte hervorhebt, mit demjenigen eines einfachen, secedären, etwa eines Deckknochens nicht ohne weiteres identifizieren. Denn man hat bei der Bildung des Schlüsselbeins zu unterscheiden: 1) eine direct entstandene Knochenröhre, und 2) innerhalb derselben eine durch Marksubstanz vermittelte Knochensubstanz, d. h. der histogenetische Unterschied des Schlüsselbeins von anderen „primär“ gebildeten Knochen reduziert sich darauf, dass bei ersterem das grundlegende Gewebe im Innern ohne Vermittlung eines Knorpels sich in die Markmasse verwandelt, welche in beiden Fällen zur indirekten Knochenbildung führt.

Im weiteren Verlauf der Entwicklung des Schultergürtels interessieren uns noch die Verknöcherungen des Scapulo-coracoidenum. An dem Knorpel dieses Stückes tritt nach Götte theils eine blosse Verkalkung, theils eine vollständige Knochenbildung auf. Diese letztere Bildung erfolgt in zwei getrennten Strecken, deren Grenze vom Schultergelenk zum medialen Rande des Scapularfensters verläuft, so dass der mediale Knochen das Coracoidenum, der laterale die Scapula bezeichnet. Der letztere umfasst
die ganze Partie der Scapularplatte, welche den hinteren Umfang des Scapularfensters begrenzt; der nur theilweise verkalkende Knorpel des sich daran schliessenden Suprasecapulare erhält sich dagegen auch in der Brücke, welche das Fenster nach vorn abschliesst und in den ebenso gebildeten Rahmen des angrenzenden Coracoidealfensters übergeht.

Auch über die Entwickelungsgeschichte des Schultergürteis von Anguis fragilis verdanken wir Götte worthvolle Mittheilungen. In dem jüngsten von ihm untersuchten Stadium bestand jede Schultergürtelhülfe noch aus embryonalem Bildungsgewebe und liess einen beiförmigen ventralen und einen stielförmigen dorsalen Theil unterscheiden. Der letztere stellt zum grössten Theil das Suprasecapulare vor, das beiförmige Stück das gleich näher zu betrachtende Epicoracoideum, der Verbindungs-theil zwischen diesen beiden enthält das Fenster, der hintere Theil des Fensterrahmens, der sich durch grössere Dichtigkeit des Gewebes auszeichnet, am frühesten knorpelig wird und später allein verknochert, enthält die niemals getrennten Stücke des Coracoideum und der Scapula. In diesem Entwickelungsstadium waren schon zwei Fenster vorhanden. Vom Rande des Suprasecapulare ging ziemlich hoch oben die Clavicular aus. Die Warze derselben geht wie bei Cnemidophorus continuirlich in das Suprasecapulare über, während der mediale Theil sich nach vorn convex biegt und dann über die vordere Spitze des Epicoracoideum nach unten krümmt, um sich darauf mit einem weichen Zipfel zu verlieren (Taf. LV. Fig. 7). Auf einer folgenden Entwickelungsstufe waren die Scapulo-coracoidea, abgesehen von der Vergrösserung, wesentlich nicht verändert. Die Schlüsselbeine standen noch in vollkommenem Zusammen-hang mit den Schulterblättern, die noch nicht verknocherten weichen medialen Verlängerungen beider Schlüsselbeinanlagen waren dort, wo sie in der Medianebene zusammentreffen, zu einem Strange verschmolzen, welcher zwischen beiden Epicoracoidea rückwärts zog; aus diesem Zwischenraum hervortretend aber wieder in zwei Zipfel auseinanderfuhr, von denen jeder sich mit dem Ende der betreffenden Brustbeinhälfe verband (vergl. Taf. LV. Fig. 8). Diese hintere Spaltung des Stranges hält Götte für einen Rest seiner Doppelanlage, der Bildung der Anlage des Episternum bei Cnemidophorus entsprechend, doch verwandelt sich in das definitive Episternum von Anguis nur der hinterste gespaltene Theil jener Anlage, wo bereits zu derselben Zeit Knochenspuren in jedem Zipfel angetroffen werden; der Haupttheil des Stranges atrophirt und schwindet in der Folge vollständig.

Auf diesen entwicklungsgeschichtlichen Thatsachen fassend, wird es nun wohl nicht schwierig sein, die verschiedenen Theile des Schulter-gürtels zu verstehen und zu deuten. Der dorsale Abschnitt ist die Scapula, eine Deutung, in welcher alle Autoren mit einander übereinstimmen. Dieselbe stellt ein senkrechtes Stück dar, das unten mit oder ohne Grenze
mit dem ventralen Abschnitt in Verbindung steht, mit ihm die Gelenk-
höhle für den Humerus bildend und oben beträchtlich verbreitert frei
endet. Der untere schmälere und meistens kleinere Theil ist bei erwach-
senen Thieren verknöchert, er bildet die eigentliche Scapula, das obere
großere Stück, das Suprascapulare, bleibt entweder knorpelig oder ver-
kalkt höchstens theilweise, ohne aber sonst dem unteren gegenüber irgend
welche Selbständigkeit zu erlangen.

Verhältnissmässig klein ist nach Gegenbaur das knorpelige Supra-
scapulare bei Chamaeleo (Taf. LVI. Fig. 1 ss); bei Iguana ist der breite
crasse Dorsalrand in 4—5 Zacken ausgezogen, deren Ineisuren jedoch durch
eine Memran ausgefüllt, es entspricht dies nach Gegenbaur der ähn-
llich ramificirten Knorpelverkalkung, die im Suprascapulare von Lacerta
(L. agilis) vorkommt (Taf. LVI. Fig. 2 ss).

Der vordere Rand der Scapula zeigt in wechselnder Höhe bald im
Bereiche des Knorpel, bald im Bereiche des Knochentheils einen schwach
entwickelten Vorsprung (Processus clavicularis s. Acromion: Fürbringer;
Acromial tuberosity: Günther). Eine direkte Homologie dieses Vor-
sprungs mit dem Acromion der Säugentiere ist, wie Gegenbaur nach-
gewiesen hat, wegen seiner wechselnden Lage nicht anzunehmen.

Auch über die Deutung des als „Clavicula“ bezeichneten Knochen-
stücks besteht wohl kein Zweifel. Was die Formverhältnisse und Ver-
bindungen der Clavicular der Saurier angeht, so sind für beide ziemlich
wechselnde Zustände bekannt. In seinen Krämmungsverhältnissen ent-
sprüht der Knochen am meisten der Clavicular der Vögel. Gegen das
mediale Ende verbreitet sich der Knochen selten in bedeutendem Grade,
und wenn dies der Fall ist, so wird er dort von einem Fenster durch-
brochen, wie z. B. nach Gegenbaur bei Seincus, Hemidactylus, Lacerta.
Meist ist das mediale wie das laterale Ende etwas zugespitzt, was haupt-
sächlich für jene Fälle trifft, wo der Knochen den Querästen des Epi-
 sternum (clavicularen Sternum) aufliegt. Es ist dies aber durchaus nicht
ausschliessliches Verhalten, denn bei Lacerta agilis läuft die mediale
Spitze weit am Queraste gegen die vordere Spitze des kreuzförmigen
Episternum aus. Eine ansehnliche Verbreiterung zeigt die Clavicular
nicht selten zur Verbindung mit den Querästen des Episternum. Es ist nach
Gegenbaur dieser Fortsatz bei Lacerta und Seincus sehr ansehnlich,
wenig bei Tarchysaurus (Taf. LVI. Fig. 3) vorhanden. Bei vielen, wo
sonst die nämlichen Verhältnisse des Episternum bestehen, fehlt er ganz.
Eben so mannigfaltig als die Verbindung der Clavicular mit der Scapula
bezuglich der Stelle, ebenso mannigfach ist die mediale Verbindung. Sie
findet in allen Fällen mit einem Theile des Episternum statt, und zwar
twieder mit dem vorderen Ende des Episternum, z. B. Hemidactylus
(Taf. LVI. Fig. 4) oder mit den Querästen desselben (Monitor), oder mit
beiden Theilen zugleich. Der letztere Modus gliedert sich wieder nach
Gegenbaur in zwei Variationen, die von der Form des Episternum ab-
hängig sind. Entspringen die Queräste des Episternum vom vorderen

Brønns klasser des Thier-Reichs. VI. 3. 33
Ende entfernt (Kreuzform), so sind nur die Enden der Queräste mit dem Schlüsselbeine in Verbindung, und ebenso das Ende des Vorderstücks (Laevota, Trachysaurus). Ist das Episternum T-förmig gestaltet, so liegen die Claviculae den seitlichen Schenkel auf längerer Strecke an und enden am Mitteltheile (Iguana, Taf. LVI. Fig. 5).

Die medialen Enden der Clavicula sind entweder von einander entfernt, oder sie berühren sich und sind dann entweder durch lockere Bandmasse oder durch Synchondrose in Zusammenhang. Letztere fand Gegenbaur bei Trachysaurus.

Während Gegenbaur das Schlüsselbein unabhängig vom knorpelig praeformirten Schultergürtel und rein knöchern entstehen lässt, hat Götte dagegen, wie wir gesehen haben, nachgewiesen, dass der in Rede stehende Knochen in vollkommenem Zusammenhang mit den übrigen Theilen des Schultergürtels entsteht, während Scapula und Coracoïd allmählich knorpelig werden, die mit ihnen zusammenhängende Clavicula dagegen indirect verknöchert und dass eine vollständige Trennung beider Theile nie zu Stande kommt, indem als Rest des ursprünglichen Zusammenhangs eine weiche Gewebmasse das knöcherne Schlüsselbein mit dem knorpeligen Schulterblatt verbindet. Senkrechte Längsschnitte durch Schulterblatt und Clavicula bei Embryonen und ausgewachsenen Thieren zeigen dies auf's klarste, wie aus Taf. LVII. Fig. 1 u. 2 hervorgeht. Die erstgenannte Figur ist ein Querschnitt eines noch jungen Embryo von Monitor, die andere einer eines ausgewachsenen Individuums von Gonioccephalus dilophus. Bei dem Embryo von Monitor geht das noch hyalinknorpelige Suprascapulare, dort, wo es mit der Clavicula zusammenhängt (Taf. LVII. Fig. 1 bei a) in ein Gewebe über, von welchem es schwierig zu sagen ist, ob es dem Knorpel oder dem Bindegewebe zugehört; nach der Clavicula hin wird es mehr fibrillär bis bei a, wo es dann unmittelbar in Bindegewebe übergeht, denn wir wissen nämlich, dass die Clavicula bei den Sauirien durch directe Verknöcherung sich entwickelt.

Taf. LVII. Fig. 2, welche einen Querschnitt durch die genannten Theile bei dem ausgewachsenen Gonioccephalus dilophus vorstellt, zeigt an, dass auch bei ausgewachsenen Sauirien die Clavicula in Zusammenhang mit dem Suprascapulare bleibt. Eine Bindegewebmasse mit hier und dort eingestreuten Knochenkörperchen verbindet die Clavicula mit dem Suprascapulare und geht so unmerklich von dem einen Stück auf das andere über, dass es nicht möglich ist anzugeben, wo das eine anfängt und das andere endigt und umgekehrt. Zu der Bildung eines Gelenkes kommt es also bei den Sauirien nie. Dieselben Verhältnisse finden sich bei der Vereinigung der Claviculae mit dem Episternum wieder. Auch hier kommt es nie zu einer Scheidung in dem Zusammenhang; Clavicula und Episternum bleiben mit einander durch Bindegewebe verbunden, welches unmerklich von dem einen auf das andere übergeht. Eine aus fibrillärem Bindegewebe bestehende Bandmasse vereinigt die beiden Claviculae unter einander.

Das gewöhnlich in dem Coracoideum vorhandene Hauptfenster bezeichnet Fürbringer als Fenestra coracoidea anterior, Parker als Upper coracoid fenestra. Das im hinteren Theil des Coracoideum gelegene Fenster nennt Fürbringer Fenestra coracoidea posterior, Parker Lower coracoid fenestra. Das zwischen Coracoideum und Scapula sich befindende Fenster wird von Fürbringer als Fenestra coraco-scapularis, von Parker als Coraco-scapular Fenestra und das im unteren Theil der Scapula gelegene Fenster von Fürbringer als Fenestra scapularis, von Parker als Scapular fenestra bezeichnet.

Schon Gegenbaur hebt hervor, dass kein zwingender Grund vorhanden ist, dem Epicoracoideum eine grössere Selbständigkeit zuzusprechen als dem Suprasteapulare im Verhältniss zur Scapula. Die verschiedene Ausführung der Form des Coracoideum wird nach ihm zunächst durch die Fensterbildung hervorgerufen, Durchbrechungen der Platte des Coracoideum, die durch eine Membran verschlossen sind.

Die einfachste Form bieten, wie wir schon gesehen haben, die Chamaeleone dar, deren Coracoideum ohne solche Durchbrechung ist. Bei der Mehrzahl der Sauurir scheint die Fensterbildung einfach zu sein. Es ist dann das Fenster durch ein schmales Stück nach vorn und seitlich nach hinten und medianwärts abgeschlossen, so nach Gegenbaur bei Lacerta, Calotes, Grammatophora, Histrurus, Plestiodon, Scincus und auch bei Anguis. Bei den einfach gefensterten Coracoistücken ist die Stelle, die bei den doppelt gefensterten durchbrochen ist, durch eine beträchtliche Dünnheit des Knochen's auszeichnet, und an zweifästigen Coracoidea ist das Hauptfenster das laterale gelegene. Das coracoidale Nebenfenster zeigt schon durch seine wechselnde Grösse seinen geringeren Werth. Sehr klein ist es bei Monitor, bei Iguana etwas grösser, zuweilen dem Hauptfenster gleich, bei Hemidactylus sogar noch etwas breiter (alles nach den Angaben von Gegenbaur); etwas kleiner scheint es wieder

Das nach oben zu gerichtete Fenster wird nach Gegenbaur in seinen knöchernen Begrenzungen ganz von der Scapula, das untere und vordere von der Scapula und dem Coracoideum gebildet. Von den Fenstern des Coracoideum unterscheiden sie sich dadurch, dass ihre vordere Umschliessung nicht durch Knorpel, sondern von einem bindegewebigen Ligamente bewerkstelligt wird, so dass sie nach Gegenbaur in gar keiner Weise mit den als Durchbrechungen einer Knorpelplatte erscheinenden Coracidifenstern vereinigt werden dürfen. Die typische Bildung der Coracidplatte der Saurier wäre also nach Gegenbaur so zu denken, dass sie vom Gelenktheile, wo sie mit der knöchernen Scapula zusammenhängt, in zwei Fortsätze ausläuft, die vorn und median durch einen knorpeligen, nur verkalkenden Bogen mit einander verbunden sind (das Epicoracoid) und so die als Hauptfenster bezeichnete Offnung umschliessen. Diese beiden Skenkel, von welchen Gegenbaur den vorderen „Procoracoid“, den hinteren „Coracoid s. str.“ nennt, seien die für den Vergleich mit Chelonien und Amphibien maassgebenden Stücke der ganzen ventralen Platte des Schultergürtels der Saurier.

Diese ganze Auffassung Gegenbaur’s stützt sich aber auf die oben mitgeteilte Vorausssetzung von der Entstehung und Bedeutung des Scapularfensters. Indessen ist dasselbe nach Götte durchaus nicht bei allen, auch nicht einmal durchweg bei den von Gegenbaur selbst angeführten Saurier nach vorn lediglich durch ein Band abgeschlossen, dies findet vielmehr nach Götte wir es scheinet seltener statt, als das bei *Cnemidophorus* geschilderte Verhalten, wonach die Scapularfenster ebenso wie die Coracoidfenster als nachträgliche Durchbrechungen der Knorpelplatte entstehen und nach vorn durch ein knorpelstück, das Praescapulare, nach Parker, begrenzt werden, durche welches es mit dem Suprascapulare und Epicoracoideum continuirlich zusammenhängt.

So besitzt z. B. *Ameiva vulgaris* und *Strobilurus torquatus* je zwei Scapularfenster, von denen das laterale durch ein vollständiges Praescapulare, das mediale durch ein Band abgeschlossen ist, in welches hinein das vorragende Ende des Praescapulare sich zu verlieren scheint. An einer *Ameiva sp.* sah Götte allerdings ein breites Band vom Epicoracoideum zum Suprascapulare ausgespannt, aber von letzterem aus einen sich allmählich spitz ausziehenden Knorpelfortsatz in jenes Band eindringen.

Die Gattung *Hatteria* (*Rhynchocephalus*) bietet eine von den übrigen kionokraren Sauriern abweichende, zwischen den Bildungen von *Varanus*
und Chamaeloon und den Crocodilen stehende Anordnung dar. Die Scapula verhältn sich wie bei den übrigen kionokranen Sauriern, der Processus clavicularis ist wohl entwickelt, das Coracoideum hingegen bildet eine nicht durch Fenster durchbrochene solide Platte, welche Ähnlichkeit mit der der Chamaeloon zeigt und im hinteren Theil verknöchert ist, während der vordere und mediale aus Knorpel besteht; das Foramen coracoideum liegt unweit der Grenze der Scapula. Die Clavicula ist eine schmale und rundliche Knochcnleiste, welche an ihrer ganzen schmalen Hälfte mit den seitlichen Schenkeln des Episternum (claviculares Sternum) innig verwachsen ist, ähnlich dem Verhalten bei den Monotremen. Wahrscheinlich muss der so einfach gebildete Schultergürtel — der mit dem embryonalen Schultergürtel anderer Saurier übereinstimmt — nicht als rückgebildete, sondern im Gegentheil nur als eine ursprüngliche angesehen werden (vergl. Taf. LV. Fig. 14).

Bei Pygopus lepidopus Merrem fehlt das Episternum als selbständiger, wohl ausgebildeter Knochen. Die Scapula ist schmal, das Suprascapulare dreimal breiter, aber sehr kurz. Die Pars coracoidea verbindet sich mit ihrem hinteren Theil mit dem Sternum. Die Clavicula ist sehr lang und schmal und vereinigt sich mit der der Gegenseite unter einem nahezu rechten Winkel (Taf. LX. Fig. 5).

Bei Pseudopus Pallasii Cuvier ist das knöcherne Episternum von T-förmiger Gestalt und fest mit dem Sternum verwachsen. Die Scapula hat nahezu die Gestalt eines Quadrates, das längere Suprascapulare ist nur wenig breiter. Das Coracoid ist von ziemlich bedeutender Grösse und enthält ein Fenster. Die wohl entwickelte, aber etwas kurze Clavicula vereinigt sich unter sehr stumpfem Winkel mit der der Gegenseite (vergl. Taf. LX. Fig. 7).

Bei Lialis Burtonii Gray scheint nach Fürbringer das Episternum zu fehlen. Die Scapula mit dem wenig breiteren Suprascapulare ist sehr kurz. Das Coracoid ist etwas breiter als die Scapula. Die Clavicula
geht vom Vorderrand des Suprascapulare in einer langgestreckt S-förmigen Krümmung nach unten und vorn, wo sie sich mit der der Gegenseite unter nahezu rechtem Winkel vereinigt (Taf. LX. Fig. 6).

Bei Ophisaurus centralis liegt das Episternum als ein schmaler, langer Querknochen auf dem vorderen und unteren Rande des knorpeligen Sternum. Die Scapula ist im Verhältniss zu dem sehr kleinen Suprascapulare gut entwickelt. Die Pars coracoidea gleicht der von Pseudopus, ist aber nicht so weit nach vorn ausgedehnt. Die dünne Clavicula vereinigt sich mit der der Gegenseite unter einem gestreckten Winkel (vergl. Taf. LX. Fig. 8). Bei Acontias fehlen Clavicula und Episternum.

Beim Acontias melacagris Cuvier sind Scapula und Pars coracoidea innig mit einander verwachsen. Bei Acontias niger Peters ist die Scapula ein sehr dünner, langer Knochen, der auf der einen Seite in das kleine knorpelige, nicht umgebogene Suprascapulare übergeht, auf der andern mit der Pars coracoidea verwachsen ist (vergl. Taf. LX. Fig. 10 u. 11).

Bei den Amphibiaenoiden ohne vordere Extremitäten fehlt das Sternum als Knorpelplatte. An seiner Stelle ist aber auf beiden Seiten der Linea alba im Rectus abdominis eine breite Inscription tendinea, die in ihrer Gestalt dem knorpeligen Sternum von Chiroteles sehr ähnlich ist. Die Scapula und das sehr verkümmerte Coracoideum sind jederseits zu einem Knöchelchen verwachsen, das seitlich in Bindegewebe und median in die Sternalaponeurose übergeht. Bei Trogonophus Wiegmanni sind diese Knöchelchen am meisten entwickelt.

Reptilien.

Nicht allein bei Embryonen, sondern auch noch bei ziemlich älteren Thieren ist ein Epicoracoideum noch deutlich zu unterscheiden (Taf. LVII. Fig. 3). Bei sehr jungen Embryonen bestehen Scapula und Coracoideum aus einem einzigen Knorpelstück, so dass auch hier beide genannte Knochen aus einer einzigen knorpeligen Anlage hervorgehen, wie auch von Gegenbaur angegeben ist. Bei älteren Embryonen, bei welchen schon in dem gemeinschaftlichen Scapulo-Coracoideum Verknöcherung eingetreten ist, geht die Knorpelnah, welche das Coracid von der Scapula trennt, unmerkbar, ohne bestimmte Grenzen, sowohl in das Coracoideum als in die Scapula über (vergl. Taf. LVII. Fig. 4).

Allgemein nimmt man an, dass bei den Crocodilen eine Clavicula vollständig fehlt. Untersucht man aber junge Thiere und Embryonen auf diese Verhältnisse genauer, dann bemerkt man, dass auch die Crocodile einer Clavicula nicht vollständig ermangeln. Taf. LVII. Fig. 5 stellt Brustbein und Schultergürtel eines Embryo von Crocodilus vor. Zwischen dem Episternum (clavicularen Sternum) und dem Coracoideum ist eine Bindegewebsmembran ausgespannt, welche sich am Schultergürtel bis zu der Naht ausstreckt, welche das Coracoideum von der Scapula trennt. Von dieser Membran ist der vordere Rand, welcher unmittelbar von oben erwähnter Knorpelnah nach dem Vorderende des Episternum verläuft, deutlich verdickt, besonders gilt dies von jungen Embryonen, weniger deutlich ist es schon bei älteren Thieren und Embryonen zu sehen, während bei noch älteren Thieren die ganze zwischen Episternum und Coracoideum ausgespannte Membran sich nicht mehr scharf präpariren lässt, weil sie mehr oder weniger mit den Fascien verschmolzen ist. An Querschnitten von in verdünnter Chromsäure-Lösung entkalkten Objecten entnommen, überzeugen man sich leicht, besonders nach Färbung mit Pikrocarmin, dass diese Membran an der einen Seite in das Periost des Episternum, an der anderen Seite in das Periost und in das Perichondrium des Coracoideum sich fortsetzt (Taf. LVII. Fig. 7).

Auch hier lässt sich nachweisen, dass das Episternum sich paarig anlegt. Die Verschmelzung der beiden paarigen Stücke scheint in den unteren Theilen schneller stattzufinden, als in den oberen (Taf. LVII. Fig. 8). Auch auf Taf. LVIII. Fig. 5, welche dem oberen Theil des Episternum eines älteren Embryo von Alligator entnommen ist, war es noch
deutlich zu sehen, dass das Episternum sich paarig anlegt, die Verschmelzung hat hier oben angefangen.

Das Vorkommen eines Episternum bei *Ichthyosaurus* in Abwesenheit eines Sternum ist bereits von Gegenbaur hervorgehoben als Beweis für die relative Unabhängigkeit beider Theile.

Das auffallendste am Episternum von *Ichthyosaurus* ist nach Götte aber seine Beziehung zu den Coracoidea. Sein schlanker Körper, welcher sich an das in zwei Seitenäste ausgezogene Clavicularende anschliesst, läuft hinten lanzettförmig aus und bedeckt in seiner ganzen Länge die wahrscheinlich vorhanden gewesene Fuge zwischen den Epicoracoidalrändern. Es ist daher nach Götte nicht unwahrscheinlich, dass er die ganzen Coracoidplatten ohnegleichen so mit einander verband, wie es bei verschiedenen Anuren durch einen ebenfalls stabförmigen Skelettheil geschieht, der aber mit den äusseren Epicoracoidsäumen verschmilzt (vergl. Taf. LVI. Fig. 13).

So findet man also im Schultergürtel von *Ichthyosaurus* ebenso viele Beziehungen zu den Reptilien (Saurier), wie zu den Amphibien (gewisse Anuren). Mit den ersteren stimmt *Ichthyosaurus* durch die Form, Lage und Verbindung der Schlüsselbeine und durch die Gestalt und Claviculaverbindung des Episternum überein; mit den Fröschen theilt er den Mangel — nach Götte — eines zwischen die divergirenden Coracidiränder eingefügten Sternum und die Verbindung der in der ganzen Dicke ihrer (epicoracoidalen) Ränder getrennten Coracoidplatten vermittelst eines ventral über die Fuge gelagerten Skelettheils, welcher bei *Ichthyosaurus* unbestritten als Episternum gilt und dessen gleiche Bedeutung bei den Fröschen von Götte nachgewiesen ist.

Oberarmknochen.

Der Oberarmknochen — der Humerus — der Saurier lässt sich nach den Untersuchungen von Fürbringer (35) mit dem der *Urodelen* in Vergleichung bringen, während er dagegen von dem der Anuren sehr verschieden ist. Er bildet einen langen, wenig gekrümmten Knochen, der an seinem vorderen und hinteren Ende verbreitet ist. An seinem proximalen Ende befindet sich der sehr ansehnliche, auf das vordere Drittel des Humerus ausgedehnte Processus lateralis (Crête deltoidale: Cuvier — Unterer oder vorderer Höcker: Meekel — Tuberculum ex-
ternum s. majus: Pfeiffer, Fürbringer — Tuberculum majus, Greater
tuberosity: Stannius, Sanders — Radial crest: Owen — Laterales
unteres Tuberculum: Rudinger — Radial tuberosity: Mivart). Der-
selbe erreicht in der Mitte seine grösste Höhe und ist nach aussen und
unten gerichtet. Ihm gegenüber liegt, beschränkt auf das obere Sechstel
des Oberarms, der kleine Processus medialis (Tuberosité postérieure:
Cuvier — Hinterer Höcker: Meckel — Tuberculum internum s. minus:
Pfeiffer, Fürbringer — Tuberculum minus: Stannius — Ulnar
tuberosity: Mivart — Inner and lower Edge of the head of the Humerus:
Sanders), der am proximalen Theile, also am Rande der Gelenk-
fläche, am ansehnlichsten entwickelt ist. Zwischen beiden Processus,
näher dem Processus medialis liegt eine Rauhigkeit für die Insertion des
M. latissimus dorsi. Das distale Ende ist mit seiner Breite im rechten
oder einem noch grösseren Winkel gegen den proximalen Theil gedreht
und articularis mit Radius und Ulna; von den die Gelenkflächen begren-
zenden Condylen ist der kleinere Condylus radialis s. lateralis (Condyle
externe s. Epicondyle: Cuvier; Condylus externus s. epicondylus:
Meckel, Fürbringer; external condyle: Mivart; Condylus exten-
sorius: Rudinger; outer or extensor condyle: Sanders) meist durch
eine scharfe Längsleiste, Crista epicondyloidea lateralis, ausgezeichnet,
während der grössere Condylus ulnaris s. medialis (Condyle interne:
Cuvier — Innerer Oberarmknorren: Meckel — Internal condyle:
Mivart — Condylus externus s. Epicondylus: Fürbringer — Con-
dylus extensorius: Rudinger — Outer or extensor condyle: Sanders)
en einen kräftigen Höcker — Epicondylus ulnaris trägt.

Bei einigen Chalcidiern und Scincoiden verkümmert der Humerus
entweder durch Reduction seiner Fortsätze und seiner Grösse überhaupt
zu einem schmalen cylindrischen Knochen — wie bei Seps — oder er
schwindet bis auf ein unanschliessliches Rudiment — Pseudopus, wo er
beiderseitig oder einseitig vorhanden sein kann, oder er kommt ganz in
Wegfall — wie bei der Mehrzahl der schlangenähnlichen Saurier —
(Fürbringer). Uber den Humerus von Chirotes fehlen genauere Aus-
gaben; den übrigen Amphisbaenen fehlt jede Spur davon. Bei den Cha-
nacelonen unterscheidet sich der Humerus durch die geringe Ausbildung
der Fortsätze (Fürbringer).

Bei den Crocodilen ist der Humerus relativ länger und mehr S-förmig
gekrümmt, als bei den Sauriern. Der Processus lateralis ist an seinem
proximalen Theile sehr dünn und scharfkantig; während das distale Ende
einen kräftigen Höcker bildet. Der proximale Anfang des Processus late-
ralis entspricht dem Tuberculum laterale s. majus. Ein Processus media-
is ist nur schwach entwickelt. Von den Condylen bietet der ulnare eine
anschliesschere Entwicklung dar, als der radiale, beide sind mit wenig aus-
gebildeten Epicondylen versehen.
Knochen des Vorderarms.

Unter den Saufern mit verkümmerten vorderen Extremitäten sind bei Seps Ulna und Radius vollständig, haben aber schwach entwickelte Epiphysen und sind bedeutend verkürzt und verschmälert; bei den Saufern ohne äussere vordere Extremitäten fehlen auch die Vorderarmknochen.

Bei Hatteria zeigen Ulna und Radius nichts besonderes; das Olecranon ulnae ist gut entwickelt; die distalen Enden der beiden Vorderarmknochen stehen nicht mit einander in Verbindung.

Handwurzelknochen.

Im Anschluss an die beiden Knochen des Vorderarms findet sich ein Radiale und Ulnare (vergl. Taf. LVIII. Fig. 1 — 7 r, w), welche beide meist flach gestaltet, gegen die Vorderarmknochen mit Gelenkvertiefungen versehene Stücke sind. Bei den Ascalaboten (Taf. LVIII. Fig. 6. 7) sind sie ansehnlicher als bei den Seineoiden, Agamen und Lacerten. Sie sind immer durch einen unbeträchtlichen Teil von einem keilförmig zwischen sie von unten her eindringenden Knochen ausgefüllten Raum von einander getrennt. Mit Ausnahme von Chamaeleo, bei dem Radius und Ulna fast in einer derselben Fläche mit den beiden ersten Carpusknochen artikulieren, sind die distalen Enden der Vorderarmknochen schräg von innen nach aussen gewölbt, so dass Radiale und Ulnare mit mehr oder minder grossen Theilen in den Zwischenknochenraum einfallen. Die Vorderarmknochen fassen so den Carpus zwischen sich. Am meisten ausgebildet ist dies Verhalten bei den Ascalaboten, bei denen der Radius an seinem Ende etwas nach innen gekrümmt ist. Auch bei Draco ist ein solches Verhalten sehr deutlich zu beobachten (Gegenbaur).

Wenn man, wie Born hervorhebt, in Ueberlegung zieht, welche
Umstände wohl bei den Sauriern gegenüber den Urodelen und Cheloniern theils zu einer erheblichen Reduction, theils zum vollständigen Verschwinden des Intermedium geführt haben mögen, so fällt bei Vergleichung der vorderen Extremitäten von Repräsentanten dieser Familien sogleich ein Umstand ins Auge, der die Urodelen und Chelonien, welche ein grosses und den beiden Vorderarmknochen angelagertes Intermedium besitzen, von den Sauriern unterscheidet. Bei jenen sind nämlich die distalen Enden der Ulna und des Radius beinahe bis zur Berührung genähert, bei den Sauriern haben sie sich sehr weit von einander entfernt, dadurch hat sich wahrscheinlich die Berührung zwischen dem Intermedium und den Vorderarmknochen gelöst, den Schluss des Gewölbes, das die erste Reihe der Handwurzelknochen bildet, hat allmählich statt des durch Verlust seiner Unterlagen dazu untäglich gewordenen Intermedium, das sich so charakteristisch für die Saurier zwischen Ulnare und Radiale keilförmig verschobene Centrale übernommen und das ausser Function gesetzte Intermedium ist theils rückgebildet, theils ganz verschwunden; eine Erklärungsweise, mit der ich mich völligvereinigen kann.

Mit den fünf Metacarpalknochen stehen, wie es scheint bei allen kioniokraten Sauriern mit wohl entwickelten Extremitäten fünf Carpalia in Verbindung, die je einem Metacarpale entsprechen. Bei den Ascalaboten besitzen sie nach Gegenbaur mehr abgerundete Oberflächen, aber wie bei den übrigen Eidechsen je nach dem Finger, dem sie angehören, ganz charakteristische Formen. In dieser Hinsicht unterscheiden sie sich nicht wenig von ihren Homologis bei den Schildkröten, die nur wenig Grösse- und Formwechsel in dieser Reihe aufweisen. Bei den Ascalaboten ist nach Gegenbaur das Carpale 1 (vergl. Taf. LVIII. Fig. 6. 7) immer keilförmig gestaltet; seine breitere Basis trägt das ansehnliche capitolumartige Basalstück des Metacarpale I, die Spitze ist zwischen Radiale und Centrale eingehoben.

Über den Bau des Carpus bei den Chamaeleonen weichen die Ansichten nicht unbedeutend von einander ab. Nach Gegenbaur sind Ulnare und Radiale bei den Chamaeleonen dicht nebeneinander gerückt und bilden eine gegen das unter ihnen liegende Centrale gerichtete, die gelenkkopfartige Wölbung desselben aufnehmende Vertiefung. Im Vergleich mit den übrigen Sauriern sind nach ihm bei Chamaeleo die fünf Carpalia mehr gleichartig, alle ordnen sich hier um das Centrale und zeigen noch die bemerkenswerthe Eigenthümlichkeit, dass ihre Form an kurze, gedrungene Metacarpalknochen erinnert. In der That stimmen sie auch in ihrem feineren Baue viel eher mit den Metacarpalien als mit den Carpusstücken anderer Saurier überein und könnten zeigen, dass auch

Meine Untersuchungen führten zu gleichen Resultaten (vergl. Taf. LIX. Fig. 3. 4), indem ich nämlich fand, dass der Carpus bei den Chamæleon aus einem Radiale, Ulnare, Centrale und aus einem zwar knorpeligen Intermedium besteht; das Carpale\(^1\) und \(^2\) als discrete Stücke — wenn auch immer knorpelig bleibend — vorhanden sind; dass das Carpace\(^2\), \(^3\) und \(^4\) mit dem ihnen entsprechenden Metacarpale II, III und IV verwachsen sind, und dass die Ossitication dieser Stücke von zwei Knochenkernen ausgeht, von welchen der eine dem Carpale, der andere dem betreffenden Metacarpale entspricht, was noch auf die ursprüngliche Selbständigkeit beider Stücke hinweist.

Eine andere Deutung haben jedoch die betreffenden Stücke von Born (51) erfahren (vergl. Taf. LIX. Fig. 5). Bei Chamæleo findet er ein Ulnare, das der Ulna, ein Radiale, das dem Radius angefügt ist, und ein zwischen diesen beiden eingeschaltetes, deutliches, charakteristisches keilförmiges, freilich nur knorpeliges Centrale. Von den Carpalia der zweiten Reihe, die nach Born zusammen das von Gegenbaur, Cuvier und auch von mir als „Centrale“ gedeutete Stück bilden, sind drei nachweisbar. Das mittelste, vielmals größte, füllt nach ihm mit seinem mächtigen, proximalen Kopf zum größten Theil die Pflanne, die zusammen Ulnare, Radiale und Centrale bilden, aus, und auf seiner winklig gebogenen, facettirten distalen Gelenkflächen trägt es die Basen des Metacarpale III und IV und Theile der Basen des Metacarpale II und V. Das radialwärts an dasselbe angelegte Carpale ist ein platter Knorper, der mit den breiten Flächen dem vorigen und dem Metacarpale I anliegt und mit den schmalen an das Radiale und Metacarpale II angrenzt. Das ulnare Carpale trägt den größeren Theil der Basis von Metacarpale V. Die fünf Carpalia der Autoren betrachtet Born als die wahren Metacarpalien. Ein Intermedium konnte er nicht finden. Das ulnare Carpale wird nach ihm leicht als Carpale\(^5\) erkannt, da es nur Metacarpale V betrifft. Das am meisten radialwärts gelegene Carpale stösst sowohl an Metacarpale I als an II, könnte demnach ebenso gut als Carpale\(^1\), wie Carpale\(^2\) gedeutet werden. Letztere Annahme zieht Born vor. Demnach wären bei den Chamæleonen das auch sonst sehr unbedeutende Carpale\(^1\),
wegenfallen. Das mittelste grosse Stück kann nach ihm entweder dem bei den meisten Sauriern an Grosses bevorzugten Carpale1 allein entsprechen, wo dann Carpale3 verloren gegangen, oder es entstand, was Born wahrscheinlicher vorkommt, durch Verschmelzung des Carpale3 mit dem Carpale4.

Die Resultate, zu welchen Stecker (53) in Beziehung zu dem Bau des Carpus bei den Chamaeleon\textit{en} gekommen ist, stimmen im Allgemeinen mit denen von Born überein. Stecker findet ein Ulnare, Radiale und Centrale und im embryonalen Zustand ein Intermedium, das bei älteren Individuen verschwindet. Die Carpalien der zweiten Reihe stellen nach Stecker mit Ausnahme des Carpale1 das vermeintliche Centrale der früheren Autoren dar. Dieselben bilden zusammen einen im Durchschnitte linsenförmigen Körper, der aus drei Stücken besteht, ein Carpale2, ein Carpale3+4 und ein Carpale5, ausserdem ein ziemlich kleines zur Seite geschobenes Carpale1 (vergl. Taf. LIX. Fig. 16 und 17).

In einer neuen Untersuchung über den Carpus bei \textit{Chamaeleon dilepis} ist Born zu dem überraschenden Resultat gekommen, dass die älteren Autoren, welche bei \textit{Chamaeleon} nur zwei Stücke in erster Reihe zählen, doch vielleicht genauso beobachtet haben. Bei drei von jenen fünf Carpen war nämlich das knorpelige Centrale mit dem bis auf einen kleinen Knochenkern im unteren mittleren Abschnitt ebenfalls knorpeligen Radiale in der ganzen Ausdehnung ihrer Berührungsflächen verschmolzen, doch so, dass das Centrale am letzteren einen ganz charakteristisch geformten Fortsatz bildete, wie Taf. LXIX. Fig. 6 dies zeigt. Im Innern besass dieser Fortsatz eine besondere Stelle, in der die Knorpelzellen radiär gestellt, vergrössert, aufgeheilt erschienen, alles Zeichen, dass hier die Anlage eines besonderen Verkalkungs- und damit auch eines besonderen Verknöcherungskernes vorlag. Ausserdem konnte Born die von Brühl gezeichneten und erwähnten beiden volaren Sesambeine bestätigen.

Das am ulnaren Rande der Handwurzel gelegene accessorische Bein (s) hat bei den Sauriern eine constantere Beziehung als bei den Schildkröten gewonnen, es liegt immer am Ulnare, zumeist nach aussen von demselben oder gegen die Aussenseite der Ulna gerückt, so dass es kaum mehr dem Carpus zugerechnet werden kann. Es ist höchst wahrscheinlich, dass es dieselbe Bedeutung hat, wie das ihm homologe Stück bei den Schildkröten (vergl. Brrnn's Schildkröten p. 47). Vergl. hierzu Taf. LVIII. Fig. 1—7 s.

Für den Carpus der Crocodile ist auch hier wieder Gegenbaur zuerst aufklärend aufgetreten, denn die früheren Mittheilungen von Cuvier (1) und Meckel sind mehr oder wenig unvollständig.

Hinsichtlich der beiden letzten Theile des Carpus kann kein Zweifel sein, dass sie alle fünf sonst discret vorhandenen Carpusstückchen der zweiten Reihe entsprechen, so dass der erste einem ersten und zweiten, der zweite einem dritten, vierten und fünften Carpale homolog ist, welche ein einziges Stück bilden, wie bei den ungeschwänzten Amphibien.

Meine sowohl nach Untersuchung jüngerer als älterer Exemplare von Alligator, Cuvialis und Crocodilus erhaltenen Resultate stimmen vollkommen mit denen von Gegenbaur überein. Taf. LIX. Fig. 7 stellt einen Längsschnitt vor durch den Carpus eines noch sehr jungen Alligator,
bei welchem der ganze Carpus noch knorpelig war; Taf. LIX. Fig. 8 einen Längsschnitt, wo der Carpus schon anfing zu ossificiren. Im Radiale und Ulnare bemerkt man nur einen Knochenkern; das Intermedium ist mithin vollständig verschwunden. Dies kann uns aber um so weniger verwundern, wenn man bedenkt, dass auch bei den übrigen Sauriern das Intermedium entweder vollständig fehlt, oder wenn es auch vorhanden, immer doch nur sehr rudimentär ist. Das zwischen Ulnare und Ulna eingeschaltete kleine Stück — welches wahrscheinlich auch hier als der letzte Rest des ursprünglichen biserialen Archipterygiums aufzufassen ist — ist noch vollständig knorpelig, ebenfalls das Centrale (c). Das am ulnaren Rande gelegene grosse Knorpelstück, auf welchem Metacarpale V, IV und III articuliren, und das somit dem miteinander verwachsenen Carpale 3, 4 und 5 entspricht, zeigt nur einen Knochenkern.

Zwischen Centrale und Metacarpale II liegt ein ebenfalls noch knorpeliges Stück, das Carpale 2. Metacarpale I springt gegen den Carpus zu ein und scheint unmittelbar dem Centrale anzuliegen. Untersucht man etwas genauer, so bemerkt man, dass die noch knorpelige Basis des Metacarpale I in ihrem proximalen Ende mit dem Carpale 2 zusammenhängt (vergl. Taf. LIX. Fig. 9). Wir können also das als Metacarpale I betrachtete Knochenstück nicht einfach als solches, sondern müssen es als das mit einander verwachsene Carpale 1 und Metacarpale I ansehen, von welchen das dem Carpale 1 entsprechende Stück noch teilweise mit dem Carpale 2 zusammenhängt. Ähnlich verhält sich auch Gavialis und Crocodilus; bei der letztgenannten Gattung fällt es auf, dass das dem Carpale 1 entsprechende Stück bei jungen Thieren bedeutend stärker entwickelt ist, als bei älteren (vergl. Taf. LIX. Fig. 10, 11). Bei halb ausgewachsenen Exemplaren der Gattung Crocodilus ist das Centrale und das teilweise mit einander verwachsene Carpale 1 und 2 noch vollständig knorpelig. Bei Gavialis ist Carpale 2 mit dem Carpale 1 entsprechenden Stück des Metacarpale I so eng verbunden, dass man beide fast für einen einzigen Knorpel halten möchte, und nur an feinen Schlitzen überzeugt man sich, dass das dem Carpale 1 entsprechende Stück an seiner ulnaren Seite eine Concavität besitzt, in welche das Carpale 2 eingreift (vergl. Taf. LIX. Fig. 12 und Fig. 13).

Mittelhandknochen und Phalangen.

Bei den Sauriern mit wohl entwickelten Extremitäten besteht die Mittelhand (Metacarpus) aus fünf Metacarpalknochen von nahezu gleicher Länge undDicke.

Bei *Hatteria* kommen nach Günther fünf Metacarpalknochen vor und die Phalangen verhalten sich wie bei den Sauriern mit wohl entwickelten Extremitäten. Bei den **Crocodilen** findet man ebenfalls fünf Metacarpalia und der erste Finger hat zwei, der zweite und fünfte vier und der dritte und vierte vier Phalangen.

Das Gliedmaassenskelet der Enaliosaurier.

Ichthyosaurier. Die Gliedmaassen der *Ichthyosaurier* werden durch eine sehr grosse Anzahl einzelner Knochenstücke gebildet, die nicht selten noch in ihren gegenseitigen Lagerungsbeziehungen so vollständig erhalten sind, dass ein Deutungsversuch, wie Gegenbaur (34) nachgewiesen hat, noch sehr gut möglich ist.

Das allgemeine Verhalten der gesammten zu einer Flosse geformten Gliedmaasse spricht sich in einer geringen Differenzierung in einzelne grössere Abschnitte aus, so dass die einzelnen Skeletstücke bei einem Vorkommen in grösserer Anzahl nur wenig von einander sich unterscheiden. Nur ein Knochen macht davon eine Ausnahme, jener, der die Gliedmaasse dem bezüglichen Gürtel anfügt und zweifellos als Humerus für die Vordergliedmaasse, als Femur für die hintere Gliedmaasse gedeutet worden ist.

Verfolgt man, wie Gegenbaur nachgewiesen hat, das Verhalten an den Vordergliedmaassen weiter, so findet man nach jenem ersten grösseren durch eine Einschnürung am Mittelstücke ausgezeichneten Knochen stets zwei kleinere, die ganz den Charakter der übrigen tragen. Cuvier hat sie schon als Radius und Ulna gedeutet. Da nun die nachfolgenden Knochenstücke, wenn auch kleiner, doch jenen beiden Knochen ähnlich sind, bemerkt er, dass der Vorderarm thatsächlich die erste Reihe eines *Carpus* zu bilden scheine. Indem die Bestimmung je eines dieser

Die Beachtung des hervorgehobenen Zustandes der Indifferenz weist auf einen niedrigen Zustand. Dahin weist auch das Schwankende in der Zahl der sogenannten Phalangenreihen bei den einzelnen Arten, so wie die Verbindung der einzelnen Stücke, welche das gesamte Armsgkelet zu einem einzigen, nur als Ruder wirkenden Organe, zu einer Flosse zusammengürt, keinem Abschmelz eigenartige Leistungen gestattend. Von den Amphibien aufwärts trifft man dagegen jene Sonderungen ausgeprägt; auch da, wo der Arm zur Flosse geworden functionell auf eine niedrige Stufe tritt, fehlen sie nicht; das Armskelet der Cetacea trägt ebenfalls noch unverkennbar jene Scheidung in die einzelnen bei Ichthyosaurus vermissten Abschnitte und erweist sich dadurch als Rückbildung aus einem höher differenzierten Zustande.

Um den Bau des Gliedmaassenskelets der Ichthyosaurier gut zu verstehen, müssen wir uns erst die Verhältnisse des Banes der Selachier-
flosse in Erinnerung bringen, denn diese wird der Ausgangspunkt sein für deren Erklärung, wie Gegenbaur gezeigt hat.

Im Baue der Selachierflosse ergiebt sich als durchgreifende Einrichtung das Vorkommen einer — oder wie bei den Rochen mehrerer — Reihen von Knorpelstücken zu erkennen, welche andere Knorpelstücke, Radien, an sich aufgereiht tragen.

In der Selachierflosse kommt also eine Einrichtung vor, die mit der Zusammensetzung der Ichthyosaurenflosse einige Ahnlichkeit besitzt; in Querreihen geordnete Skeletstücke, die mehr oder minder deutlich auf Längsreihen, resp. auf gegliederte, längs verlaufende Stücke (Radien) bezogen werden können.

Die aus der Untersuchung der Selachierflosse gewonnenen Resultate verwerthend, kann man sich nun die Frage vorlegen, ob nicht auch im Armskelet der Ichthyosaurier derselbe Typus zu erkennen sei, wie im Skelet der Selachierflosse. Gegenbaur (34) hat gezeigt, dass die Basalreihe des Metapterygiums der Selachier mit einem dem Humerus homologen Stücke beginnt und durch Skelettheile sich fortsetzt, die der radialen Seite des Armskelets höherer Wirbeltiere entsprechen. Sucht man an der Ichthyosaurenflosse diese Reihe auf, so wird sie also, nach Gegenbaur, vom Humerus und Radius und den darauf folgenden, dem radialen Rande der Flosse angehörigen Knochenplatten gebildet werden (vergl. Taf. LXI. Fig. 2). Die in der Abbildung dargestellte stärkere rothe Linie bezeichnet diese Reihe. Ihr müssen den Strahlen der Selachierflosse ähnliche Plattenreihen angefügt sein. Auch diese sind nachweisbar, wie durch die feineren rothen Linien in Fig. I dargestellt wurde. Jede einer solchen Linie zugehörige Folge von Knochenstücken kann aus einem gegliederten Skeletstücke gebildet gedacht werden, dessen Theile aus einem ungegliederten Zustande hervorgingen (vergl. damit Taf. LXI. Fig. 4).

Es ist also die fundamentale Anordnung der Skelettheile bei der Ichthyosauren-Gliedmaasse aus denselben Verhalten ableitbar, welches der Selachierflosse zu Grunde liegt.
Bei Zugrundelegung dieses Schema für die speciellere Vergleichung der Ichthysaurusflossen mit dem Armskelet der höheren Vertebraten stellt sich Folgendes heraus: Auf die beiden Vorderarmstücke folgen drei, die erste Reihe des Carpus zusammensetzende Stücke, davon eines das Radiale der Stammreihe ist, das zweite als Intermediate, dem zweiten Strahl, das dritte Ulnare, dem ersten ulnaren Strahl angehört (vergl. die Abbildungen). Dieselben Stücke finden sich in derselben Lagerung bei Ichthysaurus. Das Intermediate lässt sehr oft durch Einfügung zwischen Radius und Ulna ein Verhalten erkennen, welches an den Carpus von Salamandriden erinnert (vergl. Taf. LXI. Fig. 21).

Zur Seite der beiden Centra, mit ihnen fast eine Querreihe bildend, finden sich ulnar und radial gelagert noch zwei Stücke, welche mit drei distal von den Centralen liegenden, von Gegenbaur als Carpale 1—5 bezeichnet wurden (Taf. LXI. Fig. 2 e¹−⁵). Die beiden erstgenannten scheinen bei Ichthysaurus constant vorhanden zu sein, die drei anderen dagegen sind zuweilen nur durch zwei vertreten.

Mit dem Nachweise dieser zehn Knochenstücke, die zu zweien (Radiale und Carpale) der Stammreihe, im Uebrigen dem proximalen Abschnitt von lateralen Strahlen angehören, ist nach Gegenbaur die Erkenntniss eines dem Carpus der höheren Vertebraten entsprechenden Abschnittes gewonnen, und es lassen sich die folgenden Stücke als Homologe eines Metacarpus, die übrigen aber als Phalangen deuten, wenn sie auch säämtlich unter sich, ja sogar von den Vorderarmknochen formell nicht differenziert sind. Eine Vermehrung der Strahlen bewirkt in jenem Verhalten entsprechende Modificationen, ohne jedoch das als typisch Bezeichnete aufzulösen. Das Armskelet von Ichthysaurus bietet somit in
Zahl und Anordnung seiner Elemente nahe verwandtschaftliche Verhältnisse zu jenem der höheren Wirbeltiere, und nur das Schwankende in der Zahl der in es eingehenden Radien, sowie die beträchtliche Vermehrung der Gliedstücke der letzteren, ergibt sich als eine niedere, an die Zustände des Armskelets der Selachier erinnernde Bildung. Würden die beiden Vorderarmknochen länger gestaltet erscheinen, und ebenso Metacarpus und Phalangenstücke aus der platt, oft sogar breiten Gestalt in die cylindrische übergegangen sein und die Phalangen mit ihrer Verlängerung eine Reduction in der Zahl erlitten haben, so schliesse sich das Armskelet von Ichthyosaurus eng an jenes der Amphibien an.

Die Uebereinstimmung im Typischen ist von manchen nicht unbedeutenden Modificationen begleitet. Das dritte Stück des ersten Strahles gehört sonst dem Carpus an (vergl. Taf. LXI. Fig. 1 c⁵). Bei Plesiosaurus ist es ein Metacarpusknochen (s. Fig. 3 c⁹). Auch das dritte Stück des zweiten Strahles (Fig. 1 c²) ist immer ein Carpusknochen, mit Ausnahme von Plesiosaurus (vergl. Fig. 3 c⁴), wo es den vierten Metacarpalknochen vorstellt. Ebenso ist das zweite Stück des dritten Strahles (Fig. 1 c⁵) bei Plesiosaurus das dritte Metacarpalstück (Fig. 3 c⁵) und am ersten Stück des vierten Strahls ist eine ähnliche Veränderung vorhanden, indem es sonst ein Carpalknochen (Fig. 1 c³), bei Plesiosaurus der zweite Metacarpusknochen ist (Fig. 3 c²). Die Metacarpusknochen der vier Finger
von *Plesiosaurus* sind dennoch bei den höheren Wirbelthieren als Carpus-
stücke gebildet; es sind dieselben Elemente, die *Gegenbaur* als Car-
pale²—⁵ bezeichnet. Ausserdem kommen hier bei *Plesiosaurus* ebenfalls
zwei Centralia vor, jenen homolog, wie wir sie bei *Ichthyosaurus* kennen
gelernt haben.

Ausserdem findet man bei *Plesiosaurus* noch ein accessorisches
Knochenstück (vergl. Taf. LXI. Fig. 3 p¹) am ulnaren Rande zwischen
Humerus und Ulna, ein zweites zwischen Ulna und Ulnare (*Plesiosaurus
dolichodeirus* und *macrocephalus* u. A.), ein drittes (bei *Plesiosaurus rugosus*)
am proximalen Ende der Ulna, zwischen Ulnare und Carpale⁵ vor.

Wenn man, wie *Gegenbaur* hervorhebt, annehmen darf, dass das
eine geringere Zahl von Strahlen aufweisende Armskelet höherer
Wirbelthiere aus einer reichere Strahlen besitzenden Form hervorging,
die niederer Wirbelthieren angehört, so wird man im Hinblick auf diesen
Zusammenhang die am ulnaren Rande des Skelets von *Plesiosaurus ru-
gosus* gelagerten Knochenstücke als Gliedstücke eines Strahles betrachten
dürfen.

Jene einzelnen, an der Ulnarseite gelagerten Knochenstücke erscheinen
als die unanselhulichen Reste einer reicheren Bildung, von der schliesslich
nur das Os pisiforme als letzte Spur sich forterhält. Bei *Ichthyosaurus*
reicht diese accessorische ulnare Knochenreihe zuweilen über den Carpus
bis nahe an den Vorderarm.

Huxley (3⁹) sagt, dass er, wie hervorragend originell und scharf-
minng diese Theorie auch sei, nicht im Stande ist, dieselbe anzunehmen.
Es scheint ihm vor allem, dass, wenn die Axe des Archipterygium das
Homologon des Metapterygium der Fische ist, ihr distaler Abschnitt der
Ulna und den ulnaren Handwurzelknochen und Fingern, nicht aber dem
Radius und den radialen Handwurzelknochen und Fingern entsprechen
muss; die ersteren sind nach ihm die postaxialen Elemente der höheren
Wirbelthiersgliedmaassen und müssen daher dem postaxialen Metaptery-
gium entsprechen. *Gegenbaur* (47) selbst hat nachher erklärt, die
Annahme, dass die Axe des Archipterygium durch die Ulna (resp. Fibula)
und nicht durch den Radius (resp. Tibia) laufen müsse, sei die bessere,
weil die Anordnung der Flossen (bei Selachiern) und ihre Verbindung
mit dem Körper eher auf jene Lageänderung hintendert. Nimmt man
dieses an, dann bildet also das am ulnaren Rande gelegene accessorische
Bein (das Os pisiforme der Autoren) den letzten Ueberrest des bei *Cora-
todius* so deutlich ausgeprägten biserzialen Archipterygium (vergl. hierzu
Taf. LXI. Fig. 5).

Bei den *Pterosauriern* hat der Humerus einen starken Processus del-
toides, Radius und Ulna sind von gleicher Grösse und getrennt. Es sind
vier gesonderte Mittelhandknochen vorhanden und von ihnen ist der der
ulnaren Seite erheblich stärker, wenn auch nicht länger als die anderen;
ein weiterer, der Handwurzel angefügter stielförmiger Knochen scheint
nicht zur Reihe der Mittelhandknochen gehört zu haben. Der radiale

Beckengürtel.

Das Foramen obturatorium, durch welches bei allen untersuchten Sauriern der Obturatorius-Stamm aus der Beckenhöhle tritt, kommt bei allen ziemlich constant an derselben Stelle im Pubis vor, nämlich in dem Theil des Pubis, welcher unmittelbar oberhalb der Gelenkpfanne liegt.

Das Pubis hat ungefähr bei allen Sauriern dieselbe Gestalt und springt ziemlich weit nach vorn in der Medianlinie hervor, um dort mit dem der anderen Seite die Symphysis ossium pubis zu bilden, bei Agama plica z. B. dagegen erreichen die Vorderenden der Ossa pubis einander in der Mittellinie nicht, sondern werden hier durch einen breiten, platten Bindegewebsstrang mit einander verbunden.

Wie bei den Schildkröten, so nehmen auch bei den Sauriern die Ossa pubis den vorderen ventralen Umfang des Acetabulum ein, den
hinteren ventralen Theil bilden die Ischia. Die Sitzbeine sind wie die Schambeine zwei platte, gewöhnlich etwas breitere Knochen, welche einander in der Mittellinie begegnen, um dort die Symphysis ossium ischi bei zu bilden. Der jederseits zwischen Pubis und Ischium sich befindende Raum, das Foramen cordiforme, wird durch eine straffe Sehne, welche von der Symphysis ossium ischi entspringt und sich an dem hinteren Rand der Symphysis ossium pubis inserirt, von einander getrennt; bei Monitor dagegen ist der grösste Theil dieser Sehne verkniicht und werden also die Foramina cordiformia medianwärts durch Knochen begrenzt.

Der dorsale Theil des Beckengürtels ist das Ilium. Es bildet einen langen, schmalen, dünnen Knochen, der eine fast horizontale, d. i. mit der Wirbelsäule parallele, an den Sacralwirbeln abwärts geneigte Lage besitzt. Das nach hinten gekehrte Ende ist gewöhnlich mehr oder weniger knorpelig, am stärksten bei Chamæleon, bei welchem das Ilium auch im Gegensatz zu den meisten anderen Sauriern mehr in die Breite entwickelt ist. Wie schon von Gegenbaur (36) hervorgehoben, gleicht das Ilium von Chamæleon überaus einer Scapula, das nach hinten gerichtete Ende wird durch eine breite, verkalkte Knorpelplatte eingenommen, die als ein dem Suprascapulare homologes Gebilde angesehen werden kann. Am Acetabulum nimmt das Ilium bei allen Sauriern wie bei den Schildkröten die obere dorsale Partie ein.

Dagegen hat Gorski (13) versucht, das von allen anderen Autoren als Pubis bezeichnete Knochenstück als „Os ilco-pectineum“ und das Ischium als „Pubis“ zu denten. Ein wahres Ischium sollte demzufolge vollständig fehlen und durch ein Band ersetzt werden, welches er als

Auch später, nachdem Stannius auf die Irrthümlichkeit der von Gorski vorgeschlagenen Deutungsweise der Beckenknochen aufmerksam gemacht hat, versuchte er nicht allein seine Meinung aufrecht zu halten, sondern auch auf die Beckenknochen der Schildkröten zu übertragen, ohne auch hier wieder irgend welche plausible Gründe anzuführen.

Fürbringer's Ansichten über die Beckenknochen sind folgende: Die Deutung des Os pubis als Os ileopectineum ist nach Fürbringer (35) vollkommen berechtigt und Gorski's Beweise für seine Ansicht ausreichend. Am Becken von Lacerta agilis juc. fand er das Os ileopectineum peripherisch bereits knorpelig angelegt, während es an seinem der Pfanne zugewendeten Ende noch aus Knorpe bestand. Insofern bildet dies Verhalten den Übergang zu den Crocodilen, wo das Os ileopectineum gar nicht zur Bildung der Gelenkpflanne beiträgt.

Das Os ilei Aut. et Gorski ist ein Homologon des Os ilei des Menschen. Der Ramus descendens ischii ist ein Analogon, nie aber ein Homologon.

Das Os ischii Aut. (Os pubis Gorski) ist nach Fürbringer ein Os pubo-ischium, eine Verschmelzung des Os pubis und Os ischii, indem der vordere, breitere, die Symphyse bildende Theil dem Os pubis, der hintere, kleinere, nicht mit dem der Gegenseite sich vereinigende Theil dem Os ischii entspricht.

Die Untersuchung des Beckens von Lacerta agilis juc. bestätigt nach Fürbringer diese Behauptung. Hier ist deutlich eine mit einer zarten Haut (Membrana obturatoria) ausgefüllte Öffnung (Foramen obturatorium) erkennbar, die auch beim Becken der ausgewachsenen Saurier als durchscheinende Stelle von sehr dünnem Knochen wahrzunehmen ist. Bei jüngeren Thieren ist zugleich der dünneren, mehr knorpeligen Ramus ascendens vom Os pubis getrennt, dessen Ramus descendens wenig entwickelt ist, während der stärkere knöcherner Ramus descendens ischii mit dem
Os pubis verschmälert und mit ihm gemeinsam zur Gelenköhle läuft, wo er mit schmalem Ende an das Os ilei grenzt.

Leydig (37) steht durhans nicht an, in dem Os pubis der Autoren mit Gorski nicht das Schambein, sondern ein Os ileo-pectineum zu erblicken; der von den beiden Knochen bei der Eidechse umschlossene Raum ist das Foramen cordiforme. Ist das bisherige Os pubis nicht Schambein, so muss nach Leydig selbstverständlich das Os ischi zum Schambein werden. Der genannte Autor schliesst sich nun Fürbringer dahin an, dass das Os pubis Gorski auch das Os ischi mit enthält und nennt deshalb den Knochen Os pubo-ischium; sonst würde man zu dem Schlusse gedrängt, dass den Eidechsen das Os ischi mangle und nur ein Band, das Ligamentum ischiadicum, eine Art Homologon des Sitzbeins vorstelle.

Das Schambein ist nach Leydig (37) bei Lacerta kürzer als das Os ileo-pectineum und geht fast gerade nach abwärts. Nach vorn schiebt sich ein lanzettförmiger Knorpel zwischen die Symphyse ein, dessen Spitze sich in ein Band verlängert und, indem es bis zur Symphyse des Os ileo-pectineum gelangt, den herzförmigen Raum in zwei Hälften zerlegt. Das eigentliche Sitzbein, nach unten und hinten in eine Art Knorren ausgehend, ist als hinterer schmälerner Abschnitt in dem von Cuvier Scham-
bein genannten Knochen enthalten. Zwischen beiden bleibt ein Foramen obturatorium bestehen (*Lacerta*).

Nach den Deutungen von Leydig und Gorski besteht also das Becken aus Os iliei, Os pubo-ischium und Os ileo-pectineum.

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Gorski</th>
<th>Fürbringer</th>
<th>Leydig</th>
<th>Hoffmann, Bunge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os iliei</td>
<td>Os iliei</td>
<td>Os iliei</td>
<td>Os iliei</td>
<td>Os iliei</td>
</tr>
<tr>
<td>Os pubis</td>
<td>Os ilo-pectineum</td>
<td>Symphys ische-pectine</td>
<td>Os ilo-pectineum</td>
<td>Os pubis</td>
</tr>
<tr>
<td>Symphys pubica</td>
<td>Symphys ische-pectine</td>
<td>Foramen obturato-rum</td>
<td>Foramen obturato-rum</td>
<td>Symphys ossium</td>
</tr>
<tr>
<td>Foramen obturato-rum</td>
<td>Foramen cordi-forme</td>
<td>Os pubo-ischium</td>
<td>Foramen obturato-rum im Os pubo-ischium</td>
<td>Foramen obturato-rum im Os pubis</td>
</tr>
<tr>
<td>Os ischi</td>
<td>Ligamentum ischiadicum (Os ischi hominis)</td>
<td>Foramen obturato-rum</td>
<td>Ligamentum ischiadicum (Homologon z. Th. Sacro-tuberosum)</td>
<td></td>
</tr>
</tbody>
</table>

Wir wissen, dass bei den Säugethiern der Beckengürtel jederseits durch einen ursprünglich einheitlichen Skelettheil repräsentirt wird, der aus dem knorpeligen Zustande in den knöchernen übergelend, in drei als besondere Knochen unterschiedene Theile, das Darmbein, Sitzbein und Schambein sich gliedere, die bei den meisten im Acetabulum zusammenstossen und an der Bildung desselben sich mehr oder weniger gleichmässig betheiligen.

Eine Untersuchung der Beckengürtel bei Saurier-Embryonen gab mir im Allgemeinen keine anderen Resultate, so dass ich nur in jeder Be-
ziehung die alte schon von Cuvier gegründete Ansicht zu bestätigen vermoch.

Vor kurzem hat sie eine neue Bestätigung von Seiten Bunge's (65) erhalten, und zwar auf entwickelungsgeschichtlichem Wege. Die Form der einzelnen Beckentheile in den jüngsten Stadien stimmt nach Bunge im Allgemeinen mit der der erwachsenen Individuen überein, nur muss hervorgehoben werden, dass dieselben gewissermaassen plump erscheinen im Vergleich zu den graziellen Formen, die wir bei erwachsenen Individuen finden. Wesentliche Unterschiede aber zeigen sich in der Stellung der einzelnen Theile zu einander. Während sich beim ausgewachsenen Individuum das Pubis und Ischium vom Acetabulum medianwärts erstrecken, so dass sie mit der Ebene, in der das Ilium liegt, einen rechten Winkel bilden, ist die Richtung derselben — nach Bunge — bei den jüngsten Embryonen eine genan ventrale. Ilium, Pubis und Ischium liegen fast in einer Ebene; aber auch in anderer Beziehung weicht die Stellung von der der Beckentheile im erwachsenen Individuum ab; das Pubis erstreckt sich nicht, wie bei diesem, zugleich auch proximalwärts, sondern ist ventralwärts gerichtet, wobei das periphere Ende sich noch ein wenig distalwärts wendet, das Ischium andererseits ist ein wenig proximalwärts gerichtet. Es ist, wie Bunge hervorhebt, klar, dass dadurch die peripheren Enden beider Theile sehr nahe aneinander zu liegen kommen, und dass das beim ausgewachsenen Thiere verhältnissmässig umfangreiche Foramen cordiforme nur sehr klein sein kann.

Taf. LXIII. Fig. 1 illustriert die eben erwähnten Verhältnisse; die Schnittrichtung, in welcher die Serie angefertigt worden, aus welcher der zur vorliegenden Zeichnung benutzte Schnitt entnommen war, war fast der Medianebene parallel. Pubis und Ischium liegen in ganzer Ausdehnung getroffen als einheitliche Knorpelmasse vor; auch zwischen Ilium und Pubis besteht keine Spur einer Trennung. Die medialen Enden des Pubis und Ischium berühren sich fast, indem nur eine schmale Partie indifferenten Bindegewebes sie von einander trennt. Das Foramen cordiforme ist sehr unbedeutend im Verhältniss zur Breite der Beckentheile. Der Nervus obturatorius ist von der Knorpelmasse des acetabularen Theils des Pubis fest eingeschlossen sichtbar.

Eine gegenseitige Berührung der peripheren Enden des Pubis und Ischium findet nicht — wenigstens nach Bunge bei Lacerta vivipera nicht — statt.

Im Laufe der Entwicklung nimmt das Pubis eine vom Acetabulum proximalwärts gerichtete Stellung ein, die peripheren Enden des Pubis und Ischium entfernen sich von einander und das Foramen cordiforme wächst stetig. Zugleich werden die Formen der Beckentheile differenzirter.

In Taf. LXIII. Fig. 2 findet man ungefähr dieselben Verhältnisse, die Bunge bei der Beschreibung der Fig. 1 geschildert hat, wieder. Der Zwischenraum zwischen den peripheren Enden des Pubis und Ischium
ist aber merklich grösser geworden und das Foramen cordiforme hat an Umfang zugenommen im Vergleich zum Becken selbst. Auffallend könnte es erscheinen, dass der Nervus obturatorius hier frei am proximalen (lateralen) Rande des Pubis liegt und nicht von der Masse des Pubis eingeschlossen ist; das rührt jedoch nach Bunge daher, dass die den Nerven von vorn und aussen umschliessende Knorpelspange in den ventral gelegenen Schnitten derselben Reihe enthalten ist.

In einem noch älteren Entwickelungsstadium (vergl. hierzu Taf. LXIII. Fig. 3) haben Pubis und Ischium weit gracilere Formen angenommen und man unterscheidet am Ischium die beiden ihm zukommenden, nach hinten gerichteten Fortsätze. Das Pubis ist proximalwärts gerichtet und umfasst mit dem Ischium ein grosses Foramen cordiforme. Wir finden also in diesem Stadium ungefähr die Verhältnisse des erwachsenen Individuums wieder. In diesem Stadium berühren sich zugleich die in früheren Stadien getrennten Beckenhälften mit den peripherischen Enden des Pubis und Ischium und bilden zwei Symphysen, die unter dem Namen Symphysis pubis und ischii beim ausgewachsenen Thiere bekannt sind.

Wir haben gesehen, dass bei den Schildkröten zwischen der Symphysis ossium pubis nach vorn ein keilförmiges Knorpelstück vorkommt, das nach hinten spitz zuläuft, nach vorn in einen breiten Theil sich fortsetzt. Dieses Stück, welches ich als Epipubis bezeichnet habe, war ausserordentlich lang und knochern bei Chelcmy s victoria. Bei den Sauriern kommt ein ähnliches Stück vor, wo es selbständig verknöchert (vergl. hierzu Taf. XLII. Fig. 7), wie eine Untersuchung des Beckens junger Thiere (Geckonen) lehrt. Meine frühere Angabe, dass es hier eine paarige, kleine Knochenplatte bildet, beruht, wie ich jetzt gesehen habe, nicht auf einer natürlichen, sondern auf einer künstlichen Spaltung.

Das Epipubis ist bei den Geckonen ein ähnliches unpaariges Stück wie bei den Schildkröten und bildet mit den Ossa pubica bei jungen Thieren ein Continuum. Leydig giebt an, dass bei Lacerta (Taf. LXIII. Fig. 1) ein lanzettförmiger Knorpel nach vorn zwischen die Symphysis
ossium pubis (ileo-pectinei Leydig) sich einschiebt, hier scheint dasselbe also knorpelig zu bleiben und nicht wie bei den Geckonen zu verknöchern. Ich fand das Epipubis nur bei sehr wenigen Saurier-Gattungen entwickelt.

Dagegen gibt Bunge an, dass bei den Sauriern ein Epipubis nicht nachweisbar ist; die kleinen Knochenstücke, die ich bei Gecko für „Epipubis“ hielt, scheinen Bunge eher als eine epiphysenartige Bildung gedeutet werden zu müssen. Die Duplicität derselben widerspricht nach ihm durchaus dem Begriff des Epipubis, das, wie Bunge nachgewiesen hat, bei den Amphibien sich vollkommen einheitlich anlegt. Ich habe aber schon angegeben, dass ich diese Angabe insofern corrigirt habe, dass das Stück bei den Geckonen auch nicht paarig, sondern unpaarig ist. Ich glaube jetzt um so mehr festhalten zu dürfen, dass dies Stück wirklich ein Epipubis ist, als Bunge nachgewiesen hat, dass bei den Urodelen die Anlage des Epipubis erst dann auftritt, wenn beide Beckenhälften in einer Symphyse fest vereinigt sind und man in diesem Stadium vor der Symphyse der beiden Beckenhälften einer Anhäufung stehender Zellen begegnet, die einerseits zwischen die beiden Knorpelzapfenformig hineinragt, andererseits allmählich in indifferentes Bindegewebe übergehend, sich ein wenig proximalwärts erstreckt, und welche die erste Anlage des Epipubis bildet. Nach Götte dagegen entsteht das von mir als „Epipubis“ bezeichnete Stück unpaar aus einem weichen Gewebe innerhalb der Linea alba, während die Scham-Sitzbeine schon knorpelig, aber noch vollständig getrennt sind (vergl. Taf. XLII. Fig. 7).

Über die Knochen des Beckengürtels bei den Sauriern mit rudimentären Hinterextremitäten verdanken wir Fürbringer (35) werthvolle Mittheilungen. Bei Sephs sind die drei das Becken bildenden Knochen vorhanden, aber weit geringer ausgebildet als bei den Sauriern mit wohl entwickelten Extremitäten.

Das Os pubis (ileo-pectineum Fürbringer) ist ein sehr dünner Knochen, der weit nach vorn geht und sich unter einem spitzen Winkel mittelst Zwischenknorpel mit dem der Gegenseite verbindet [(Symphysis pubica) (Symphyses iléo-pectinea Fürbringer)]. Das Ischiium (Pubo-
ischium Fürbringer) ist ein glatter, dünner Knochen, der nach vorn und zur Mitte geht, aber ohne den der Gegenseite zu erreichen und mit ihm eine Symphyse zu bilden. Das Os ilei ist der kleinste Knochen des Beckens und steht blos mit einem Wirbelquerfortsatz in Verbindung.

Das Becken bei Pygopus lepidotus steht kaum noch mit dem Kreuzbeine in Verbindung und besteht aus Ileum, Pubis und Ischium. Das Os ilei ist der längste Knochen. Es beginnt oben schmal, wird in der Mitte dicker, verschmälert sich dann wieder und erreicht endlich an der Planne seine größte Breite. Das Os ischiis ist ein fast quadratischer Knochen, der an seiner unteren Seite in einen kurzen und breiten Knorpel ausläuft. Eine Symphyse fehlt. Das Os pubis beginnt ebenso breit, wie das Os ischiis, wird aber schnell schmäler und geht in einen schmalen und langen Knorpel über, welcher spitz endet; eine Symphyse fehlt.

Bei den Sauriern ohne hintere Extremitäten wird es bei Anguis fragilis nur von einem einzigen Knochen jederseits dargestellt, beide stossen bauchwärts nahe aneinander, ohne aber unter sich verwachsen zu sein. Fürbringer und Leydig betrachten diesen einzigen Knochen als aus einer Verwachsung des Os ilei, ischium (pubo-ischium Fürbringer, Leydig) und pubis (ileo-pectinum Fürbringer, Leydig).

Nach Fürbringer sind unter dem Mikroskop bei sehr jungen Thieren noch die Nähle sichtbar. Leydig vermochte indessen von diesen Nählen nichts zu sehen. Dagegen gibt letztgenannter Forscher in seiner prächtigen Monographie über die deutschen Saurier an, dass bei reifen Embryonen das Becken als ein Knorpel entgegentritt, der oben und unten zwar ein Stück weit ohne Kalkkrümeln ist, nach seiner grössten Ausdehnung aber verkalkt erscheint. Aus der verkalkten Partie hebt sich da, wo der Beckenknochen am breitesten ist, eine helle, unverkalkte

Bronn, Klassen des Thier-Reiches. VI. 3. 35
Stelle von querlänglicher Form scharf ab. Um den ganzen Knorpel zieht eine dicke, bindegewebige Hülle, von welcher wohl nach Leydig die eigentliche Knochenentwicklung ausgeht, wenn der verkalkte Knorpel sich wieder gelöst hat. Leydig ist der Meinung, dass man wohl die helle, abgegrenzte, nicht verkalkte Stelle, welche innerhalb des breitesten Theils sich bemerkbar macht, als den Ort ansehen kann, wo sich die Pfanne bilden würde, wenn ein vollkommenes Becken zu entstehen und Extremitäten sich anzuschliessen hätten und Leydig ist nun geneigt an- zunehmen, dass die beim ganz jungen Thier unverkalkte Stelle, wo die Pfanne zu suchen wäre, eins und dasselbe mit den von Fürbringer erwähnten Nächten ist.

Bei Ophisauren centralis besteht das Beckenrudiment jederseits aus einem kleinen, schräg nach vorn und unten gerichteten Knochen, der an seinem unteren Ende am breitesten ist. Bei Aconias meleagris ist das Beckenrudiment ein länglicher und schmaler, S-förmig nach vorn und unten zu gekrümmer Knochen; der locker an der letzten, nicht bedeutend verkürzten Rippe, und noch lockerer am Querfortsatz des 79. Wirbels angeheftet ist. Er enthält Elemente aller drei Beckenknochen. Bei Typhlosaurus aurantiacus geht jeder Beckenknochen aus vom Querfortsatz des Kreuzwirbels und steigt schräg nach vorn und hinten hinab, wobei er an den Enden der beiden hintersten Rippen durch Ligament angeheftet ist. Er repräsentirt wie bei Aconias alle drei Beckenknochen, die innig und ohne Grenzen zu einem Ganzen verwachsen sind. (Vergl. für das Becken der Saurier Taf. LXII. Fig. 1—6.)

Die drei typischen Beckenknochen der Saurier finden wir auch bei der Gattung Hatteria wieder, wo sie auch von Günther (26) als Ileum, Ischium und Pubis bezeichnet sind. Am vorderen Rande der Symphysis ossium pubis bemerkt man ein knorpeliges Epipubis (remarkably well developed uncinate Process: Günther). Im Acetabulum grenzen die drei genannten Beckenknochen aneinander. Den grossen zwischen dem Os ischiß und pubis sich befindenden Raum bezeichnet Günther als Foramen obturatorium, derselbe stellt aber nicht das Foramen obturatorium, sondern das Foramen cordiforme dar. In dem Os pubis selbst liegt das eigent- liche Foramen obturatorium. Dass dem wirklich so ist, geht aus Günther’s Beschreibung selbst hervor, es lautet: „The pubic bone is perforated by a nerve and blood-vessels for the abductor muscles of the femur, about midway between the uncinate process (Eripubis) and the foramen obtu- ratorium (cordiforme).“ Ein Hypo-ischium (Os cloacaë) scheint zu fehlen (vergl. hierzu Taf. LIV. Fig. 10).

Crocodile. Am schwierigsten zu verstehen ist das Becken der Croco- dile. Giebt man indessen Acht auf das Verhältniss der Nerven und auf das der Beckenknochen bei jungen Thieren, so wird es nicht schwierig

35*
werden dürfen. In der ersten Auflage seiner Grundzüge fügt Gegenbaur ausserdem hinzu, „dass sie den vom Becken der Salamander u. s. w. abgehenden Knorpeln, oder den Beutelknochen der Marsupialia verglichen werden können". In seinen „Beiträgen zur Kenntniss des Beckens der Vögel“ neigt Gegenbaur (36) sich mehr der Ansicht zu, dass die vorderen jener Beckenknochen, die von manchen Autoren als Schambein bezeichnet werden, in der That solche sind, ungeachtet des ganz abweichenden Verhältnisses zur Pfanne des Hüftgelenkes.

Achtet man zuerst auf das Verhalten des Nervus obturatorius, so ergiebt sich, dass bei Alligator ein selbständiger Obturatorius-Stamm, obgleich nicht stark, doch noch gut ausgebildet vorkommt, dagegen fand ich bei einem Exemplar von Crocodilus, dem einzigen, welches ich damals Gelegenheit hatte zu untersuchen, dass der Obturatorius-Stamm hier gänzlich verschwunden war. Bei der in Rede stehenden Gattung sind seine Fasern zum grössten Theil in den Nervus cruralis, für einen sehr kleinen Theil auch noch in den Nervus obturatorius übergegangen. Hier haben wir also wie bei den Batrachiern einen gemeinschaftlichen Obturatorius-Cruralis-Stamm, welcher ungetheilt die Beckenhöhle verlässt und erst nachdem er aus dieser ausgetreten ist, sich in Aeste theilt, welche bei den Sauriern und Schildkröten, so wie auch bei den Urodelen und zum Theil auch noch beim Alligator schon innerhalb der Beckenhöhle als selbständige Zweige auftreten. Wie die anderen Gattungen der Crocodile in dieser Beziehung sich verhielten, war mir damals nicht bekannt. Bei dem untersuchten Crocodilus war also ein eigener Obturatorius-Stamm vollständig verschwunden, beim Alligator hat er sich noch, wenn auch in rudimentärer Form bewahrt.

Bei einem schon ziemlich alten, fast vollständig ausgebildeten Embryo von Crocodilus bestand das Becken nur aus zwei Knochen. Der eine dieser beiden Knochen ist das Ileum: dass dieser Knochen wirklich dem Ileum entspricht, kann wohl nicht zweifelhaft sein, denn er articulirt mit den beiden Sacralwirbeln. Das andere Stück betrachtete ich als das Ischium. Der vordere Fortsatz des Ileum wird mit dem entsprechenden des Ischium durch ein Knorpelstück verbunden, welches sowohl continuität in das Ischium, wie in das Ileum übergeht (vergl. hierzu Taf. LXIV. Fig. 2). Auf seiner vorderen medialen Fläche — also dort, wo das in

Eine erneuerte Untersuchung eines besser conservirten Embryo von Alligator und Crocodilus gab Verhältnisse, wie ich sie oben mitgetheilt habe, und der beim Crocodilus erwähnte Befund eines vollständigen Fehlens eines eigenen Obturatorius-Stammes ist wohl als eine eigenthümliche Abnormität zu betrachten. Ich muss also meine frühere Deutung zurücknehmen, besonders auch nach den Mittheilungen von Gegenbaur (48) und Huxley (64), welche in dem von mir als „Epipubis“ beschriebenen Knochenstück das wahre Os pubis erblicken, eine Deutung, der ich mich jetzt auch anschliessen muss. Das Pubis zeigt dann bei den Crocodilen eine Eigenthümlichkeit, welche bis jetzt einzig in ihrer Art dasteh, dass es nämlich dort, wo Ischium und Ileum durch eine nicht verknocherte (knorpelige) Partie zusammenhängen, beweglich verbunden ist.

Ob auch bei den Crocodilen noch ein Epipubis vorkommt, kann ich nicht entscheiden. Huxley (64) will in den dem peripheren Ende der Schambeine aufsitzenden Knorpeln Epipublica sehen. Die Duplicität derselben widerspricht nach Bunge durchaus dem Begriff des Epipubis und man kann nach diesem Forscher diese eben erwähnten Knorpel auch für die knorpelig gebliebenen Enden der Schambeine halten (vergl. Taf. LXIII. Fig. 6).

Bei den Plesiosauriern erreicht — wie Huxley angiebt — in Folge der Stärke der Hintergliedmaassen, die gewöhnlich länger als die vorderen sind, der Beckengürtel beträchtliche Dimensionen. Das Ileum ist ein senkrecht verlängerter Knochen, unten schmäler als oben, wo es mit den Sacralrippen in Verbindung tritt. Nach unten kommt es mit dem Scham- und Sitzbein zusammen, um das Acetabulum zu bilden. Die Schambeine sind sehr breite, quadratförmige Knochen, von viel bedeutenderer Grösse als die Sitzbeine und treten in der Mittellinie zu einer Symphyse zu-
sammen. Auch die Sitzbeine, dreieckig und verbreitert, bilden eine ventrale Symphyse.

Bei den Ichthyosauriern tritt das Becken in keine Knochenverbindung mit der Wirbelsäule. Es besteht aus einem Ileum, einem Ischium und einem Pubis, die zur Bildung einer Gelenköhle zusammentreten, während die beiderseitigen Sitz- und Schambeine in der Mittellinie zusammentreffen. Das Sitzbein ist ein schmaler, fast stabförmiger Knochen, das Schambein ist etwas breiter und zwar vorzüglich an seinem der Symphyse zuge- wandten Ende.

Die höchst merkwürdigen ausgestorbenen Reptilien, welche die Gruppe der Ornithosceliden bilden, bieten eine grosse Reihe von Modifika-
tionen dar, welche zwischen dem Bau der lebenden Reptilien und Vögeln mitteninne stehen. Dieser Uebergangscharakter des Skelets der Ornitho-
sceliden prägt sich am deutlichsten am Becken und den Hinterglied-
maassen aus.

Bei allen erstreckt sich das Ileum weit vor die Gelenköhle und bietet dieser blass ein weitbogiges Dach, wie bei den Vögeln. Es behält dagegen den Reptiliencarakter in der weiteren proportionalen Ausdeh-
nung des postacetabularen Fortsatzes nach unten. Bei allen Ornithosceliden, bei welchen es Huxley möglich war, das Sitzbein zu identifizieren (Theco-
dontosaurus, Teratosaurus, Megalosaurus, Iguanodon, Stenopelyx, Hadro-
saurus, Hypsilophodon) ist dasselbe stark verlängert. Ähnliches gibt M ar s h (Principal charakters of American jurassic Dinosaurs, in: Amer. Journ. of Science and Arts Vol. XVII. Jan. 1879) für die Gattungen Morosaurus, Atlantosaurus, Laosaurus, Allosaurus u. A. (s. Taf. LXIII. Fig. 4). Bei Iguanodon kommt ihm der Fortsatz im Foramen obturatorium zu, der für denselben Knochen bei den Vögeln so charakteristisch ist, und Huxley glaubt denselben Fortsatz auch bei Compsognathus zu sehen. Bei Hypsilophodon kann nach Huxley über diese Sache keine Täuschung möglich sein und die bemerkenswerthe Schmalheit und Verlängerung geben diesem Knochen einen ganz wunderbar vogelartigen Charakter. Diese Schmalheit und Verlängerung gehen bei Iguanodon sogar über das hinaus, was man bei Vögeln beobachtet. Indessen neigt sich Huxley der Ansicht, dass, wie bei Hypsilophodon sicherlich der Fall war, bei allen Ornithosceliden sich die Sitzbeine in einer medianen, neutralen Symphyse vereinigten.

Bei Compsognathus scheinen die Schambeine sehr schlank und gleich denen der Eidechsen vor- und abwärts gerichtet gewesen zu sein. Hypsi-
lophodon bietet übrigens unzweideutige Zeugnisse eines weiteren Schrittes gegen die Vögel hin. Die Schambeine sind bei ihm nicht allein ebenso schlank und verlängert, wie bei den meisten typischen Vögeln, sondern sie sind auch parallel mit den Sitzbeinen abwärts und rückwärts gerichtet, so dass sie nur ein ganz schmales, längliches Foramen obturatorium offen lassen, welches durch einen Processus obturatorius getheilt wird.
Bei einigen *Ornithoscelidae*, nämlich bei den *Dinosaurier*-Gattungen *Iguanodon* nach *Hulke* und *Laosaurus* und *Allosaurus* nach *Marsh* kommt auf dem vorderen Rande des *Os pubis* ein sehr stark entwickelter knöcherner Fortsatz vor (s. Taf. LXIII. Fig. 4 und 5 und Taf. LXV. Fig. 7), welchen man auch bei den straussartigen Vögeln, obgleich hier nur sehr schwach entwickelt, antrifft. *Huxley* (64) nennt diesen in Rede stehenden Fortsatz „pectinal process“, ein jedenfalls wohl mehr zu adoptierender Name als der von *Marsh*, welcher diesen Knochen als „Pubis“, das eigentliche Pubis als „Post-Pubis“ bezeichnet.

Oberschenkel.

Bei den Sauriern mit rudimentären hinteren Extremitäten zeigt bei *Seps tridaetlylus* nach *Fürbringer* das Femur an Stelle der Trochanteren bloss Rauhigkeiten, während die Patella fehlt; bei *Pygopus lepidotus* ist das Femur an seinem Capitulum und unterem Ende doppelt so stark als in der Mitte; bei *Lialis Burtonii*, *Pseudopus Pallasii* u. a. dergl. bildet das Femur einen dünnen, sehr zarten Knochen. Bei den Sauriern ohne hintere Extremitäten ist auch von einem Femur keine Spur mehr vorhanden.

Bei den Ornithoscelidae besitzt das Femur gewöhnlich ebenfalls nur einen starken, inneren Trochanter und sein distales Ende wird durch die Entwicklung eines zwischen Tibia und Fibula spielenden starken Grates ganz besonders vogelähnlich.

Unterschenkel.

Bei Hatteria zeigen Tibia und Fibula nichts besonderes. Bei den Crocodilen fehlt die Patella; die Tibia ist ein sehr ansehnlich entwickelter Knochen und etwas länger als die zarte Fibula.

Bei den Pterosauriern ist die Fibula unvollständig und scheint an ihrem distalen Ende mit der Tibia zu verwachsen. Bei den Ornithoscelidae ist das distale Ende der Fibula erheblich schwächer als das proximale, wenn auch nicht so dünn, wie bei den Vögeln, während die Lage des distalen Endes der Tibia vollkommen so ist, wie sie bei Vögeln zu beobachten ist.

Fusswurzel. — Tarsus.

Bei *Monitor* scheint dieses grosse Tarsusstück, wie *Cuvier* (1) an-
giebt, durch zwei Stücke repräsentirt zu sein, die aber gleichfalls, unter
einander verwachsen, einen einzigen Knochen bilden, wodurch also eine
Ubereinstimmung mit den übrigen Sauriern geboten wird. Bei einigen
Arten der Gattung *Varanus* fand *Gegenbaur* nur ein einziges Stück,
an welchem keine Trennungsspur vorhanden war. Wenn daher anzun-
nehmen ist, dass die bezügliche Angabe von *Cuvier* richtig ist, so ist
zu vermuten, dass die Untersuchung ein jüngeres Individuum betraf, an
welchem noch keine vollständige Verknöcherung vorhanden war. Ausser-
dem kommen, und zwar in der zweiten Reihe gelagert, bei den meisten
auch noch zwei disere Tarsusstücke vor. In welcher Weise das erst
angeführte zu deuten ist, zeigt sich nach *Gegenbaur* beim ersten An-
blick noch sehr schwierig. Wenn man Jugendzustände zur Untersuchung
nimmt, so findet man immer die zwei auch beim *Cuvier’schen* *Monitor*
vorhandenen, anscheinend mehr oder minder selbständigen Theile, die
aber, wie *Gegenbaur* zuerst nachwies, nur von zwei Stellen aus erfolgte
Ossificationen eines und desselben Knorpelstückes sind. *Gegenbaur*
fand nämlich, dass bei *Lacerta* dem ganzen Stücke ein gemeinsamer
Knorpel zu Grunde liegt, in welchem sehr bald ein Knochenkern inmitten
der grösseren tibialen Hälfte erscheint. Ein zweiter Knochenkern tritt in
der kleineren fibularen Hälfte des Knorpels auf. Beide wachsen und beim
neugeborenem Thiere ist fast der ganze Knorpel durch Verkalkung solidi-
fiziert. Es zeigt sich dann das grössere tibiale Stück (Taf. LXV. Fig. 14)
durch eine hyaline Knorpellamelle vom kleineren geschieden. Das letz-
tere bietet mit einem Theile des grösseren eine Anfügestelle für die
Fibula; die Tibia ist ausschliesslich mit dem grösseren verbunden, später
verwachsen die beiden Stücke völlig mit einander (vergl. Taf. LXV.
Fig. 2, f, A, c). In dem kleineren Stücke hat man, wie *Gegenbaur*
wohl mit Recht vermutet, zweifellos das Fibulare der Schildkröten und
Anuren zu erkennen, in dem grösseren das mit dem primitiven Inter-
medium zum Astragalus vereinigte Tibiale, welchem sich noch, wie bei
den Schildkröten das Centrale beigeschlossen hat. Der bei zahlreichen
Schildkröten in der Entwicklung noch getroffene Vorgang des Eingeheins
des Centrale in die erste Reihe ist bei den Eidechsen vollendet, so dass
selbst in der Anlage kein Centrale mehr existirt. Dass wirklich das
Centrale hier mit dem Intermedium und Tibiale vereinigt ist, ergiebt sich
sowohl aus dem Fehlen dieses Stückes, als auch aus der eigenthümlichen
Form des grossen Knochens der ersten Reihe, der genau an der Stelle,
welche noch bei Schildkröten das Centrale einnimmt, schon zum Theil
seiner Selbständigkeit beraubt, einen ansehnlichen Vorsprung bildet (vergl.
Bronn’s Reptilien, Schildkröten p. 51), dem bei den Schildkröten durch
das Centrale gebildeten Gelenkkopfe ähnlich. Die Vereinigung des Cen-
trale des Astragalus oder vielmehr mit dem grossen Tarsusknochen muss
aber früher vor sich gegangen sein als das Fibulare mit dem Astragalus,
in eine gemeinsame knorpelige Anlage aufging, denn für Astragalus, wie
für Fibulare haben sich auch in dem gemeinschaftlichen Knorpel noch auf eine frühere Selbständigkeit hintauende Erscheinungen erhalten, nämlich für das Auftreten besonderer Knochenkerne, von welchen für das Centrale keiner mehr existirt. Dass die ersten Metatarsalien unmittelbar diesem Vorsprung (die Ascalaboten ausgenommen) angefügt sind und nicht besondere Cuneiformia dazwischen liegen, stört, wie Gegenbaur hervorhebt, die gegebene Deutung in keiner Weise, um so weniger, als auch dieser Umstand eine befriedigende Erklärung erhalten wird.

Die Verknöcherung des grossen Tarsalstückes von zwei Punkten aus hat Gegenbaur ausser bei Lacerta auch noch bei Iguana (Taf. LXV. Fig. 3) und Platydactylus bestätigt gefunden. Der Knochenkern des fibularen Stückes (f) ist alle Zeit kleiner als der des tibialen, und so scheint die Bildung eines kleinen fibularen und eines grösseren tibialen Knochens, die aber nur Theile eines einzigen embryonalen Stückes sind, die Regel zu sein, ebenso wie die Verbindung dieser beiden zu einem einzigen. Wie bei den Schildkröten umschliesst dieses Knochenstück der Sauir vier ursprünglich als getrennte Stücke auftretende Theile. Construirt man sich den Vorgang nach dem theils bei den Amphibien, theils bei den Schildkröten gesehenen, so wird zuerst das Intermedium mit dem Tibiale zum Astrapalalus, dem fügt sich dann das Centrale an und so erscheint der bei Embryonen und jungen Sauirern vorhandene Zustand, bis mit der Verschmelzung des Fibulare ein einziger Knochen aus vier hervorgegangen. Ein solches einziges grosses Tarsusstück kommt allen bis jetzt untersuchten Sauirern (mit Ausnahme der Chamaeleone) zu und muss als Regel angesehen werden, und das Vorhandensein von zwei Stücken, wie es bei jüngeren Individuen und Embryonen sich findet, ist nur aus den an jenem einen Stücke von zwei Ossificationspunkten aus vor sich gehenden Verknöcherung, nicht aber aus der ursprünglichen Existenz zweier auch in der Knorpelanlage gesonderter Stücke zu erklären.

Wenn nach dem oben Auseinandergesetzten der die erste Reihe bildende, mit Tibia und Fibula entsprechende grosse Tarsusknochen der Eidechsen aus vier primitiven Stücken zusammengesetzt gedacht werden muss, so bleiben nach dem früher für die Amphibien und Schildkröten nachgewiesenen noch fünf Stücke, jene der zweiten Reihe, aufzusuchen. Bei einem Theil der Eidechsen traf Gegenbaur aber nur zwei distinente Stücke, die den Metatarsusknochen angefügt sind, bei einem anderen Theile, den Ascalaboten, fand Gegenbaur drei. Bei den mit zwei Tarsalien versehenen ist das erste, dem fibularen Tarsusrande angelegen, das grössere (vergl. Taf. LXV. Fig. 1—3). Es besitzt in der Regel einen nach oben gerichteten Vorsprung, der in eine vom grossen ersten Tarsusknochen gebildete Vertiefung eingreift und dort durch ein starkes Ligament befestigt wird. Die Vertiefung im ersten Tarsusknochen findet sich genau an der Vereinigungsstelle des Astrapalalus mit dem Calcanecus. So fand Gegenbaur es bei Lacerta, Lygosoma, Plestiodon, Seis und den Ascalaboten. Bei Iguana sind nach Gegenbaur zwei Vertiefungen am

Nach innen von dem eben erwähnten Stück findet sich das zweite kleinere Tarsusstück, meist mit einer schwach gekrümmten Fläche jenem angelagert. Es kann dieser Knochen nur als Tarsale gelten. Weiter gegen den inneren Fussrand zu ist kein discres Tarsusstück mehr wahrnehmbar, es sind vielmehr die Basen der zwei ersten Metatarsalien, die plötzlich weit in das durch die beiden vorerwähnten Stücke abgegrenzte Tarsusgebiet einspringen, so dass die ganze Aussenseite des Tarsales von dem Metatarsale II eingenommen wird. Für die beiden fehlenden Tarsalien (Tarsale 1a und b) nimmt Gegenbaur nun an, dass sie sich mit dem Metatarsus vereinigt haben. Bei jüngeren Individuen von Eidechsen, bei denen die Verknöcherung des Tarsus noch nicht sehr weit vorgeschritten, sieht man nach Gegenbaur am zweiten Metatarsale einen besonderen Knochenkern im Basalstücke auftreten, der sich genau so verhält, wie ein im Tarsale befindlicher (vergl. Taf. LXV. Fig. 1). Das knorpelige Basalende des Metatarsale III zeigt zugleich in der Stellung seiner Knorpelzellen in einer mit der metatarsalen Endfläche des Tarsales zusammenfallenden Ebene, dass es ein nicht ursprünglich dem übrigen Theile des bezüglichen Metatarsale zugehöriges Gebilde ist. Am Metatarsale I ist der Vorgang zwar ein ähnlicher, aber es findet sehr früh schon eine Vereinigung beider Theile statt. Wenn nun auch hier keine unmittelbare Beobachtung discret vorhandener, knorpeliger Anlagen der beiden ersten Tarsalien vorliegt, so zeigt ein Blick auf das Verhalten der drei ersten Metatarsalien zum Tarsus, dass offenbar eine Verbindung von Tarsusstücken mit dem Metatarsus vor sich gegangen ist. Am dritten ist
Anatomie.

das Tarsale noch vollständig getrennt, aber der Basalfläche des Metatarsale eng angeschlossen, am zweiten ist die Vereinigung schon vollzogen, das Tarsale erst erscheint als blosse Epiphyse, zeigt aber darin noch einige Selbständigkeit im Vergleiche zum ersten, bei welchem auch die Epiphyse sehr rasch verschwunden ist.

Aus diesem Befunde zugleich mit Rücksicht auf das eigentümliche Einspringen der beiden ersten Metatarsalien in den Tarsus schliesst Gegenbaur, dass bei den Lacertiden die beiden ersten Tarsalien schon sehr früh (phylogenetisch) mit den entsprechenden Metatarsalien vereinigt seien und dass sich als eine einzige Andeutung dieses Vorganges in der Ontogenese die ungewöhnliche Ausbildung und lange erhaltene selbständige Verknöcherung der proximalen Epiphyse, namentlich des Metatarsale II erhalten habe.

Etwas abweichend verhalten sich die *Ascalaboten*. Bei denselben findet man nach Gegenbaur in der zweiten Reihe drei diserte Tarsalia vorhanden. Ein kleineres flaches Stück trägt das Metatarsale I und auch ein Theil der keilförmig zugespitzten Basis des Metatarsale II ist ihm angefügt. Das zweite Stück, keilförmig gestaltet, springt zwischen die Basen des Metatarsale II und III ein, entspricht aber, wie aus einer Vergleichung mit den übrigen Eidechsen zu ersehen, dem Tarsale\(^3\). Endlich findet sich ein drittes, grösseres Stück, welchem das vierte und fünfte Metatarsale angefütet ist. Letzterwähntes Knochenstück betrachtet Gegenbaur auch hier wieder als das Cuboid (also das mit einander verwachsene Tarsale\(^4\)+\(^5\)) und das diesem anliegende, den dritten Metatarsusknochen tragende Stück ist das Tarsale\(^2\). Schwieriger ist nach ihm über das kleinste, am tibialen Rande gelagerte Stück zu urtheilen, indem es nach Gegenbaur entweder für das selbständig gebliebene Centrale, oder auch wegen seiner Beziehung zum ersten Metatarsale als Tarsale\(^1\) gelten kann. Letztgenannte Erklärungsweise kommt ihm am meisten wahrscheinlich vor, so dass also für die zweite Reihe des Tarsus der *Ascalabotae* vier primitive Stücke vorhanden wären: das erste Tarsale und das dritte Tarsale selbständig, das vierte und fünfte zum Cuboideum verbunden; ein Tarsale\(^2\) käme nicht im Tarsus, sondern mit der Basis des Metatarsale II verschmolzen vor. Als Unterschied von den übrigen Eidechsen würde sich somit für die *Ascalaboten* die Selbständigkeit des Tarsale\(^1\) aufstellen lassen (vergl. Taf. LXV. Fig. 4 und 5).

Born (51) dagegen schlägt eine andere Deutungsweise vor. Nach ihm trifft man bei den *Ascalaboten* das Cuboid und das Tarsale\(^3\) in den bekannten Formen und denselben Beziehungen an, dann ein neben dem Tarsale\(^3\) bis zur Spitze desselben einspringendes, ganz identisch mit dem der übrigen Saurier gestaltetes Metatarsale I und ein Metatarsale II mit den bekannten Bändern von ihren Enden zum grossen Tarsusknochen, endlich den von Born auch für die anderen Saurier gefundenen Meniscus.

Auf den ersten Blick ergab es sich ferner, dass eben dieser Meniscus das Tarsale\(^1\) Gegenbaur’s erhalte und zwar als einen halbmondformigen, bei allen untersuchten *Ascalaboten* hyalinen Knorpel, der auf dem Querschnitte keilförmig um den Ansatz jener Basenbänder herumgelegt ist, so dass er den nicht vom Ursprung des Bandes eingenommenen Theil der Basis des Metatarsale I vom grossen Tarsuskopfe trennt. Abgesehen von der beinahe absoluten Identität in Form, Lagerung und Beziehung, die dieser Knorpel mit dem als Meniscus beschriebenen Gebilde der übrigen Saurier aufweist, giebt es auch histologische Uebergänge. Indem Born annimmt, dass Tarsale\(^1\) und \(^2\) mit dem bezüglichen Metatarsale I und II verschmolzen sind, kann jener Knorpel nicht, wie Gegenbaur will, Tarsale\(^1\) sein. Es scheinen nach ihm dann zwei Möglichkeiten vorzuliegen, einmal konnte man den Meniscus und den homologen hyalinen Knorpel der *Ascalaboten* als etwas accidentelles betrachten, oder zweitens ihn für ein an den tibialen Rand des Tarsus gerücktes Centrale ansehen,
ein Erklärungsversuch, der ebenfalls von Gegenbaur stammt, den er aber als den unwahrscheinlicheren behandelt. Gegen die erste Deutung ist nach Born geltend zu machen: 1) die grosse Constanz des Gebildes; 2) dass es bei einer ganzen Familie der Ascoboten als ein sehr selbständiger hyaliner Knorpel vorkommt; 3) dass es auch den früheren Autoren als wesentlicher Tarsusteil erschienen ist. Born neigt sich also zu der Ansicht, dass dieses Stück dem Centrale entspricht.

Auf Taf. LXV. Fig. 8 habe ich einen Längsschnitt durch den Tarsus eines ausgewachsenen Hemidactylus abgebildet. Vom Kopfe des grossen Tarsusknochens entspringen die drei bekannten Bänder, von welchen das eine nach dem Tarsale, das andere nach dem mit einander verwachsenen Tarsale und Metatarsale II, das dritte nach dem lateralen Rande des Metatarsale I geht. Auch bei den Ascoboten kommen also auch die von Born beschriebenen, von Gegenbaur wie es scheint dort übersehnen Bänder vor. Das von Gegenbaur und mir als Tarsale betrachtete Stück fand ich aber nicht hyalinknorpelig, wie Born hervorhebt, sondern vollständig verknoehert, und was Born unter seinem, dem von ihm bei den anderen Sauriern beschriebenen Meniscus entsprechenden hyalinen Knorpel versteht, ist mir bei den Ascoboten nicht recht klar geworden. Denn auch bei jungen Thieren fand ich das Tarsale schon verknoehert.

Taf. LXIV. Fig. 4 ist ein Längsschnitt eines jungen, nicht näher bestimmten Gecko's. Tarsale und Metatarsale I waren, wie schon erwähnt, schon vollständig verknoehert. Besonders deutlich war hier zu sehen, dass Tarsale und Metatarsale II mit einander zu einem einzigen Stück verschmelzen. Tarsale stimmt hier nämlich in seiner Lage und Gestalt vollständig mit Tarsale überein, ist wie dieses vollständig verknoehert und wird durch einen dünnen, schmalen, aber sehr deutlichen Knorpelstreifen von dem mit ihm verwachsenen Metatarsale II getrennt. In der Anlage bildet also Metatarsale II und Tarsale ein gemeinschaftliches Stück, in welchem aber das Auftreten zweier Knochenkerne — welche
Reptilien.

559

auch noch bei jungen Thieren, wenn die Verknöcherung schon weiter fortgeschritten ist, durch einen Knorpelstreifen von einander getrennt werden — auf das Verwachsen zweier ursprünglich disquerer Stücke hinweist.

Born verdanken wir die Mittheilung, dass die Bänder, welche von den Basen der Metatarsalia I und II zum grossen Tarsusknochen verlaufen, keine weitere morphologische Bedeutung haben. Gegenbaur, der, wie wir gesehen haben, dieselben bei einigen Sauriern (Lacerta, Lygosoma) nicht fand, bei anderen dagegen wohl (Draco, Iguana), erklärt sie dort, wo sie vorhanden sind, für die Homologe des Tarsale und beschriebene Metatarsale, während in den Fällen, wo er sie nicht fand, Tarsale1 und 2 mit den entsprechenden Metatarsalen I und II verwachsen sein sollten.

Bei Embryonen, bei welchen der von Gegenbaur beschriebene Verknöcherungsprozess im Metatarsale I und II noch deutlich zu beobachten war, zeigte sich auch der Bänderapparat vorhanden, woraus natürlich hervorgeht, dass dieselben, wie schon Born nachgewiesen, nicht als die Homologe des Tarsale1 und 2 betrachtet werden können.

Auf Taf. LXIV. Fig. 4 habe ich einen Längsschnitt durch den Tarsus eines Monitor-Embryo abgebildet. Tarsale3 ist fast noch vollkommen knorpelig und zeigt nur einen kleinen Knochenkern; a stellt den Bänderapparat vor. Die dem Tarsale2 und 1 entsprechenden Stücke bilden mit Metatarsale II und I ein vollständig zusammenhängendes Ganze, sind aber noch ganz knorpelig. Bei beiden geht die Verknöcherung von einem eigenen Knochenkern aus, am frühesten verknöchert das dem Tarsale1 entsprechende Stück.

Taf. LXIV. Fig. 5 ist ein Längsschnitt des Tarsus eines älteren Embryo. Tarsale3 zeigt im Innern einen grossen Knochenkern, ist aber an den Rändern noch knorpelig. Die dem Tarsale2 und 1 entsprechenden Stücke sind hier schon vollständig verknöchert, aber an beiden bemerkt man noch eine rauhe Linie, welche die Verwachungsstelle beider Knochenstücke bezeichnet.

Born (63) hat nachher den Tarsus noch einmal einer genauen Untersuchung unterworfen und gibt an, dass das bei den Ascalaboten als Tarsale1 beschriebene Stück nicht nur diesen Sauriern, sondern auch bei einer ganzen Reihe anderer Saurier angetroffen wird, namentlich bei den Crassilinguier, und zwar in sehr anschaulicher, die Ascalaboten übertreffender Ausbildung, so bei Phrynosoma (vergl. Taf. LXVI. Fig. 1m) und bei Draco volans. Bei letzterem traf er die plantare Hälfte des dicken Randes des Stückes sogar verknöchert, wie dies auch schon nach Born bei Monitor terrestris, Lacerta viridis, Stellio vulgaris, Agama culeata u. a. von Calori erwähnt wird.

Man hat nun nach Born zwischen Folgendem zu wählen: Entweder ist dieses so häufig im Menisecus gefundenes hyalinknorpelige Stück ein accessorisches Gebilde; dann muss man diese Auffassung unbedingt auch auf die Ascalaboten ausdehnen und auch diese besitzen kein gesondertes
Tarsale\(^1\). Dieser Auffassung steht die Häufigkeit des Vorkommens, so-
wie die nahen Beziehungen zu den übrigen Tarsaltheilen entgegen, es
trägt das Metatarsale I zum grössten Theile. Oder man sieht in ihm ein
wesentliches Tarsusstück, dann muss diese Auffassung ebenso gut für die
Ascobuton, wo es hyalinknorpelig und dick, wie für *Lygosoma* z. B., wo
es dünn und fibrös ist, gelten. Dabei kann man es erstens als Tarsale\(^1\)
deuten. Will man dies, so ist man gezwungen, für die einander so ähn-
lchen basalen Epiphysen von Metatarsale I und II verschiedene Ent-
stehungsweisen anzunehmen, die eine erhielt ein Tarsale, die andere
nicht. Bei diesen bisher besprochenen Annahmen kann man das Centrale
in den grossen Knochen der ersten Reihe suchen, was aber Born für
nicht gemäss hält; oder man kann in dem Meniscus, wie Born thut, ein an den Rand gerücktes Centrale suchen, dann ist natürlich der Knochen
der ersten Reihe nur ein Astragalo-fibulare. Born giebt indessen selbst zu,
dass auch diese Deutungsweise ihre erheblichen Schwierigkeiten hat.
Erst Untersuchungen über die Entwicklungsgeschichte des Saurier-Tarsus
werden diese Frage mit grösserer Sicherheit entscheiden können. Born
hält ferner an seiner schon früher ausgesprochenen Meinung fest, dass
das als „Cuboideum“ beschriebene Stück dem Tarsale\(^4\) und \(^5\) entspricht,
und dass von mir die morphologische Bedeutung der Verknöcherungs-
und Verkalkungskerne überschätzt wird.

Eine besondere Erwähnung verdient noch der Tarsus bei den Cha-
maelonen. Nach Cuvier (1) kommen bei dieser Saurier-Gattung drei
Knochen in dem Tarsus vor: die beiden ersten (l'os tibial et le péronien)
sind klein, sie liegen in der ersten Reihe; in der zweiten Reihe liegt nur
Ein Knochen (l'os du centre nach Cuvier) und mit diesem artikuliren die
fünf Metatarsalknochen, die nach ihm wahrscheinlich die mit einander
verwachsenen Tarsalia und Metatarsalia vorstellen. Owen (25) stimmt
mit Cuvier darin überein, dass in der ersten Reihe ebenfalls zwei
Knochen liegen, der eine „the homologue of the astragalo-navicular bone“, artikulirt mit der Tibia, der andere, das Calcanem, mit der Fibula.
Dann folgt in der zweiten Reihe das dritte Stück, Cuneiforme: Owen,
mit welchem Metatarsale I—IV artikuliren, während Metatarsale V mit
einem eigenen Tarsalknochen, dem Cuboid, artikulirt.

Nach Gegenbaur sind bei den Chamaelonen vier gesonderte
Knochenstücke vorhanden, von denen zwei an die Knochen des Unter-
schenkels angefügt dem Tibiale und Fibulare entsprechen; sie haben ein
drittes Stück unter und etwas zwischen sich, und in dieser Verbindung
findet sich das hauptsächlichstest Gelenk des Fusses, der hier seine
Drehungen ausführt. Gegenbaur kann dieses Stück nur einem Inter-
medium vergleichen, und ebenso das vierte, theils vom vorigen, theils von
den fünf Metatarsalien begrenzte Stück, das „Os du centre“ von Cuvier,
einem Centrale. Bezüglich der fünf Metatarsalia theilt er die Meinung
Cuvier's, indem er die Tarsalstücke der zweiten Reihe mit ihnen in
Verbindung ansieht.
Nach Born (51) scheinen die Autoren die am trockenen Skelette eines wahrscheinlich jüngeren Thieres sich scharf absetzenden Epiphysenkerne für besondere Knochen gehalten zu haben, diese wurden dann als Fibulare und Tibiale, das wirkliche Aastragalo-Calcaeneum als Intermedium und das Cuboid als Centrale gedeutet; das nur knorpelige Tarsale3 würde ganz übersehen. In der That existirt nach ihm nur Ein Tarsusknöchel erster Reihe, der noch scharfer, als es bei den meisten übrigen Sauriern der Fall ist, zwischen den winkelig zu einander gestellten Endflächen der Tibia und Fibula entspringt. Der Kopf des Aastragalus ist klein, aber deutlich ausgebildet und in gewöhnlicher Weise von dem Menisens umkreist, der in seinem volaren Ende einen verkalkten Hyalinknorpel enthält, dem halbmondförmigen Knorpel der Ascalaboten homolog. Das Cuboid ist ein rundlicher Knochen, der an seinem distalen Gelenkkopfe das Metatarsale V, IV und die Hälfte der Basis des Metatarsale III trägt, in seiner tibialen Seite wird es durch Anlagerung eines lin senförmigen, verkalkten hyalinknorpeligen Stückes gewissermaassen zur Kugel ergänzt. An dieses legen sich der übrige Theil der Basis von Metatarsale III, II und die dorsale Hälfte von der Basis des Metatarsale I an, während die volare Hälfte desselben auf dem Knorpel anruht, der das volare Ende des Menisens ausmacht, und den er, wie bei den Ascalaboten, als Centrale zu deuten geneigt ist. Das lin senförmige Stück betrachtet er als Tarsale3, zu welchem nur noch durch die veränderte Anordnung der Metatarsalen Metatarsale I in Beziehung getreten ist. Cuboid und Tarsale3 bilden zusam men einen überknorpelten Gelenkkopfe, dem die vereinigten Basen der Metatarsalien mit einer entsprechenden Pfanne gegenüberstehen. Metatarsale II, das schon bei den übrigen Sauriern dem Tarsale2 analog, ist am Fuss des Chamaeleon noch stärker auf dieses bezogen, und sogar Metatarsale I bis an dieses hervorgetreten (vergl. Taf. XLVI. Fig. 2).

Stecker's Untersuchungen stimmen mehr mit den von Born über-ein. In der ersten Reihe befindet sich nach ihm ebenfalls nur Ein Tarsalknochen, welchen er als ein Astragalo-fibulare betrachtet, das sich bei Chamaeleon von dem der Lacerta durch eine tiefe Pfanne unterscheidet, auf der distalen Fläche in dieser Pfanne artikulirt das beinahe kugelförmige Cuboid, das mit dem Tarsale² +³ und einem Tarsale¹ die Tar-salien der zweiten Reihe darstellt.

Das Cuboid trägt nach Stecker an seinem distalen Gelenkkopf die Metatarsalia V und IV und einen Theil des Metatarsale III; an die Tibiale Fläche des Cuboids grenzt ein ungefähr dreieckiger Knorpel (das Tar-sale³ von Born). Auf Durchschnitten überzeugte sich Stecker, dass es tibialwärts nur an das Astragalo-fibulare grenzt, an seiner distalen Fläche aber den übrigen Theil der Basis des Metatarsale III, dann Metatarsale II und fast die Hälfte des Metatarsale I trägt. Dieses Tarsalienstück ist bei den verschiedenen Species verschieden entwickelt. Ausserdem findet Steker noch ein kleines, hyalines Knorpelstückchen zwischen dem Born'schen Tarsale² und dem vom Meniscus absteigenden Knorpel. Es liegt dem Born'schen Tarsale dicht an und scheint mit denselben später vollkommen zu verwachsen. In Folge dessen betrachtete Steker das Born'sche Tarsale² als ein Tarsale² +³. Den vom Meniscus (m) absteigenden Knorpel betrachtet Stecker als Tarsale¹. So wäre also nach Steker Born's Tarsale³ und Centrale als Tarsale² +³ und Tarsale¹ zu bezeichnen, der Menisens aber als ein rückgebildetes Centrale (vergl. hierzu Taf. LXVI. Fig. 3).

Schliesslich theilt Born (63) noch mit, dass er ebenfalls das Vor-kommen der von Stecker beschriebenen Basenbänder (vergl. Taf. LXVI.
Reptilien.

Fig. 4) vom Tarsale3, Metatarsale II und I zum Kopfe des Astragalo-fibulare bei Chamæleon bestätigen kann, dadurch wird nach ihm aber der einzige Unterschied, den dasselbe im Bau des Tarsus von den übrigen Sauriern zeigte, noch vollends eliminirt.

Anatomie.

Wir sehen hier also zugleich einen sehr grossen Unterschied von den übrigen Reptilien, wo im Allgemeinen nur ein gemeinschaftlicher Tarsusknoechel vorhanden ist, während von Anfang an bei den Crocodilen zwei Knorpelstücke auftreten, wie Durchschnitte durch den Tarsus junger Embryonen — wo der Tarsus noch vollkommen knorpelig war — deutlich zeigten (vergl. Taf. LXIII. Fig. 7).

Längsschnitte durch den Tarsus von Embryonen und jungen Thieren bestätigen vollkommen die Gegenbaur'sehen Angaben. An Längsschnitten eines noch sehr jungen Alligator selerops, bei welchem der Tarsus noch vollkommen hyalinknorpelig war, konnte man sehr deutlich sehen, wie vom Tarsale der von Gegenbaur schon beschriebene Knorpellamelle ausgeht, die sich über einen Theil des Metatarsale II fortsetzt, so wie über die ganze Basalfläche des Metatarsale I, mit welchem sie sich verbindet und hier eine ansehnlich dicke Knorpelpartie bildet.
Auf Taf. LXVI. Fig. 5 habe ich einen Längsschnitt durch den Tarsus eines *Crocodilus* abgebildet, welcher im Begriff war die Eihaut zu durchsprengen. Calcaneus mit Astragalo-scaphoideum zeigen beide einen grossen Knochenkern, ebenfalls Tarsale (Cuboideum: Gegenbaur). Auch Tarsale fängt an zu verknöchern (dagegen sind die dem Tarsale und entsprechenden Stücke noch vollkommen knorpelig. Taf. LXVI. Fig. 6 ist ein Längsschnitt durch den Tarsus eines ungefähr 40 Centimeter langen *Crocodilus vulgaris*. Calcaneus und Astragalo-scaphoideum sind vollständig verknöchert, ebenso Tarsale und. Die von Tarsale abgehende, dem Tarsale und entsprechende Knorpellamelle ist im Vergleich mit jüngeren Thieren viel weniger stark ausgebildet und hat sich mehr oder weniger in Faserknorpel verwandelt.

Das gilt auch für *Homosaurus*, bei welchem wohl das nicht mehr nachweisbare Tarsale 3 knorpelig war.

Bei *Protorosaurus* scheinen für die erste Reihe zwei Knochen vorhanden gewesen zu sein, welche beide mehr in die Quere gezogen erscheinen. Der eine davon lagert der Tibia an, der andere scheint mehr der Fibula zu entsprechen. Es zeigt sich aber an dem tibialen Stück noch ein anderes, von dem es zweifelhaft bleibt, ob es auch nicht der ersten Reihe angehörte. Es stösst dieses rundliche Stück an den inneren Tarsusrand und verbindet sich zugleich mit sämmtlichen Stücken der zweiten Reihe, welcher es in keinem Falle angehören kann. Wenn es zur ersten Reihe zu rechnen wäre, was Gegenbaur bei der offenbar unnatürlichen Lagerung der anderen Stücke der ersten Reihe nicht zu entscheiden vermochte, könnte es nur als Tibiale gedeutet werden. Es sind also bei *Protorosaurus* etwas andere Verhältnisse gegeben, als bei den Eidechsen der gegenwärtigen Periode, Eigentümlichkeiten, die noch deutlicher in der zweiten Tarsusreihe hervortreten, indem nämlich sich die zweite Reihe als vollständig vorhanden herausstellt. Bei dem Link'sehen Exemplare liegen mindestens drei Stücke eng aneinander geschlossen in der zweiten Reihe und davon verbindet sich eins mit dem ersten Metatarsale, ein zweites, etwas grösseres mit dem zweiten und dritten und endlich ein noch grösseres mit dem dritten, vierten und fünften Metatarsale. Das zweite, mittlere dieser Tarsussstücke zeigt auf seiner Oberfläche eine sehr gräuliche Farbe, so dass man es aus zwei eng an einander anliegenden Stücken, wovon das eine dem zweiten, das andere dem dritten Metatarsale entspräche, zusammengesetzt annehmen könnte. Wir hätten also für diese ausgestorbenen Saurier ein Tarsale 1, ein Tarsale 2 und 3 (beide vielleicht zu Einem Stücke vereinigt) und endlich ein Cuboideon.

Wir durch die Vollständigkeit der zweiten Reihe des Tarsus eine offenbar als niederer Zustand erscheinende Abweichung im Vergleiche mit dem Tarsusbaue anderer Sauier sich herausstellt, so liegt auch nach Gegenbaur in der Gestaltung der einzelnen Tarsussstücke selbst noch eine Eigentümlichkeit. An der Stelle manigfach gestalteter, durch eigentümliche Reliefverhältnisse ausgezeichneten, in jeder Hinsicht individueller Metatarsalstücke zeigen sich bei *Protorosaurus* mehr flache, in der Mitte sogar mit einer seichten Vertiefung versehene Tarsustheile, die also dadurch viel mehr an niedere Zustände erinnern. Verwerthet man die angetroffenen Verhältnisse des Tarsus der *Protorosaurus* zur Erkennung der Beziehungen zu den übrigen Reptilien, so geht unzweifelhaft hervor, dass sich gegen die heutigen Sauier eine bemerkenswerthe Differenz zeigt, dass auch die Fussbildung uns Gründe an die Hand giebt, diese Thiere nicht ohne Weiteres den Sauieren anzuschliessen (Gegenbaur).

Wir haben wahrscheinlich in jenen Geschöpfen Mischformen oder vielmehr Uebergangszustände zu erkennen.

Das untere Ende der Tibia von *Compsognathus* stellt einen anscheinlichen Gelenkkopf vor, dessen stärkere Wölbung nach hinten sieht, und es ist nun höchst wahrscheinlich, wie Gegenbaur nachgewiesen hat, dass das grosse Tarsusstück der ersten Reihe vollständig mit der Tibia verwachsen ist und somit bezüglich seines Tarsusverhaltens eine Zwischenstufe zwischen Reptilen und Vögeln bildet. Der Fuss ist Reptilienfuss, insofern er getrennte Metatarsalien enthält und auch noch getrennte Talus, er ist aber Vogelfuss, insofern sein oberes Tarsussstück ganz vorhanden, d. h. mit der Tibia vereinigt ist, da auch offenbar nur die Zehen und nicht mehr der Metatarsus bei der Locomotion den Boden berührten (Gegenbaur).

Bei der von Marsh aufgestellten Dinosaurier-Gattung *Laosaurus* kommen vier Tarsalknochen vor, die in zwei Reihen gelagert sind (vergl. Taf. LXV. Fig. 7). Der eine dieser beiden Knochen articulirt mit der Fibula, der andere mit der Tibia, so dass hier dieselben Erscheinungen wiederkehren, als bei *Protorosaurus*. Von den in der zweiten Reihe gelegenen Knochen articulirt der eine mit Metatarsale IV, es entspricht also wohl ohne Zweifel dem Cuboideum (Metatarsale V fehlt). Das andere Stück articulirt mit Metatarsale II und III, während Metatarsale I rudimentär ist.

Mittelfussknochen und Phalangen.

Bei den Sauriern mit wohl entwickelten hinteren Extremitäten besteht der Metatarsus aus fünf Knochen. Die vier ersten Mittelfussknochen sind schmal, aber lang, der fünfte ist stark entwickelt, ragt aber nicht so weit hervor, wie die anderen. Letzteren habe ich als Tarsale betrachtet.

Die Zahl der Phalangen ist dieselbe wie für die Finger der vorderen Extremitäten, zwei für die erste, drei für die zweite, vier für die dritte,
fünf für die vierte und drei für die fünfte Zehe. Nur sind hier noch viel bedeutendere Längendifferenzen, die dem Fuss eine ungleichere Gestalt geben als der Hand. Betrachtet man aber das Gegenbaursche Metatarsale V als Tarsale², so würde die Zahl der Phalangen des fünften Fingers eine mehr betragen.

Bei Hatteria ist der Fuss fünfzehig und die Zahl der Phalangen beträgt zwei für die erste, drei für die zweite, vier für die dritte, fünf für die vierte und vier für die fünfte Zehe.

Bei den Crocodilen ist der Fuss vierzehig und die Zahl der Phalangen beträgt zwei für die erste, drei für die zweite und vier für die dritte und vierte Zehe.

Schädel.

Ausser den schon genannten Arbeiten sind noch hervorzuheben:

(69) C. B. Brünh. Icones ad zootomiam illustr. Das Skelet der Crocodille, dargestellt in 20 Tafeln. 1862.
(73) W. Peters. Ueber die Gehörknöchelchen der Schildkröten, Eidechsen und Schlangen; ibidem p. 6. 1869.
Bei den Sauriern (*Hatteria ausgeschlossen*) wird der Schädel aus folgenden Knochen zusammengesetzt:

1) Das unpaarige Occipitale basilare: *ob*
 (Occipitale basilare: Gegenbaur, Clason; basi-occipital: Huxley, Owen, Parker und Bettany; Corpus ossis occipitis: Hallmann; Körper des Grundbeins: Meckel; occipital basilare: Cuvier; os occipitale basilare s. occipitale inferius: Harting; Occipitale inferius: Joh. Müller; Squama occipititis: Stannius; Grundstück [Basilare] des Hinterhauptbeins: Leydig).

2) Die paarigen Occipitalia lateralia: *ol*

3) Das unpaarige Occipitale superius: *os*
 (Occipital supérieur: Cuvier; occipitale superius: Joh. Müller, Clason, Gegenbaur, Harting; squama occipititis: Stannius, Hallmann; supra-occipital: Owen, Huxley, Parker und Bettany; Schuppe des Hinterhauptbeins: Leydig; Schuppe des Grundbeins: Meckel; Squama: Salverda).

4) Das unpaarige Sphenoidicum basilare: *s*

5) Das unpaarige Praesphenoid: *prs*
 (Prolongement du sphenoïde en avant en une tige cartilagineuse: Cuvier; presphenoid: Huxley, Owen, Parker und Bettany;
praesphenoid: Gegenbaur, Clason; Deichsel des Körpers vom hinteren Keilbein: Hallmann; sphenoidicum basilare anterius: Stannius, Harting).

5a) Das unpaarige Parasphenoid: pars
(Vorderes Keilbein, Praesphenoid: Leydig; prolonged beak of the basi-sphenoid: Huxley; Parasphenoid: Parker und Bettany).

6) Das paarige Pro-oticum: pro

7) Die paarige Columella: col
(Columella: alle Autoren).

8) Das paarige supratemporale: st
(mastoidien: Cuvier; mastoideus: Stannius, Harting, Joh. Müller, Owen; squamosum: Gegenbaur, Clason; squama temporis: Hallmann; temporale: Leydig; Zitzenheit des Schlafbeins: Meckel; supra-temporale: Parker und Bettany).

9) Das paarige Squamosum: sq

10) Das paarige quadratum: q
(l'os tympanic: Cuvier; tympanicum: Stannius, Owen; tympanicum s. quadratum: Leydig, Salverda; quadratum: Huxley, Gegenbaur, Clason, Hallmann, Harting, Parker und Bettany, Joh. Müller).

11) Das Parietale: par
(parietale: alle Autoren).

12) Das Frontale: fr

13) Das paarige postfrontale: pfr
(frontale postérieur: Cuvier; post-frontal: Huxley, Owen; frontale s. orbitale posterius: Joh. Müller, Stannius, Harting; post-frontale: Gegenbaur, Clason, Hallmann, Leydig, Weber, Salverda; postfrontal s. post-orbital: Parker und Bettany.).

14) Das paarige praefrontale: prfr
(frontal antérieur: Cuvier; pre-frontal: Huxley, Owen; frontale anterius: Weber, Clason, Hallmann, Leydig, Salverda;
Reptilien.

ethmoidale laterale s. praefrontale: Gegenbaur, Harting; Frontale s. Orbitale anterius: Joh. Müller).

15) Das paarige Pterygoideum: \(pt \)

16) Das paarige Palatinum: \(pl \)
(palatinum, Gaumenbein: alle Autoren).

17) Das paarige Transversum: \(tr \)

18) Das paarige Lacerimale: \(lac \)

19) Das paarige Maxillare: \(m \)

20) Das paarige Praemaxillare: \(prm \)
(internasale: Cuvier; premaxilla: Huxley, Parker und Bettany; intermaxilla: Joh. Müller, Stannius; praemaxillare: Gegenbaur, Clason; intermaxillare: Hallmann, Harting, Salverda; Zwischenkieferbein: Meckel, Leydig; premaxillary: Owen).

21) Das paarige Nasale: \(n \)
(nasale, Nasenbein: alle Autoren).

22) Das paarige Jugale: \(j \)

23) Der paarige Vomer: \(v \)
(vomer, Pfugschar: alle Autoren).

24) Der Unterkiefer: \(w \)
Der Unterkiefer wird aus sechs Knochenstücken und dem Meckel'schen Knorpel zusammengesetzt. Diese sechs Knochenstücke sind:

a) Das Dentale: \(d \)
(Fos dentaire: Cuvier; Dentary: Owen; pars dentalis: Salverda; Dentale: Gegenbaur, Harting, Stannius, Leydig).
b) Das Angulare: \textit{an}
\begin{itemize}
 \item \textit{(l'os angulaire: Cuvier; Angular: Owen; pars angularis: Salverda; Angulare: Gegenbaur, Harting, Stannius, Leydig).}
\end{itemize}

c) Das Articulare: \textit{ar}
\begin{itemize}
 \item \textit{(l'os articulaire: Cuvier; Articular: Owen; pars articularis: Salverda; Articulare: Stannius, Gegenbaur, Harting, Leydig).}
\end{itemize}

d) Das Coronoideum: \textit{cor}
\begin{itemize}
 \item \textit{(le complementaire: Cuvier; Coronal: Owen; Complementare: Gegenbaur; Coronoideum s. Supra-angulare: Stannius; pars coronoidea: Salverda; Coronoideum: Harting).}
\end{itemize}

e) Das Complementare: \textit{com}
\begin{itemize}
 \item \textit{(le surangulair: Cuvier; Surangular: Owen; Pars supra-angularis: Salverda; Complementare: Harting, Stannius; Supra-angulare: Gegenbaur).}
\end{itemize}

f) Das Operculare: \textit{op}
\begin{itemize}
 \item \textit{(l'operculaire: Cuvier; Splenial: Owen; pars opercularis: Salverda; Operculare: Gegenbaur, Stannius, Harting).}
\end{itemize}

25) Das Zungenbein, Hyoideum: \textit{h}.

\textbf{Saurier mit Ausschluss von Hatteria.}

(Hierzu Taf. LXVII., LXVIII., LXIX., LXX. Fig. 1 u. 9, LXXI. Fig. 1.)

In der Occipitalregion treten die vier auch den Schildkröten zukommenden Stücke auf. Das Occipitale basilare bildet mit den Occipitalia lateralia den bei allen Reptilien und Vögeln einfachen Gelenkkopf. Die Beziehung der vier in Rede stehenden Knochen zum Foramen occipitale magnum ist der Art, dass sie bei den Sauriern alle an seiner Bildung sich beteiligen.

Der unpaare Gelenkkopf, stark vorspringend, hat, wie Leydig angiebt, bei jungen Thieren der Gattung \textit{Anguis} eine sehr ausgeprägte dreilappige Beschaffenheit, indem die drei Abtheilungen förmlich hervorquellen, später verliert sich hin und wieder diese scharfe Ausprägung und bei längerer Lebensdauer kann sie wie verwischt sein. Die dreilappige Form des Gelenkhöckers rührt von seiner Entstehung her, indem das Occipitale basilare den mittleren, die Occipitalia lateralia die seitlichen Lappen liefern. Die ursprünglichen Trennungslinien schwimden aber freilich bei den meisten Sauriern im späteren Alter.

Das Occipitale basilare zeigt an seiner unteren Fläche starke, bogige Leisten, sowie Vertiefungen und Höcker für die Muskelsansätze. Bei erwachsenen Thieren bleiben, mag auch der Schädel stark macerirt sein, Occipitale basilare und Sphenoidaleum basilare zu einem untrennbaren Ganzen verbunden, ja selbst an Schädeln jüngerer Thiere, allwo noch
Die Nächte sichtbar sind, haften sie bereits, wie Leydig mittheilt, in dieser festen Weise aneinander.

Vor dem Occipitale laterale liegt bei allen Sauriern das Prooticum, dasselbe ist unmittelbar immer daran zu erkennen, dass an seinem vorderen Rande die Austrittsstelle des dritten Trigeminus-Astes sich befindet. Wie das Opisthoticum, so bildet auch das Epioticum bei den Sauriern kein selbständiges Knochenstück, sondern wird durch eine mit dem Occipitale superius sehr frühzeitig verschmelzende Ossification dargestellt.

Nach vorn setzt sich das Sphenoidicum basilare in das Praesphenoideum fort, welches seinerseits wieder unmittelbar in das knorpelig häutige Septum interorbitale übergeht. Aber ausserdem kommt an der Unterfläche des Schädels noch ein Knochenstück vor, welches schon unterhalb des vorderen Theiles des Sphenoidicum basilare anfängt und sich bis zu den hinteren zwei Drittel des Septum interorbitale ausstreckt; es ist dies das „Parasphenoid“. Dasselbe hat eine grüfelförmige Gestalt, bildet nur ein zartes, dünnes Knochenplättchen und ist ein Deck resp. Bindegewebsknochen. Es entspricht also dem Parasphenoid der Knochenfische und Amphibien (vergl. Taf. LXX. Fig. 9 parsp).

Stannius spricht wohl von dem Praesphenoid (Sphenoidicum basilare anterius: Stannius), nicht aber von dem Deckknochen unterhalb des Septum interorbitale und des vorderen Theiles des Sphenoidicum basilare. Er sagt: „in die knorpelhämige Grundlage der hoch oben

Huxley theilt mit, dass bei den Sauriern, bei Iguana tuberculata z. B. das Interorbitalseptum an seiner Unterfläiche durch die verlängerte Spitze des Basisphenoid getragen wird. Oberhalb derselben zeigt sich nach ihm eine lange, mediane, praesphenoidale Ossification, welche nach hinten bifurkirt ist. Die beiden Zinken sind, wie er angiebt, jederseits mit zwei Knochen verbunden, welche die Orbito-sphenoidalalia zu repräsentiren scheinen.

Leydig gibt an: „das vordere Keilbein, Praesphenoid, erstreckt sich weit nach vorn, es übertrifft im unverletzten Zustande das Occipitale basilare und Sphenoidum basilare zusammen an Länge, was man jedoch nur nach sorgfältigem Maceriren beurtheilen kann. Dieses sogenannte Corpus ossis sphenoidewi anterius ist auch hier bei den Eidechsen vom Körper des eigentlichen Keilbeins in der Art verschieden, dass es beim Embryo nicht knorpelig vorgebildet erscheint, sondern aus Bindegewebe entsteht, also Belegknochen ist.“ Aus dieser Mittheilung von Leydig ergiebt sich also, dass das, was Leydig das vordere Keilbein nennt, nur das Parasphenoid repräsentirt und nicht dem eigentlichen Praesphenoid entspricht, indem wir wissen, dass das Praesphenoid eine knorpelige Grundlage besitzt.

Dagegen findet man zuerst bei Parker und Bettany (80) angegeben, dass bei den Sauriern ein Parasphenoid noch vorhanden ist, wie ans folgender kurzer Beschreibung hervorgeht. „Der membranöse Boden des Pituitarrumus wird durch das hintere breite Ende des zarten griffelförmigen Parasphenoids gestützt, welches den hinteren zwei Dritttheilen des Interorbitalseptum von unten anliegt.“ Aber ausserdem erwähnen die beiden Forscher, dass bei den Sauriern ein Rudiment eines vorderen
medianen Centrums, des Praesphenoids, sich findet; dasselbe liegt in der oberen Hälfte des Interorbitalseptum.

Ich fand, dass das Praesphenoid, wie dies auch von Stannius und Huxley (76) erwähnt ist, eine \(Y(\sim) \)-förmige Gestalt hat.

Das Parasphenoid trifft man unter den Reptilien nur bei den Sauriern und Ophidieren an, es fehlt dagegen bei den Schildkröten und Crocodylien. Es ist aber bei den beiden erstgenannten Reptilien-Abtheilungen viel weniger stark entwickelt als bei den Amphibien und Fischen. Demnach scheint der Schluss gerechtfertigt, dass je mehr die Schädelbasis von der Begrenzung der Mundhöhle aus geschlossen ist, je mehr das Parasphenoid rudimentär wird, um endlich bei den Schildkröten und Crocodylien vollständig zu verschwinden.

Das Septum interorbitale erhält seine untere, der Rachenhöhle zugekehrte Begrenzung durch einen rundlichen Knorpelfaden, der zufolge Leydig's Nachweis durch eine Verschmelzung zweier Knorpelfäden, die rechts und links vom Parasphenoid ihren Ursprung nehmen, entstanden ist. Nach vorn und aufwärts verlanfend endigt er im ethmoidalen Theil des vorderen Abschnittes.

Die genannten vereinigten Knorpelfäden, nach Leydig die ursprünglichen sogenannten Schädelbalken, erheben sich zu einer vertikalen Knorpelplatte, die dem Septum interorbitale eingelagert ist. Die Scheidewand selbst entwickelt sich in ihrer ganzen Breite aus der häutigen, vorderen Begrenzungswand der Schädelkapsel, bildet oben in Verbindung mit den Frontalia eine häufig geschlossene Rinne, den Leitungscanal für die Nervi olfactorii, und setzt sich in das Septum narium fort. Dass dieselbe nur zum Theil häutig ist, geht schon aus der Erwähnung jener Knorpelplatte, die sich aus dem Knorpelfaden entwickelt, hervor.

Von complicirter Configuration liess sich nach Weber diese Platte noch am ehesten einem Viereck vergleichen, von dem jedoch nur die untere und die vordere bogig gekrümmte Seite unverschählt erhalten ist, während die obere und hintere tief eingebuchtet sich darstellt.

Die vordere bogig gekrümmte Seite lagert sich zwischen die Praefrontalia. Die obere und die hintere Seite ist fast bis zur Mitte eingebuchtet (Taf. LXX. Fig. 1) und diese Buchtung bildet an der Knorpelplatte zwei nach hinten gerichtete Fortsätze. Diese Fortsätze treten mit dem oberen und unteren Ende eines hinter dem Foramen opticum gelegenen Knochenstabes und somit mit der vorderen Wand der Schädelkapsel in Verbindung. Die Knorpelplatte erfährt ihrerseits eine Verstärkung durch inselweise auftretende Verkalkungen, dieselben bilden keine
Anatomie.

eigentlichen Verknöcherungen, sondern Ablagerungen von Kalkkrümeln in der Interzellularsubstanz des Knorpels.

Zwischen den Praefrontalia und den Postfrontalia oben und dem Praesphenoid unten spannt sich eine häutige Wand aus, welche die vordere Begrenzung der Schädelkapsel bildet; dieselbe erhebt sich, sanft nach hinten und aussen ansteigend, aus der Ebene der interorbitalen Scheidewand. Obgleich von häutiger Natur, sind ihr disere Ossificationen eingelagert. So findet sich constant hinter dem Foramen opticum ein keulenförmiger Knochenstab (Taf. LXX. Fig. 10 s_p_1), von dem schon angegeben ist, dass seine beiden Enden mit den Fortsätzen des interorbitalen Knorpelplatte in Verbindung stehen. Eine zweite knöcherne Solidification (Taf. LXX. Fig. 10 s_p_2), der ersteren angelagert, findet sich minder beständig. Dieselbe verläuft schräg vom postfrontalen Fortsatz des Parietale zur Colunnella und stellt somit im Verein mit den beiden unteren Dritteln dieser Knochensäule die Grenze des Grundes der Augenhöhle gegen deren hintere Wand dar.

Es braucht wohl nicht mehr hervorgehoben zu werden, dass sich in diesem grossenthüls membranösigen Gebilde keine scharfe Grenze zwischen Praesphenoideum, Orbitosphenoideum und dem ethmoidaleum zuzu-
rechnenden Theilen ziehen lässt. — Bei den Amphibiosaurioiden fehlt das Septum interorbitale.

Die Frontalia sind gewöhnlich doppelt, unpaarig sind dieselben z. B. bei Agama, Podinema, Ctenodon, Uromastyx, Lacerta, Varanus u. A.

Während über die Deutung der bis jetzt behandelten Knochen wenig Zweifel besteht, gehen dagegen bezüglich der Deutung der nun folgenden Knochen die Ansichten der verschiedenen Autoren weit aneinander.

B r o n n, Klassen des Thier-Reichs. VI. 3. 37
kann. Gegenbaur beschreibt ihn nur sehr flüchtig und ich kann aus seiner kurzen Beschreibung nur den Schluss ziehen, dass er ihn als Squamosum betrachtet. Das Squamosum hat aber bei den Amphibien (Amuren) und bei den Schildkröten eine ganz andere Lage, so dass es sich sehr schwer mit diesem Knochen vergleichen lässt. Leydig nennt ihn „Temporale“; Parker und Bettany „Supratemporale“; der letztgenannte Name scheint mir am meisten passend, und ich habe denselben auch adoptirt. Das Supratemporale scheint also ein den Sauriern besonders zukommendes Knochenstück zu sein.

Dementsprechend erscheint an dem lateralen Umfang des Schädels ein zweiter Knochen, welcher nach vorn in einen langen Fortsatz sich verlängert und an seiner Basis mit dem Quadratum articulirt. Cuvier hat denselben als „Temporale“, Stannius als „Squama temporis“, Huxley, Parker und Bettany als „Squamosum“ gedeutet.

Gegenbaur, welcher das Supratemporale als Squamosum auffasst, betrachtet den in Rede stehenden Knochen als Quadrato-jugale, und eine ähnliche Deutung erhält er bei Clason, Leydig, Salverda, Harting und Owen.

Ich kann aber mit Huxley, Parker und Bettany in diesem Knochenstück nur ein „Squamosum“ erblicken und stimme mit ihnen überein, dass bei allen Sauriern ein Quadrato-jugale fehlt, und dass dasselbe ganz allgemein nur durch ein Ligament vertreten ist.

Bei allen Sauriern mit Ausnahme von Hatteria ist das Quadratum mit dem Schädel beweglich verbunden. Auch über die Deutung dieses Knochens ist vielfach gestritten, indem er in Nachfolge von Cuvier als ein dem Tymanieum der Säugethiere homologer Knochen aufgefasset wurde. Schon Huxley (71) wies nach, dass dieses Knochenstück nicht dem Tymanieum der Säugethiere entsprechen kann, da dasselbe ein Bindegewebsknochen ist, der Knochen dagegen, von welchem hier die Rede ist, aus einer knorperlichen Grundlage entsteht. Nach ihm konnte es also nur dem Incus der Säugethiere entsprechen, indem er mit Reichert...
Reptilien.

annahm, dass das Articulare (des Unterkiefers) dem Malleus der Säugethiere homolog ist.

Obgleich ich bei den Crocodilen noch ausführlicher auf dieses Stück zurückkomme, will ich hier doch mitteilen, dass Peters (73) auch für die Sauarien nachzuweisen versucht hat, dass das Quadratum derselben nicht dem Incus der Säugethiere entspricht, eine Ansicht, welche jedoch von Huxley (76) widerlegt wurde. Huxley (76) selbst aber modifizierte seine frühere Ansicht derart, dass er in dem Quadratum nicht mehr das Homologon des Incus, sondern des Hammers erblickte. Leydig gibt wieder an, dass das Quadratbein (Tympanieum: Leydig) durch seine Form, wenn auch noch entfernt, an das Pauwenbein der Säuger erinnert, für dessen Homologon es nach ihm auch zu halten ist; die Gründe seiner Ansicht theilt er indess nicht mit.

Die Vorderenden der Palatina vereinigen sich mit dem Oberkiefer und Vomer, aber in allen lebenden Sauarien treten sie weder unter sich, noch mit dem Sphenoidem basilare oder Praesphenoid in der Mittellinie zusammen.

Die aus dem Oberkieferabschnitt des ersten Visceralbogens entstehenden Skelettheile legen sich bei den Sauarien nicht mehr, wie bei den Knochenfischen und Amphibien einfach an die Seite der Schädelbasis, sondern treten gegen die Medianlinie unter einander zusammen. Dadurch wird die Schädelbasis von der Begrenzung der Mundhöhle, deren Dach sie bei Fischen und auch noch bei Amphibien mit bildete, mehr oder weniger ausgeschlossen und das Dach dieser Cavität wird in demselben Grade von den Theilen des Oberkiefergaumenapparates dargestellt, als diese eine medianwärts gerichtete, von vorn nach hinten fortschreitende Entfaltung darbieten.

Die bei den Amphibien dicht am Vorderrande des Schädels in die Mundhöhle sich öffnenden Nasenhöhlen lassen diese Öffnung mit jenem Vorgange immer weiter nach hinten treten, indem jene Öffnungen durch horizontale Fortsätze der bezüglichen Skelettheile (Maxillare, Palatinum, Pterygoideum) allmählich von unten her umfasst und umschlossen werden. Damit scheidet sich die Nasenhöhle immer mehr von der Mundhöhle ab und bildet eine über ihr liegende Räumlichkeit, deren Boden das Dach der Mundhöhle ist. Diese aus horizontal gerichteten Fortsätzen jener Knochen dargestellte Scheidewand zwischen Mund- und Nasenhöhle wird

Die Maxillaria erreichen bei den Sauíern meistens eine sehr grosse Ausdehnung, während die Praemaxillaria bei den meisten Sauíern mit einander verschmelzen. Dagegen bilden die Nasalia gewöhnlich paarige Stücke, selten sind sie mit einander verschmolzen, wie bei *Varanus* und nur höchst selten werden sie vollkommen vermisst.

Die Praefrontalia begrenzen den Vorderrand der Augenhöhlen, sie senden Fortsätze abwärts, an denen median der Nervus olfactorius zur Nasenhöhle tritt und zeigen an ihrem lateralen Rande einen Ausschnitt. Derselbe umfasst z. B. bei *Lacerta* einen Halbkreis und vervollständigt sich dadurch an einem der Foramen lacrymale umgebenden Ringe — dem Anfang des knöchernen Ductus naso-lacrymalis — welcher mit einem gleichen Ausschnitt, der sich an einem kleinen schmalen, aber ziemlich langen Knochenblatt befindet, zusammentritt. Das in Rede stehende Knochenblatt, welches sich den Processus maxillaris des Jugaile fortsetzend dem Maxillare superius und Praefrontale eng anlegt und — je nach den Species — ganz oder nur zum Theil an der Gesichtsfäche sich zeigt, ist nun das Lacrymale, nach Webcr's Untersuchungen.

Einige Sauíerfamilien sind ausgezeichnet durch den Besitz von accessorischen Ossa supraorbitalia, ein einziges Supraorbitale z. B. besitzen die *Varanidae*, mehrere schuppenartige Knochen bedecken die Orbitae oben bei den Gattungen der *Lacertidae*.

Das Postfrontale s. Orbitale posterius bildet den hinteren Rand der Orbitae, nach hinten grenzt es an das Squamosum, nach vorn an das Jugale.

Bei den *Amphisbaenidæ* findet man keine interorbitale Scheidewand. In dieser Beziehung, so wie auch durch den vollständigen Schluss der vorderen und seitlichen Wände durch Knochen, gleicht er dem Schlangenschädel. Wie schon erwähnt, fehlt die Columella, auch die Postfrontalia fallen aus und das Squamosum ist sehr klein. Auch das Quadratum ist schwach vertreten und nicht bloss nach abwärts, sondern auch in einer Weise, die bei anderen Sauíern nicht gefunden wird, vorwärts geneigt.

Die *Chamaeleon* weichen in ihrem Schädelbau am meisten von dem gewöhnlichen Sauíertypus ab. Das Occipitale superius giebt nach oben
einen medianen Kamm ab, welcher mit der Basis eines ihm entsprechenden, von der Mittellinie des Parietale ab eine gute Strecke nach hinten reichenden Kammes oder Fortsatzes sich verbindet. An dem Scheitel dieses Sagittalkammes treten zwei gebogene Verlängerungen der Squamosa und diese drei Erhabenheiten geben der Hinterhauptsgegend der Chamaeleone ihre so eigenthümliche Sturmhaubengestalt.

Die Augenhöhlen sind hinten durch den aufsteigenden Ast des Jugale geschlossen, aber das Quadrato-jugale fehlt hier ebenso wie bei allen anderen Sauriern; auch ist das Quadratum nicht wie in anderen Sauriern an den Schädelseiten beweglich, sondern verbindet sich fest mit den Knochen, die seinem oberen Rande anliegen. Die Pterygoidea sind nach unten ausgezogen und artenliren nicht mit den Quadrata, was ganz ausnahmsweise ist, sondern sind bloss durch Fasergewebe mit ihnen verbunden. Dass bei den Chamaeleonen die Columella fehlt, wurde schon angegeben.

Über den Bau des Primordialschädel's verdanken wir Leydig von dem der Blindschleiche eine sehr genaue Mittheilung.

Fängt man von hinten und unten an, so zeigen sich zuerst zwei bogig nach aufwärts strebende Knorpelstreifen (vergl. Taf. LXIX. Fig. 2. 3). Hat man sie etwas abgebogen, so wird nahe ihrem unteren Ende eine grosse Öffnung und weiter nach oben eine andere, um vieles kleinere sichtbar. Vor diesen Occipitalia lateralia liegend bildet den Grund des Schädels eine Knorpelplatte von beiläufig dreiseitiger Form, in welcher man die Summe des späteren Occipitale basilare, so wie das Sphenoideum basilare erblicken darf. Ihr hinterster, eigentlich plattenartiger Theil ist nach unten ausgewölbt. Nach vorn zu wird die Platte zweimal von einer mittleren Öffnung durchbrochen, deren hintere eine rundliche und deren vordere eine dreieckige Gestalt hat.

Ferner sind jederseits zwei längliche Spalten, unter einander von verschiedener, aber immer beständiger Form vorhanden; diese Durchbrechungen haben sämtlich einen äuñtig-bindegewebigen Verschluss. In die vordere der mittleren Öffnungen, genauer auf deren äuñtigen, etwas vertiefen Boden, kommt der Hirnanhang zu liegen.

Weiter nach vorn dient der Basalknorpelstreifen und seine kammförmige Erhebung, die jetzt wieder schmäler geworden, zur knorpeligen Nasenscheidewand; das knorpelige Ende, die Nasenhöhlen umgreifend, wird zur Nasenkapsel und die Einsprünge zu den Muskeln.

Endlich unterscheidet man noch einen Knorpelfaden, der am Seitenrand des häutigen Schädels hinziehend, hinter den Augen vorbei in die knorpelige Nasenkapsel aushäuft, nachdem er sich zuvor durch eine kurze Querbrücke mit dem Knorpelkamm zwischen den Augen verbindet. Leydig glaubt, dass dieser seitliche lange Knorpelfaden hinten über die Ohrkapsel wegggehend in Verbindung steht mit dem hintersten Knorpel des Primordialschädel's, d. h. mit dem Occipitale laterale.

Die Columella, ebenfalls ein Knorpelstab, setzt sich sowohl nach oben als auch nach unten, insoweit sie aus Knorpelsubstanz besteht, mit scharfer Grenze ab. Das Pterygoidem, dem sie sich unten anfügt, ist nie knorpelig gewesen.

Einen sehr wesentlichen Theil des Primordialschädel's bildet die knorpelige Ohrkapsel. Von innen her angesehen bemerkt man an ihr eine grosse Öffnung zum Schädelraum von länglicher Form. Von aussen macht sich ein grosses Foramen ovale auffällig, das wohl jetzt auch noch zugleich das Foramen rotundum mitbegreift. Von den Gehörköchelchen ist das Operculum (Stapes) ebenfalls knorpelig angelegt. Ferner unterscheidet man nicht bloss deutlich die Umrisse für die Bogengänge und die stumpfkegelförmige Schnecke, sondern es schimmern auch die beiden Otolithenhaufen hindurch.

Endlich stellen noch knorpelige Anhänge des Primordialschädel's vor: das Quadratum und der Bogen für den Unterkiefer. Das erstere ist oben etwas breiter als unten, aber sonst von noch ganz einfacher Form, ohne Aushöhlung für das Trommelfell und ohne Muskelleisten.

Verfolgt man die weiteren Schicksale des knorpeligen Primordialschädel's, so zeigt sich, dass der hintere Abschnitt, welcher dem Körper und den Seitentheilen des Occipitale entspricht, verknöchert, ebenso die Ohrkapsel sammt dem Quadratum, so wie dem Articulare des Unterkiefers. Der übrige Knorpel hingegen, welcher sich nach vorn erstreckt, also die genannten paarigen Schädelbalken und ihre unpaarige Fortsetzung bis zur Schnauze, dann der auf letzterer sich erhebende Kamm,
die Nasenkapseln und die langen Streifen nach oben, aussen und hinten bis in die Gegend des Prooticum bleiben zeitlebens bestehen und lassen sich am rein präparirten Schädel wieder auffinden, ebenso wie der Meckel'sche Knorpel am Unterkiefer.

Ueber die bleibenden Theile des Primordialschädel bei Lacerta verdanken wir Leydig folgendes: Bei Betrachtung des Schädels von unten (vergl. Taf. LXIX. Fig. 4) sieht man zu beiden Seiten des Parasphenoid einen Knorpelfaden nach vorne treten, welche beide sich in der Medianlinie des Schädels zu einer Knorpelplatte erheben. Zugleich gewahrt man aber noch in der bezeichneten Lage des Schädels einen Knorpelfaden, welcher rechts und links näher dem Schädeldache im Bogen von vorn aus der Gegend der Augenhöhle nach hinten zur Ohrgegend zieht.

Ein gut macérirter Schädel lässt erkennen, dass wie bei Anguis die neben dem Parasphenoid verlaufenden Knorpelfäden von zwei cylindrischen Knochenstäben ausgehen, die als ihre verknöcherten Wurzelstücke anzusehen sind und von welchen sie sich scharf ablösen lassen. Die Knorpelfäden sind die ursprünglichen sogenannten Schädelbalken.

Das zweite erwähnte Paar der Knorpelstreifen geht von dem Primordialschädel zwischen den Augen von der grossen knorpeligen Scheidewand ab und verliert sich nach hinten in die knorpelige Ohrkapsel. Bei Anguis markirt sich noch am fertigen Schädel klar die Stelle, wo das Prooticum den Streifen annimmt. Bei Lacerta, wenigstens bei Lacerta agilis und muralis liess sich dieselbe nicht mehr nachweisen.

Den dritten und ausgedehntesten Knorpeltheil bildet dann das schon öfters erwähnte Septum interorbitale, welches nach vorn in den vierten Abschnitt, in die knorpelige Nasenkapsel, zunächst der Scheidewand der Nase, übergeht.

Unterkiefer.

Der Unterkiefer bei den Sauriern besteht durchweg aus sechs Knochenstücken und dem persistirenden Meckel'schen Knorpel. Von diesen sechs Knochenstücken gelenkt das Articulare mit dem Quadratum, das Dentale trägt die Zähne, das Coronoiden besitzt einen stark entwickelten Fortsatz zur Insertion des Musculus temporalis. Das Complementare befindet sich an der Aussenfläche, das Operculoare an der Innenfläche des Unterkiefers, während das Angulare sich am unteren Rande des Unterkiefers befindet.

Die beiden Unterkieferäste sind in der Regel, wenn auch nicht ausnahmslos, fest an der Symphyse verbunden.

Hatteria (vergl. hierzu Taf. LXX. Fig. 2—7).

Ueber den Bau des Schädels von Hatteria (Sphenodon) verdanken wir Günther (26) eine ausführlichere Beschreibung. Das Occipitale
basilare ist bei *Hatteria* sehr kurz, das Foramen magnum höher als breit, mehr als ein Drittel seiner Circumferenz wird durch das Occipitale superius gebildet. Die Occipitalia lateralia bethöllen sich nur wenig an der Bildung des Condylus occipitis. Das Occipitale superius hat einen kurzen, medialen Kamm. Die Occipitalia lateralia (*a*) sind an ihrer Basis stark ausgedehnt und geschwollen zur Aufnahme des Gehörorgans, sie verlängern sich lateralwärts in einen Fortsatz (Processus parotiens), welcher eine schräge, aber nur wenig nach rückwärts gekrümme Richtung hat. Günther sagt von diesem Fortsatz: „This Process is styliiform, though strong, deeply grooved below along its entire length, to receive the long stapes (*c*); it is strengthened by a paroccipital (*d*), which covers nearly the entire side of the process, and is united with the occipital part by only partly distinct sutures.“

Die Frontalia sind durch eine seitliche Naht von einander getrennt, sie sind schmal, verlängert und hinten und vorzugespitzt. Die Nasalia sind breit, trapezoidförmig und bilden den grössten Theil der oberen Fläche der Schädel.

Die Praefrontalia (*i*) bilden ebenfalls schmale Knochenstücke. Von den Lacrymalia (*k*) ist nur ein kleiner Theil an der äusseren Schädel-
fläiche sichtbar, indem sie zum grössten Theil von den Praefrontalia gedeckt werden.

Die merkwürdigsten Knochen bei Hatteria sind diejenigen, welche sich zwischen Frontale und Maxillare einerseits und Quadratum andererseits befinden. Dieselben bilden hier einen verticalen Orbitalbogen, welcher durch einen oberen (temporalen: Günther) und einen unteren (jugalen: Günther) horizontalen Bogen verbunden ist. Die Knochen, welche diese Bogen bilden, sind das Postfrontale (l), das Quadrato-jugale (m), das Squamosum (h) (Mastoideum: Günther) und das Jugale (n) (Zygomaticum: Günther). Hatteria entfernt sich also von allen übrigen Sauriern und nähert sich den Crocodilen durch den Besitz des Quadratojugale.

Bei den Crocodilen beteiligen sich folgende Knochen an der Zusammensetzung des Schädels:

1) Das unpaarige Occipitale basilare: ob
 (Occipital basilaire: Cuvier; Occipitale basilare: Gegenbaur, Klein, Stannius, Harting, Brühl; basi-occipital: Huxley, Owen, Miall; Körper des Hinterhauptsbeins: Rathke; Körper des Grundbeins: Meckel; Corpus ossis occipitis: Hallmann).

2) Die paarigen Occipitalia lateralia: ol
 (Occipital laterale: Cuvier; Occipitale laterale: Gegenbaur, Klein, Stannius, Harting, Brühl, Hallmann; exoccipital: Owen, Miall, Huxley; Seitentheil des Hinterhauptsbeins: Rathke; Gelenktheil des Grundbeins: Meckel).

3) Das unpaarige Occipitale superius: os
 (Occipital supérieur: Cuvier; Occipitale superius: Gegenbaur, Brühl, Harting; Squama occipitis: Klein, Stannius, Hallmann; Supra-occipital: Huxley, Miall; Superoccipital: Owen; Schuppe des Hinterhauptsbeins: Rathke; Schuppe des Grundbeins: Meckel).

4) Das unpaarige Sphenoideum basilare: s
 (Basi-sphenoid: Gegenbaur, Miall, Huxley, Owen; Sphenoideum: Cuvier; Sphenoideum: Klein; Sphenoideum basilare: Stannius, Brühl, Harting, Hallmann; Körper des hinteren Keilbeins: Rathke, Spheno-basilare: Hasse; Körper des Keilbeins: Meckel).

5) Das unpaarige Praesphenoid: prsp
 (Vergleiche über die bei allen Autoren erwähnten vorderen Begrenzungsknochen der Schädelkapsel — ailes orbitaires et ailes temporales: Cuvier; Alisphenoid: Gegenbaur, Huxley, Harting, Miall; Ala temporalis anterior ossis sphenoidei: Klein; Ala temporis: Brühl; hintere Keilbeinflügel: Rathke; Ala magna: Hallmann; Keilbeinflügel: Meckel; Orbito-sphenoid: Owen; Ala orbitalis: Stannius — Seite 590).

6) Das paarige Prooticum: pro
 (Ali-sphenoid: Owen; Rocher: Cuvier; Ala temporis posterior ossis sphenoidei: Klein; Petrosum: Stannius, Brühl, Harting, Hallmann; Prooticum: Huxley, Miall, Hasse, Gegenbaur; Felsentheil des Schlafbeins: Meckel).

7) Das paarige Squamosum: sq
 (Mastoidien: Cuvier; Squamosum, Squamosal: Miall, Huxley, Gegenbaur, Hasse; Squama temporalis: Klein; Mastoideus: Giebel, Brühl, Harting; Mastoid: Owen; Parietale laterale: Mayer; Tympanicum: Rathke; Squama temporis: Hallmann; Zitzentheil des Schlafbeins: Meckel).
8) Das paarige Quadratum: q
(Tympanique ou caisse: Cuvier; Tympanicum s. quadratum: Har-
ting, Hallmann; Condylo-temporale: Mayer; Quadratum, Qua-
drato, Quadratbein: Gegenbaur, Hasse, Miall, Rathke, Meckel; Quadratum s. Processus articularis ossis temporalis: Klein; Tympanicum: Stannius, Owen, Giebel, Brühl).

9) Das paarige Parietale: par
(Parietale, Parietal, Scheitelbein: alle Autoren).

10) Das Frontale: fr
(Frontal principal: Cuvier; Frontale principale: Brühl, Harting; Hauptstirnbein: Giebel; eigentliches Stirnbein: Rathke; Stirnbein: Meckel; Frontale: Gegenbaur, Hasse, Miall, Huxley, Owen, Stannius, Hallmann; Frontale medium: Klein).

11) Das paarige Postfrontale: pfr
(Frontal posterior: Cuvier; Postfrontale: Gegenbaur, Hasse, Miall, Huxley, Owen; Frontale posterius: Klein, Brühl, Hallmann, Harting; hinteres Stirnbein: Giebel, Rathke; von Meckel wohl beschrieben, aber nicht bezeichnet).

12) Das paarige Praefrontale: prfr
(Frontal anterius: Cuvier; Frontale s. Orbitale posterius: Stan-
nius; Praefrontale s. Ethmoidale laterale: Gegenbaur; Frontale anterius: Klein, Harting, Brühl, Hallmann; Praefrontale: Hasse; Frontale s. Orbitale anterius: Klein; Prefrontal: Huxley, Owen, Miall; vorderes Stirnbein: Rathke, Giebel; Riechbein: Meckel).

13) Das paarige Pterygoideum: pt
(Pterygoidien: Cuvier; Pterygoideum, Pterygoid: Gegenbaur, Hasse, Miall, Huxley, Hallmann, Klein, Stannius, Gie-
bel, Harting, Brühl, Owen; Pterygoideum internum: Mayer; Flügelbein: Rathke, Giebel; Flügel des Keilbeins: Meckel).

14) Das paarige Palatinum: pl
(Palatin, Palatinum, Gaumenbein: alle Autoren; Palatinum anticum: Mayer).

15) Das paarige Transversum: tr
(Transversum: Cuvier, Klein, Rathke, Stannius, Brühl, Hallmann; Transversum s. Pterygoideum externum: Gegenbaur; Transpalatine: Miall; Pars palato-orbitalis ossis palatini: Mayer; Transpalatinum s. Palatinum externum: Harting; Ektopterygoid: Owen).

16) Das paarige Lacrymale: lac
(Thränenbein, Lacrymal, Laerymale: alle Autoren).

17) Das paarige Maxillare: m
(Maxillare: Cuvier; Maxillary: Owen; Maxillare: Gegenbaur, Hasse; Maxilla superior: Klein, Stannius, Brühl, Harting,
Anatomie.

Hallmann; Maxilla: Miall, Huxley; Oberkiefer: Rathke, Giebel, Meckel).

18) Das paarige Praemaxillare: *prm*

(Intermaxillaire: Cuvier; Praemaxillare: Gegenbaur; Praemaxilla: Miall, Huxley; Premaxillary: Owen; Intermaxillare: Klein, Stannius, Brühl, Hallmann, Harting; Zwischenkiefer: Giebel, Rathke, Meckel).

19) Das paarige Nasale: *n*

(Nasale, Nasal, Nasenbein: alle Autoren).

20) Das paarige Jugale: *j*

(Zygomaticque ou jugal: Cuvier; Jugale: Hasse, Brühl, Gegenbaur, Stannius, Giebel, Huxley, Harting; Malar: Owen; Zygomaticum: Klein, Hallmann; Jochbein: Giebel, Rathke, Meckel).

21) Das Quadrato-jugale: *qi*

(Temporal écailleux: Cuvier; Zygoo-temporale: Mayer; Quadrato-jugale: Gegenbaur, Hasse, Huxley, Miall; Quadrato-jugale s. Processus zygomaticus ossis temporalis: Klein; Schläfenschuppe: Giebel; Squamosal: Owen; Temporale: Brühl, Harting; Quadrat-Jochbein: Rathke; Quadrato-jugale s. Quadrato-maxillare: Hallmann; von Meckel wohl beschrieben, aber nicht verzeichnet.

22) Der paarige Vomer: *v*

(Vomer, Pflugschar: alle Autoren).

23) Der Unterkiefer: *u*

An dem Unterkiefer der Crocodile unterscheidet man wie bei den Sauriern sechs Stücke: *nl*

a) Das Dentale: *d*

(L’os dentaire: Cuvier; Pars dentalis: Klein; Dentale: Gegenbaur, Stannius, Harting, Brühl; Dentary: Owen, Miall).

b) Das Angulare: *an*

(L’os angulaire: Cuvier; Pars angularis: Klein; Angulare: Gegenbaur, Harting, Brühl; Angular: Owen, Miall).

c) Das Articulare: *ar*

(L’os articulaire: Cuvier; Pars articularis: Klein; Articulare: Gegenbaur, Harting, Brühl; Articular: Owen, Miall).

d) Das Supraangulare: *san*

(L’os surangulaire: Cuvier; Pars supraangularis: Klein; Supraangulare: Gegenbaur; Coronoid: Harting, Brühl; Surangular: Owen, Miall).

e) Das Complementare: *com*

(L’os complementaire: Cuvier; Pars complementaris s. vaginialis: Klein; Complementare: Gegenbaur, Harting, Brühl; Coronoid: Owen, Miall).
Reptilien.

f) Das Operculare: *op*

(L'os operculaire: Cuvier; Pars complementaris interna s. opercularis: Klein; Operculare: Gegenbaur, Stannius, Harting, Brühl; Splenial: Owen, Miall).

Crocodile.

(Vergl. hierzu Taf. LXXI. Fig. 2—6, Taf. LXVI. Fig. 5, 6, 7.)

Die Occipitalia lateralia bestehen aus zwei flügelförmigen, nach aussen ausgezogenen Platten, welche sich in der Mittellinie mit einander vereinigen, den seitlichen und oberen Rand des Hinterhauptsloches bilden und mit dem untersten inneren Theil an die Basis des Gelenkkopfes sich anlegen.

Die untere Fläche ist concav und deckt den hinteren Theil der Hirnöhle, am seitlichen Rande ist eine halbkugelige Erhabenheit, welche das innere Gehörorgan nach innen und oben schliesst.

Das Sphenoidum basilare ist bei den Crocodilen an der äusseren Oberfläche nur wenig sichtbar, indem es fast vollständig von dem Pterygoideum verdeckt wird.

Die obere Fläche ist leicht concav und bildet einen Theil der Schädellhöhle, welche nach hinten von der oberen Fläche des Occipitale basilare fortgesetzt wird. Am vorderen Rande dieser Fläche ist der Eingang zu der Sattelgrube, in welcher die Hypophysis cerebri ruht (Taf. LXVI. Fig. 5 st). Nach vorn setzt sich das Sphenoidum basilare in das bei den Crocodilen recht anschnittliche Praesphenoid fort (Taf. LXVI. Fig. 5 µρσψ), welches seinerseits wieder unmittelbar in das knorpelige Septum interorbitale (s. i) übergeht.

An dem seitlichen und vorderen Umfang der Hirnöhle bemerkt man zwei grosse, platte Knochen, welche nach vorn in der Mittellinie convergiren. Cuvier (1) sagt von diesen beiden Knochen: „On reconnoît toutefois aisément les grandes ailes ou ailes temporales du Sphenoide (ad), par leur position, par leur figure et par leur fonction de porter les lobes moyens du cerveau; on n'est point étonné de les voir former des os distincts, puis qu'il en est de même dans tous les fétus de mammifères.
Cependant je dois faire remarquer ici une chose passée sous silence par tout le monde, c'est que cette pièce osseuse renferme en même temps et dans une seule masse d'ossification, l'aile temporale et une grande partie de l'aile orbitaire; en effet, quand on examine un crocodile frais, on reconnaît que si le nerf olfactif et l'optique passent entre cette aile et sa correspondante, les nerfs de la troisième, de la quatrième, de la sixième pair, et la première branché de la cinquième, passent par des trous qui sont pratiquées dans le corps même de l'aile, et dont l'ensemble, s'ils étaient continus, représenteroient la fente sphéno-orbitaire. Demnach sollen also diese Knochen sowohl die Orbitosphenoïdalia, als die Alisphenoidalia repräsentiren.

Meckel (2) sagt von diesem Knochen: „Beim Crocodilus liegt vor, über und nach innen von dem grossen Keilbeinfügel (d. i. dem Pterygoid), an der vorderen Schädelwand hinter der Augenhöhle ein kleiner, platter, mit dem der anderen Seite convergirenden Knochen, den ich für den vorderen oder kleinen Keilbeinfügel halte;“ also für das Orbitosphenoid.

Nach Huxley (71) besitzen die Crocodile „a large and distinct lateral ossification in front of each pro-otic. This ossification bounds the foramen for the third division in front, and unites with the basisphenoid below and with the parietal above, so far a greeing with the alisphenoid. Since it extends so much further forward than the alisphenoid ordinarily does, Cuvier has suggested that it probably represents both the ali- and the orbito-sphenoids; but Stannius has pointed out the existence of two small ossifications close to the optic foramina.“ Und an einer anderen Stelle giebt Huxley (39) an: „Grosse Alisphenoidia sind vorhanden, aber die Orbitosphenoidia sind entweder rudimentär oder fehlen.“

Rathke (24) sagt: „Vordere Keilbeinflügel kommen nicht zur Entwicklung, werden aber, wie Cuvier nachgewiesen hat, durch die hinteren ersetzt.“ Bei Gegenbaur (57) findet man angegeben: „auch die Crocodile sind mit einem Alisphenoid versehen“, und Parker und Bet tany (80) theilen mit: „beiden Crocodilen finden sich grosse Alisphenoidea.“

Aus dem Mitgetheilten geht also hervor, dass fast alle Autoren die grossen an dem vorderen Umfang des Schädel's gelegenen Knochenstücke als Alisphenoidea betrachten oder als Stücke, welche sowohl den Alisphenoidea als auch den Orbitosphenoidea entsprechen.
Schon eine äussere Betrachtung dieser Knochenstücke lässt es jedoch sehr fraglich erscheinen, ob die in Rede stehenden Knochenstücke Alisphenoidea repräsentirein, indem dieselben hier bis zum Schädeldach reichen, was sonst bei den Alisphenoidea nicht der Fall ist, und eine genauere Untersuchung bei jungen Thieren ergibt dann auch, dass sie nicht als die Homologa der Alisphenoidea betrachtet werden können. Die Alisphenoidea entstehen in knorpeliger Grundlage, die Knochenstücke, von welchen hier die Rede ist, sind reine Bindegewebsknochen, eine Vergleichung zwischen beiden ist also unmöglich. Ich kann in den bei den Crocodilen als „Alisphenoidea“ beschriebenen Knochenstücken nur Verknöcherungen der häufiger vorderen Begrenzungswand der Schädelkapsel erblicken, analoge Verknöcherungen, wie z. B. die des Tentorium cerebelli bei den Raubsäugethieren, Knochenstücke also, welche nichts mit Alisphenoidea gemein haben. Nicht allein bei Embryonen, selbst noch bei jungen Thieren fehlen diese Knochenstücke durchaus und werden durch eine hättige Wand ersetzt.

Das Parietale bildet schon in dem Stadium, in welchem der Embryo im Begriff steht, das Ei zu verlassen, ein unpaariges Stück, bei jüngeren Embryonen dagegen besteht es aus einem paarigen schmalen Knochenstreifen, der, wie Rathke mittheilt, der ganzen Länge nach weit aus einanderliegend gegen die nach oben und innen gekehrten Ränder netzartig durchbrochen ist.

Mit dem vorderen Rande grenzt das Parietale an das Frontale, mit den seitlichen abgestumpften Winkeln an das Postfrontale und bildet eine Art dreieckiger Fläche, deren seitliche Ränder nach hinten convergiren, sich nach unten umschlagen und in eine glatte Fläche übergehen, welche halbirkelförmig gebogen mit nach aussen gerichteter Concavität die innere Wand eines gleich näher zu betrachtenden rundlichen Lochs bilden. Die untere Fläche des umgeschlagenen Theils stösst im Loch selbst auf das Alisphenoide und Prooticum, so wie auf das Quadratum. Die untere Fläche der Platte liegt vorn über dem Prooticum, sieht dann frei mit einer concauen Fläche in die sehr kleine Hirnhöhle herein und bedeckt mit ihrem hinteren Theil das Occipitale superior.

Bei Jacare ist nach Klein das Parietale eine viereckige Platte, die sich vorn nach den Seiten etwas verbreitert, dann mit nur leicht concauen Rande, der steil abfällt, zwischen den sehr kleinen länglichen Löchern durchzieht und sich hinter diesen breit auf das Occipitale superior legt, welches es bei dem Jungen bis an den hinteren Rand deckt, während bei alten Thieren das Occipitale superior bis nahe hinter die Löcher zwischen den Squamosa hineintritt und der hintere Rand des Parietale gleich hinter den Löchern mit convexem Rande aufhört.

Das Frontale bildet bei dem Ausschlüpfen nahezu reifer Embryonen schon ein unpaariges Stück, bei jungen Embryonen besteht es aber wie das Parietale deutlich aus zwei disseraten Knochenstücken, es nimmt die

In der Mitte der unteren Fläche laufen zwei starke Leisten der Länge nach, welche nach hinten divergiren und auf dem vorderen Rande der verknöcherten seitlichen und vorderen Schädelwand aufliegen; in der Rinne zwischen beiden liegen die Geruchsner

Von der unteren Fläche des inneren Randes geht bei den eigentl"ichen Crocodilen ein dicker Stiel, bei Jacare (nach Klein) eine nach vorn concave Platte, die nach unten in einen stielförmigen Fortsatz übergeht, nach unten und gegen die Mittellinie und setzt sich auf dem Pala
tinum und vorderen Ende des Pterygoideum fest. Von der Mitte dieses Fortsatzes geht ein Vorsprung nach innen, welcher mit dem der anderen Seite zusammentrifft.

Dieser senkrechte Theil bildet mit den unteren Leisten des Frontale und dem oberen Rand des Palatinum und Pterygoideum eine hohe Öffnung, welche durch den Querfortsatz in eine obere weitere und untere schmälere getheilt wird; durch die obere rundliche Öffnung tritt der Nervus olfactorius, in der unteren spaltenförmigen liegt die Knorpelplatte, welche von dem Praesphenoid ausgehend die Orbital scheidewand bildet und so in die knorpelige Nasenscheidewand sich fortsetzt.

An dem vorderen Theil des äusseren Randes dieses Praefrontale sitzt ein schuppenförmiger Knochen, welcher die Augenhöhle vorn und innen etwas deckt, hinten jedoch frei ist. Die Knochenschuppe ist nur durch die Haut festgehalten und geht deshalb bei der Maceration verloren. Sie deckt die hintere Öffnung des Canalis lacrymalis und liegt am Orbitalrand des Frontale anterius, dessen hinteres Ende sie aber.
Anatomie.

nicht erreicht; auf der oberen Fläche trennt sie eine Rinne von dem Frontale anterius. Dieses Knochenstück entspricht dem Supra-orbitale der Saurier.

Der hintere Rand der Platte stösst an das vordere Ende des Squamosum und von der unteren Fläche geht ein mehr oder weniger stumpfer Fortsatz nach hinten, welcher sich an das Quadratum anlegt und auch noch das Ende des Quadrato-jugale berührt, so wenigstens verhalten sich die Gaviale, während bei den eigentlichen Crocodilen das vordere Ende des Squamosum zwischen Postfrontale und Quadratum tritt. Zwischen der Anlagerung an das Parietale und Squamosum schlägt sich der innere Rand um und bildet einen Theil der äusseren Wand des rundlichen Loches, das von dem Schäeldach zur Schläfengrube führt. Das Loch ist nur von der Haut bedeckt und an seinen Wandungen entspringt der Musculus temporalis, welcher es ganz ausfüllt.

Der vordere platte oder abgerundete Rand des Stieles begrenzt hinten die Augenhöhle, der hintere scharfe Rand sieht frei gegen die Schläfengrube.

Die Nasalia sind sehr lang, nur bei Gavialis gangeticus kurz, wo sie nicht bis zur Mitte zwischen den Augenhöhlen und der vorderen Nasenöffnung reichen; breit bei Jacare. Sie setzen die Gesichtsfläche des Frontale fort, dessen vorderes Ende sie mit zwei Zacken umfassen und erstrecken sich zwischen den Praefrontalia, Lacrymalia und Maxillaria zwischen den aufsteigenden Aesten der Praemaxillaria (mit Ausnahme der Gaviale) durch die Rinne, welche diese offen lassen, etwa in die vordere Nasenöffnung herein, wo sie mit scharfer Spitze enden.

Die Lacrymalia bilden platte, dreieckige Knochen, die gewöhnlich grösser als die Praefrontalia sind. Sie treten mit länglicher, nach vorn zugespitzter Gesichtsfläche jederseits zwischen das Praefrontale und Nasale, welche nach innen liegen, das Jugale und Maxillare, die an ihrem äusseren Rande liegen, herein.

Die Maxillaria sind grosse, kräftige Knochen, an welchen man einen Gaumentheil und Gesichtstheil unterscheiden kann. Die Breite und Länge des Gaumentheils — der Gaumenplatte — richtet sich nach der des Schädels, am breitesten ist dieselbe bei den Alligatoren (Jacare), am
schmälsten und längsten bei den Gavialen. In der Mittellinie verbindet sich die Gaumenplatte mit der der anderen Seite, vorn mit dem Praemaxillare. Der hintere Theil des inneren Randes ist bei einigen mehr, bei anderen weniger ausgeschnitten. Der hintere Rand ist concav, frei, sein innerer Winkel ist kurz und legt sich an die äussere Seite des Pala-

tinum. Der äussere Winkel ist lang ausgezogen und setzt sich, allmäh-
lisch sich verschmälernd, an der äusseren Seite des Transversum fort.

Am äusseren Rande geht die Gaumenplatte in die obere über, welche, die Gesichtsfläche bildend, sich einwärts wölbt und gegen die Mittellinie hin sich vorn an das Praemaxillare, dann Nasale, hinten an das Lacry-

male anlegt und mit dem hinteren Rand, allmählich schmäler, an den äusseren Rand des Jugale bis zum Transversum tritt.

Nur bei Gavialis gangeticus treten nach Klein die beiden inneren Ränder hinter dem Praemaxillare mit einander in unmittelbare Berührung und bleiben in der Mittellinie mit einander vereinigt bis hinter die Mitte zwischen vorderer Nasenöffnung und Augenhöhlen, wo die Spitzen der kurzen Nasalia zwischen sie treten.

Beide Platten bilden mit ihrer inneren Fläche durch eine rinnenför-
mige Aushöhlung die eine Hälfte des hier einfachen Nasencanales. An der äusseren Seite des Nasencanales geht, durch eine Scheidewand von ihm getrennt, ein enger Canal vorwärts, in welchem Nerven und Gefässe ver-
lanzen und sich in dem Praemaxillare fortsetzen, die hintere Oeffnung derselben wird vom Lacrymale, Jugale und Maxillare begrenzt.

Das Praemaxillare ist ein paariger Knochen und wird auch noch bei ganz alten Thieren aus zwei durch eine Naht mit einander vereinigten Knochen gebildet. Es besteht aus einer unteren, der Gaumenplatte, welche in der Mittellinie mit der der anderen Seite, am hinteren Rand mit dem Maxillare verbunden ist.

Am äusseren Rande schlägt sich die Platte nach oben um, bildet den vorderen Theil der Gesichtsfläche und hinter einer Mittelnaht, welche den vorn abgerundeten Theil mit dem der anderen Seite verbindet, durch einen rundlichen Ausschnitt die vordere Nasenöffnung.

An dem lateralen Umfang des Schädels trifft man nach hinten zuerst das Squamosum an. Dasselbe nimmt an der Bildung der Schädellhöhle keinen Antheil und ist nur auf der äusseren Fläche einzelner Schädel-
knochen aufgelagert. Es besteht aus einer dreiseitigen, horizontal liegenden
Platte, welche einen freien, nach hinten und aussen ausgezogenen Winkel hat. Der innere Winkel ist breit und stößt bei den eigentlichen Crocodilen und Gavialen an das Parietale, bei den Alligatoren (Jacare) an das Occipitale superius. Der vordere Winkel verbindet sich mit der Platte und dem Stiel des Postfrontale und liegt auf dem vordersten Theil des Quadratum. Der innere Rand der Platte zwischen dem vorderen und inneren Winkel begrenzt das schon früher erwähnte rundliche Loch, schlägt sich um und bildet die äussere Wand dieses Loches, die untere Fläche dieses umgeschlagenen Theiles liegt auf dem Quadratum.

Der hintere Rand geht in eine absteigende Platte über, welche sich auf das aussere Ende des Occipitale laterale legt. Der äussere Theil dieser Platte schlägt sich nach aussen um und bildet eine rinnenförmige Seitenfläche, deren untere Wand sich breit auf das Occipitale laterale und den anliegenden Theil des Quadratum legt. Die untere Fläche der Platte bildet die Decke über dem Eingang zum Cavum tympani, welches sie dachförmig überlagert.

Die hintere Fläche sieht nach oben, ist leicht convex, hat vorn am hinteren Rand einen weiten Ausschnitt, welcher zum Cavum tympani führt; eine nach oben stehende Spitze theilt den Ausschnitt in zwei Theile, die Ränder des Ausschnittes nähern sich einander wieder und werden durch das Squamosum, welches sich vor und hinter dem Ausschnitt an das Quadratum anlegt, bedeckt. Hinter dem Ausschnitt legt sich das hintere Ende des Squamosum an das Occipitale laterale auf das Quadratum, welches hinter dieser Anlagerung noch eine freie Fläche nach oben und hinten bietet und in der Gelenkfläche endigt.

Der untere, eigentlich äussere Rand legt sich am hinteren Ende des Postfrontale an das Quadrato-jugale. Dasselbe bildet eine längliche Knochenplatte, vorn schmal zugespitzt, und legt sich an das Quadratum, bei den Alligatoren erreicht es (nach Klein) den hinteren Fortsatz des Postfrontale, mit dem hinteren dicken Theil endet es an der äusseren Seite des Gelenkendes des Quadratum. Der äussere Rand sieht mit dem
vorderen Theil frei gegen die Schläfengrube, der grösere hintere Theil desselben liegt der ganzen Länge nach am hinteren Theil des inneren Randes des Jugale.

Der letztgenannte Knochen begrenzt die Augenhöhle und Schläfengrube nach aussen. Er bildet eine lange, schmale, von beiden Seiten zusammengedrückte, oben und unten freie Platte, welche sich mit etwas zugespitztem vorderen Theil zwischen Lacrymale und Maxillare legt, hinter dem ersteren ist der obere Rand frei bis zum Quadrato-jugale, an welches sich der hintere Theil, schief abgeschnitten, anlegt und an dessen äusserer Seite fast bis zur Gelenkfläche, das Quadratum reicht. Hinter dem Maxillare liegt der untere Rand zuerst auf dem Transversum und ist dann frei bis an das hintere Ende am Quadrato-jugale.

Das Pterygoid besteht aus einer viereckigen, concaven Platte, deren äusserer Rand sich nach oben wölbt und wulstig endet, unter und vor diesem legt sich das Transversum an; der innere Rand wölbt sich ebenfalls nach oben und endet in einem längeren Fortsatz, welcher sich an der Seite des Sphenoideum bis zum Prooticum anlegt. Der hintere Rand ist frei.

Auf der unteren Fläche trifft in der vorderen Hälfte die Platte mit der der anderen Seite in einer Mittelnah zu sammen, hinter welcher auf jeder Seite die hintere Nasenöffnung mündet. Der vordere Rand stösst an das Palatinum.

Das Transversum schiebt sich zwischen Pterygoideum, Jugale und Maxillare herein, bildet eine breite, gebogene Platte, welche sich mit ihrem unteren Theil schief unter das äussere Ende des Pterygoideum legt, deren oberer Theil zwei ausgezogene Winkel hat, von denen der vordere, allmählich sich zuspitzend, sich mit der inneren Fläche des Maxillare, der hintere mit dem jugale verbindet. Vom oberen Rand geht ein Fortsatz ab, welcher mit einem ähnlichen Fortsatz des Jugale sich an den Stiel des Postfrontale anlegt. Der obere Theil des äusseren Randes sieht frei nach hinten, der vordere frei nach vorn und innen und begrenzt das Loch, welches zwischen ihm, dem Maxillare und Palatinum offen bleibt.

Von der inneren, gegen die Schläfengrube sehenden Fläche geht ungefähr in der Mitte ein Fortsatz ab, welcher mit einem ähnlichen des Transversum verbunden, sich an den Stiel des Postfrontale legt.

Unterkiefer.

Die Paukenhöhle wird bei den Crocodilen vollständig von Knochen eingeschlossen; das Prooticum und das mit dem Occipitale laterale ver- wachsene Opisthoticum bilden ihre inneren, das Quadratum ihre äusseren Wandungen, das Squamosum und Postfrontale setzen ihr Dach, das Quadratum, das Sphenoideum basilare und Occipitale basilare ihren Boden zusammen.

Die beiden Paukenhöhlen stehen mit der Mundhöhle durch drei Canäle in Verbindung; einen grossen in der Mittellinie mündenden und zwei kleinere an den Seiten, die am Schädelgrund hinter den inneren Nasenöffnungen münden.

Der grosse Canal geht zwischen Sphenoideum basilare und Occipitale basilare aufwärts und theilt sich zwischen beiden Knochen in einen rechten und linken Canal. Jeder Seitenkanal theilt sich wieder in einen vorderen Ast, welcher das Sphenoideum basilare durchsetzt, und einen
hinteren, welcher in das Occipitale basilare aufsteigt und dann in den hinteren Theil des Bodens der Paukenhöhle mündet, während der vordere Ast in deren Vorderwand sich öffnet.

Die Paukenhöhlen der Crocodil-Embryonen communiciren mit dem Mund durch einfache, weite Öffnungen, und die eben beschriebene, complicate Anordnung der Canäle entsteht durch eine starke Abwärtsentwicklung des Sphenoidemum basilare und Occipitale basilare, wobei sie an der Innenseite in deren Öffnung eingreifen, während letztere durch das Quadratum von aussen her eingeengt werden.

Bei erwachsenen Crocodilen erstrecken sich Luftgänge von der einen Paukenhöhle zur anderen, durch die das Dach der hinteren Schädelregion bildenden Knochen hindurch. Andererseits höhlen sie das Quadratum aus, aus welchem die Luft durch eine häufige Röhre in das hohe Articulare des Unterkiefers übergeht (Huxley, Peters).

Wir müssen jetzt noch einmal auf die Frage zurückkommen, in wie weit das Quadratum dem Ambos, das Articulare des Unterkiefers dem Malleus der Säugethiere homolog ist.

Bei einem jüngeren Alligator, dessen Kopf eine Länge von 13 Centim. hatte, konnte er den in einer häufigen Scheide liegenden Knorpelfaden durch die Öffnung, welche sich auf dem hinteren, inneren Theil der oberen Fläche des Quadratum befindet, nicht allein bis zu dem hinteren Rande der Membrana tympani verfolgen, sondern auch sich überzeugen, dass er hier im Zusammenhang mit einer Knorpelplatte steht, welche mit ihrer schmalen Mitte nach innen gegen den Stapes gebogen ist, dessen äusseres Ende hier mit derselben in Gelenkverbindung steht. Der breitesten Theil dieser Knorpelplatte hat eine beilförmige Gestalt, ist senkrecht gegen das Trommelfell gerichtet und bildet an dem vorderen Ende seines convexen äusseren Randes eine kleine Platte, welche in der Mitte des Trommelfells liegt, dieses hier ein wenig hervorädrängt und einer von dem
hinteren Rande der Trommehöhle kommenden fadenförmigen Muskelsehne zum Ansatz dient.

Bei einem fast reifen Embryo von Crocodilus acutus fand Peters, dass der Hammer eine ganz ähnliche Gestalt hatte, nur ist er der frühen Lebensperiode entsprechend viel kleiner und an seinem äusseren Rande weniger convex und ausserdem ist ein kleiner, kurzer, cylindrischer Zwischenknorpel zu bemerken, welcher die Verbindung zwischen dem Stapes und dem Hammer bewirkt, den man nach Peters entweder mit dem Osciculum lenticulare oder dem Ambos der Säugethiere vergleichen könnte.

Aus den mitgetheilten Thatsachen schliesst Peters, dass die Ansicht, nach welcher das Gelenkstück (das Articulare) des Unterkiefers und das Quadratum der Amphibien dem Hammer und Ambos der Säugethiere homolog sein sollen, jede Basis verliert.

Nach dieser Mittheilung von Peters hat Huxley (76) die in Rede stehenden Verhältnisse einer genaueren Prüfung unterworfen. Aus seinen

Er sagt, dass seine Anschauung (dass der Stapes und seine Anhange Modificationen des Skelets des zweiten und nicht des ersten Visceralbogens seien) durch die Untersuchung jener merkwürdigen Eidechse Hattoria (Sphenodon) zur Gewissheit wird.

Nichts kann nach ihm instructiver sein, als die in Fig. 2 (Holzschnitt S. 602) dargestellten Verhältnisse. Hattoria hat kein äusserlich sichtbares Trommelfell; aber nach Entfernung der äusseren Hülle, welche über der Ohrgegend und dem vorderen Theil des Musculus digastricus liegt, sieht man die Fasern einer starken Aponeurose, welche die Stelle desselben einnimmt, von dem hinteren Rande des Quadratum und dem Winkel des
Unterkiefer an den vorderen Rand des vorderen Zungenbeinhornes gehen, dessen oberer Theil ganz knorpelig ist. Der Zungenbeinknorpel steigt hinter dem Quadratum in die Höhe, mit einer geringen Convexität nach hinten, bis er fast den Schädel erreicht hat, und scheint dann plötzlich in Form einer kleinen Rolle mit hinterer Concavität gebogen zu sein. Das obere Ende der Rolle verbindet sich mit dem Schädel; die Concavität wird von aponeurotischen Fasern ausgefüllt.

Die erwähnte Aponeurose bedeckt das äussere Ende des Cavum tympani; wenn es entfernt ist, sieht man das innere des Zungenbeinhornes sich verbreitern und sich in eine breite knorpelige Platte verwandeln, deren gebogener Rand die Entstehung der Rolle veranlasst. Nach innen setzt sich die Platte in den Stamm des Stapes fort und wird bald ossificirt (siehe Fig. 3, Holzschnitt). Es kann daher nach Huxley nicht zweifelhaft sein, dass sie dem äusseren Steigbügelknorpel des Crocodils entspricht.

Das, was dem beilförmigen, oberen Stapesknorpel des Crocodils entspricht, ist der obere Fortsatz des knorpeligen Theils des Stapes, welcher...
Reptilien.

jedoch nach aussen und oben in den äusseren Stapesknorpel übergeht, so dass das Foramen (Fig. 3, Holzschnitt a) umschlossen wird. An der linken Seite war der obere Stapesfortsatz an der Stelle b fibrös. Nach

Fig. 3.

Cavum tympani und umliegende Theile von hinten offen gelegt und die aponeurotische Ausbreitung entfernt von Hatteria (Sphenodon). 5 Mal vergr., nach Huxley (76).

Buchstaben wie in Fig. 2. ausgenommen: Pa Parietale. S St Suprastapedial cartilage. b Ursprung seines Knorpels vom Stapes. a Foramen eingeschlossen zwischen ihm und dem extrastapedialen Knorpel. Ahn, Atu Durchschnittener Rand der mucösen Membran. Tymp Recessus pharyngealis, der die Stelle des Cavum tympani einnimmt. An Quadratum.

oben geht der obere Stapesknorpel direct in das knorpelige Ende des Processus styloideus (Parotic process) des Schädels über, in welchem granulöse Knochenmasse abgelagert ist.

So zeigt es sich dann nach Huxley, dass der obere Stapesknorpel nichts anderes ist, als das innere Ende des Zungenbeinbogens, während der Stapes und seine Anhänge ausschliesslich zu diesem Bogen in Beziehung stehen und durchaus nichts mit dem Unterkieferbogen zu thun haben.

Peters (78) hat nachher die Verhältnisse bei Hatteria ebenfalls noch einmal genau untersucht und ist dabei zu folgendem Resultat gelangt.

Durch die nur dieser Sauviergattung eigenthümliche geringe Entwickelung und feste Verbindung des oberen Theils des Quadratum mit dem Squamosum (Mastoideum: Peters) ist dieses letztere so aus seiner gewöhnlichen Lage verrückt, dass die Stelle, von welcher der mit dem ersten
Knorpel durch einen an der inneren Seite des Quadratum herabsteigenden Faden zusammen.

Die Verbindung des Zungenbeinbogens mit dem Hammer ist daher nach Peters nicht eine primäre, sondern eine secundäre und damit fällt nach ihm auch die sich auf Hatteria gründende Stütze für die von Huxley aufgestellte Theorie, dass der Hammer in das Os quadratum verwandelt sei, zusammen.

Zur Vergleichung hat Peters (78) auch Uromastix (U. spinipes) untersucht, bei welchem nach ihm die Beziehungen des von ihm als Hammer bezeichneten Knorpels zu dem Unterkiefer oder dem Meckel'schen Knorpel fast ohne Präparation so klar liegen, dass Jeder an dieser sehr gemeinen Art sich leicht durch eigene Anschauung ein Urtheil über die in Rede stehende Frage wird bilden können. Hat man den Kopf abgelöst, dann sieht man nach ihm gleich den Stapes in ähnlicher Weise wie bei Sphenodon (Hatteria) neben dem Occipitale externum (Opisthoticum) bloss liegen. Er liegt aber bei Uromastix diesem Knochen nicht so nahe wie bei Sphenodon und entfernt sich namentlich mit seinem äusseren Ende mehr von denselben, um unter dem inneren Rande des Quadratum sich durch eine Gelenkgrube mit dem Gelenkkopf des knorpeligen Hammers zu verbinden. Der Körper des Hammers bildet einen cylindrischen Stiel (siehe Fig. 5, Holzchnitt), welcher sich nach dem Trommelfell hin fortsetzt und hier in eine schmale Platte ausgeht, deren längere Hälfte nach vorn gerichtet ist, während das kleinere, hintere Ende sich dem Rande des Squamosum (Mastoideum: Peters) nähert. An der Stelle aber, wo sich der Hammer mit dem Stapes verbindet, geht von ihm in einem rechten Winkel nach vorn und unten ein langer Fortsatz (Processus longus mallei) ab, welcher an der inneren Seite des Quadratum herabsteigt, um sich dann zwischen dem Quadratum und dem hintersten Ende des Pterygoideum hindurchdrängend selig geworden von dem inneren Rande der Gelenkgrube des Unterkiefers in diesen hinein zu senken.

Aus dem Mitgetheilten geht also hervor, dass die Vergleicheungen über diesen höchst merkwürdigen, aber jedenfalls auch äusserst schwierigen Punkt jedenfalls noch nicht zum Abschluss gelangt sind, sondern dringend zu neuen Untersuchungen auffordern.

Der Schädel von Ichthyosaurus ist nach Huxley bemerkenswerth wegen der grösseren Verlängerung und ausgezogenen Form der Schnauze, der ungemein grossen Augenöhlen und oberen Schläfengruben, und der Ueberwölbung der unteren Schläfengruben durch Knochenplatten. Die Unterkieferfäste treten in einer Symphyse zusammen, welche durch ihre

Im Nasen- und Zwischenkieferabschnitt sind die Nasenbeine, in der Richtung der Stirnbeine fortlaufend, zu beträchtlicher Grösse entwickelt, aber die Zwischenkief er machen dennoch bei weitem den grössten Theil der Schnauze ans. Die Oberkiefer sind wie bei den Vögeln auf verhältnissmässig dünn und kleine Stäbe reducir, welche blass einen Theil des Rachens begrenzen. Die Ossa vomeris sind verlängert und liegen in der Mittellinie der Unterseite der Schnauze. Die Nasenlöcher sind kleine, den Augenhöhlen genäherte Öffnungen, durch die Ossa nasalia, lacrymalia und praemaxillaria begrenzt.

Schädels in Verbindung und bietet dem Gelenkstück des Unterkiefers eine Articulationsfläche dar.

Der Unterkiefer besteht aus zwei Aeosten, welche vorn in einer sehr langen Symphyse sich vereinigen. Jeder Ast besteht aus den normalen sechs Stücke, von denen das Spleniale von bemerkenswerther Länge ist und in ausgedehntem Grade in die Symphyse eingelehen.

Ueber den Bau des Zungenbeins dieser Reptilien haben wir bis jetzt keine klare und deutliche Vorstellung.

Der Schädel der Plesiosaurier ist bei einigen, wie Huxley angiebt, im Vergleich zum Körper sehr klein, indem er nicht mehr als $\frac{1}{15}$ oder $\frac{1}{13}$ von dessen Länge beträgt, in anderen Arten hingegen ist er erheblich grösser. Die Schnauze ist conisch und niedergerückt und die Nasenöffnungen liegen nicht etwa an deren Spitze, sondern gerade vor den Augenhöhlen, welche letztere gleich den Schlafengruben, weit geöffnet sind. Der Condylus occipitis ist fast ganz aus dem starken unteren Occipitale basilare entwickelt. Die Occipitalia lateralia geben-verlängerte parotische Fortsätze ab und das Sphenoidaleum basilare ist ein dicker Knochen, welcher vorn mit einem langen Kiele endigt.

Die Unterseite des Schädels ist in ihrem vorderen Theile selten gut zu sehen; in ihrer hinteren Abtheilung bietet sie eine lange und breite Fläche, die durch die in der Mittellinie zusammentretenden Pterygoidea gebildet wird, welche Fortsätze nach aussen und hinten zum Quadratum

Der Schädelbau der *Ornithoscelidae* scheint in vielen Beziehungen sich zwischen dem Crocodilier- und dem Lacertiliertypus gehalten zu haben. Bei *Iguanodon* und *Hypsilophodon* scheinen die Ränder des Praemaxillare zahnlos und schnabelförmig gewesen zu sein, und es ist hier die Unterkiefer symphyse der Anlage des Schnabels ganz ähnlich wie am Papagei-Unterkiefer ausgebildet.

Bei den *Pterosauriern* war die Hirnschale gerundeter und vogelähnlicher als in anderen Reptilien und der Schädel näher sich auch in anderen Beziehungen dem der Vögel. So liegt der Condylus occipitis am Grunde und nicht an der hinteren Seite des Schädels, es verschmelzen die Schädelknochen sehr früh, die Augenhöhlen sind sehr breit und die äusseren Nasenlöcher liegen nahe bei ihnen. Die Praemaxillaria sind sehr gross, die Oberkiefer dünn und die zahntragenden Stücke des Unterkiefers sind zu einer einzigen Knochenmasse vereinigt, ohne Spur einer Symphysennaht.

Zungenbein. (Hierzu Taf. LXXII.)

An dem Zungenbein der Saurier kann man den Zungenbeinkörper (Copula; Basi-hyal der englischen Autoren) und zwei Paar Hörner, die vorderen
(Cerato-hyal der englischen Autoren) und die hinteren (Cerato-branchial oder thyro-hyal) Hörner unterscheiden. Stannius (10) verdanken wir sehr gute Mitteilungen über die verschiedene Gestalt des Zungenbeins bei den Saufern.

Die vorderen Hörner umfassen die ventrale Hälfte des Schlundes, sind bis zur Schläfengegend des Schädels ausgedehnt oder reichen über dieselbe hinaus. Eine Verbindung ihrer Enden mit dem Schädel ist gewöhnlich nicht nachweisbar, da die oberen Enden der vorderen Hörner ihre knorpelige Textur oft verlieren und häufig werden. Bei einigen
kionokranen Sauriern findet aber sehr deutlich eine Verbindung ihrer knorpeligen Enden mit dem Schädel in der Gegend des Cavum tympani statt, so unter den Seincöiden, sehr deutlich bei Europes, ebenfalls bei Lacerta, Pseudopus und Anguis.

Jedes hintere Horn besteht aus einem einzigen und zwar anscheinend beständig ossifizierten, aber mit knorpeliger Endepiphysse versehenen Gliede, das in der Circumferenz der Speiseröhre bald bogenförmig aufwärts gestreckt, bald schräge hinterwärts bis zur Grenze des Thorax verlängert ist, wie bei den Varanida.

Bei Hatteria besteht das Zungenbein ebenfalls aus einem Horn und zwei Bogen. Ersterer ist nur wenig ossifiziert. Das vordere Horn besteht aus zwei Stücken, die beinahe vollständig knorpelig sind, das proximale Stück ist, wie schon früher angegeben, nach Günther mit dem Stapes verbunden. Das hintere Horn besteht aus einem langen gebogenen, vollständig knöchernen Stück, welchem ein kleines, knorpeliges Endstück angefügt ist.

Muskein.

Literatur.

Außer den schon erwähnten Schriften sind noch hervorzubeheben:

(81) G. Cuvier. Leçons d'anatomie comparée recueillies et publiées par M. Duméril. 2. Ed. 1853.

Die Formunterschiede zwischen den *Amphibiaenoiden*, den schlangenähnlichen Sauriern und den mit gut entwickelten Extremitäten ist aber so gross, der Verlauf der Muskeln bei den verschiedenen Saurierabtheilungen so sehr verschieden, dass nur durch eine genaue Prüfung der Innervation die Homologien aufgestellt werden können.

In dieser Richtung bleibt aber noch sehr viel zu thun übrig, ja man kann sagen, dass das Arbeitsfeld fast noch ganz offen vorliegt, denn eigentlich sind hier nur zwei Arbeiten zu erwähnen, nämlich die von Fürbringer (42) und von Gadow (95). Erstgenanntem verdanken wir eine höchst genaue, vergleichend anatomische Beschreibung der Schultermuskeln, letzterem eine sehr eingehende Untersuchung über die Bauchmuskeln der Crocodile, Eidechsen und Schildkröten.
Es schien mir nicht gut ausführbar — so lange die Homologien nicht aufgestellt sind — die Musculatur der verschiedenen Sauierabtheilungen gleichzeitig zu behandeln; allererst folgt also eine Beschreibung der Muskeln bei den kionokraren Sauiern, zweitens die der Chamaeleone, drittens die der Amphisbaenoiden und viertens endlich die der Crocodile; über die Musculatur der Amphisbaenoiden liegen aber nur sehr dürftige Angaben vor.

I. Kionokrane Sauier.

Augenmuskeln.

M. rectus externus (Taf. LXXII. Fig. 1. re).

M. rectus internus (Taf. LXXII. Fig. 1. ri).

2) Der Nervus trochlearis. 3) Der Nervus nasalis (Ramus II. nervi trigemini).

Er rotirt das Auge medianwärts.

M. rectus inferior (Taf. LXXII. Fig. 1. r. inf.).

M. rectus inferior: M. Weber.

M. rectus superior (Taf. LXXII. Fig. 1. r. s).

M. obliquus inferior (Taf. LXXII. Fig. 1. oï).
M. obliquus inferior: M. Weber.

M. obliquus inferior (Taf. LXXII. Fig. 1. os).
M. obliquus superior: M. Weber.

Dieser Muskel nimmt seinen ausgedehnten Ursprung von der Cartilago ethmoidalis, indem derselbe vorn an der Nasenwand der Augenhöhle über der Ursprungsstelle des M. obliquus inferior beginnt und sich fast bis zur Mitte der Cartilago ausdehnt. Die der Orbitalwand zunächst liegenden Fasern schlagen sich über die in gerader Linie zum Bulbus ziehenden unteren Fasern weg, um sich medianwärts von diesen letzteren am Auge anzuheften. Er bildet einen starken Auswärtsroller.

M. retractor oculi (Taf. LXXII. Fig. 1. m. r).
M. retractor oculi: M. Weber.

Musculi des Kopfes.

M. mylohyoideus.
Mylo-hyoïdien: (Cuvier) Duméry.
Zwischenkiefermuskel: Meckel.
Mylo-hyoïdeus: Stannius.
Hyomandibulare: Sanders (Platydactylyus).
Platysma myoides: Sanders (Lioplepis, Phrynosoma).
Mylo-hyoïdeus und Platysma myoides: Mivart.

Eine dünne Muskelschicht, welche von der unteren Fläche des mittleren und hinteren Theiles des Unterkiefers ihren Ursprung nimmt und

M. capiti-mandibularis s. Temporalis.
Temporal, Temporalis: Sanders, Mivart, Stannius, Cuvier (Duméril).

Aeusserere obere Heber- oder Schläfenmuskeln: Meckel.

Kräftiger dicker und breiter Muskel, der die Fossa temporalis füllt. Er entspringt nicht bei allen kionokranien Sauriern von denselben Schädelknochen, bei Phrynosoma vom Squamosum und Postfrontale, bei Platydaecylus hinten von der vorderen Fläche des Quadratum, oben vom Squamosum und Parietale, vorn vom Frontale; bei Liolepis hinten vom Quadratum, oben vom Postfrontale und Squamosum und ausserdem noch mit einzelnen Fasern vom Parietale und Occipitale laterale, bei Iguana vom Squamosum und Postfrontale. Seine Fasern inseriren sich an dem oberen, inneren und äusseren Rande des Unterkiefers, dort wo der in Rede stehende Knochen mit dem Quadratum articulirt.

M. pterygo-mandibularis s. Pterygoidens externus.
External Pterygoid: Mivart, Sanders (Platydaecylus).
Ektopterygoid: Sanders (Liolepis, Phrynosoma).
Pterygoidens externus: Stannius.
Aeusserere Flügelmskel: Meckel.
Pterygoidien externe: (Cuvier) Duméril.

M. Pterygoidens internus.
Internal Pterygoid: Mivart, Sanders (Platydaecylus).
Entopterygoid: Sanders (Liolepis, Phrynosoma).
Pterygoidens internus: Stannius.
Pterygoidien interne: (Cuvier) Duméril.

Innere Flügelmskel: Meckel.

M. parietali-mandibularis s. Digastricus.
Depressor mandibulae: Mivart.
Digastric: Sanders.
Digastrique: (Cuvier) Duméril.
Niederzieher des Unterkiefers: **Meckel**.
Senker des Unterkiefers: **Stannius**.

Entspringt vom hinteren Rande des Processus parietalis, dort wo Parietale, Squamosum und Quadratum an einander grenzen. Er inseriert sich am Articulare des Unterkiefers.

M. dorso-mandibularis.

Neuro-mandibularis: **Sanders**.

Entspringt breit von der Aponeurose des Kopfes und von dem äußeren Rande des M. occipito-cervicalis (complexus **Sanders**) und inseriert sich an dem hinteren Ende des Articulare des Unterkiefers. **Mivart** beschreibt diesen Muskel nicht.

Muskel des Halses.

M. cera-hyoideus.

Ceratoidien latéral externe: (Cuvier) **Duméril**.

Cerato-hyoide: **Sanders**.

Entspringt in der Nähe des distalen Endes des hinteren Zungenbeinhornes und inseriert sich am vorderen Zungenbeinhorn. Einige Fasern setzen sich weiter nach vorn fort und inserieren sich an der inneren Fläche des Unterkiefers (*Liolepis, Phrynosoma*).

M. cerato-mandibularis.

Mylo-hyoideus: **Sanders**.

Mylo-ceratoidien: (Cuvier) **Duméril**.

Seitwärtszieher des Zungenbeins: **Meckel**.

Entspringt von dem Körper und dem hinteren Horn des Zungenbeins und inseriert sich an dem unteren Rande des mittleren Theiles der inneren Fläche des Unterkiefers. i. e. an dem Os dentale.

M. episterno-hyoideus sublimis.

Sterno-hyoideus: **Mivart, Sanders, Stannius**.

Sterno-hyoidien: (Cuvier) **Duméril**.

Niederzieher des Zungenbeins oder Brustbeinzungenbeinmuskel: **Meckel**.

Episterno-cleido-hyoideus sublimis: **Fürbringer**.

M. episterno-hyoideus profundus.

Sterno-ceratoidien: (Cuvier) **Duméril**.

Sterno-hyoidens profundus: **Sanders (Liolepis)**.

Episterno-hyoideus profundus: **Fürbringer**.

M. omo-hyoides.
Omo-hyoidien: (Cuvier) Duméril.
Episterno-cleido-hoideus sublimis z. Th. Fürbringer.
Omo-hyoid: Mivart, Sanders.
Omo-hyoides: Stannius.
Rückwärtszieher des Zungenbeins oder Schulterblattzunguen- beimuskul: Meckel.

Rumpf- und Nackenmuskeln.
M. dorso-humeralis (Latissimus dorsi).
Breiter Rückenmuskul: Meckel.
Latissimus dorsi: Stannius, Mivart, Sanders, Rüdinger.
Dorso-humeralis s. Latissimus dorsi: Fürbringer.
Breiter und anschmährlicher Muskel an der Seitenfläche des Thorax, dessen vorderer Theil in der Regel von dem hinteren Abschnitt des M. cucullaris bedeckt ist. Er entspringt in verschiedener Ausdehnung aponeurotisch von den Dornfortsätzen der letzten Hals- und meisten Rücken- wurbel, so wie mitunter von einzelnen Rippen (Uromastix, Varanus) und geht mit stark convergirenden Fasern in eine kräftige Sehne über, die sich am proximalen Theile der Streckseite des Humerus zwischen Processus lateralis und medialis, letzterem näher inserirt.
M. longissimus dorsi.
Longissimus dorsi: Mivart, Sanders, Stannius, Meckel.
Long dorsal: (Cuvier) Duméril.
M. sacro-lumbalis s. ileo-costalis.
Sacro-lumbaire: (Cuvier) Duméril.
Ileo-costalis: Fürbringer.
Sacro-lumbalis: Meckel, Stannius, Mivart, Sanders.
Reptilien.

M. capiti-cervicalis.
Complexus major: Mivart.
Complexus: Cuvier, Sanders.
Seitwärtszicher des Halses, Halsbauchmuskul: Meckel.

Entspringt zum Theil von den Processus transversi der unteren, zum Theil von den Processus spinosi der oberen Halswirbel und inserirt sich am Occipitale superius und Processus parietalis. Nach Sanders theilt sich der M. longissimus dorsi am Nacken in drei Muskeln, und einer derselben bildet nach ihm den in Rede stehenden Muskel, der sich hier ausserdem auch noch an dem ersten Halswirbel inserirt.

M. occipito-cervicalis medialis.
Complexus minor: Mivart.
Transversalis colli: Sanders (Liolepis).
Splenius de la tête: (Cuvier) Duméril.
Muskeln, der wahrscheinlich dem Complexus und Splenius capitis entspricht: Meckel.

M. cervicalis adscendens.
Aufsteigender Nackenmuskel: Meckel.
Cervicalis adscendens: Mivart, Stannius.

M. spinalis colli.
Trachelo-mastoidien: (Cuvier) Duméril.
Zweibäuchiger Nackenmuskel oder zweibäuchiger Strecker und Nackenwarzenmuskel: Meckel.
Spinalis colli: Mivart.
Trachelo-mastoid: Sanders.

Derselben bildet eine Fortsetzung der tieferen Theile des M. longissimus dorsi und inserirt sich an dem Occipitale laterale, zuweilen auch noch am Occipitale superius.

M. occipito-cervicalis lateralis s. rectus capitis posticus major.
Long droit postérieur de la tête: (Cuvier) Duméril.
Rectus capitis posticus major: Mivart.
Langer und kurzer gerader hinterer Kopfmuskel oder Strecker: Meckel.
Rectus posticus major: Sanders (Liolepis).
Rectus posticus: Sanders (Platydactylus).

Entspringt von den Neuralbogen und den Processus spinosi der zwei obersten, zuweilen der drei bis vier obersten Halswirbel und inserirt sich an dem Occipitale laterale.

M. spinalis dorsi.
Sphincter dorsi: Sanders (Liolepis, Platydactylus).

Dieser Muskel bildet nach Sanders eine Fortsetzung des centralen Theiles der dorsalen Hälfte der Schwanzmuskelmasse, die am mittleren oder vorderen Schwanzwirbel sich von dieser zu trennen anfängen und den Raum zwischen den Processus spinosi s. spinae neurales und den Gelenkfortsätzen einnimmt. Bei Liolepis inserirt er sich an den Processus spinosi der Rückenwirbel und verteilte sich an dem dritten Halswirbel in einen oberflächlichen und tiefere Theil. Der erstgenannte inserirt sich am Parietale und Occipitale superius. Die tiefe Portion theilt sich wieder in drei Partien, von welchen die obere an der Spina neuralis atlantis, die mittlere an der dorsalen Fläche des Processus articularis atlantis, die untere an der ventralen Fläche desselben Fortsatzes sich inserirt. Bei Platydactylus inserirt der in Rede stehende Muskel sich an den Spinac neurales aller Brustwirbel und der hinteren Halswirbel. Am vierten Halswirbel entspringt ein kleines Verstärkungsbündel, welches sich an den Neuralbogen der drei vorderen Halswirbel inserirt.

M. longus colli.
Longus colli: Mivart.

Ein Muskel, der bei Iguana von der ventralen Fläche des Körpers des Atlas und der zwei folgenden Halswirbel seinen Ursprung nimmt und an denselben Stellen der vier folgenden Halswirbel und deren drei letzten Halsrippen sich inserirt.

M. basioccipito-cervicalis.
Grand droit anterieur: (Cuvier) Dumériel.
Rectus capitis anticus major: Mivart.
Rectus anticus major: Sanders.

M. costo-cervicalis.
Seitwärtszieher des Halses (Scalenus): Meckel.
Scalenus: Mivart, Sanders.

Entspringt von den Querfortsätzen und Wirbelkörpern der oberen Halswirbel und inserirt sich an den Halsrippen. (Die Zahl derselben ist bei den verschiedenen Sauriern sehr verschieden.)

Mm. retrahentes costarum (vergl. Taf. LXXIII. Fig. 2. 3. 6).
Retrahentes costarum: Mivart, Sanders, Gadow, Stannius.

Transversus dorsalis: Schneider.

Mm. intercostales (vergl. Taf. LXXIII. Fig. 1. 2. 4. 5. 8).

Intercostaux: Cuvier.

Zwischenrippenmuskeln: Meckel.

Intercostales: Sanders, Stannius, Schneider, Gadow.

Internal Intercostals: Mivart.

External Intercostals: Mivart.

Lateralwärts, ungefähr mit der lateralen Grenze des M. sacro-lumbalis s. sacro-lumbalis zusammenfallend, tritt eine Sonderung in einen lateralen und einen dorsalen Abschnitt ein und zwar theilt sich der laterale in zwei Schichten, in eine innere und in eine äussere.

Die äussere (Intercostales externi, vergl. Taf. LXXIII. Fig. 1. 2. 4. 5. 8) nimmt ganz allmählich eine mehr und mehr dem Verlaufe des äusseren schiefen Bauchmuskels parallele Richtung an und erstreckt sich lateral nur bis zu der Stelle, wo die vertebralen und sternalen Stücke der Rippen an einander stossen. Die innere Schicht der lateralen Hälfte (Intercostales interni, vergl. Taf. LXXIII. Fig. 1. 4. 5) beginnt weniger allmählich die für sie charakteristische Faserrichtung anzunehmen. Die Fasern laufen vom Rücken und Schwanze nach dem Bauche und Kopfe zu, kreuzen sich also mit denen der Intercostales externi und erstrecken sich im Gegensatze zu letzteren bis an das disto-ventrale Ende der Vertebralstücke der Rippen, erreichen im Brustkorbe also die Mittellinie.

Caudalwärts in Uebereinstimmung mit dem Kürzerwerden und Aus- und einanderweichen der Ventralstücke der Rippen löst sich von der Stelle — wo die sternalen und vertebralen Rippenstücke an einander stossen — aus der Schicht der Intercostales interni je ein schmales Muskelbündel ab (vergl. Taf. LXXIII. Fig. 1. 3. 5. 6. 8), welches sehr dünn von den lateralen Ausläufern der Intercostales externi überdeckt, über mehrere der nächstvorderen Rippenenden hinaus, um auf der Innenfläche des Rectus sich festzukleben, wobei diese Bündel bisweilen in der Mittellinie zu einer dünnen Lage zusammenfließen können; sie sind wohl als abgetrennte,
mehr oder weniger selbständig gewordene laterale Bündel der Schicht der Intercostales interni zu betrachten und stehen vielleicht mit der Bildung des M. obliquus internus in gewissem Verhältniss. Darauf scheint hinzuweisen, dass bei einigen Sauriern, die keinen M. obliquus internus besitzen, zahlreiche solche Mn. scalares vorhanden sind, während sie im Gegenteil bei den einen deutlich ausgebildeten M. obliquus internus besitzenden Sauriern fehlen.

Muskeln der oberen Extremität.

Muskeln des Schultergürtels.

M. pectoralis (Taf. LXXIV. Fig. 1 u. 3 p).

Grosser Brustmuskel, Petoralis major: Meckel, Hensingcr, Pfeiffer, Stannius, Mivart, Rüdinger, Sanders.
Pectoral: (Duménil) Cuvier.

Costo-episterno-humeralis s. Pectoralis major: Fürbringer (88).
Pectorales: Fürbringer (93).

Zuweilen (Uromastix, Euprepes, Gongylus, Seps) wird der laterale Theil der Unterfläche des Pectoralis von einem kleinen flachen Muskel (M. suprapectoralis: Rüdinger, Fürbringer) bedeckt, der entweder von dem hinteren, lateralen Bereiche des Pectoralis selbst oder von dem M. obliquus abdominis externus sich ablöst und nach vorn gehend sich aponeurotisch in die Haut verliert.
M. Sternocosto-scapularis (Costo-coracoidens) (Taf. LXXIV. Fig. 1cc).

Sterno-scapularis: Stannius.

Costo-coracoid: Mivart.

Costo-sterno-scapularis: Fürbringer (88).

Sternocosto-scapularis (Costo-coracoidens): Fürbringer (93).

M. thoraci-scapularis superficialis (Serratus superficialis (Taf. LXXIV. Fig. 2 thessp)).

Hinterer Theil des inneren grösseren Rückwärtsziehers: Meckel.

Theil des Serratus anticus major: Pfeiffer.

Theil des Serratus: Stannius.

1 Portion of Serratus magnus and Levator anguli scapulae: Mivart.

Serratus anticus major: Rüdinger (Pseudopus, Anguis).

Pars posterior m. serrati antici majoris: Rüdinger.

Posterior section of Serratus, Serratus posterior: Sanders.

Sternocosto-scapularis: Fürbringer (88).

Serratus II: Humphry.

Thoraci-scapularis superficialis (Serratus superficialis: Fürbringer (93)).

M. collo-thoraci-scapularis profundus (Levator seapulae et Serratus profundus (Taf. LXXIV. Fig. 4 ethsp).

Vorderer Theil des inneren grösseren Rückwärtsziehers und Rautenmuskel: Meckel.

Theile des Serratus anticus major und Serratus anticus minor: Pfeiffer.

Theil des Serratus: Stannius.
2—4 Portion of Serratus magnus und Levator anguli scapulae: Mivart.

Pars anterior m. serrati antici majoris: Rüdinger.

Anterior Section of Serratus: Sanders (Platydactylus).

Costo-scapularis s. Serratus anticus major: Fürbringer (88).

Serratus I: Humphry.

Serratus anterior I und II: Sanders (Platydactylus, Phrynosoma).

Collo-thoraci-scapularis profundus (Levator scapulae et Serratus profundus): Fürbringer (93).

M. dorsalis scapulae (Deltoides scapularis s. superior (Taf. LXXIV. Fig. 1. 2 dsc).

Unterer Theil des äusseren Schulterblattmuskels: Meckel.

Infraspinatus: Pfeiffer, Stannius, Sanders.

Upper part of the Deltoid: Mivart.

Deltoides: Günther, Rolleston.

Dorsalis scapulae (Supraspinatus, Infraspinatus, Teres minor): Rüdinger (Saurier mit verkümmerten Extremitäten).

Dorsalis scapulae (Deltoides scapularis s. superior): Fürbringer (93).

M. eleido-humeralis (Deltoideus clavicularis s. inferior) (Taf. LXXIV. Fig. 1. 2. 3 dsl).
Theel des Hebers des Armes (Deltoideus): Meckel.
Erster rotirender Muskel des Oberarmes: Stannius.
Lower Portion of the Deltoïd: Mivart.
Deltoïdous, Deltoïd: Rüdinger, Rolleston, Sanders.
Claviculo-brachialis: Günther.
Claviculohumeralis: Fürbringer (88).
Claviculo-humeralis (Deltoideus clavicularis s. inferior): Fürbringer (93).

M. scapulo-humeralis profundus.
Obergrätenmuskel: Meckel.
Supraspinatus: Pfeiffer, Rüdinger.
Zweiter rotirender Muskel des Oberarmes: Stannius.
Infraspinatus: Mivart.
Suprascapularis: Rolleston.
Teres minor: Sanders.
Acromio-humeralis s. deltoideus: Fürbringer (88).
Scapulo-humeralis profundus: Fürbringer (93).

M. teres major (Taf. LXXIV. Fig. 2 tmaj).
Grosser runder Muskel oder kleiner Rückwärtszieher: Meckel.
Teres major: Stannius, Rüdinger, Rolleston, Fürbringer (88).
Anatomie.

Scapulo-humeralis posterior s. teres major: Fürbringer (93).

Entspringt entweder von dem hinteren Abschnitt der Aussenfläche des Suprascalapulare (Uromastix, Stellio, Trachysaurus) oder von dem hinteren Rande der Scapula und des Suprascalapulare (Euprepes) und inserirt sich am Humerus in der Nähe des Processus medialis, entweder für sich (Scincoiden) oder mit dem Latissimus dorsi (Uromastix).

Reptilien.

an dem Processus medialis humeri und mit einzelnen Fasern an der Schultergelenkkapsel.

Selten bildet der Muskel eine zusammenhängende Masse (Platydacty-lus); in der Regel, bei Entwicklung eines M. sternocosto-scapularis, ist er durch dessen Endsehne in zwei nur an der Insertion mit einander verwachsende Portionen getrennt, deren eine (Pars coracoidea) von dem Coracoideum und dem angrenzenden Saume der Scapula und deren andere (Pars scapularis) von der Scapula und dem Suprascapulare ihren Ursprung nimmt.

M. sterno-coracoideus internus superficialis und
M. sterno-coracoideus internus profundus (Naf. LXXIV.

Fig. 4 steip).

a) Sterno-coracoideus internus superficialis.
External sterno-coracoïd: Mivart.
Sterno-coracoïdalis externus: Sanders (Liolepis, Phrynosoma).
Sterno-coracoideus internus superficialis: Fürbringer (88).

b) Sterno-coracoideus internus profundus.
Pectoralis minor: Stannius.
Internal sterno-coracoïd: Mivart.
Sterno-coracoideus internus: Fürbringer (88).
Sterno-coracoideus: Humphry.
Sterno-coracoïdalis: Sanders.
Sterno-coracoideus internus profundus: Fürbringer (93).

Die Mm. sterno-coracoidei interni superficialis und profundus werden in der Regel durch zwei an der Innenfläche des Brustbeins und ventralen Brustgürtels gelegene Muskeln repräsentirt, die Sternum mit Coracoideum verbinden. Am einfachsten ist die Bildung bei Platydactylus.

Hier entspringt ein ansehnlicher Muskel von der Innenfläche und dem vorderen äusseren Rande des Sternum, sowie von den angrenzenden Enden der Sternocostalleisten und geht nach vorn zur Innenfläche des Coracoideum. Dieser M. sterno-coracoideus internus lässt an seinem insertiven Theile eine gewebliche Differenzirung erkennen, derart, dass die mediale Portion sehnh und weiter vorn sich inserirt als die laterale, welche fleischig sich an das Coracoideum ansetzt.

Der M. sterno-coracoideus internus superficialis entspringt von der Innenfläche der inneren Lippe der Coracoidfurche des Sternum und inserirt sich medial neben dem hinteren Theil des Ursprungs des sub-coracoideus.

Der M. sterno-coracoideus internus profundus entspringt von der Innenfläche des Sternum, namentlich im Bereiche des hinteren Abschnittes, sowie von den angrenzenden Enden der Sternocostalleisten. Er geht in

Bronn, Klassen des Thier-Reichs. VI. 3. 40
eine lange und ziemlich schmale Sehne über, welche sich an der Innenfläche des Coracoideum inserirt.

Bei den fusslosen Sauriern ist dieser Muskel in der Regel bis auf spärliche, seitlich gelegene Rudimente (Pygopus, Pseudopus, Lialis), die speziell dem M. sternoo-coracoideus internus superficialius zu entsprechen scheinen, verkümmert oder total reduziert (Ophiodes, Acontias).

M. capiti-dorso-clavicularis (Cucullaris) und M. capiti-cleido-episternalis (Episterno-cleido-mastoideus) (Taf. LXXIV. Fig. 2 u. 3 cu und celest).

a) M. cucullaris (Taf. LXXIV. Fig. 1. 3 cu).

Oberer Rückwärtszieher (Cucullaris) und Theil des oberen Vorwärtsziehers (Sterno-cleido-mastoideus): Meckel (typische Saurier).

Oberer Rückwärtszieher (Cucullaris) und obere Portion des oberen Vorwärtsziehers (Sterno-cleido-mastoideus?): Heusinger.

Cucullaris, Trapezius: Pfeiffer, Stannius, Mivart, Rüdinger (typische Saurier), Sanders.

Cucullaris und Theil des Cleidomastoideus: Rüdinger (fusslose Saurier).

Dorso-clavicularis (Cucullaris) und hintere Portion des Sterno-cleido-mastoideus: Fürbringer (88).

Latissimus dorsi und Trapezius: Humphry.

Cucullaris: Fürbringer (93).

b) Episterno-cleido-mastoideus (Taf. LXXIV. Fig. 1. 3 celest).

Sterno-occipitalis: Lehmann.

Theil des oberen Vorwärtsziehers (Kappenmuskel, Rautenmuskel und Halshautmuskel): Meckel (Anguis).

Theil des oberen Vorwärtsziehers (Kopfnickers): Meckel (typische Saurier).

Untere Portion des oberen Vorwärtsziehers (Sterno-cleido-mastoideus?): Heusinger.

Cleido-mastoideus: Dumeril (Cuvier).

Cleido-mastoideus: Stannius, Rüdinger.

Sterno-cleido-mastoideus: Mivart, Rüdinger, Sanders, Humphry.

Sterno-mastoideus: Sanders.

Episterno-cleido-mastoideus: Fürbringer (93).

Der M. capiti-dorso-clavicularis (Cucullaris) und der M. capiti-cleido-episternalis (Episterno-cleido-mastoideus) werden bei den kionokranen
Sauriern durch eine bei den Einzelnen sehr verschieden ausgebildete flache Muskelausbreitung am Halse und am Anfangstheile des Rückens vertreten, die in ihrem vorderen Abschnitte von den Mm. sphincter colli und depressor mandibulae (digastricus) bedeckt ist, während sie in ihrem hinteren frei unter der Haut und über dem vorderen Theile des M. latissimus dorsi liegt.

Bei Ameiva und Salvator, mitunter auch bei Lacerta bildet die beschriebene Muskelausbreitung eine einzige continuirliche Schicht, die höchstens eine ganz leise Auffassung einer Trennung in ihrem vorderen Theile zeigt, während bei den übrigen untersuchten Sauriern eine deutlich ausgebildete Scheidung vorhanden ist. Diese Scheidung wird auf zweierlei Art vermittelt, entweder durch einen Spalt im hinteren Theile des Muskels, der eine von Kopf und Hals entspringende und eine vom Rücken kommende Partie trenn, oder durch einen mehr oder weniger entwickelten langen Spalt in der vom Kopf entspringenden Portion, welcher den Muskel in einen langen und verhältnissmässig schmalen unteren und vorderen und einen breiten oberen und hinteren Abschnitt trennt: ersterer repräsen-
tirt den M. capiti-pleido-episternalis (episterno-pleido-mastoideus), letzterer den M. capiti-dorso-claviculairis (cucullaris).

Die Ausbildung der Muskeln geht einer Anzahl von kionokranien Sauriern ab. Bei ihnen (den meisten Scincoiden, namentlich den mit verkürmerten Extremitäten, sowie Pseudopus) zeigt sich namentlich im Be-

| 40* |

M. collo-scapularis superficialis (Levator scapulae superficialis) (Taf. LXXIV. Fig. 2 csp).
Levator scapulae: Heusinger, Pfeiffer, Rüdinger (fusslose Saurier), Sanders.
Levator: Stannius.
Levator clavienae: Mivart.
Levator anguli scapulae: Rüdinger.
Collo-scapularis s. Levator scapulae: Fürbringer (88).
Collo-scapularis superficialis (Levator scapulae superficialis): Fürbringer (93).

M. coraco-brachialis brevis und coraco-brachialis longus (Taf. LXXIV. Fig. 1. 3 cbl, cbb).
Coraco-brachialis brevis.
Theil des grossen Brustmuskels oder Hakenarmmuskeln: Meckel (Nr. 7).
Coraco brachialis anterior: Pfeiffer.
Anterior Portion of Coraco-brachialis: Günther (Hatteria).
Shorter Portion of Coraco-brachialis: Mivart.
Coraco-brachialis brevis: Sanders.
Theil des Coraco-brachialis proprius posterior s. longus: Rüdinger.
Upper Portion of Coraco-brachialis, Middle Portion of Coraco-brachialis: Rolleston.
Coraco-humeralis III: Fürbringer (88).
Coraco-brachialis brevis: Fürbringer (93).
Reptilien

Coraco-brachialis longus.
Hakenarmmuskel: Meckel.
Coraco-brachialis posterior: Pfeiffer.
Coraco-brachialis: Stannius.
Longer Portion of Coraco-brachialis: Mivart.
Coraco-brachialis longus: Rolleston, Sanders.
Inferior Portion of Coraco-brachialis: Günther (Hatteria).
Theil des Coraco-brachialis proprius posterior s. longus: Rüdinger.
Coraco-humeralis internus: Fürbringer (88).
Coraco-brachialis longus: Fürbringer (93).

Der M. coraco-brachialis brevis bildet einen kurzen, aber breiten Muskel, welcher von der äusseren Fläche des hinteren Theiles des Coracoideum in verschiedener Weise entspringt und an den Humerus, an dessen Beugefläche in verschiedener Ausdehnung im Bereiche der proximalen zwei Dritteln sich anheftet.

Der M. coraco-brachialis longus ist ein langer und schlanker Muskel, der in der Regel von der Aussenfläche des hinteren Winkels des Coracoideum entspringt und neben dem vorigen entweder mit ihm Anfangs vereinigt oder ihm nur anliegend zum Humerus geht, an dessen Medialseite im Bereiche des distalen Drittels und meist an dessen Epicondylus ulnaris er sich inserirt.

M. coraco-antibrachialis (Biceps brachii) (Taf. LXXIV. Fig. 2 b).
Langer Kopf des langen Beugers: Meckel.
Langer Kopf des Biceps: Pfeiffer.
Biceps: Dumeril (Cuvier).
Biceps brachii: Mivart, Sanders, Günther.
Coraco-radialis: Stannius.
Biceps brachii s. coraco-radialis: Rüdinger.
Coraco-antibrachialis (Biceps brachii): Fürbringer (93).

Muskeln vertreten ist, von denen der eine sich lediglich am Radius, der andere allein an der Ulna inserirt.

M. humero-antebrachialis inferior (Taf. LXXIV. Fig. 2. 3 hai). Kurzer Kopf des langen Beugers: Meckel.
Kurzer Kopf des M. biceps brachii: Pfeiffer.
Vorderarmbeuger: Stannius.
Brachialis anticus: Mivart, Günther.
Brachialis internus: Sanders, Rüdinger.
Humero-antebrachialis inferior (Brachialis inferior): Fürbringer (93).

Kräftiger Muskel, der von der ganzen Beugefläche des Humerus unterhalb der Insertionen der Mm. supracoracoideus und pectoralis und oberhalb der Condylen entspringt und sich in der Ellenbeuge mit dem M. biceps zu einer gemeinsamen Endsehne vereinigt, die in zwei Zipfel gespalten sich an den proximalen Enden des Radius und der Ulna inserirt.
M. anconaeus (Taf. LXXIV. Fig. 2. 3).

a) Caput scapulare m. anconaci (Taf. LXXIV. Fig. 3 asl).
Erster langer Kopf des Vorderarmstreckers: Meckel.
Langer Kopf des M. triceps: Pfeiffer.
Erster Kopf des M. anconaeus longus: Stannius.
First part or external long head of the triceps: Mivart.
Theil der superficial portion of the triceps: Günther.
Grössere breitere Schulterportion des Caput longum tricipitis: Rüdinger.
Scapular section or long head of the triceps: Sanders (Platydactylus).
Middle or long head of the triceps: Sanders (Liolc/pis).
Long head of the triceps: Sanders (Phrynosoma).
Caput scapulare m. anconaei: Fürbringer (93).

b) Caput coracoideum m. anconaei (Taf. LXXIV. Fig. 5 ac).
Zweiter langer Kopf des Vorderarmstreckers: Meckel.
Zweiter Kopf des M. anconaeus longus: Stannius.
Second part or internal long head of the triceps: Mivart.
Theil der Superficial portion of the triceps: Günther.
Dünne sehnlige Portion des Caput longum tricipitis: Rüdinger.
Theil des Middle or long head of the triceps: Sanders (Liolc/pis).
Theil des Inner head of the Triceps: Sanders (Phrynosoma).
Caput coracoideum m. anconaei: Fürbringer (93).
c) Caput humerale laterale m. anconaei (Taf. LXXIV. Fig. 1. 2. 5 ahl). Aeusserer (kurzer) Kopf des Vorderarmstreckers: Meckel. Erster Kopf des Oberarmtheils des Vorderarmstreckers: Stan-nius.

Third part or external humeral head of the triceps: Mivart. Theil der Inner portion of the triceps: Günther.

Outer head of the Triceps: Sanders.

Caput humerale laterale m. anconaei: Fürbringer (93).

d) Caput humerale mediale m. anconaei (Taf. LXXIV. Fig. 5 ahm). (Innerer) kurzer Kopf des Vorderarmstreckers: Meckel. Zweiter Kopf des Oberarmtheils des Vorderarmstreckers: Stan-nius.

Last part or internal humeral head of the Triceps: Mivart. Theil der Inner portion of the Triceps: Günther.

Inner head of the Triceps: Sanders (Platydactylus, Liolepis). Theil des Inner head of the Triceps: Sanders (Phrynosoma).

Caput humerale mediale m. anconaei: Fürbringer (93).

Sehr kräftige Muskelmasse an der Streckseite des Oberarmes, die mit vier Köpfen entspringt, von denen zwei, Caput scapulare und Coracoideum, von dem Brustgürtel, und zwei, Caput humerale laterale und mediale, von dem Humerus ihren Ausgang nehmen.

c) Das Caput humerale laterale m. anconaei s. M. anconaeus humeralis lateralis entspringt von dem lateralen Theil der Streckfläche des Humerus mit Ausnahme des proximalen und distalen Endes. In der Mitte des Oberarmes oder vorher verbindet er sich mit dem Caput humerale mediale.

d) Das Caput humerale mediale m. anconaei s. M. anconaeus humeralis medialis endlich entspringt von dem medialen Abschnitt der Streckfläche des Humerus distal vom Processus medialis bis nahezu herab zum Condylus ulnaris. Am Ende der proximalen Hälfte des Oberarmes verbindet er sich mit dem Caput humerale laterale.

Nach ihrer Vereinigung, die meist in der Mitte des Oberarmes erfolgt ist, bilden alle vier Köpfe einen sehr kräftigen Muskelbauch, der sich mit einzelnen spärlichen tiefen Fasern an der Kapsel des Ellenbogengelenkes inserirt (M. subanconaeus), mit der Hauptmasse aber in eine starke Sehne übergeht, welche ein Sesambein (Patella ulnaris) einschliesst und am proximalen Ende der Ulna (Olecranon) endet.

Muskeln des Vorderarmes.

M. humero-radialis s. Supinator.
Epicondylo-radialis s. Supinator: Fürbringer.
Lange und kurze Rückwärtswender: Meckel.
Supinator longus: Mivart.
Supinator accessorius: Mivart.
Supinator longus und brevis: Stannius, Sanders (Platydactylus).
Supinatoreur: (Cuvier) Duméril.
Supinator longus: Sanders (Liolepis, Phrynosoma).
Radial and deeper Part of the Extensor digitorum longus: Sanders (Liolepis).
Supinator longus und brevis: Rüdinger.
Supinator longus: Günther (Hatteria).

Kräftiger Muskel, der mittelst einer starken Sehne am unteren Theil des Humerus entspringt und mit stark divergirenden Fasern an die ganze Länge des Radius geht.

M. humero-carpalis s. Extensor carpi radialis.
Epicondylo-carpalis radialis s. Extensor carpi radialis: Fürbringer.
Radial externe: Duméril (Cuvier).
Abductor pollicis longus und Extensor carpi radialis: Rüdinger.
Extensor carpi radialis: Stannius, Sanders (Platydactylus japonicus).
Theil des äusseren Speichenmuskels oder Speichenstrecker:
Meckel.
Extensor carpi radialis longus und brevis: Günther (Hatteria).
M. humero-metacarpalis medialis s. Extensor digitorum longus:
Aeusserer Speichenmuskel oder Speichenstrecker der Hand:
Meckel.

Extensor commun s. Epicondylo-susphalangethien commun:
(Cuvier) Duméril.
Extensor carpi radialis: Mivart.
Extensor communis digitorum: Stannius, Rüdinger.
Epicondylo-metacarpalis medians s. Extensor digitorum communis longus: Fürbringer.
Extensor longus digitorum: Sanders.
Extensor longus communis: Günther.

Kräftig entwickelter Muskel auf der Streckseite des Vorderarmes, der entweder allein vom Epicondylyus lateralis s. Condylus externus (Iguana, Goniocephalus), oder ausserdem auch noch von der ganzen Länge der Ulna (Platydactylus), oder vom Condylus externus und von der oberen Hälfte von Radius und Ulna (Liolepis) ihren Ursprung nimmt. Am distalen Theil des Unterarmes geht er in eine Sehne über, die sich in zwei Zipfel theilt, die sich am proximalen Theil der dorsalen Fläche des Metatarsale II, III und IV inseriren. Bei Liolepis theilt sich der in Rede stehende Muskel in zwei Schichten, die tiefe inserirt sich an der ganzen Länge des Radius, während die oberflächliche die oben angegebenen Verhältnisse zeigt. Nach Fürbringer ist er bei den Sauriern mit verkümmerten Extremitäten ein schwacher, unbedeutender Muskel.

M. carpo-digitalis dorsalis communis s. Extensor digitorum brevis.
Gemeinschaftlicher Strecker: Meckel.
Extensor digitorum communis brevis: Sanders (Platydactylus), Rüdinger.
Extensor communis digitorum: Mivart.
Carpo-digitalis dorsalis communis s. Extensor digitorum brevis:
Fürbringer.

Bei den Sauriern mit rudimentären Extremitäten wird er nur durch schnelle Zipfel repräsentirt, denen wenige Muskelfasern beigemischt sind.

- M. epicondylometacarpalis ulnaris s. Extensor carpi ulnaris.
- Ellenbogenstrecker: Meckel.
- Cubital externe (Cuvier) Duméril.
- Extensor carpi ulnaris: Stannius, Rüdinger, Mivart, Sanders.
- Epicondylometacarpalis ulnaris s. Extensor carpi ulnaris: Fürbringer.

Bei den Sauriern mit verkümmerten Extremitäten, ist er ebenfalls verkümmert, da der Insertionsknochen fehlt. Einige Fasern von ihm sind mit dem M. humero-metacarpalis medius s. Extensor digitorum longus verwachsen (Fürbringer).

- M. ulno-metacarpalis I.
 - Abductor pollicis longus: Stannius.
 - Extensor ossis metacarpi pollicis: Mivart, Sanders.
 - Extensor pollicis longus und brevis: Rüdinger.
 - Ulno-pollicialis dorsalis s. Abductor pollicis longus: Fürbringer.

Ein dicker fleischiger Muskel, der von der dorsalen Fläche der beiden unteren Drittel der Ulna entspringt und sich am Metacarpus pollicis inserirt. Sehr schwach entwickelt bei Sauriern mit rudimentären Extremitäten.

- M. humero-radialis carpalis.
- Innerer Ellenbogenmuskul: Meckel.
- Radial interne: (Cuvier) Duméril.
Flexor carpi radialis: Stannius, Mivart, Rüdinger, Sanders, Günther.

Epitrochleo-carpalis radialis s. flexor carpi radialis: Fürbringer.

M. epitrochleo-radialis s. Pronator teres.
Rond Pronateur s. epitrochlo-radien: (Cuvier) Duméiril.
Langer Vorwärtswender: Meckel.

Pronator teres: Stannius, Rüdinger, Mivart, Günther.
Pronator radii longus: Sanders (Phrynosoma).
Pronator radii teres: Sanders (Liolepis).

Epitrochleo-radialis s. Pronator teres: Fürbringer.

M. ulno-carpalis.
Pronator quadratus proprius: Rüdinger.
Pronator accessorius: Mivart.
Pronator radii brevis: Sanders (Phrynosoma).

Ulno-navicularis: Fürbringer.

M. ulno-radialis s. Pronator quadratus.
Kurzer Vorwärtswender: Meckel.
Carré pronateur s. Cubito-radien: (Cuvier) Duméiril.
Pronator quadratus: Rüdinger, Stannius, Mivart, Sanders.

Ulno-radialis s. Pronator quadratus: Fürbringer.
Entspringt von der Flexoren-Fläche der distalen Hälfte der Ulna und von deren ganzen radialen Fläche und inseriert sich an der Beugefläche des Radius. Er ist an seinem oberen Ende sehr schmal, und unten an seiner Insertion sehr breit. Beim Sauriern mit verkümmerten Extremitäten ist er nur schwach ausgebildet.

M. humero-ulno-carpatlis.

Cubital interne: (Cuvier) Duméril.

Flexor carpi unlaris: Mivart, Sanders, Stannius, Rüdinger, Günther.

Epitrochleo-carpali-ulnaris s. Flexor carpi unlaris: Fürbringer.

Kräftiger Muskel, der mit zwei Köpfen entspringt; der eine Kopf kommt von dem Condylus internus und von der hinteren Fläche des Humerus, der zweite Kopf entspringt vom Olecranon und von dem proximalen Theil der Ulna. Beide Köpfe vereinigen sich mit einander und inseriren sich am Os carpi unlarae und an der Basis des Os metatarsale V. Beim Sauriern mit rudimentären Extremitäten ist er bis auf wenige Fasern verkümmert.

M. carpo-digitalis ventralis brevis.

Oberflächlicher gemeinschaftlicher Fingerbeuger: Meckel.

Fléchisseur profond: (Cuvier) Duméril.

Flexor communis sublimis s. flexor perforatus: Stannius.

Flexor digitorum communis sublimis: Rüdinger, Mivart, Sanders (Platyacuylus).

Flexor digitorum sublimis: Günther.

Flexor perforatus digitorum: Sanders (Liolepis, Phrynosoma).

Carpo-digitalis ventralis communis s. Flexor digitorum communis brevis: Fürbringer.

M. humero-ulno-digitalis ventralis.

Tiefer gemeinschaftlicher Fingerbeuger: Meckel.

Fléchisseur profond: (Cuvier) Duméril.

Flexor digitorum communis s. perforans: Stannius.

Flexor perforans digitorum: Sanders (Liolepis, Phrynosoma).

Flexor profundus digitorum: Mivart, Rüdinger, Sanders (Platyacuylus), Günther.
Reptilien.

Epitrochleo-ulno-digitalis s. Flexor digitorum communis longus: Fürbringer.
Radio-digitalis s. Flexor profundus digitorum: Fürbringer.
Flexor profundus: Stannius.

M. carpo-metacarpalis V.
Abductor quinti digitii: Sanders (Liolepis, Platydactylus).
Abductor digiti minimi: Rüdinger.
Abducteur du petit doigt: (Cuvier) Duménil.
Carpo-digitalis ulnaris: Fürbringer.

Entspringt von dem Carpalknochen der zweiten Reihe und vom Pisiforme und inserirt sich am Metacarpale V.

M. ulno-metacarpalis I.
Extensor ossis metacarpi pollicis: Sanders (Liolepis).

Ursprung: an der unteren Hälfte der Ulna. Insertion: durch eine schmale Sehne am Metacarpus I.

Mm. lumbricales.
Lumbricales: alle Autoren.

Mivart unterscheidet bei Iguana 5 Mm. lumbricales, der erste entspringt an der Ulnarseite der Sehne für den zweiten Finger und inserirt sich an der Ulnarseite des zweiten Fingers; der zweite und dritte entspringen jederseits von der Sehne für den dritten Finger und inseriren sich jederseits am dritten Finger; der vierte und fünfte entspringen jederseits von der Sehne des vierten Fingers und inseriren sich jederseits am vierten Finger; der sechste endlich entspringt von der radialen Seite der Sehne für den fünften Finger und inserirt sich an der Radialseite desselben Fingers. Sanders unterscheidet bei Platydactylus fünf Lumbricales, jederseits einen für den vierten und dritten Finger und einen für die Ulnarseite des zweiten Fingers.
Anatomie.

Mm. interossei.

Interossei dorsales: alle Autoren.

Mm. interossei volares.

Interossei volares: alle Autoren.

Die Mm. interossei volares s. palmares entspringen von den Handwurzelknochen und inseriren sich bei Iguana jederseits der proximalen Phalanx der drei mittleren Finger, an der radialen Seite des fünften Fingers und an der proximalen Phalanx des Dammens. Bei Liolépis inseriren sie sich an der Basis der ersten Fingerphalangen, bei Phrynosoma an den Capitula der Metacarpalia I—V.

Bauchmuskeln.

M. obliquus abdominis externus (Taf. LXXIII. Fig. 1. 6. 7. 8)

Grand oblique: (Cuvier) Duméril.

Aeusserer schiefer Bauchmuskel: Meckel.

Obliquus externus: Stannius.

Obliquus externus, internus und Serrati: Schneider.

Obliquus abdominis externus: Gorski.

External oblique: Mivart.

Obliquus abdominis externus: Gadow.

Der M. obliquus abdominis externus zeigt bei den einzelnen Gruppen der Saurier so mannigfache Ausbildung, dass er abtheilungsweise besprochen werden muss. Er besteht aus zwei Schichten.

Bei Cyclodus spitzt der Muskel von der Höhe des letzten Ursprungs an (23. Wirbel) sich zu und inserirt sich durch eine starke Sehne neben dem Rectus.

Bei Hydrosaurus, Monitor, Lacerta und Cnemidophorus entspringt dieser Muskel ganz ähnlich und zwar von sämtlichen das Sternum erreichenden,
Reptilien.

Bei *Platydactylus* bildet der ganze Muskel eine ziemlich dicke Schicht, und sendet keine Fasern zum Ilium. An der lateralen Grenze des M. rectus ventralis hört er auf fleischig zu sein.

II. Schicht (Taf. LXXIII. Fig. 5. 6. 7) erreicht bei den Lacertinen ihre größte Ausdehnung. Dieselbe bildet wie die vorige einen mit gleichcr Faserrichtung und mit gleichem nur ein wenig mehr lateral gerücktem und schwächerem Ursprunge continuirlichen starken Muskelbanch, der sich an den Ausseuflichen der Sternaltheile der Brustrippen inserirt; weiter abwärts legt er sich an die laterale Grenze des M. rectus ventralis und inserirt sich caudalwärts am Processus lateralis pubis, und mit dem Rectus verwachsen, am Ligamentum pubo-ischiadicum. Bei *Lacerta* geht auch noch ein deutlicher Zug zum Vorderende des Ilium.

Bei den übrigen Sauriern ist nur die folgende Schicht und zwar auch nur in sehr verschiedener Ausbildung vorhanden. Unmittelbar von der Ausseuffläche der Rippen entspringen nämlich Muskelbänder, die mit ähnlichem Verlaufe wie die sie bedeckende erste, resp. auch zweite Schicht des M. obliquus externus sich disto-ventralwärts zu der nächsten Rippe begeben, auch wohl ein oder mehrere Rippen überspringen können.

Bei allen anderen Sauriern gehen diese Bänder in der Brustregion von Rippe zu Rippe, nach hinten entspringen sie schliesslich am Rande des M. quadratus lumborum und vereinigen sich zu einer gleichmässig zusammenhängenden Schicht, die sich am Ligamentum pubo-ischiadicum inserirt.

M. obliquus abdominis internus.

Petit oblique: (Cuvier) Duméril.

Obliquus internus: Stannius.

Subcostalis: Stannius.

Internal oblique: Mivart.

Obliquus abdominis internus: Gadow.

Dieser Muskel wird bei den Mm. intercostales abgehandelt werden.

M. transversus abdominis (Taf. LXXIII. Fig. 1. 2. 3. 4. 5. 6. 7).

Transverse: (Cuvier) Duméril.

Querer Bauchmuskel: Meckel.

Innerer Bauchmuskel: Meckel.

Transversus: Stannius.

Transversalis: Mivart.

Internal oblique and transversalis: Sanders.

Transversus abdominis: Gadow.
Dieser Muskel bildet neben der Schicht der Mm. retrahentes costarum mit Ausnahme der medioventralen Hälfte des Bauches, wo der Rectus internus dem Peritoneum anliegt, die innerste muskulöse Begrenzung der Leibeshöhle. Der Muskel hat einen ausgedehnten Ursprung, denn er kommt mit platten, aponeurotischen Zacken von sämtlichen Rippen. Er entspringt jedoch nur von einem kleinen Theile der inneren Rippenfläche, nämlich dort, wo sich die ebenfalls dünnen Zacken der Mm. retrahentes costarum inseriren. Dort, wo der M. quadratus lumborum sich deutlich abzutrennen beginnt, also in der vorderen Lumbalgegend, werden die Zacken des Transversus undeutlicher und zu einer Aponeurose, die von den Enden der kurzen Rippen und später den Querfortsätzen kommt, bis sie ihren letzten Ursprung von den ersten praesacralen Wirbeln nimmt.

Er inserirt sich im Bereiche der Brust, dünnt aponeurotisch in der Mittellinie, weiter caudalwärts innerlich vom Rectus ventralis mit dem der anderen Seite vereinigt.

M. rectus abdominis (Taf. LXXIII. Fig. 1. 2. 3. 4. 5. 6. 7).
Gerader Bauchmuskel: Meekel.
Gerader Bauchmuskel + pyramidenförmiger Muskel: Meekel.
Pyramidalis: Stannius.
Retrahens pelvim: Stannius.
Rectus abdominis: Schneider.
Rectus abdominis + Pyramidalis: Mivart, Gorski.
Rectus abdominis: Sanders, Gadow.

Der gerade Bauchmuskel besteht aus drei, bei den einzelnen Sauriergruppen jedoch nicht immer vorhandenen Theilen. Er zeigt bei den verschiedenen Sauriern so schwankende Verhältnisse, dass es nicht gut möglich ist ein allgemeines Schema des Ursprunges und der Insertion dieses Muskels anzugeben, so dass seine Verhältnisse bei den verschie denen Arten besonders besprochen werden müssen.

Bei Monitor hängt sein Ursprung mit der aponeurotischen Insertion des M. sterno-hyoides zusammen und nach unten ist er innig mit dem M. obliquus externus verwachsen. Anfangs schmal, wird er caudalwärts breiter und wird dann in zwei aufeinander liegende Theile geschieden: 1) in ein tieferes, nach dem Becken hin breiter werdendes, unmittelbar dem Peritoneum anliegendes ganz inscriptionsloses Band, welches sich sehns am Ligamentum pubo-ischiadicum inserirt (Rectus internus); 2) in einen oberflächlichen Haupttheil, der sich zweiköpfig inserirt, an der Spina anterior dorsalis ilei und zweitens am Processus lateralis pubis und dem Ligamentum pubo-ischiadicum (Rectus ventralis + Rectus lateralis).

Bei Cyclolodus sind die drei Portionen deutlicher unterscheidbar (Fig. 5. 6. 7). Die laterale beginnt mit sehr dünner Aponeurose, die aber nicht wie beim Monitor bis zum M. sterno-hyoides zu verfolgen ist. Er inserirt sich am Ligamentum pubo-ischiadicum. Eine mittlere echte ventrale Portion kommt fleischig von der letzten sich mit dem Sternum verbindenden Rippe und inserirt sich am Ligamentum pubo-ischiadicum. Eine
dritte Portion (Rectus internus) beginnt schmal und inserirt sich wie die vorigen Theile am Ligamentum pubo-ischiadicum. Sehr breit ist der laterale Theil bei Lacerta und Cnemidophorus. Bei den Monitoren und Lacertinen ist ferner der Rectus mit der Haut verwachsen, indem von ihm schnelle Fasern an die vorderen Grenzen der Schuppen treten.

Der laterale Theil fehlt bei Iguana, Ophryoessa, Polychrus, Phrynosoma, Ptyodactylus, der Rectus internus ist dadurch gewöhnlich stärker ausgebildet u. s. w. Aus dem mitgetheilten geht aber hervor, dass der Rectus abdominis sehr grosse Schwankungen in seinem Verlaufe zeigt (Gadow).

Schwanzmuskeln.

Die Muskelbündel haben die Gestalt von Kegeln, deren Basis nach hinten und deren Spitze nach vorn gerichtet ist. Innerlich sind die Kegel hohl und nehmen in ihrem Innern die Spitzen der nächstfolgenden Kegel auf. Die Spitze jedes kegelförmigen Bündels ist muskulös, die Basis aponeurotisch. Die dorsale Serie setzt sich nach vorn in den M. longissimus fort, die ventrale inserirt sich an der Tuberositas ischii, die beiden lateralen Serien heften sich an die Schwanzrippen.

Muskeln der unteren Extremität.

Muskeln des Beckengürtels.

M. ischio-pubio-femoralis.
Pubo-trochantericus externus: Fürbringer.
Pubo-trochantericus internus: Fürbringer.
Obturatorius internus: Stannius.
Sur-pubien interne: (Cuvier) Duméril.
Sur-pubien externe: (Cuvier) Duméril.
Iliacus internus: Gorsky.
Iliacus: Sanders (*Platydactylus, Phrynosoma, Liolopis*).

Iliacus externus: Sanders (*Liolopis, Phrynosoma*).

Psoas und iliacus: Mivart.

M. coccygeo-femoralis longus s. Pyriformis.

Pyriformis: Stannius, Sanders.

Theil des femoro-coceygens: Gorski.

Subcaudalis: Stannius.

Femoro-caudal: Mivart.

M. ileo-femoralis.

Erster Auswärtszieher: Meckel.

Petit fessier: (Cuvier) Duméril.

Glutaeus medius: Gorski, Mivart, Sanders.

Abductor femoralis: Stannius.

Ileo-femoralis s. Glutaeus medius: Förbringer.

M. coccygo-femoralis brevis.

Theil des Femoro-coceygens: Gorski.

Subcaudalis: Stannius.

Pyriformis: Mivart.

Cocceygens inferior: Sanders (*Liolopis*).

Coccygeo-femoralis brevis s. Subcaudalis: Förbringer.

Entspringt neben dem M. coccygo-femoralis longus von den Rippen, unteren Bogen und Dornfortsätzen der Schwanzwirbel und geht nach kurzem Verlaufe in eine Sehne über, die sich an der Aussenseite des

M. ileo-cocecygeus.
Dritter Zipfel des oberflächlichen unteren Schwanzmuskels: Meckel.

Ischio-cocecygien: (Cuvier) Duméril, z. Th.
Dritter äusserer Kopf des Ischio-cocecygeus: Gorski.
Ileo-cocecygens: Stannius, Fürbringer.
Coceygens: Sanders (Platydactylus).
Coceygens externus: Sanders (Phrynosoma).

Entspringt von den Rippen, den unteren Bogen und den unteren Dornfortsätzen der Schwanzrippen und inserirt sich am hinteren Rande des Os ilei, zuweilen auch noch zum Theil an dem Ligamentum ileo-ischiadicum.

M. ischio-cocecygeus.
Zweiter Zipfel des oberflächlichen unteren Schwanzmuskels: Meckel.
Erster innerster Kopf des Ischio-cocecygeus: Gorski.
Ischio-cocecygens: Stannius, Fürbringer.
Coceygens inferior: Sanders.

Entspringt gemeinschaftlich mit dem vorigen und inserirt sich am Ischium, Tuber ischiil und zuweilen auch noch an dem Ligamentum ileo-ischiadicum.

M. quadratus lumborum.
Carré des lombes: (Cuvier) Duméril.
Viereckiger Lendenmuskel: Meckel.
Quadratus lumborum: Stannius, Fürbringer, Mivart, Sanders, Gadow.

Entspringt mit einer starken platten Sehne am Vorderende des Ileum und erstreckt sich mit nach der Wirbelsäule und kopfwärts divergirenden immer fleischer werdenden Fasern auf die Ventralflächen der Processus transversi und kurzen Rippen der nächstvorderen Wirbel.

M. pubo-femoralis longus.
Pectinei: (Cuvier) Duméril.
Pectineus: Gorski, Mivart, Sanders.
Pubo-femoralis longus s. pectinei: Fürbringer.

Anatomie.

Ischiadicum und von dem angrenzenden Theil des Ischium. Er inserirt sich am mittleren Drittel des Femur.

M. ischio-femoralis.
Adductor ischiadicus: Stannius.
Adductor: Gorski.
Adductor magnus: Mivart, Sanders (Phrynosoma, Platydactylus).
Flexor profundus femoris und Flexor femoris: Sanders (Liolepis).

Ischio-femoralis s. Adductor: Fürbringer.

Kraftiger Muskel. Er entspringt von der Symphysis ossium ischii zum Theil auch noch von dem Ligamentum ileo- und pubo-ischiadicum und inserirt sich an der Innenseite der Mitte des Femur bis zum Condylus internus femoris, bei einigen (Phrynosoma, Platydactylus) am Condylus internus femoris selbst. Bei Platydactylus hat er nach Sanders drei Ursprungsköpfe: 1) vom Ischium, 2) vom Pubis, 3) von der Membran, welche das Foramen cordiforme schliesst.

M. ischio-trochantericus longus.
Obturator: Gorski.
Quadratus femoris: Stannius, Günther.
Obturator internus: Mivart.
Ischio-trochantericus longus: Fürbringer.

Ein schmaler, langer Muskel, der von dem Ischium in der Nähe der Symphysis ossium ischii entspringt und sich an oder in der Nähe des Trochanter major inserirt.

M. ischio-trochantericus brevis.
Obturator: Gorski.
Gemellus: Stannius.
Obturator internus: Mivart.
Ischio-trochantericus brevis: Fürbringer.

M. pubo-ischio-tibialis lateralis.
Tibial adductor: Mivart.
Pelvo-tibial: Sanders.

Entspringt entweder vom Pubis allein oder vom Pubis und Ischium und inserirt sich an der äusseren Fläche des oberen Endes der Tibia.

M. ileo-fibularis.
Glutaeus maximus: Gorski.
Adductor fibularis: Stannius.
Meeckel p. 261 Nr. 1 (nicht bezeichnet, wohl beschrieben).
Ileo-peroneal: Mivart.
Biceps femoris: Sanders.
Ein schmaler, aber langer Muskel, der am hinteren Rande und an der äusseren Fläche des Ileum entspringt und sich mit breiter Schne an das Capitulum fibulae inserirt.

M. ileo-ischiadico-tibialis proprius.
Biceps und Semimembranosus: Gorski.
Semitendinosus: Mivart.
Semimembranosus: Sanders.
Ileo-ischiadico-tibialis proprius: Fürbringer.
Meekel p. 264 Nr. 2 und 3 (wohl beschrieben, aber nicht bezeichnet).

Kräftig entwickelter Muskel, welcher mittelst einer starken Schne von dem Ligamentum ileo-ischiadicum entspringt und sich am Condylus externus tibiae (bei Liolépis und Platydactylus an dem inneren oberen Theil der Tibia) inserirt.

M. ischio-tibialis sublimis posterior.
Meekel p. 265 Nr. 5 (nicht bezeichnet, wohl beschrieben).
Semitendinosus: Gorski.
Demi-nerveux: (Cuvier) Duménil.
Oberflächlicher Adductor flexor tibialis s. Semimembranosus: Stannius.
Semimembranosus: Mivart.
Semitendinosus: Sanders.
Ischio-tibialis sublimis posterior: Fürbringer.

Entspringt am hinteren Rande des Ischium und von dem daran grenzenden Theil des Ligamentum ileo-ischiadicum. Seine Insertion findet entweder an dem Condylus externus tibiae oder an oberen äusseren Theil der Tibia statt.

M. pubo-ischio-tibialis s. gracilis.
Adductor tibialis s. gracilis: Stannius.
Vorderer Schenkel des Gracilis: Gorski.
Demi-tendineux: (Cuvier) Duménil.
Gracilis: Mivart, Sanders (Phrynosoma).
Gracilis: Günther.
Gracilis und Sartorius (?): Sanders (Liolépis, Platydactylus).
Pubo-ischio-tibialis s. gracilis: Fürbringer.

Sehr breiter Muskel, der mit breitem Ansatz von der Symphysis ischiadica, dem Ligamentum pubo-ischiadicum (bei einigen auch ausserdem noch von der Symphysis pubis) seinen Ursprung nimmt und sich an Condylus internus tibiae und dem oberen inneren Theil der Tibia inserirt. Er ist auch bei den Sauriern mit rudimentären Extremitäten ziemlich kräftig entwickelt.

M. pubo-ischio-tibialis profundus.
Vorderer Schenkel des zweiköpfigen Muskels unter dem Gracilis: Gorski.
Vorderer tiefer Flexor tibialis: Stannius.
Hinterer Schenkel des zweiköpfigen Muskels: Gorski.
Hinterer tiefer Flexor tibialis: Stannius.
Biceps: Mivart.
Pubo-tibialis profundus: Fürbringer.
Ischio-tibialis profundus: Fürbringer.

Entspringt von dem vorderen Rande des Pubis, vom vorderen und hinteren Rande des Schienbeins, so wie vom Ligamentum ilio-ischiadicum. Er inseriert sich am Condylus externus tibiae. Bei den Sauern mit rudimentären Extremitäten fehlt er entweder, oder ist er nur sehr schwach entwickelt.

M. pubo-ileo-bifemoro-tibialis s. Quadriceps femoris.
Quadriceps femoris: Stannius, Günther.
Meckel p. 266 Nr. 9. 10. 11 (wohl beschrieben, nicht bezeichnet).
Pubo-ileo-bifemoro-tibialis s. Quadriceps femoris: Fürbringer.

a) M. pubo-tibialis s. rectus femoris internus.
Le droit anterieur: (Cuvier) Duménil.
Theil des Rectus femoris: Gorski.
Abducirender Bauch des Quadriceps: Stannius.
Rectus femoris: Mivart, Sanders.
Pubo-tibialis s. rectus femoris internus: Fürbringer.

b) M. ileo-tibialis s. rectus femoris externus.
Conturier: (Cuvier) Duménil.
Tensor fasciae latae und Theil des Rectus femoris: Gorski.
Abducirender Bauch des Quadriceps: Stannius.
Glutaeus maximus: Mivart, Sanders.
Ileo-tibialis s. rectus femoris externus: Fürbringer.

c) M. femoro-tibialis externus s. vastus externus.
Vaste externe: (Cuvier) Duménil.
Vastus externus und Cruraeus: Mivart, Gorski, Sanders (Platydactylus).
Aenuserer Kopf des Quadriceps: Stannius.
Femoro-tibialis externus s. vastus externus: Fürbringer.

d) M. femoro-tibialis internus s. vastus internus.
Vastus internus: Gorski, Mivart, Sanders (Liolepis).
Innerer Kopf des Quadriceps: Stannius.
Femoro-tibialis internus s. Vastus internus: Fürbringer.

Ein ausserordentlich mächtiger Muskel, der vom Becken und dem oberen Theil des Oberschenkels mit vier oder fünf Köpfen entspringt. Alle diese Ursprungsköpfe gehen in eine gemeinschaftliche Sehne über, die sich an der Tuberositas tibiae inserirt, wobei sie die Patella einschliesst.

Der erste Kopf (M. pubo-tibialis s. Rectus femoris internus) entspringt vom Os pubis in der Umgebung des Acetabulum und von der Spina pubis (bei Platydactylus und Liolepis mit zwei Köpfen, der eine vom Pubis, der andere vom Ileum).
Der zweite Kopf (M. ileo-tibialis s. Rectus femoris externus) kommt vom vorderen Theil des Os ilei.

Der dritte Kopf (M. femoro-tibialis externus s. Vastus externus) entspringt von dem äusseren oberen Theil des Femur.

Der vierte Kopf (M. femoro-tibialis internus s. Vastus internus) beginnt an der inneren oberen Seite des Femur.

Muskeln des Unterschenkels.

M. fibulo-tibialis superior s. Popliteus.
Kniescheibenmuskeln: Meckel.
Untere rotirende Muskel: Stannius.
Popliteus: Mivart, Sanders.

Ein nicht sehr kräftig entwickelter Muskel, welcher vom Capitulum fibulae und dem oberen Theil der Fibula entspringt und mit absteigenden Fasern breit um die obere Hälfte der Tibia sich herumschlägt. Bei den Sauriern mit verkümmerten Extremitäten nicht erkennbar.

M. fibulo-tibialis inferior.
Unterer Vorwärtswender: Meckel.
Unterer rotirender Muskel: Stannius.
Peroneo-tibial: Mivart.
Fibulo-tibialis inferior: Fürbringer.

Entspringt von der unteren Hälfte der Fibula mit absteigenden Fasern und inserirt sich an das untere Drittel der Tibia. Bei den Sauriern mit rudimentären Extremitäten ebenfalls nicht erkennbar.

M. tibio-metatarsalis longus.
Innerer Fussheber oder vorderer Schienbeinmuskeln: Meckel.
Extensor longus digitorum: Stannius z. Th.
Tibialis anticus: Mivart, Sanders, Günther.
Tibio-metatarsalis longus: Fürbringer.

Ein langer und kräftig entwickelter Muskel. Er entspringt von der vorderen und hinteren Seite der Tibia und inserirt sich an der Rückenfläche des Os metatarsale primum.

M. epicondylo-metatarsalis dorsalis medius.
Außerner Fussheber oder Beuger: Meckel.
Extensor longus digitorum: Mivart, Günther, Sanders.
Epicondylo-metatarsalis dorsalis medius: Fürbringer.

Wohl entwickelter Muskel auf der Streckseite des Unterschenkels. Er entspringt von dem Condylus externus femoris und inserirt sich am Grunde der Rückenfläche des Metatarsale III und IV oder des Meta-
tarsale II und III (*Iguana, Platydactylus, Liölepis*). Bei den Sauriern mit rudimentären Extremitäten gewöhnlich auch gut entwickelt.

M. fibulo-metatarsalis dorsalis.
Langer Wadenbeinmuskel: *Meeckel*.
Peronens secundus: *Mivart*.
Peronens brevis: *Sanders*.
Fibulo-metatarsalis dorsalis: *Fürbringer*.

Ein auf der Fibularseite des Unterschenkels neben dem vorigen liegender Muskel. Er entspringt vom oberen Theil der Fibula und inserirt sich am Metatarsale V oder am Cuboidium.

M. femoro-metatarsalis dorsalis.
Peronens primus: *Mivart, Sanders*.

Entspringt vom Condylus externus femoris (bei *Platydactylus* von der Fibula) und inserirt sich am Metatarsale V oder am Cuboideum.

M. fibulo-tarsos-digitalis dorsalis.

Extensor brevis digitorum: *Mivart, Sanders, Stannius*.
Extensor brevis digitorum (Extensor quinti digitii): *Sanders (Liölepis)*.

Abduetor quarti digitii: *Sanders (Liölepis)*.
Fibulo-tarsos-digitalis dorsalis: *Fürbringer*.

M. femoro(tibio)-metatarsalis plantaris.

Epitrochleo-tibio-metatarsalis ventralis s. Gemellus internus: *Fürbringer*.
Epitrochleo-metatarsalis ventralis fibularis s. Gemellus externus: *Fürbringer*.

Gastrocnemius: *Mivart, Günther*.
Fussstrecker, dem Soleumuskel entsprechend: *Meeckel*.
Extensor tarsi: *Sanders (Platydactylus)*.
Soleus: *Sanders (Phrynosoma)*.
Gastrocnemius: *Sanders (Liölepis)*.

Reptilien.

M. tibio-metatarsalis ventralis.
Hinterer Schienbeinmuskel: Meckel.
Tibialis posticus: Mivart, Sanders, Günther.
Tibio-metatarsalis ventralis: Fürbringer.

M. flexor digitorum perforatus.
Epicondylometatarsalis digitalis ventralis sublimis s. Flexor perforatus: Fürbringer.
Plantaris: Mivart.
Flexor perforatus: Sanders (*Platydactylus*), Stannius.
Flexor perforatus digitorum: Sanders (*Phrynosoma*, *Liolepis*).
Durchbohrter Beuger: Meckel.

Grosser, kräftiger Muskel, der, wie es scheint, bei allen kionokranen Sauriern vom Condylus externus femoris entspringt und bei vielen aus einer oberflächlichen und tieferen Schicht besteht, die aber beide fest mit einander verwachsen sind. Die oberflächliche Schicht bildet in ihrem ganzen Verlaufe eine breite, aber dünne Muskellamelle, welche im Anfange mit Sehnenfasern vermischt ist; die tiefe besteht in der oberen Hälfte des Unterschenkels aus einer starken Sehne, die aber in der unteren Hälfte in ein kräftiges Muskellbündel sich verbreitert, das ohne weiteres in das oberflächliche übergeht. Der Muskel inserirt sich im unteren Drittel seines Verlaufes mit zwei Sehnen am ersten und fünften Metatarsale, die Hauptmasse geht an alle Glieder der fünf Zehen ausser der Endphalanaux.

M. flexor digitorum perforans.
Durchbohrender Muskel: Meckel.
Flexor perforans: Stannius.
Anatomie.

Flexor longus digitorum: Mivart, Günther.
Flexor accessorius: Mivart.
Flexor perforans digitorum: Sanders (Phrynosoma).
Flexor accessorius: Sanders (Phrynosoma).
Flexor longus digitorum: Sanders (Platydactylus).
Flexor accessorius digitorum: Sanders (Platydactylus).
Flexor digitorum perforans: Sanders (Liolepis).

Epicondylo-fibulo-tarso-digitalis ventralis profundus s. Flexor perforans: Fürbringer.

Der Ursprung dieses Muskels ist bei den verschiedenen kionokrannen Sauriern sehr verschieden. — Bei einigen entspringt er mit zwei Zipfeln vom Condylus externus femoris und von der oberen Hälfte der Tibia und Fibula (nicht von der Tibia bei Iguana, Platydactylus); bei anderen kommt er vom proximalen Ende der Fibula allein (Phrynosoma); bei wieder anderen mit zwei Köpfen, beide vom Femur (Liolepis). Er zieht sich längs der Beugeseite des Unterschenkels herunter und geht in eine breite Endsehne über, die sehr oft Verstärkungsbündel vom grossen Tarsusknochen aufnimmt und sich in fünf Zipfel spaltet, welche die Sehnen des M. flexor digitorum perforatus durchbohren und sich an den Endphalangen der fünf Zehen inseriren.

M. tarso-digitalis primus.
Abductor hallucis: Mivart.
Flexor brevis hallucis: Sanders (Liolepis).

Entspringt von dem grossen Tarsusknochen und proximalen Theil des Metatarsus I und inserirt sich an der proximalen Phalanx des Daumens.

M. tarso-digitalis quintus.
Flexor digiti minimi: Mivart.

Tarso-digitalis ventralis fibularis: Fürbringer.

Entspringt von dem grossen Tarsusknochen und vom proximalen Theil des Metatarsale V und inserirt sich an der Grundphalanx des fünften Fingers.

M. tarso-digitalis.

Adductores digitorum: Sanders (Platydactylus, Liolepis).

Entspringt von dem lateralwärts gelegenen grossen Tarsusknochen (Cuboideum der Autoren) der zweiten Reihe, theilt sich in drei oder vier Muskelbündel, welche sich an den Phalangen des ersten bis dritten (resp. vierten) Fingers inseriren.

Schliesslich lassen sich noch
Mm. interossei und
Mm. lumbricales
unterscheiden; die letzteren entspringen von der Endsehne des M. flexor perforatus digitorum und gehen an beide Seiten der Grundphalangen der mittleren Finger.
II. Chamaeleone.

Musken des Kopfes.

M. intermaxillaris.

Mylo-hyoides anterior: Mivart.

Eine dünne Muskelschicht, welche, wie bei den anderen Sauriern von der Innenfläche des Unterkiefers entspringt und in der Mittellinie des Halses der der anderen Seite begegnet und sich mit dieser verbindet.

M. mylo-hyoides posterior.

Mylo-hyoides posterior: Mivart.

Eine ansehnliche, aber dünne Muskelschicht, die von der inneren Fläche des Quadratum entspringt und sich in der Mittellinie des Halses mit der der anderen Seite verbindet. Oben ist dieselbe fest mit einer anderen, ebenfalls dünnen Muskelschicht verbunden, die von den dicken Fasern entspringt, welche die von der Crista occipitis ihren Ursprung nehmenden Muskeln einhüllt und sich an die Fascia inserieren, welche den M. collo-(capiti)scapularis superficialis (Levator scapulae superficialis) umzieht (Sphineter colli).

M. quadrato-mandibularis.

Superficial temporal: Mivart.

Ein zweiköpfiger Muskel. Der eine Kopf entspringt von dem vorderen Rande des Quadratum und geht in eine Sehne über, die das Ligamentum quadrato-jugale kreuzt. Der andere Kopf entspringt von dem oberen Rande des Unterkiefers, seine Fasern gehen in die obengenannte Sehne über.

M. temporomandibularis s. Temporalis.

Temporalis: Stannius, Mivart.

Temporal: (Cuvier) Duménil.

Acussere obere Heber oder Schlafenmuskel: Meckel.

Ein ausserordentlich stark entwickelter Muskel, welcher von der ganzen Fläche der Fossa temporalis und von der Crista occipitis entspringt. Er inseriert sich am oberen Rande des Unterkiefers zwischen dem Processus coronoides und der Gelenkfläche.

M. occipito-quadrato-mandibularis s. depressor mandibulae.

Depressor mandibulae: Mivart.

Digastrique: (Cuvier) Duménil.

Niederzieher des Unterkiefers: Meckel.

Senker des Unterkiefers: Stannius.

Entspringt von dem äusseren hinteren Rande der Crista occipitis, so wie von dem Os quadratum. Seine Insertion findet am hinteren Ende des Unterkiefers statt.

M. pterygo-maxillaris s. pterygoideus.

Acussere Flügelmuskeln: Meckel.

Innere Flügelmuskeln: Meckel.
Anatomie.

External Pterygoid: Mivart.
Internal Pterygoid: Mivart.
Pterygoïdien interne, Pterygoideus internus: Cuvier, Stannius.
Pterygoïdien externe, Pterygoideus externus: Cuvier, Stannius.

Muskeln des Zungenbeins.

M. genio-hyoides.
Genio-hyoid, Genio-hyoidien, Genio-hyoides: Mivart, Cuvier, Stannius.

Tiefe Vorwärtszieher des Zungenbeins oder Kinnzungenbeinmuskeln: Meckel.

M. genio-ceratoideus.
Cerato-menti: Mivart.
Mylo-ceratoideus: (Cuvier) Du méril.

Seitwärtszieher des Zungenbeins: Meckel.

Hyo-mandibularis: Stannius.

Entspringt gemeinschaftlich mit dem vorigen von der hinteren Fläche des Unterkiefers, dicht bei der Symphyse. Er inserirt sich an dem hinteren Horn des Zungenbeins.

M. cerato-hyoides.
Cerato-hyoides: Mivart.

Kleine, aber dicke Muskelmasse, die von dem unteren Ende des vorderen Zungenbeinhornes entspringt und sich an der äusseren Spitze des hinteren Hornes inserirt.

M. sterno-hyoides.
Sterno-hyoiden: (Cuvier) Du méril.
Sterno-hyoid: Mivart.

Niederzieher des Zungenbeins oder Brustbein-Zungenbeinmuskeln: Meckel.

Entspringt vom Brustbein, zwischen den sternalen Enden der zweiten und dritten Sternalrippe. Seine Insertion findet statt an der ventralen Fläche des Zungenbeinkörpers.
M. sterno-eratoides.
Sterno-eratoidien: (Cuvier) Duméril.
Sterno-thyroid: Mivart.

Entspringt vom Sternum und inserirt sich an dem hinteren Zungenbeinhorn.
M. omo-hyoides.
Omo-hyoidien: (Cuvier) Duméril.
Omo-hyoid: Mivart.

Rückwärtszieher des Zungenbeins oder Schulterblattzungenbeinmuskel: Meckel.

Ein dünner, zarter Muskel, der von dem oberen vorderen Theil des Zungenbeinkörpers entspringt und sich an der äusseren Fläche der Scapula inserirt.

Muskeln des Rumpfes.

M. longissimus dorsi.
Longissimus dorsi: Mivart.

M. capiti-cervicalis superior.
Complexus major: Mivart.

M. capiti-cervicalis inferior.
Complexus minor: Mivart.

Bildet die Fortsetzung der unteren Partie des Longissimus und inserirt sich an der hinteren inneren Fläche des Quadratum und dem hinteren oberen Theil des Schädels.

M. sacro-lumbalis.
Sacro-lumbalis: Mivart.

Entspringt von der festen Bindegewebshülle, welche das Ilium umgiebt, verschmilzt nach vorn innig mit den Fasern der Mm. intercostales externi und setzt sich am Nacken in den M. cervicalis adscendens,
Cervicalis adscendens: Mivart
M. costo-cervicalis.
Scalenus: Mivart.

Entspringt von der Seitenfläche des Atlas und inserirt sich an der letzten Halsrippe.

M. rectus anticus.
Rectus anticus: Mivart.

Entspringt von der ventralen Fläche der Körper der acht bis neun vordersten Wirbel und inserirt sich an dem Occipitale basilare.

M. obliquus abdominis externus.
External oblique: Mivart.

Obliquus abdominis externus: Gadow.

Bei *Chamaeleon* besteht der M. obliquus abdominis externus nicht wie bei den kionokraven Sauriern aus zwei Schichten, sondern nur aus einer einzigen. Er bildet einen platten, dünnen Muskel, welcher mit einem deutlichen Zacken von den Rippen des 5. bis 15. Wirbels entspringt.

Insertion: Am Ligamentum pubo-ischiadicum.

M. obliquus abdominis internus

wird bei den Mm. intercostales behandelt.

M. transversus abdominis.

Transversalis: Mivart.

Transversus abdominis: Gadow.

Entspringt zwar zackig neben den aufsteigenden Retrahentes costarum, aber gemäss der Kürze der letzteren sehr nahe der Wirbelsäule und erstreckt sich caudalwärts mit seiner Fascie ventral über den Quadratus lumborum.

Mm. intercostales.
External intercostals: Mivart.
Internal intercostals: Mivart.

Intercostales: Gadow.

Die Mm. intercostales zeigen bei *Chamaeleon* dieselben Verhältnisse, wie bei den kionokraven Sauriern.

Mm. retrahentes costarum.

Retrahentes costarum: Mivart, Gadow.

Beim *Chamaeleon* sind zwischen jeder Rippe und dem zugehörigen Wirbel je drei distincte, keine zusammenhängende Lage bildende Bündel vorhanden.

1) Schnig fleischig vom vorderen Drittel der Seiten- und Ventralfläche jedes Wirbels mit querer oder disto-ventraler Richtung zur Hinterinnensfläche des ersten Drittels der zugehörigen Dorsalrippe.

3) Von den vorigen getrennt, etwas mehr lateral, bandartig vom hinteren Ende des Wirbels und dem Anfange der nächstfolgenden Rippe
zum Hinterrande der nächstvorhergehenden, dem betreffenden Wirbel zugehörigen.

M. rectus abdominis.
Rectus abdominis: Gadow.

Bei den Chamaeleonen besteht der M. rectus abdominis nur aus zwei Theilen, dem Rectus ventralis und internus, indem der Rectus lateralis fehlt. Er zeigt hier ein bedeutendes Zurückweichen von der Brustregion nach dem Becken hin, denn er reicht vom Becken nur bis an die letzte der mit der anderen Seite verbundenen Ventralrippen (dem Wirbel 17 entsprechend).

Schwanzmuskeln.

M. supracaudalis.
Supracaudal: Mivart.

Bildet eine Fortsetzung des M. longissimus. Die obere Partie nimmt den Raum zwischen den Processus spinosi und den Processus articulares ein, die untere Partie füllt den Raum zwischen den Processus articulares und den Schwanzrippen (Querfortsätze: Mivart) aus. Er setzt sich bis zur Schwanzspitze fort und bildet die obere Muskelmasse des Schwanzes.

M. ileo-caudalis.
Ileo-caudal: Mivart.

M. ischio-caudalis.
Ischio-caudal: Mivart.

Entspringt vom vierten bis zum zwölften postsacralen Wirbel und inserirt sich an der Tuberositas ischi.ii.

M. infero-caudalis.
Infero-caudal: Mivart.

Verläuft längs der Mittellinie der unteren Fläche des ganzen Schwanzes und bildet die untere Muskelmasse des Schwanzes.

M. pectoralis.
Grosser Brustmuskel: Meckel.
Pectoralis major: Pfeiffer, Rüdinger.
Pectoralis: Mivart, Fürbringer.

Entspringt von der Aussenfläche des Sternum mit Ausnahme des vorersten Theiles desselben, sowie in verschiedener Ausdehnung von der zweiten bis vierten Sternocostalleiste und geht mit stark convergirenden Fasern lateralwärts und nach vorn an die Bengefläche des Processus lateralis humeri.
M. dorsi-scapularis (Cucullaris).
Dreieckiger oder ungleichseitig viereckiger Muskel (Trapezius, Cucullaris): Meckel.
Cucullaris: Pfeiffer, Rüdinger.
Trapezius: Mivart.
Dorso-scapularis (Cucullaris): Fürbringer.

Entspringt in verschiedener Weise in der Höhe des letzten Hals- und der ersten Brustwirbel aponeurotisch von der Rückenkante. Er geht mit etwas convergirenden Fasern nach vorn und unten an die Scapula, wo er sich in der Nähe des vorderen Randes im Bereich des oberen Drittels (Suprascapulare) inserirt.

M. dorso-humeralis (Latissimus dorsi).
Breiter Rückenmuskel: Meckel.
Latissimus dorsi: Pfeiffer, Rüdinger, Mivart.
Dorso-humeralis (Latissimus dorsi): Fürbringer.

M. thoraci-scapularis superficialis (Serratus superficialis).
Innerer grösserer Rückwärtszieher, oder vorderer grosser gezahnter Muskel: Meckel.
Serratus anterior major: Pfeiffer.
Pars posterior m. serrati antici majoris: Rüdinger.
Thoraci-scapularis superficialis (Serratus superficialis): Fürbringer.

Collo-thoraci-suprascapularis profundus (Serratus profundus).
Rautenmuskel oder vorderer Theil des grossen vorderen Säge- muscles: Meckel.
Rhomboidei: Pfeiffer.
Pars anterior m. serrati antici majoris: Rüdinger.
Smaller Portion of the Serratus: Mivart.
Larger Portion of the Serratus: Mivart.
Collo-thoraci-suprascapularis profundus (Serratus profundus): Fürbringer.

Drei kleine getrennte Muskelbündel, die von der Scapula bedeckt sind und von den beiden letzten Halsrippen schräg nach oben nach der Innenfläche des Suprascapulare verlaufen. Sie lassen sich wie bei den kionokranien Sauriern in eine oberflächliche und eine tiefe Schicht sondern.
Die erste besteht aus den beiden schmalen Muskelbündeln, welche von den beiden letzten Halsrippen entspringen und an der Innenfläche des Suprascapulare sich inserieren. Die tiefe Schicht wird gebildet aus dem dritten etwas breiteren Muskelbündel, das von dem oberen Theile der vorletzten Halsrippe seinen Ursprung nimmt und nach dem oberen Rande der Innenfläche des Suprascapulare verläuft.

M. suprascapularis.
Unterer Theil des äusseren Schulterblattmuskels oder Auswärtsroller (Untergrätenmuskel): Meckel.
Theil des M. dorsalis scapulae (Infraspinatus): Rüdinger.
Supraspinatus: Pfeiffer, Rolleston.
Anterior suprascapular: Mivart.
Suprascapularis: Fürbringer.

Entspringt von dem vorderen Theile der unteren Hälfte der Aussenfläche der Scapula und geht mit convergirenden Fasern mit dem M. supracoracoidens mehr oder minder innig verbunden an den Anfang des Processus lateralis humeri.

M. dorsalis scapulae (Deltoides scapularis s. superior).
Grosser runder Muskel oder kleiner Rückwärtsszieher des Oberarmes: Meckel.
Infraspinatus: Pfeiffer.
Hinterer grösserer Theil des Dorsalis scapulae (Infraspinatus oder Teres minor): Rüdinger.
Posterior suprascapular: Mivart.
Dorsalis scapulae (Deltoides scapularis s. superior): Fürbringer.

Entspringt von der Aussenfläche der mittleren zwei Drittel der Scapula und geht nach unten zu dem Processus lateralis humeri, an dessen Aussenfläche er sich gemeinschaftlich mit dem M. coraco-humeralis anterior inserirt.

M. coraco-humeralis anterior und sterno-humeralis anterior (Deltoides coraco-sternalis s. inferior).

a) Coraco-humeralis anterior.
Upper or posterior Portion of the Deltoid: Mivart.

b) Sterno-humeralis anterior.
Lower or anterior Portion of the Deltoid: Mivart.
Coraco humeralis anterior und Sterno-humeralis anterior (Deltoides coraco-sternalis s. inferior): Fürbringer.

Breiter, aber ziemlich dünner Muskel an der Unterseite des Coracoideum, der in zwei mehr oder weniger getrennte Partien, den M.
Anatomie.

coraco-humeralis anterior und den M. sterno-humeralis anterior, geschieden ist.

Der M. coraco-humeralis anterior entspringt von dem Vorderrande des Coracoideum, sowie mit spärlichen Fasern von der äusseren Lippe der Incisura coracoidea des Sternum und inserirt sich an der Aussenfläche des Processus lateralis humeri.

Der M. sterno-humeralis anterior nimmt von dem äusseren Labium der Coracoidfurche des Brustbeins seinen Anfang und geht gemeinsam mit dem vorigen zum Processus lateralis humeri.

- M. subcoraco-scapularis.
- Unterschulterblattmuskel: Meckel.
- Subscapularis: Rüdinger; Mivart.
- Subcoracoscapularis: Fürbringer.

- M. sterno-coracoideus internus.
- Kleiner, mehr länglicher Rückwärtszieher oder kleiner gezahnter Muskel, oder kleiner Brustmuskel: Meckel.
- Pectoralis minor: Rüdinger.
- Sterno-coracoid: Mivart.
- Sterno-coracoideus internus: Fürbringer.

Ziemlich kleiner Muskel, der von der inneren Fläche des Brustbeins muskulös entspringt und sich am vorderen Theile des Coracoideum inserirt.

- M. collo-(capiti)scapularis superficialis (Levator scapulae superficialis).
- Levator scapulae: Pfeiffer.
- Levator anguli scapulae: Rüdinger.
- Levator claviculae: Fürbringer.
- Collo-(capitis) scapularis superficialis (Levator scapulae superficialis): Fürbringer.

Sehr ansehnlicher, in der Regel ziemlich deutlich in einen kleineren oberen und einen grösseren unteren Theil getrennter Muskel, der, wie es scheint, in sehr wechselnder Weise von den Processus transversi der vordersten Halswirbel und von dem Hinterhaupt entspringen kann und sich am ganzen vorderen Rande der Scapula inserirt.

- M. capiti-sternalis (Sterno-mastoideus).
- Kopfnicker (Sterno-mastoideus): Meckel.
- Sterno-cleido-mastoideus: Rüdinger.
- Sterno-mastoid: Mivart.
- Capiti-sternalis (Sterno-mastoideus): Fürbringer.
Reptilien.

Entspringt vom unteren Ende des Squamosum und an der Grenze des Quadratum, verläuft nach unten und hinten zum Sternum, wo er an dem vorderen seitlichen Rande, der das Coracoid aufnimmt, sich anheftet.

M. supracoracoideus.

Innerer Bauch des Hebers des Arms (Deltoides): Meckel. (?)
Theil des Deltoides: Pfeiffer.

Coraco-brachialis proprius anterior: Rüdinger.

Epicoraco-humeralis (= Subclavius): Rolleston.

Subclavius: Mivart.

Supracoracoidens: Fürbringer.

Entspringt von der Aussenfläche des Coracoideum, besonders im medialen und vorderen Bereiche desselben, und geht mit convergirenden Fasern an den Humerus, wo er in der Nähe des Caput humeri am Anfangs-theile des Processus lateralis sich inserirt.

M. coraco-brachialis.

a) Coraco-brachialis brevis.
Theil des grossen Brustmuskels oder wahrscheinlicher oberer Hakenarmmuskel: Meckel.

Vorderer Coraco-brachialis: Pfeiffer.
Theil des Coraco-brachialis proprius posterior s. longus: Rüdinger.

Shorter portion of Coraco-brachialis: Mivart.

Coraco-brachialis brevis: Fürbringer.

b) Coraco-brachialis longus.

Hakenarmmuskel: Meckel.

Hinterer Coraco-brachialis: Pfeiffer.

Longer Portion of Coraco-brachialis: Mivart.

Hinteres Bündel des Coraco-brachialis proprius posterior s. longus: Rüdinger.

Coraco-brachialis longus: Fürbringer.

Die Mm. coraco-brachiales bilden eine von dem grösseren hinteren Theile des Coracoideum entspringende Muskelmasse, die, ähnlich wie bei vielen kionokranen Sauriern, in zwei deutlich getrennte Muskeln zerfallen ist.

Der M. coraco-brachialis brevis entspringt von den hinteren und lateralen zwei Dritteln der Aussenfläche des Coracoideum. Er geht über das Schultergelenk hinweg an die Beugefläche der proximalen zwei Fünftel des Humerus, so wie an die Basis des Processus medialis desselben.

Der M. coraco-brachialis longus entspringt sehnsig von dem hinteren Ende des Coracoideum, wobei er in der Regel mit dem M. coraco-brachialis brevis verbunden ist, und hinauf in einen schmalen Muskelbauch übergeht, der getrennt von dem vorigen am Epicondylus medialis humeri sich inserirt.
Anatomie.

M. scapulo-humeralis profundus.
Wahrscheinlich Obergrätenuuskkel oder vorderer oberer Theil des äusseren Schulterblattmuskels: **Meckel.**

Teres major: **Pfeiffer.**

Scapulo-humeralis: **Rolleyton.**

Scapulo-humeralis profundus: **Fürbringer.**

Kleiner Muskel, der von dem Hinterrande des untersten Theils der Scapula entspringt und sich an den proximalen Theil der Streckseite des Humerus, zwischen den Anfängen der Mm. anconaei humerales lateralis und medialis inserirt.

M. anconaeus.

a) Caput scapulare laterale m. anconaei.
Langer Kopf des dreiköpfigen Vorderarmstreckers: **Meckel.**
Caput longum m. tricipitis: **Pfeiffer, Rüdinger.**
First part of the Triceps: **Mivart.**

b) Caput humeral laterale m. anconaei.
(Aeusserer) Kopf des M. triceps: **Meckel, Rüdinger.**
Second part of the Triceps: **Mivart.**

(c) Caput humeral mediale m. anconaei.
(Innerer) Kopf des M. triceps: **Meckel, Rüdinger.**
Third part of the Triceps: **Mivart.**

Kräftiger, mit drei Köpfen entspringender Muskel.

Die durch Vereinigung aller drei Köpfe entstandene Muskelmasse geht in eine kräftige Sehne über, die eine Patella ulnaris einschliesst und sich am proximalen Theil der Ulna inserirt.

M. coraco-antebrachialis (Biceps).

Langer Kopf des langen Beugers: **Meckel.**
Langer Kopf des Biceps: **Pfeiffer.**
Biceps brachii s. Coraco-radialis: **Rüdinger.**
Biceps: **Mivart.**
Coraco-antebrachialis (Biceps): **Fürbringer.**

Entspringt sehnsig von dem Mediahrande der Aussenfläche des Coracoideum, gleich neben der Verbindung desselben mit dem Sternum; am Oberarm geht er in einen Muskelbauch über, der sich in der Mitte des
Oberarms in zwei Muskelzipfel theilt, welche in schlanke, den distalen Abschnitt des M. brachialis inferior umfassende Sehnen übergehen, von denen sich die laterale am proximalen Theile der Beugefläche des Radius, die mediale an dem entsprechenden Abschnitt der Ulna inserirt.

M. humero-antebrachialis inferior (Brachialis inferior).
Kurzer Kopf des langen Beugers: Meckel.
Kurzer Kopf des Biceps: Pfeiffer.
Brachialis internus: Rüdinger.
Brachialis anticus: Mivart.
Humero-antebrachialis inferior (Brachialis inferior): Führinger.

Entspringt von der Vorderfläche des Humerus, unterhalb des Processus lateralis, er geht der Ellenbogengelenkkapsel eng aufliegend nach dem Vorderarme, wo er an der Ulna allein oder hauptsächlich an dieser und mit spärlichen Fasern auch am Radius endet.

M. humero-radialis.
Supinator longus: Rüdinger, Mivart.
Lange Rückwärtswender: Meckel.

M. humero-metacarpalis III.
Extensor carpi radialis longus: Mivart.
Extensor carpi radialis: Rüdinger.
Aeusserer Speichenmuskel oder Speichenstrecker: zum Theil Meckel.

M. humero-metacarpalis IV.
Extensor carpi radialis brevis: Mivart.
Extensor carpi ulnaris: Rüdinger.
Aeusserer Speichenmuskel oder Speichenstrecker: z. Th. Meckel.

M. humero-metacarpalis V.
Extensor carpi ulnaris: Rüdinger, Mivart.
Eigener Ellenbogenstrecker: Meckel.

Entspringt mittelst einer Sehne von der Rückenfläche des Humerus an dessen distalem Ende. Nach unten geht er in eine starke Sehne über, welche sich am proximalen Theil der palmaren Fläche des Metacarpus V inserirt.

M. humero-radialis medialis.
Pronator teres: Mivart.
Oberflächlich gelegener langer runder Einwärtsdreher: Rüdinger.

Kräftiger Muskel. Derselbe entspringt mittelst einer starken Sehne vom Epicondylus medialis, schliesst sich an die Insertion des langen Kopfes des M. coraco-brachialis an und inserirt sich an den unteren vier Fünfteln des Radius an dessen lateraler Fläche.

M. humero-metacarpalis I.
Flexor carpi radialis: Mivart, Rüdinger.
Wohl beschrieben, aber nicht bezeichnet von Meckel.

M. humero-ulno-radialis.
Pronator accessorius: Mivart.
Kleiner, runder Pronator: Rüdinger.

M. ulno-radialis.
Pronator quadratus: Mivart, Rüdinger (!).

Kleiner Muskel, welcher von der radialen Fläche der Ulna entspringt und sich an dem unteren Viertel der Flexorenfläche des Radius inserirt.

M. humero-carpalis.
Flexor carpi ulnaris: Mivart.
Flexor carpi ulnaris externus und internus: Rüdinger.

M. humero-ulno-digitalis I, II, III.
Flexor pollicis longus: Mivart.
Flexor digitorum comm. superficialis und profundus, z. Th.
Rüdinger.

Flexor profundus digitorum: Mivart.
Flexor digitorum communis superficialis und profundus: Rüdinger, z. Th.

Mm. lumbricales.

Lumbricales: Mivart, Rüdinger.

Mm. metacarpo-digitales I—V.
Flexor brevis digitorum: Mivart.
Flexor digitorum communis brevis: Rüdinger.
Entspringt vom Ligamentum annulare, welches vom ersten zum fünften Metacarpale verläuft. Er inserirt sich an den Fingern und seine Endsehnen werden von denen des langen Beugers perforirt.

M. carpo-digitalis I.
Flexor pollicis brevis: Mivart.
Opponens pollicis: Rüdinger.

Kurzer, dicker Muskel, der vom Ligamentum annulare und den Carpalknochen entspringt und sich an der Radialsseite des Daumens inserirt, distal- und radialwärts von der Insertion des M. humero- ulnari-metacarpalis I (Extensor ossis metacarpi pollicis: Mivart).

M. carpo-digitalis V.
Flexor brevis minimi digiti: Mivart.

Entspringt von der Ulnarseite der Carpalknochen und inserirt sich an der Ulnarseite des fünften Fingers.

M. metacarlo-digitalis III.
Adductor digiti tertii: Mivart.

Entspringt von dem Ligament, das den Metacarpus III und IV verbindet und inserirt sich an der Ulnarseite des dritten Fingers.

M. metacarlo-digitalis IV.
Adductor digiti quarti: Mivart.

Entspringt an derselben Stelle wie der vorhergehende Muskel und inserirt sich an der Radialsseite des vierten Fingers.

M. humero-ulno-metacarpalis I.
Extensor I, II or Extensor ossis metacarpi pollicis: Mivart.
Strecker oder Abzieher des Daumens: Meckel.

M. radio-metacarpalis I.
Extensor musculi III: Mivart.

Entspringt vom Processus styloideus radii und inserirt sich am distalen Theil der Rückenfläche des Metacarpus I.

M. radio-metacarpalis II.
Extensor musculi IV: Mivart.

Entspringt von derselben Stelle wie der vorige und inserirt sich am distalen Theil der Rückenfläche des Metacarpus II.

M. radio-metacarpalis III.
Extensor musculi V: Mivart.

Entspringt an derselben Stelle wie der vorhergehende und inserirt sich am distalen Theil der Rückenfläche des Metacarpus III.
M. carpo-metacarpalis IV.
Extensor musculi VI: Mivart.
Entspringt von dem grossen, runden Carpusknochen und von der Rückenfläche der drei ersten Metacarpalien. Insertion: an der Basis des Metacarpus IV.

M. carpo-digitalis V.
Extensor m. VII: Mivart.
Entspringt von der Rückenfläche des grossen Carpusknochens und inserirt sich am fünften Finger.

M. carpo-metacarpalis V.
Extensor m. VIII: Mivart.
Entspringt von der lateralen Fläche des Os carpi ulnare und inserirt sich an der Rückenfläche des fünften Metacarpus.

M. ulno-metacarpalis V.
Extensor m. IX: Mivart.
Ursprung: am Processus styloideus ulnae. Insertion: an der Rückenfläche des Metacarpus V.

Mm. metacarpo-digitales I—V.
Extensores phalangorum: Mivart.

Mm. interossei:
Interossei: Mivart.
Entspringen von der Palmarfläche der Metacarpi und inseriren sich an den Seitenflächen der Finger.

Muskeln der hinteren Extremität.

M. pubo-ischio-tibialis.
Gracilis: Mivart.
Entspringt von der ganzen Symphysis ossium pubis et ischii und inserirt sich an der medialen Fläche der Tibia, gerade unterhalb und mit dem Ligam. laterale internum.

M. pelvo-tibialis.
Tibial adductor: Mivart.
Entspringt vom oberen Rande des Beckens mittelst einer starken Sehne und theilt sich distalwärts in zwei Köpfe. Der eine, schwächere, inserirt sich an der Cartilago interarticularis; der andere, stärkere, an der fibularen Fläche des Gelenkkopfes der Tibia.

M. ischio tibialis.
Semimembranosus: Mivart.
Entspringt von der Tuberositas ischii und inserirt sich mit einer langen starken Sehne gemeinschaftlich mit dem stärkeren Muskelbauch des Pelvo-tibialis an der fibularen Fläche des Gelenkkopfes der Tibia.
M. ileo-ischiadico-tibialis.
Semitendinosus: Mivart.
Entspringt gemeinschaftlich mit dem Ileoischiadico-tarsalis vom Ligamentum ileo-ischiadicum und inserirt sich gemeinschaftlich mit dem schwächeren Muskelbauche des Pelvo-tibialis an der Cartilago interarticularis.

M. ileo-ischiadico-tarsalis.
Biceps: Mivart.
Entspringt vom Ligamentum ileo-ischiadicum und inserirt sich mittelst einer starken Sehne zwischen den distalen Enden der Gastrocnemii an der fibularen Fläche der Tarsalknochen.

M. ileo-ischio-pubo-femoralis.

Iliacus: Mivart.
Entspringt mit drei Köpfen, von der inneren Fläche des Ileum, von der des Ischium und von der des Pubis. Die drei Portionen vereinigen sich mit einander und inseriren sich gemeinschaftlich am oberen Theil des Femur.

M. caudali-ileo-ischiadicus.
Glutaeus maximus: Mivart.
Entspringt von den Rippen der vorderen Schwanzwirbel und inserirt sich an dem Ligamentum ileo-ischiadicum.

M. femoro-caudalis.
Femoro-caudal: Mivart.
Entspringt von den Rippen der vier vordersten Schwanzwirbel. Die Insertion findet z. Th. am Trochanter major statt, z. Th. geht er in eine lange, dünne Sehne über, welche an der Cartilago interarticularis (zwischen Femur und Tibia) sich inserirt.

M. ilio-femoralis major.
Gluteus primus: Mivart.
Entspringt vom unteren Theil der äusseren Fläche des Ileum und inserirt sich am mittleren Theil der äusseren Fläche des Oberschenkels.

M. ilio-trochantericus major.
Gluteus secundus: Mivart.
Entspringt von der hinteren äusseren Fläche des Ileum und inserirt sich an der hinteren äusseren Seite des Trochanter major.

M. ilio-trochantericus minor.
Gluteus tertius: Mivart.
Entspringt am unteren Theil des hinteren Randes des Ileum und inserirt sich an der äusseren Fläche des Trochanter major. Er ist ein kleiner, dünner Muskel.
M. ileo-femoralis minor.

Pectineus: Mivart.

Entspringt vom unteren Theil der äusseren Fläche des Ileum und inserirt sich an der äusseren Seite des oberen Theiles des Femur. Er ist ein dünner kleiner Muskel.

M. ischio-femoralis.

Adductor: Mivart.

Kräftiger Muskel, der in der Umgebung der Symphysis ossium ischii entspringt und sich an der äusseren Fläche des Femur inserirt.

M. ischio-femoralis.

Quadratus femoris: Mivart.

Entspringt von der Tuberositas ischii und inserirt sich am Kopf des Oberschenkels, oberhalb des Trochanter major.

M. ischio-trochantericus.

Obturator externus: Mivart.

Entspringt von der äusseren Fläche des Ischium und inserirt sich am grossen Trochanter.

M. pubo-femoralis.

Obturator internus: Mivart.

Ursprung: innere Fläche des Pubis. Insertion: hintere Fläche des Femur.

M. ileo-tibialis.

Rectus femoris: Mivart.

Entspringt mit drei Köpfen, resp. vom Rande des Acetabulum, vom vorderen und vom hinteren Rande des Ileum. Distalwärts vereinigen sie sich mit den anderen Extensoren und inseriren sich gemeinschaftlich mit diesen an der Patella und an der Tibia.

M. femoro-tibialis externus.

Vastus externus: Mivart.

M. femoro-tibialis internus.

Vastus internus: Mivart.

M. femoro-tibialis medius.

Crureus: Mivart.

M. tibio-tarsalis internus.

Gastrocnemius internus: Mivart.

Entspringt von der hinteren Fläche der Tibia, zum Theil auch noch
vom Ligamentum laterale internum. Er inserirt sich an der fibularen Seite der Fusswurzelknochen.

M. tibio-tarsalis externus.

Gastrocnemius externus: Mivart.

Entspringt mittelst einer langen, dünnen, aber starken Sehne von der Cartilago interarticularis. Seine Insertion findet an den Tarsalknochen statt.

M. femoro-fibulo-digitalis III, IV.

Flexor longus digitorum: Mivart.

M. fibulo-digitalis I, II.

Flexor hallucis longus: Mivart.

M. femoro-fibulo-digitalis V.

Flexor tertius digitorum: Mivart.

Entspringt mit drei Köpfen, nl. vom Oberschenkel etwas oberhalb des Condylus lateralis s. externus, vom hinteren Theil des oberen und des unteren Endes der Fibula. Nach unten geht er in eine dünne Sehne über, welche sich am fünften Finger inserirt, vorher aber zwei Zipfel abgiebt, welche die Verstärkungsbündel der Sehnen des M. femoro-fibulo-digitalis III und IV bilden.

Mm. lumbricales.

Lumbricales: Mivart.

M. fibulo-tarsalis.

Tibialis posticus: Mivart.

Entspringt von der hinteren tibialen Fläche der Fibula. Nach unten
Reptilien.

geht er in eine starke Sehne über, welche sich an der lateralen Fläche
des grossen runden Tarsusknochens inserirt.

M. fibulo-tibialis superior.

Popliteus: Mivart.

Entspringt von der tibialen Fläche des Fibularkopfes und inserirt sich an
den zwei unteren Dritteln der Tibia an deren hinteren und fibularen Fläche.
M. fibulo-tibialis inferior.

Peroneo-tibialis: Mivart.

Entspringt von der unteren Hälfte der fibularen Fläche der Fibula
und inserirt sich am unteren Drittel der Tibia, an deren fibularen und
vorderen Fläche.

M. fibulo-tibio-metatarsalis V.

Peroneus: Mivart.

Kraftiger Muskel, welcher unvollständig aus zwei Theilen besteht.
Der eine kommt von der vorderen Fläche der Fibula und durch eine
Faszie von der fibularen Fläche des oberen Theiles der Tibia. Er inserirt
sich an der fibularen Rückenfläche des Metatarsus V.

Der andere Theil entspringt von der fibularen Fläche der Fibula,
innig mit dem vorhergenannten Theil verbunden. Er inserirt sich an der
Basis des Metatarsus V.

M. tibio-metatarsalis I.

Tibialis anticus: Mivart.

Entspringt von der vorderen Seite der Tibia und inserirt sich an
dem distalen Theil der Rückenfläche des Metatarsus I.

M. femoro-tibio-metatarsalis III.

Extensor longus digitorum: Mivart.

Ursprung: von der vorderen Fläche des unteren Theiles des Ober-
schenkels durch eine starke Sehne und fleischig von der vorderen Fläche
der Tibia. Insertion: am distalen Theil der Rückenfläche des Metatarsus III.

M. metatarso-digitalis III, IV, V.

Flexor brevis digitorum: Mivart.

Entspringt vom proximalen Theil des Metatarsus I. Er theilt sich in
drei Zipfel, welche sich an den dritten, vierten und fünften Finger inseriren.

M. tarso-digitalis I.

Flexor brevis hallucis: Mivart.

Entspringt von den Tarsusknochen und inserirt sich an der tibialen
Fläche der ersten Fingers.

M. tarso-digitalis V.

Flexor brevis minimi digiti: Mivart.

Entspringt von der fibularen Fläche der Tarsusknochen und inserirt
sich an der fibularen Fläche der vorletzten Phalanx des fünften Fingers.

M. metatarso-digitalis II.

Adductor digiti secundi: Mivart.

Ursprung: von dem Bande, welches Metatarsale II und III verbindet.
Insertion: an der fibularen Fläche des zweiten Fingers.
M. metatarso-digitalis III.
Adductor digiti tertii: Mivart.

Ursprung: von dem Bande, welches Metatarsale II und III verbindet.
Insertion: an den tibialen Rand des dritten Fingers.
M. fibulo-metatarsalis II.
Extensores I und II: Mivart.

Ursprung: mit zwei Köpfen von der vorderen Fläche der zwei unteren Drittel der Fibula. Insertion: am distalen Theil der Rückenfläche des Metatarsus II.
M. tarso-metatarsalis I—V.
Extensor III: Mivart.
Extensor IV: Mivart.
Extensor V: Mivart.
Extensor VI, VII: Mivart.

Ursprung: von der Fascia der Tarsalknochen. Insertion: an der Rückenfläche des Metatarsale I, II, III, IV und V.
M. fibulo-metatarsalis V.
Extensor VIII: Mivart.

Entspringt am unteren Ende der fibularen Fläche der Fibula und inserirt sich an dem distalen Theil der Rückenfläche des Metatarsale V.
M. fibulo-tarso-metatarsalis V.
Extensor IX: Mivart.

Entspringt am unteren Ende der Fibula, sowie von den fibularen Tarsalknochen. Insertion: an der Rückenfläche des Metatarsale V.
M. metatarso-digitalis I—V.
Extensores phalangorum: Mivart.

Fünf kleine Muskel, welche an der Rückenfläche der fünf Metatarsalia entspringen und an der Endphalanx desselben Fingers sich inseriren.
Mm. interossei.
Interossei: Mivart.

Die Interossei des Fusses gleichen vollkommen denen der Hand.

III. Amphisbaenoiden.

Muskel des Brustschultergürtels.

Nach Wegnahme des mächtigen, bei Amphisbaena den ganzen Körper einhüllenden, bei Lepidosternon ihn bis auf den medianen Theil des Rückens einschliessenden Hautmuskels kommt auf der Unterseite des Halses der Obliquus abdominis externus sublimis und Rectus abdominis, an der Seitenfläche der ausserordentlich mächtige Ileo-costalis zum Vor- schein. Besondere, meist von diesen abgelöste Muskeln des Schultergürtels sind:
M. cervicalis.
Serratus anticus major und wahrscheinlich auch das vierte Muskelpaar: Rathke.
Cervicalis: Förbringer.

Mm. sterno-cleido-mastoidei.
Sterno-cleido-mastoideus: Rathke, Förbringer.

M. obliquus abdominis externus sublimis.
Obliquus abdominis externus sublimis: Förbringer.

Verschmäler sich nach vorn, indem er sich zugleich von der Mittellinie des Bauches entfernt und endet oberhalb der Scapula.

M. obliquus abdominis externus profundus.
Obliquus abdominis externus profundus: Förbringer.

Inserirt sich am hinteren Rande des Schulterrudimentes.

M. rectus abdominis.
Rectus abdominis: Förbringer.

Dieser in der ganzen Länge des Rumpfes als Intercostalis auftretende Muskel verbreitert sich nach vorn, wobei er über die Rippen hinweggeht und endet an der ganzen hinteren Seite der Sternalaponeurose.

M. sterno-hyoideus.
Omo-hyoideus: Rathke.
Sterno-hyoideus: Förbringer.

M. levator scapulae.
Lever scapulare: Förbringer.

Winziger Muskel, der vom Querfortsätze des zweiten Halswirbels zum oberen Theile der vorderen Seite des Scapularrudimentes geht.

Muskeln des Beckengürtels.

M. obliquus abdominis externus sublimis.

Obliquus abdominis externus sublimis: Förbringer.

Endet bei Amphisbaena in der Höhe des hinteren Theiles des Beckenrudimentes, inserirt sich aber in der Hauptmasse an der letzten Rippe und nur mit einigen (zweifelhaften) Fasern am oberen Theile des hinteren Endes. Bei Lepidosternon ist die Insertion ganz deutlich.
M. transversus abdominis.
Transversus abdominis: Fürbringer.
Er beginnt am Vertebraltheile der Rippen und zieht sich, ihrer Innenseite anlagernd, bis zur lateralen Aussenseite des Pubis, an dessen ganzer Aussenseite er sich inserirt.
Bei Amphibiae bleibt er hierbei in der Höhe der Rippenenden, bei Lepidosternon, wo er sich auch nur am vorderen Theile des Rudimentes inserirt, geht er über das Niveau der Rippenenden hinaus.
M. sphincter cloacae.
Sphincter cloacae: Fürbringer.
Mit diesem zum Systeme des Transversus gehörigen Muskel ist das Beckenrudiment an seiner Innenseite verbunden.
M. ischio-coccygeus.
Ischio-coccygeus: Fürbringer.
Ein vom Dornfortsatze des ersten Sacralwirbels kommender Muskel, der in einer bei Amphibiae kräftigen, bei Lepidosternon nur undeutlichen Sehne am hinteren Ende des Beckenrudimentes sich inserirt.

Die Muskeln der Extremitäten

fehlen bei Amphibiae und Lepidosternon, über die von Chirotes canaliculatus liegen bis jetzt noch keine Angaben vor.

Crocodile.

Kaumuskeln.

M. temporalo-maxillaris (temporalis).
Masseter: Haughton.
Temporalis: v. Teutleben, Stannius.
Temporal: Cuvier (Dumeril).
Aeussere obere Heber oder Schlafmuskeln: Meckel.

Entspringt in der Schläfengrube, geht unter dem Jochbogen hinweg und inserirt sich an der inneren und äusseren Seite des Unterkiefers.
M. pterygo-maxillaris (pterygoideus).
Pterygoidien: Cuvier.
Aeusserer Flügelmuskel: Meckel.
Innerer Flügelmuskel: Meckel.
Pterygoidens externus: Stannius.
Pterygoidens internus: Stannius.
Pterygoidens: v. Teutleben*).
Pterygoidens (clausor oris): Haughton.

Kräftig ausgebildeter Muskel, welcher aus zwei Portionen besteht; die äussere schwächere entspringt am Processus pterygoideus, die innere stärkere in der Fossa pterygoidea und mit einer Sehne vom Processus pterygoideus; beide schlagen sich vereint um den Angulus des Unterkiefers weit nach aussen herum, wo sie als dicker, bauchiger Wulst hervortreten. Sie sind die Hauptmuskeln, da ein M. masseter fehlt und der M. temporalis nur schwach entwickelt ist. Da diese Flügelmuskeln sich in einem sehr spitzen Winkel an dem Unterkiefer inseriren, so wurde durch die Masse ersetzt, was durch die ungünstige Insertion an Hebelkraft verloren ging.

M. oecipito-maxillaris (digastricus maxillae).
Niederzieher des Unterkiefers: Meckel.
Abaisseur ou l'analogues du digastrique (Cuvier) Dumeril.
Senker des Unterkiefers: Stannius.
Aristotelis apertor oris: Haughton.
Digastricus: v. Teutleben.
Apertor oris: Rathke.

Halsmuskeln.

Muskeln an der vorderen Fläche des Halses.

M. intermaxillaris et sphincter colli.
Intermaxillaire: Cuvier (Duméril).
Mylo-hyoideus: Stannius.
Zwischenkiefermuskel: Meckel.
Latissimus colli s. subcutaneus colli: Rathke.

Dieser Muskel besteht hauptsächlich aus quer verlaufenden Muskelfasern und besitzt nur allein in ihrem mittleren Drittel einen in der Mittelebene des Körpers liegenden schmalen, aponeurotischen Längsstreifen oder Raphe. Im hintersten Theil des Halses ist er sehr dünn, nach vorn nimmt er aber an Dicke immer mehr und mehr zu. Man kann an ihm eine vordere kürzere und eine hintere längere Hälfte unterscheiden, die jederseits nach aussen und oben von einander getrennt sind, sonst aber ohne Unterbrechung in einander übergehen. Die vordere Hälfte erstreckt sich von der inneren Seite der rechten zu der der linken Hälfte des Unterkiefers. Die Muskelfasern befestigen sich nicht vermittelst besonderer Aponenrosen, sondern heften sich unmittelbar an den Knochen an. Die hintere Hälfte dieses Muskels ist durch ein Paar Aponenrosen zum kleineren Theil mit dem Unterkiefer, zum bei weitem grüsseren Theile aber mit einer Fascie verbunden, welche einige Nackenmuskeln einscheidet. — Der kleinere Theil beginnt gleich hinter den Pterygoidea

Bronn, Klasse des Thier-Reichs. VI. 3.
an der inneren Seite der Unterkieferhälften, endet aber an der äußeren Seite der beiden Hälften des Unterkiefers. Von dem übrigen oder hinter dem Unterkiefer liegenden Theil der hinteren Hälfte des Muskels sind sowohl die beiden Aponeurosen, als auch die zwischen ihnen befindliche Schicht von Muskelfasern beträchtlich dünner, als die jenes vorderen Theiles derselben Hälfte.

M. latus colli.
Latus colli: Rathke.
Latissimus colli accessorius: Mayer.

Liegt unterhalb des vorhergehenden. Seine Faserbündel sind zwischen den Mm. collo-capitis und den Körper der drei vordersten Halswirbel angeheftet und bilden eine breite Binde, die sich vom Zungenbein bis an die Enden der stark nach hinten gerichteten Halsrippen des ersten und zweiten Paares erstreckt. Es umfasst diese Binde wie eine Schlinge zunächst hinter dem Zungenbein die Mm. episterno-keratoideus, coraco-keratoideus, die Luftöhre, die Speiseröhre, die Nervi vagi, die Venae jugulares und die beiden Halsarterien.

M. coraco-keratoideus.
Omo-hyoideus: Rathke.
Coraco-hyoideus: Fischer.

Rückwärtszieher oder Schulterblattzungenbeinmuskeln: Meckel.

Ein langer, schmaler und mässig dicker Muskel, welcher vom oberen Rande des Coracoideum, dort wo es an die Scapula grenzt, seinen Ursprung nimmt. Vorn verläuft er neben der Speiseröhre und setzt sich an den schräg nach unten gekehrten Rand des Zungenbeinhorns seiner Seite da an, wo ungefähr die Mitte des Hornes sich befindet.

M. episterno-keratoideus.
Niederzieher des Zungenbeins oder Brustbeinzungenbeinmuskeln: Meckel.

Sterno-hyoideus - Rathke.

Ein platter und ziemlich breiter Muskel, der am oberen Theil der ventralen Fläche des Episternum entspringt, hinten eine Strecke lang den gleichen Muskel der anderen Seitenhälfte berührt, sich dann aber von ihm um ein wenig entfernt und in Gemeinschaft mit demselben von unten her beinahe den Halstheil der Luftöhre vollständig verdeckt. Gegen sein vorderes Ende theilt er sich in zwei Köpfe. Der eine inserirt sich am unteren Rande und der äusseren Fläche des Zungenbeinhornes, der andere Kopf, der nach aussen von jenem ersteren liegt, geht stark verjüngt in eine kurze Sehne über, durch die er mit dem nächstfolgenden Muskel zusammenhängt.

M. maxillo-coracoides.
Mylo-hyoideus anterior z. Th.: Rathke.
Sterno-maxillaire, Sterno-maxillare: Cuvier (Duménil), Fischer.

M. maxillo-hyoideus.
Genio-ceratoidien: Cuvier (Duménil).
Hyomaxillaris: Fischer.
Hyoglossus: Mayer.
Hyomandibularis: Stannius.
Mylo-hyoideus posterior: Rathke.

M. cerato-hyoideus.

Entspringt vom Zungenbeinhorn und inserirt sich am Zungenbeinkörper.
M. costo-coracoidens.

Dieser Muskel entspringt am distalen Ende der ersten und zweiten Rippe und inserirt sich an der ventralen Fläche des Coracoideum, wo dasselbe an die Scapula grenzt.

M. costo-scapularis. Collo-scapularis superficialis (Levator scapulae superficialis).
Siehe bei den Schultermuskeln.
M. costo-vertebralis medialis.
Scaleni: Rathke.

Mässig grosse, platte und lang ausgezogene dreieckige Muskeln. Jeder von ihnen ist mit seiner Basis an die vorderste Brustrippe, mit seinem oberen Rande an die Rippen der fünf hinteren Halswirbel, mit seiner Spitze an das Ende der zweiten Halsrippe befestigt.

M. costo-vertebralis lateralis.
Longus colli: Rathke, Buttmann.

Entspringt dünn und spitz am Körper des fünften Rumpfwiibels, schwillt nach vorn zwar nur allmählich, jedoch beträchtlich an, wird dann wieder dünn und setzt sich vorn an die innere Seite der Rippen der beiden vordersten Halswirbel an.

M. collo-capitis.
Rectus capitis anterior: Rathke.

Entspringt in der Regel an den Körpem der Halswirbel, zuweilen schon an zweiten Brustwirbel (Gavialis). Er läuft nach vorn und inserirt sich am Occipitale basilare und dem hinteren Rand des Pterygoideum. Nach dem grössten Theil ihrer Länge verlaufen sie dicht nebeneinander, nach vorn aber fahren sie mässig weit auseinander.

43*
Nackenmuskeln.

M. occipito-cervicalis medialis.
Complexus cervicis: Buttmann.
Biventer cervicis: Tiedemann.
Zweibäuchiger Strecker oder zweibäuchiger Nackenmuskel: Meckel.

Splenius capitis: Rathke.

Entspringt mit getrennten Zipfeln von den Dornfortsätzen der vier vorderen Rückenwirbel und der sechs hinteren Halswirbel, ist an seiner oberen Seite convex, an der unteren schwach concav, geht vorn in eine kurze, aber starke Sehne über und setzt sich mittelst dieser gleich unter der Kante, welche die obere und hintere Seite der Hirnschale gegen einander abgrenzt, an die letztere Seite an, d. i. am Occipitale laterale und superius.

M. squamoso-cervicalis medialis.
Kopfbauchmuskel (Splenius) oder durchflochtener Muskel (Complexus): Meckel.
Trachelo-mastoideus: Buttmann.
Complexus: (Cuvier) Dumeril, Rathke.

M. epistropheo-vertebralis.
Splenius colli: Rathke.

M. collo-squamosus.
Splenius capitis: Buttmann.
Nackenwarzenmuskel (Trachelomastoideus): Meckel.
Trachelomastoideus: Rathke.

Entspringt von den oberen Querfortsätzen der drei hinteren Halswirbel, verläuft schräg nach hinten und unten, nach vorn, oben und auch etwas nach innen und inserirt sich, sehnig geworden, am hinteren Rande des Squamosum.

M. collo-occipitis.
Muskel, der wahrscheinlich die bei den Säugethieren vorkommenden Mm. intertransversales des Halses nebst dem M. rectus capitis lateralis repräsentirt: Rathke.
Reptilien.

Entspringt von den Querfortsätzen der fünf hinteren Halswirbel, verläuft auf den Rippen dieser Wirbel gerade nach vorn und inseriert sich unterhalb des Gelenkkopfes am Occipitale laterale.

M. occipito-epistrophicus.

Kurzer, gerader, hinterer Kopfmuskel oder Strecker: Meckel.

Entspringt von den Seitenflächen des Körpers des zweiten Halswirbels und inseriert sich am Occipitale basilare und laterale unterhalb des vorhergehenden.

M. cervicalis adscendens.

Cervicalis adscendens: Rathke, Meckel.

Entspringt zum grössten Theil von den vordersten Rippen unter den Winkeln derselben, zum kleineren Theil erscheint er weiter nach oben, wo er von dem M. rhomboideus bedeckt ist, als eine Fortsetzung des M. sacrospinalis. Er inserirt sich an der oberen Seite der fünf hinteren Halsrippen und an dem distalen Ende der langen zweiten Halsrippen.

Schulterblattmuskeln.

M. capiti-sternalis (sterno-mastoideus).

a) Pars anterior (M. atlanti-mastoideus) (Taf. LXXV. Fig. 1—3 cst).

Oberes Ende des Kopfnickers (Sterno-mastoideus): Meckel.

Vordere Fortsetzung des Sterno-mastoideus: Rüdinger.

Pars anterior (M. atlanti-mastoideus): Fürbringer.

b) Pars posterior (M. sterno-atlanticus) (Taf. LXXV. Fig. 1—3 cst2).

Sterno-mastoideus: Buttmann, Stannius, Rüdinger.

Innerer Bauch des Kopfnickers: Meckel.

Sterno-atlanticus: Haughton.

Pars posterior (M. sterno-atlanticus): Fürbringer.

Ziemlich kräftiger Muskel an der Seite des Halses, der sich vom Schädel bis zur Brust erstreckt und von der Mitte des Halses durch die Rippe des ersten (und zweiten) Halswirbels in zwei getrennte Portionen getheilt ist.

M. dorso-scapularis (Cucullaris) (Taf. LXXV. Fig. 1. 3 cu).

Cucullaris: Buttmann, Pfeiffer, Stannius, Rüdinger.
Dreieckiger oder ungleichseitiger viereckiger Muskel (Trapezius): Meckel.
Trapeze: (Cuvier) Duménil.
Trapezius: Haughton.
Dorso-scapularis (Cuvier): Fürbringer.

Breiter, aber dünner Muskel, der aponeurotisch von der Rückenfascie in der Mittellinie des hinteren Theiles des Halses und des Anfangs des Rückens entspringt und mit convergirenden Fasern nach unten geht, wo er theils an der Spina scapulae sich inserirt, theils mit oberflächlichen Fasern in der Fascie endet, welche den M. deltoides scapularis inferior deckt.

M. collo-scapularis superficialis (Levator scapulae superficialis) (Taf. LXXV. Fig. 1 cssp).

Levator scapulae: Buttmann.
Heber des Schulterblatts: Pfeiffer, Meckel, Stannius.
Acromio-trachelien: Duménil (Cuvier).
Theil des Serratus magnus: Haughton.
Levator anguli scapulae: Rüdinger.
Collo-scapularis superficialis (Levator scapulae superficialis): Fürbringer.

M. thoraci-scapularis superficialis (Serratus superficialis).
Pectoralis minor: Buttmann, Pfeiffer.
Hinterer Theil des inneren grösseren Rückwärtsziehers oder vorderen grossen gezahnten Muskels: Meckel.

Pars posterior m. serrati antici majoris: Rüdinger.
Theil des Grand dentelé: Duménil (Cuvier).
Serrati posteriores: Stannius.
Latissimus dorsi scapulo-costalis: Haughton.
Thoraci-scapularis superficialis (Serratus superficialis): Fürbringer.

vorn und oben an den Hinterrand der Scapula geht, in dessen ganzer Ausdehnung mit Ausnahme des untersten Endes sie sich inserirt.

M. collo-thoraci-suprascapularis profundus (Levator scapulae et serratus profundus) (vergl. Taf. LXXV. Fig. 2 ethspr).

Serrati anteriores: Stannius.
Serratus anticus major: Buttman, Pfeiffer.
Vorderer Theil des inneren grösseren Rückwärtsziehers oder vorderen grossen gezahnten Muskels, Pars anterior m. serrati antici majoris: Meckel, Rüdinger.
Theil des Grand dentelé: Duméris (Cuvier).
Theil des Serratus magnus: Haughton.
Collo-thoraci-suprascapularis profundus (Levator scapulae et Serratus profundus): Fürbringer.

Entspringt in verschiedener Ausdehnung von dem Processus transversus (costalis) des fünften Halswirbels bis zur 1. (Crocodilus acutus) oder 2. Rippe (Alligator lucius), inserirt sich an der Innenfläche des Suprascapulare mit Ausnahme des vordersten Theils desselben und lässt sich in zwei Schichten, eine oberflächliche und eine tiefe zerlegen.

Die tiefe Schicht (ethspr"") ist viel ansehnlicher entwickelt; die Bündel kommen bei Alligator lucius vom 5.—10., bei Crocodilus acutus vom 5.—9. Wirbel.

M. rhomboideus (Taf. LXXV. Fig. 1 rh).
Rhomboidei: Buttman, Pfeiffer, Rüdinger.
Rautenmuskel: Meckel.
Rhomboideus: Stannius, Haughton.
Angulaire de l'omoplate: Duméris (Cuvier).
Rhomboideus: Fürbringer.

M. costo-coracoides (Taf. LXXV. Fig. 2 cc).
Subclavius et Triangularis sterni und Levator secundae superioris costae: Buttman.
Subclavius und Triangularis sterni: Pfeiffer.
Subclavius or triangularis sterni muscle: Rolleston.
Petit dentelé: Duméris (Cuvier).
Pectoralis minor: St annius, Rüdinger.
Pectoralis: Haughton.
Costo-coracoideus: Fürbringer.

Breiter, anschaulicher Muskel an der Unterseite der Brust, der sich aus zwei Portionen zusammensetzt, von denen die laterale vom Vorderrande der letzten Halsrippe (Rippe des neunten Wirbels) und die mediale vom Vorderrande der ersten Sternocostalleiste entspringt. Beide Partien vereinigen sich zu einer homogenen Schicht, die sich breit am ganzen Hinterrande des Coracoids inserirt.

M. pectoralis (Taf. LXXV. Fig. 1. 3 p).
Pectoralis major: Buttmann, Pfeiffer, Stannius, Haughton, Rüdinger, Rolleston, Fürbringer.

Grosser Brustmuskel: Meckel.

M. supracoracoideus (Supracoracoscapularis) (s. Taf. LXXV. Fig. 1. 3 spes).

Deltoides: Buttmann.

Eprioraco-humeralis: Rolleston.

Supracoracoidens (Supracoracoscapularis): Fürbringer.

Ansehnlicher Muskel am vorderen Abschnitte des Coracoideum und am unteren der Scapula, der mit seinem kräftigen unteren, im Bereich des Coracoids befindlichen Theile direct unter der Haut liegt, während der schwächer obere, von der Scapula seinen Ausgang nehmende, von dem M. deltoides scapularis inferior bedeckt ist.

b) Pars scapularis (superior) m. supracoracoscapularis (sp). Schwächer, vom M. deltoides scapularis inferior bedeckte Portion. Ursprung: von der Aussenfläche des unteren Drittels der Scapula hinter der Spina scapulæ. Er vereinigt sich mit der Pars coracoidea zu einem homogenen
Reptilien.

Muskel und inserirt sich am proximalen Theile des Processus lateralis humeri.

M. coraco-brachialis (brevis) (Taf. LXXV. Fig. 2. 4 cb).
Theil des grossen Brustmuskels oder Hakenarmmuskul: Meckel.
Coraco-brachialis: Pfeiffer, Rüdinger, Rolleston.
Pectoralis II: Stannius.
Pectoralis minor: Haughton.
Coraco-brachialis (brevis): Fürbringer.

M. coraco-antebrachialis (Biceps) (Taf. LXXV. Fig. 3 b).
Coracoideus: Buttmann.
Langer Kopf des langen Beugers, langer Kopf des Biceps: Meckel, Pfeiffer.
Biceps: Duméril.
Biceps humeri: Haughton (Crocodilus).
Biceps brachii: Rüdinger, Rolleston.
Coraco-radialis: Stannius.
Biceps humeri (coracoidalis): Haughton (Alligator).
Coraco-antebrachialis (Biceps): Fürbringer.

M. humero-antebrachialis inferior (Brachialis inferior) (Taf. LXXV. Fig. 3 hac).
Caput breve m. biceps: Buttmann.
Kurzer Kopf des Biceps: Meckel, Pfeiffer.
Brachial interne, Brachialis anticus, Brachialis internus: Duméril (Cuvier), Haughton, Rüdinger.
Erster vom Oberarm ausgehender Beuger: Stannius.
Portion b of the Brachiacus (Brachialis anticus): Haughton (Alligator).
Humero-antebrachialis inferior (Brachialis inferior): Fürbringer.

Entspringt von der Lateralbengeseite des Humerus von dem distalen Ende des Processus lateralis an bis herab zum distalen Theile mit
Ausnahme der distalen Epiphyse, vereinigt sich am Ende des Oberarmes mit dem M. biceps und inseriert sich gemeinsam mit ihm mit zwei Sehnenzipfeln am Radius und der Ulna.

M. dorso-humeralis (Latissimus dorsi (Taf. LXXV. Fig. 3 dlh). Latissimus dorsi: Buttman.
Breiter Rückenmuskel: Meckel, Pfeiffer, Stannius, Rüdinger.
Latissimus dorsi (humero-dorsalis): Haughton.
Dorso-humeralis (Latissimus dorsi): Fürbringer.

Entspringt aponeurotisch vom Rücken in der Höhe der vier oder fünf ersten Rückenwirbel und geht mit convergirenden Fasern nach unten und vorn, um sich mit dem M. teres major zu vereinigen und gemeinsam mit ihm nach der Streckfläche des Humerus zu verlaufen, wo er sich zwischen Processus lateralis und medialis inseriert.

M. dorsalis scapulae (Deltoides scapularis superior (Taf. LXXV. Fig. 3 dss).
Unterer Theil des äusseren Schulterblattmuskels (Untergrätenmuskel): Meckel.
Suprascapularis (Supra- et Infraspinatus): Pfeiffer.
Suprascapularis: Stannius.
Infraspinatus: Rüdinger, Haughton (Crocodilus).
Supraspinatus: Haughton (Alligator).

Dorsalis scapulae (Deltoides scapularis superior): Fürbringer.

Entspringt von der vorderen Hälfte der Aussenfläche der Scapula und geht in eine schlanke Sehne über, die zwischen M. deltoïdes scapularis inferior und Caput scapulare laterale externum m. anconaci an den Humerus geht, an dessen Lateralseite sie sich inseriert.

M. deltoïdes scapularis inferior (Taf. LXXV. Fig. 1 dsi).
Deltoïdes superior (Supra- et infraspinatus): Buttman.
Theil der Schulterhälfte des Hebers des Armes (Deltoïdes):
Meckel.
Theil der oberen (Schulterblatt-) Abtheilung des Deltoïdes:
Rüdinger.
Theil des Deltoïdes: Pfeiffer, Haughton.
Zweiter Hebemuskel des Oberarmes: Stannius.
Deltoid: Rolleston.
Deltoïdes scapularis inferior: Fürbringer.

Kräftiger Muskel an der Seite der Schulter. Er entspringt von der Spina scapulae, geht mit schwach convergirenden Fasern nach hinten und endet breit mit der Hauptmasse an der Aussenfläche des Processus lateralis humeri, während eine Anzahl oberflächlicher Fasern unmittelbar in den M. humero-radialis übergehen.

M. scapulo-humeralis profundus (Taf. LXXV. Fig. 4 shpr).
Teres minor: Pfeiffer.
Erster Teres major: Stannius.
Scapulo-humeralis: Rolleston.
Scapulo-humeralis profundus: Förbringer.

M. teres major (Taf. LXXV. Fig. 4 tmaj).
Teres major: Buttmann, Pfeiffer, Haughton, Rüdinger, Rolleston, Förbringer.
Grosser runder Muskel oder kleiner Rückwärtszieher des Oberarmbeins: Meckel.
Zweiter teres major: Stannius.

M. subscapularis (Taf. LXXV. Fig. 4 sbsc).
Subscapularis, Unterschulterblattmuskel: Buttmann, Meckel, Pfeiffer, Stannius, Haughton, Rüdinger, Förbringer.

Entspringt von der Innenfläche der Scapula mit Ausnahme des Suprascapulare, geht mit convergirenden Fasern direct über die Schultergelenkkapsel hinweg zum Processus medialis humeri, wo er sich anheftet.

M. anconaeus.

a) Caput scapulare laterale externum m. anconaei.
Brevi proximum caput m. tricipitis: Buttmann.
Gewöhnlicher (äußerer) langer Kopf des dreiköpfigen Streckers: Meckel.
Portion scapulaire externe du triceps-brachial: Duméry (Cuvier).
Erster langer Kopf des Triceps: Pfeiffer.
(Zweiter) abduzierender vom Schultergurt entstehender Kopf des Streckmuskels des Vorderarmes: Stannius.
Triceps Nr. 1: Haughton (Crocodile).
Triceps longus: Haughton (Alligator).
Caput scapulare laterale externum: Förbringer.

b) Caput coraco-scapulare m. anconaei.
Externum caput m. tricipitis: Buttmann.
Innerer langer Kopf des dreiköpfigen Streckers: Meckel.
Portion scapulaire interne du triceps brachial: Duméry (Cuvier).
Zweiter langer Kopf des Triceps: Pfeiffer.
Anatomie.

Triceps Nr. 2: Haughton (Crocodile).
Triceps longus secundus (accessorius): Haughton (Alligator).
Caput coraco-scapulare m. anconaei: Fürbringer.
c) Caput humeri laterale m. anconaei.
Brevius Caput m. brachiei interni: Buttmann.
(Aeusserer) kurzer Kopf des dreiköpfigen Streckers: Meckel.
Portion humeral externe du triceps brachial: Duménil (Cuvier).
Aeusserer vom Humerus ausgehender Kopf des Streckmuskels des Vorderarmes: Stannius.
Theil des Triceps Nr. 3: Haughton (Crocodile).
Triceps externum: Haughton (Alligator).
Caput humeri laterale m. anconaei: Fürbringer.
d) Caput humeral posticum m. anconaei.
Longissimum caput m. brachiei internum: Buttmann.
Theil des inneren (kurzen) Kopfes des dreiköpfigen Streckers: Meckel.
Theil des Triceps Nr. 3: Haughton (Crocodile).
Theil des Triceps internus: Haughton (Alligator).
Theil der Portion humérale interne du triceps brachial: Duménil (Cuvier).
(Mittler) vom Humerus ausgehender Kopf des Streckmuskels des Vorderarmes: Stannius.
Theil des Triceps Nr. 3: Haughton (Crocodile).
Theil des Triceps internus: Haughton (Alligator).
Caput humeral posticum m. anconaei: Fürbringer.
e) Caput humeral posticum m. anconaei.
Longius Caput m. brachiei interni: Buttmann.
Theil des (inneren) kurzen Kopfes des dreiköpfigen Streckers: Meckel.
Theil der Portion humérale interne du triceps brachial: Duménil (Cuvier).
(Ininnerer) vom Humerus ausgehender Kopf des Streckmuskels des Vorderarmes: Stannius.
Theil des Triceps Nr. 3: Haughton (Crocodile).
Theil des Triceps internus: Haughton (Alligator).
Caput humeral mediale m. anconaei: Fürbringer.

Kräftige Muskelmasse an der Streckseite des Oberarmes, die sich aus zwei Schichten zusammensetzt, von denen die oberflächliche vom Brustgürtel kommende aus zwei Köpfen, Caput scapulare laterale externum und Caput coraco-scapulare besteht, während die tiefere, vom Humerus ihren Ausgang nehmende aus drei Köpfen, Caput humeral laterale, Caput humeral posticum und Caput humeral mediale gebildet ist.
a) Caput scapulare laterale externum m. anconaei (M. anconaeus scapularis lateralis externus, Taf. LXXV. Fig. 4 als) entspringt schnell vom hinteren Rande der Scapula gleich oberhalb der Gelenkhöhle, verläuft zwischen dem M. scapulo-humeralis profundus und dem M. dorsalis scapulae nach hinten und geht dann in einen Muskelbauch über.

b) Caput coraco-scapulare m. anconaei (M. anconaeus coraco-scapularis (Taf. LXXV. Fig. 3 aec). Entspringt mit zwei vollkommen getrennten und von einander entfernten Sehnenzipfeln, von denen der obere schwächere vom Hinterrande der Scapula kommt, während der untere breitere vom Hinterrande des Coracoideum seinen Ausgang nimmt.

c) Caput humerale laterale m. anconaei (M. anconaeus humeralis lateralis (Taf. LXXV. Fig. 1. 4 ahdl). Entspringt vom lateralen Theil der Streckfläche des Humerus, dorsal vom Processus lateralis und den Ursprüngen der Mm. humero-radialis und brachialis inferior bis herab zur distalen Epiphysse.

d) Caput humeralae posticum m. anconaei (M. anconaeus humeralis posticus) (Taf. LXXV. Fig. 4 alhp) entspringt von der Mitte der Streckfläche des Humerus zwischen Caput humeralae laterale und mediale.

e) Caput humeralae mediale m. anconaei (M. anconaeus humeralis medialis) entspringt vom medialen Theil der Streckfläche des Oberarmes, wobei sein Ursprung gleich am Ende des Processus medialis beginnt, wo er auch mit dem M. scapulo-humeralis profundus verbunden ist. Die durch Verbindung sämtlicher Köpfe entstandene Muskelmasse geht in eine breite und theilweise verdickte Endsehne über, die sich am proximalen Abschnitt der Ulna inseriert.

M. humero-radialis (Taf. LXXV. Fig. 1. 4 hr).
Caput longum m. bicipitis: Buttmann.
Eigener kurzer Beuger: Meckel.
(Zweiter) vom Oberarm ausgehender Beuger: Stannius.
Brachialis externus: Haughton (Crocodile).
Portion a of the Brachiaeus (Brachialis externus): Haughton (Alligator).

Mässig starker Muskel an der Aussenseite des Oberarmes, der zwischen M. brachialis inferior und Caput humeralae laterale m. anconaei liegt und mit beiden am Anfange verwachsen ist. Er entspringt mit seiner tiefen Hauptmasse von der Aussenfläche des Humerus im Bereich des dritten Siebentels derselben, gleich distal vom Processus lateralis humeri, während die oberflächliche Schicht, namentlich die oberen Fasern derselben, unmittelbar aus dem M. deltoides scapularis inferior hervorgeht und somit Ursprung von der Scapula nimmt. In der Mitte des Oberarmes geht er in eine schlanke und kräftige rundliche Sehne über, die durch eine besondere, vom Humerus zum M. brachio-radialis sich erstreckende Sehnen- sehlinge nach dem Radius verläuft, an dessen Aussenseite, am Ende des proximalen Drittels derselben, sie sich inserirt.
Anatomie.

Muskeln des Vorderarmes.

M. humero-radialis internus s. Radialis internus (Taf. LXXVI. Fig. 3 a).
Lange Vorwärtswender: Meckel.
Radialis internus: Buttmann.
Pronateur: (Cuvier) Duméril.
Pronator teres: Stannius.
Pronator quadratus: Haughton.
Oberflächlich gelegener, langer runder Einwärtsdreher: Rüdinger.

Dieser Muskel entspringt vom Condylus internus (C. ulnaris s. medialis) und heftet sich an den Radius fast in seiner ganzen Länge fest. Er stellt bei den Crocodilen einen ziemlich kräftig ausgebildeten Muskel dar.

M. ulno-radialis (Taf. LXXVI. Fig. 3).
Carre pronateur: (Cuvier) Duméril.
Pronator teres: Buttmann.
Pronator quadratus: Stannius.
Muskul, welcher dem Pronator quadratus entspricht: Rüdinger.

Kräftig entwickelter Muskel. Derselbe entspringt vom oberen Theil der Beugelfläche der Ulna und inserirt sich am unteren Theil der Beugefläche des Radius.

M. humero-radialis longus s. Supinator longus (Taf. LXXVI. Fig. 1, 2 1).
Long supinateur: Cuvier (Duméril).
Lange Rückwärtswender: Meckel.
Supinator longus: Rüdinger, Stannius, Buttmann.
Supinator radii longus: Haughton.

Bei den Crocodilen sind sowohl der Supinator longus als der gleich zu beschreibende Supinator brevis beide gut entwickelt, besonders gilt dies von dem erstgenannten. Derselbe entspringt vom Condylus externus humeri und inserirt sich an der äusseren Seite in der ganzen Länge des Radius.

M. humero-radialis brevis s. Supinator brevis (Taf. LXXVI. Fig. 3).
Kurze Rückwärtswender: Meckel.
Extensor carpi radialis brevis (?): Stannius.
Supinator brevis: Rüdinger, Buttmann.

Derselbe entspringt neben dem vorhergehenden vom Condylus externus humeri und inserirt sich am oberen Ende des Radius.

M. humero-carpi radialis (Taf. LXXVI. Fig. 2 a).
Aeusserer oder langer Speichenmuskel: Meckel.
Musculus quem parti superiori extensoris digitorum commnnis respondere videbat: Buttmann.
Extensor carpi radialis longus: Stannius (?), Haughton (?).
Abductor pollicis longus (Extensor carpi radialis): Rüdinger.

Ulnarwärts neben dem M. supinator longus gelegen. Er entspringt vom Condylus externus humeri, bedeckt den M. supinator brevis und inserirt sich am proximalen Ende des Os carpi radialis.

M. humero-carpi ulnaris (Taf. LXXVI. Fig. 2 c).
Extensor carpi ulnaris: Rüdinger, Haughton.
Ulnaris externus: Buttmann.
Nr. 4 p. 227 von Meckel (nicht bezeichnet, wohl beschrieben).

Ursprung: am Condylus externus humeri. Insertion: am proximalen Ende des Os carpi ulnare.

M. humero-metacarpalis III, IV, V (s. Extensor digitorum longus (Taf. LXXVI. Fig. 2 b).
Aeusserer Speichenmuskel oder Speichenstrecker der Hand: Meckel.
Extenseur commun: (Cuvier) Dumeril.
Extensor radialis longus: Buttmann.
Extensor digitorum communis: Rüdinger.
Extensor digitorum longus: Haughton, Stannius.

Der M. humero-metacarpalis III, IV, V liegt zwischen dem M. humero-carpi radialis und dem M. humero-carpi-ulnaris. Er entspringt ebenfalls vom Condylus externus humeri und theilt sich, am Carpus angekommen, in drei dünne, platte Sehnen, die zum Theil mit dem M. carpo-phalangei (M. extensor digitorum brevis) verschmelzen, zum Theil an den Metacarpalknochen des dritten, vierten und fünften Fingers sich inseriren.

M. carpo-phalangei (Extensor digitorum brevis (Taf. LXXVI. Fig. 2 d).
Extenseurs courts: (Cuvier) Dumeril.
Gemeinschaftlicher Strecker der Hand: Meckel.
Extensor digitorum brevis: Stannius.
Extensor digitorum communis brevis: Rüdinger.

Derselbe entspringt von den Carpal-, zum Theil auch noch von den Metacarpalknochen und spaltet sich in fünf Zipfel, die sich an den Endphalangen der fünf Finger inseriren.

M. ulno-carpi-radialis (Taf. LXXVI. Fig. 3).
Buttmann p. 27 (wohl beschrieben, nicht bezeichnet).
Extensor pollicis longus: Rüdinger, Stannius.
Extensor carpi radialis brevior (?): Haughton.

Entspringt von der unteren Hälfte der Ulna und inserirt sich am grossen radialwärts gelegenen Carpusknochen der ersten Reihe (Os carpi radiale).
M. carpo-phalangeus I.
Extensor pollicis brevis: Rüdinger.
Buttmann p. 25 (wohl beschrieben, nicht bezeichnet).

Kleiner, dicker Muskel, welcher vom distalen Theil des Os carpi radiale entspringt und an der Daumenphalanx sich inserirt.

M. humero-radialis lateralis (Flexor carpi ulnaris) (Taf. LXXVI. Fig. 1 6).
Innere Ellenbogenmuskeln: Meckel.
Ulnaris internus: Buttmann.
Flexor carpi ulnaris: Rüdinger, Stannius.
Ziemlich kräftig entwickelter Muskel. Er entspringt vom Condylus internus (flexorius) humeri, verläuft der Ulna entlang und inseriert sich am proximalen Theil des Os carpi-ulnare und an dem dort ebenfalls gelegenen accessorischen Bein (Pisiforme).

M. humero-radialis medialis (Flexor carpi radialis) (Taf. LXXVI. Fig. 1 2).
Radialis internus: Buttmann.
Meckel Nr. 6 p. 228 (wohl beschrieben, aber nicht bezeichnet).
Flexor carpi radialis: Rüdinger, Haughton.

M. carpo-phalangei (Flexor digitorum communis brevis) (Taf. LXXVI. Fig. 2 4).
Oberflächlicher gemeinschaftlicher Fingerbeuger: Meckel.
Fléchisseur sublime: (Cuvier) Dumeril.
Flexores sublimis a profundo perforati: Buttmann.
Lange Flexoren der Finger: Stannius.
Flexor digitorum communis sublimis s. brevis: Rüdinger.
Flexor digitorum sublimis: Haughton.

M. humero-ulno-phalangei (Flexor digitorum communis profundus) (Taf. LXXVI Fig. 1 u. 2. 5).
Fléchisseur profund: Cuvier (Dumeril).
Tiefer, gemeinschaftlicher Fingerbeuger: Meckel.
Flexor digitorum profundus: Buttmann.
Flexor digitorum communis profundus: Rüdinger.
Flexor profundus: Stanius.
Flexor profundus digitorum: Haughton.

Entspringt bei den Crocodilen mit drei Köpfen. Der eine Kopf nimmt seinen Ursprung vom Condylus internus humeri, verläuft zwischen dem M. humero-radialis medialis (Flexor carpi radialis) und dem M. humero-radialis lateralis (Flexor carpi ulnaris) und geht am Carpus in eine Sehne über, die sich dann erst mit den beiden anderen Ursprungsköpfen dieses Muskels vereinigt. Der zweite, tiefe Kopf kommt fast von der ganzen Länge der Ulna. Diese beiden Köpfe kann man als die langen Köpfe bezeichnen. Der dritte Kopf endlich, der kurze Kopf, entspringt von den proximalen Enden der beiden grossen Carpusknochen der ersten Reihe und vereinigt sich radialwärts mit der dicken platten Sehne, in welche die beiden langen Köpfe übergehen; dieselbe enthält einen langen dicken Sehnenknorpel. Die gemeinschaftliche Endsehne spaltet sich in vier Zipfel, welche die Sehnen des M. carpo-phalangei (M. flexor digitorum brevis) durchbohren und sich an den Endphalangen inseriren. Von den Endsehnen dieses Muskels entspringen die Mm. lumbricales. (Siehe auch Taf. LXXVI. Fig. 3 a b.)

M. carpo-phalangeus I (Taf. LXXVI. Fig. 1. 8).
Abductor pollicis: Buttmann, Rüdinger.

M. carpo-metacarpalis I (Taf. LXXVI. Fig. 1. 9).
Opponens pollicis: Buttmann, Rüdinger.

Ursprung: von dem Os carpi radiale. Insertion: an der radialen Seite des ganzen Metacarpus I.

M. metacarpo-phalangeus I.

M. pisiformi-phalangeus primus digiti V (Taf. LXXVI. Fig. 1. 7).
Abductor digitii minimi: Rüdinger.
Abducteur du petit doigt: (Cuvier) Duménil.
Abductor digitii quinti: Buttmann.

Entspringt vom Os pisiforme und inserirt sich am medialen Rande der ersten Phalanx des fünften Fingers.

M. carpo-metacarpalis V.
Opponens digitii minimi: Rüdinger.
Opponens primus: Buttmann.

Entspringt vom Os carpi ulnare und inserirt sich am Os metacarpi
digitii V.

M. carpo-phalangeus primus digiti V (Taf. LXXVI. Fig. 1. 3).
Flexor digitii minimi brevis: Rüdinger.
Opponens secundus: Buttmann.
Entspringt am ulnaren Rande des proximalen Theiles des Os carpi radiale und inserirt sich am proximalen Ende der ersten Phalanx des fünften Fingers.

M. metacarpo-phalangens I digiti V.
Adductor digiti minimi: Rüdinger.

Entspringt von den Metacarpalknochen des zweiten und dritten Fingers und inserirt sich an der Radialseite der ersten Phalanx des fünften Fingers.

Bauchmuskeln.

M. obliquus abdominis externus.

Grand oblique: (Cuvier) Duméril.

Aeusserer schiefer Bauchmuskeln: Meckel.

Obliquus externus: Stannius.

Obliquus externus + internus + Serrati: Schneider.

Oblique descendentes: Buttmann.

Obliquus abdominis externus: Gadow.

Von dieser ziemlich geraden Ursprungslinie nimmt der Muskel einen schrägen disto-ventralen Verlauf und inserirt sich mit seiner Pars thoracica dünn fleischig an der Aussenfläche der Sternaltheile der Rippen des 10. bis 16. Wirbels, erreicht aber die Medioventrallinie nicht.

Unter diesem Haupttheile des äusseren schiefen Bauchmuskels liegt eine zweite, mehr bandförmige Muskelschicht, die zwar auch fleischig und stark, aber von bedeutend geringerer Ausdehnung ist. Sie nimmt ihren Ursprung von der Aussenfläche des mittleren Drittels der Rippen, bei *Crocodilus* vom 15. Wirbel an abwärts. In der Höhe des 20. Wirbels verschmilzt sie mit der oberen Schicht, reicht aber innerlich näher an die Medianlinie des Bauches als der äussere Theil und zwar so, dass der in Rede stehende Muskel äusserlich durch die halbe Breite des Rectus mit dessen knöchernen Inscriptionen bedeckt wird.

M. obliquus abdominis internus.

Petit oblique: (Cuvier) Duméril.

Obliquus internus: Stannius, Buttmann.

Subcostalis: Stannius.

Obliquus abdominis internus: Gadow.

Entspringt als platte, gleichmässige Muskelschicht erstens mit einer stark sehnnigen Portion vom vorderen dorsalen Rande des Os pubis und der dort anliegenden letzten breiten verknöcherten Inscription tendinea des Rectus; zweitens mit einer dorsalen Portion und zwar kurzsehnig von
der Vorderinnenfläche der Articulatio pubo-iliaca, sowohl vom Os pubis als auch vom Os ilei; drittens vom dorsalen Vorderende des letztgenannten Knochens. Er inserirt sich mit schräg aufsteigenden Fasern zum grössten Theil etwas mehr median von dem lateralen Rande des ihn äusserlich deckenden Rectus ventralis.

M. transversus abdominis.
Transverse: Cuvier (Dumeril).
Querer Bauchmuskel: Meckel.
Innerer Bauchmuskel: Meckel.
Transversus: Stannius.
Transversalis: Owen.
Transversus ventralis: Schneider.
Transversus abdominis: Buttmann, Gadow.

M. rectus abdominis.
Gerader Bauchmuskel + pyramidenförmiger Muskel: Meckel.
Pyramidalis: Stannius.
Rectus abdominis: Schneider.
Rectus abdominis + pyramidalis: Buttmann.
Rectus abdominis + pyramidalis: Gorski.
Pyramidalis: Rathke.
Rectus abdominis: Gadow.

Der M. rectus abdominis besteht bei den Crocodylen aus mehreren sehr verschiedenen Stücken.

I. Der M. rectus ventralis, der Haupttheil, entspringt sehnnig fleischig vom Sternum und von den Ventralstücken der letzten das Sternum erreichenden Rippen und erstreckt sich mit direct longitudinalen Faserverlaufe in gleichmässiger Breite die Grenze des ventralen Körperdrittels erreichend, bis zum Becken. Er inserirt sich sehnnig-fleischig am Vorderrande des verbreiterten Os pubis und mehr seitlich mit dem M. obliquus externus verwachsen, hauptsächlich an der dem Os pubis dicht anliegenden starken letzten Bauchrippe, die durch Verknöcherung aus der letzten besonders stark gewordenen Inscription tendinea hervorgegangen ist. Dieses Muskelband, welches mit dem der anderen Seite unter Bildung einer Linea alba verwächst, wird durch 7 deutliche Inscriptiones tendineae den Metameren entsprechend in Myocommata getheilt. Diese Inscriptiones sind die schon früher beschriebenen Bauchrippen, die, wie bereits früher erwähnt, aus Bindegewebsknochen ohne jegliche Spur von Knorpelzellen bestehen.
Ich habe schon früher (S. 500) angegeben, dass diese sogenannten Bauchrippen keine knorpelige Anlage besitzen, sondern unmittelbar als Bindegewebsverknöcherungen auftreten und daher nicht als Rippen, sondern als Ossificationen sehnsiger Theile (Inscriptiones tendineae) betrachtet werden müssen, und Gadow's Untersuchungen haben dies aufs neue bestätigt.

II. Vom Vorderrande des Os pubis und der letzten starken Inscription, also gewissermaassen als Fortsetzung des vorigen Theiles, beginnt eine neue fleischige Schicht, die, ventral über dem Os pubis und den Beckenmuskeln hinlaufend, sich nach hinten verschmälert und stark sehnsichtig etwas seitlich von der Symphyse am disto-ventralen Ende des Os ischiisch sich inseriert. Es ist dies der Muskel, welcher von verschiedenen Autoren als M. pyramidalis aufgefasst wird.

M. intercostales.
Intercostaux: (Cuvier) Duméryil.
Zwischenrippenmuskeln: Meckel.
Intercostales: Stannius, Buttmann, Schneider, Gadow.

Die Zwischenrippenmuskeln sind bei den Crocodilen der bedeutenden Stärke der Rippen entsprechend von geringer Ausbildung, wenigstens erstrecken sie sich nur von Rippe zu Rippe und sind daher, obgleich bisweilen ziemlich dick, nur sehr kurz. Sie zerfallen wie gewöhnlich in Mm. externi mit einem dem M. obliquus externus ähnlichen Verlauf und in Mm. interni, mit entgegengesetzter Richtung. Besonders deutlich sind die Mm. interni in der Brustgegend entwickelt und gehen mit dem Schwinden der langen echten Rippen allmählich in den M. obliquus internus über.

M. quadratus lumborum.
Carré des lombes: Cuvier.
Viereckiger Lendenmuskeln: Meckel.
Quadratus lumborum: Stannius, Gadow.
Psoas major: Buttmann.

Ein kräftiger, dickfleischiger Muskel, der von der Innenfläche der vertebralen Rippenstücke, resp. den Processus transversi und den Köpfen selbst der letzten sechs praesaeralen Wirbel, sowie des ersten Sacral-
wirbels entspringt. Der starke Muskel verschmälert sich mit schwach caudo-ventralem Faserverlaufe und inserirt sich mit einem starken Sehnenbande am Trochanter femoris.

M. diaphragmaticus.
Zwerchfell: Tiedemann, Meckel, Stannius.
Bauchfellmuskel: Rathke.

des Leibes weiter nach vorn, wird in ihrem Verlaufe allmählich dicker, erlangt jedoch im Ganzen nur eine mässig grosse Dicke und verschmiult von den Nieren seitwärts mit den angegebenen Aponeurosen der beiden Bauchfellmuskeln. Darauf begiebt sie sich mit diesen vereinigt zur oberen hinteren Seite der Leber, wo sie eine ziemlich grosse Dicke erreicht. Man findet also vor dem Magen eine fibröse, zu den Bauchfellmuskeln gehörige Membran, die von der Speiseröhre gleichsam durchbohrt wird und durch die ein mässig grosser Zwischenraum, der sich zu beiden Seiten und unter der Speiseröhre zwischen dieser und der Leber befindet, aus gefüllt und die Leber an die Speiseröhre befestigt wird.

Der rechtsseitige Muskel ist beinahe an seiner ganzen inneren Fläche, nämlich von seinem hinteren Ende bis zu der Leber hin, vom Bauchfell bekleidet und mässig fest damit verbunden. Der linke Muskel wird aber nur etwas über den hinteren Rand des Magens nach vorn hinaus vom Bauchfell bekleidet; denn weiter nach vorn liegt er der unteren und linken Seite des Magens, der dort keinen Bauchfellüberzug besitzt, dicht an und ist mit ihm durch lockeres Bindegewebe vereinigt. Nach aussen sind beide Muskeln in ihrer ganzen Ausbreitung an die eigentlichen Bauch Muskeln und zwar durch eine dünne Schicht von lockerem Bindegewebe angeheftet. Bei anderen Sauriern kommen, so viel bis jetzt bekannt, ähnliche Muskeln nicht vor. Rathke (24), dem wir eine genaue Beschreibung derselben verdanken, giebt an, dass man sie in morphologischer Hinsicht wohl nicht als dem Zwerchfell der Säugethiere gleich bedeutend ansehen darf, dass sie aber in physiologischer Hinsicht nebst ihrer Aponeurose durch die sie unter einander und auch mit anderen Körpertheilen verbunden sind, als Stellvertreter des Zwerchfells der Säugethiere zu betrachten seien.

Muskeln der hinteren Extremität.

Literatur.

M. ambiens (Taf. LXXVII. Fig. 1. 2., Taf. LXXVIII. Fig. 4., Taf. LXXIX. Fig. 2. 3).

I. Theil.
Rectus femoris und Sartorius partim: Cuvier (Duméril).
Vastus internus: Buttman.
Wohl beschrieben, nicht bezeichnet: Meckel.
Innere Streckermasse.

II. Theil.
Gracilis: Buttman.
Rectus femoris: Gorski.
Sartorius: Haughton, Hair.

I. und II. M. ambiens: Gadow.

Der in Rede stehende Muskel entspringt mit kurzer, starker Schne von der Spina anterior ossis ilei, nahe der Verbindung mit dem Os pubis; der Muskel schwillt schnell zu einem dicken Bauche an, der subcutan auf der Innen-Vorderfläche des Oberschenkels liegend, sich wieder zu einer schmalen, platten Sehne verjüngt, die schräg auf der Vorder-Innenfläche über das Kniegelenk nach dessen Aussenseite läuft und den Complex der Sehnen des M. femorotibialis durchbohrend, unterhalb desselben in die Ursprungsschene des M. peroneus posterior übergeht.

Zu diesem Muskel ist wohl noch folgendes sonderbare Bündel zu rechnen (Theil II.): Es entspringt mit geringer Ausdehnung von der Innenfläche des Os pubis nahe dem Acetabulum, also zwischen dem M. pubischio-femoralis internus, geht dann nach vorn um das Schambein herum und läuft in eine lange, dünne Sehne aus, die sich mit der Insertionsschene des subcutan liegenden M. extensor ilio-tibialis vereinigt.

M. extensor ilio-tibialis (Taf. LXXVII. Fig. 2).
Rectus femoris: Buttman.
Wohl beschrieben, nicht bezeichnet von Meckel.

Adductor flexor: Stannius.
Glutaes maximus: Haughton, Hair.
M. du fascia lata: (Cuvier) Duméril.
Vastus externus: Buttman.
Tensor fasciae latae: Gorski.
Tensor femoris vaginae: Haughton (Alligator).
Glutaes minimus: Haughton (Crocodilus).
Tensor fasciae femoris: Hair.
Extensor ilio-tibialis: Gadow.

Dieser Muskel besteht bei den Crocodilen aus zwei Theilen.

II. Der zweite, bedeutend kleinere und schmalere Theil kommt nach aussen vom Quadratus lumborum kurzsehnig vom vordersten dorsalen Ende des Os ilei, geht medial neben dem Nebenkopfe des M. ambiens lang und dann auf der Vorder-Innenseite des Oberschenkels plattfleischig unter geringer Sehnenentwicklung in den tieferliegenden M. femoro-tibialis über.

M. femoro-tibialis (Taf. LXXVII. Fig. 1., Taf. LXXVIII. Fig. 1., Taf. LXXIX. Fig. 2. 3).

Cruraeus et Vasti: Stannius, Haughton, Hair.
Nicht bezeichnet: Meckel.
Cruralis: Buttmann.
Femoro-tibialis: Gadow.

Entspringt mit einem vorderen, inneren und einem hinteren, äusseren Kopfe; beide entspringen von der Aussen-Vorder- und Innenseite des Femur, vereinigen sich mit einander und mit den Mm. extensor ilio-tibialis und ambiens zu einer starken Sehne, die über das Knie laufend, am Vorderrande des Tibiakopfes inserirt, sie umschliesst dabei die Endsehne des M. ambiens scheidensförmig.

M. ilio-fibularis (Taf. LXXVII. Fig. 2., Taf. LXXIX. Fig. 3).
Biceps cruris: Haughton.
Ohne Namen: Meckel.
Semitendinosus + Semimembranosus: Buttmann.
Gluteus maximus: Gorski.
Abductor fibularis s. flexor abductor cruris s. biceps: Stannius.
Ileo-fibularis: Gadow.

Derselbe besteht bei den Crocodilen aus zwei ganz getrennten schmalen bandförmigen Muskeln. Der erste entspringt mit kurzer Sehne von der Seitenfläche des mittleren Os ilei, dicht neben dem Ursprung der Mm. caudali-ileo-femoralis und extensor ilio-tibialis. Der Haupttheil der Endsehne inserirt sich am Ende des ersten Sechstels der Fibula, an deren Aussen-Vorderkante neben dem Ursprung des M. peroneus anterius, ein kürzerer Sehnenarm geht zur Ursprungssehne des M. peroneus posterior und ein dritter, noch schwächerer zum Caput femorale M. gastrocnemii, wodurch er zur Bildung des lateralen Theiles des Tendo communis externus beiträgt.

Der zweite Theil entspringt dicht neben dem vorigen mit ebenfalls kurzer Sehne vom hintern Ende des dorsalen Iliumkammes und geht schräg über den vorigen fort zum Knie, wo seine Sehne sich mit der des M. extensor ilio-tibialis verbindet.

M. ilio-femoralis (Taf. LXXVII. Fig. 2).
Gluteus: Stannius.
Quadratus femoris (?): Buttmann.
Gluteus medius: Haughton, Hair.
Ilio-femoralis: Gadow.

Innig verschmolzen mit dem M. caudali-ileo-femoralis, dessen vordere Masse er bildet. Man vergleiche daher betreffs der Literatur den
M. caudali-ilio-femoralis (Taf. LXXVII. Fig. 2, Taf. LXXVIII. Fig. 1).
Zweiter Auswärtsroller: Gorski.
Extensor femoris caudalis accessorius: Haughton.
Gluteus minimus: Hair.
Caudali-ilio-femoralis: Gadow.
Derselbe bildet eine dickbauchige Masse, die von der Seitenfläche des Vorder- und Mitteltheiles des Ilium fleischig entspringt, nach aussen von M. ilio-fibularis bedeckt wird, und sich zwischen die beiden Köpfe des M. femoro-tibialis schiebend, auf der ganzen Aussenfläche des mittleren Femurdrittels inserirt.
M. caudi-femoralis (Taf. LXXVII. Fig. 1, 2., Taf. LXXVIII. Fig. 1).
Pyriformis: Buttman.
Pyriformis + Subcaudalis: Stannius.
Femoro-peroneo-coceygeus: Gorski, Hair.
Extensor femoris caudalis: Haughton.
Caudi-femoralis: Gadow.
2) Hierzu kommt ein vorderer und innerer kleinerer Muskel, der fleischig vom Körper und der Rippe (Querfortsatz: Gadow) des zweiten Sacralwirbels und des ersten Schwanzwirbels, ferner vom Hinterinnenrande des Os ischii entspringt und caudalwärts neben dem hinteren Theil des M. publi-ischio-femoralis externus liegend, sich am Trochanter inserirt.
M. flexor tibialis externus (Taf. LXXVII. Fig. 1, 2, 3., Taf. LXXVIII. Fig. 4, Taf. LXXIX. Fig. 2, 3).
Ohne Namen: Meckel.
Triceps flexor cruris partim: Buttman.
Biceps: Hair.
Flexor tibialis externus: Gadow.

M. flexor tibialis internus (Taf. LXXVII. Fig. 1. 2. 3., Taf. LXXVIII. Fig. 4., Taf. LXXIX. Fig. 2).
Demi-nerveux + Demi-membraneux: Cuvier.
Nicht bezeichnet, wohl beschrieben: Meckel.
Triceps flexor cruris partim: Buttmann.
Gracilis: Gorski.
Adductor flexor tibialis s. Semimembranosus: Stannius.
Semitendinosus + Gracilis partim: Haughton.
Gracilis + Semimembranosus + Semitendinosus: Hair.
Flexor tibialis internus: Gadow.

III. Von der Mitte des Margo posterior ossis ischii mit platter und schmaler, jedoch starker Sehne entspringend, inserirt er sich dickfleischig, unter Benutzung der kurzen Sehne des M. flexor tibialis externus in der Kniekehle.

M. ischio-femoralis (Taf. LXXVII. Fig. 1).
Adductores: Buttmann.
Adductor longus: Gorski.
Adductor primus: Hair.
Ischio-femoralis: Gadow.
Entspringt fleischig vom ganzen vorderen, d. h. dem Os pubis zugekehrten Rande des Os ischii. Der Muskel ist gleichmässig bandförmig und inserirt, ausserlich schräg über den Sehnen des M. pubo-ischio-femoralis internus et externus hinlaufend, mit breiter fleischiger Sehne sich an dem Mitteldrittel der inneren Hinterfläche des Femur.

M. pubi-ischio-femoralis externus (Taf. LXXVII. Fig. 1., Taf. LXXVIII. Fig. 1).

Im Allgemeinen:

Die einzelnen Theile:
I. Marsupialis externus (!): Haughton. Obturator externus: Hair.
II. Quadratus femoris: Hair, Stannius.

M. pubo-ischio-femoralis internus (Taf. LXXVII. Fig. 1., Taf. LXXVIII. Fig. 1).

Im Allgemeinen:

Die einzelnen Theile.

III. Iliacus (Darmbeinmuskel)
Iliacus internus: Gorski, Stannius. Iliacus: Hair.

Der in Rede stehende Muskel entspringt bei den Crocodilen mit zwei bis drei Portionen. I. Der vordere Theil kommt fleischig vom grössten Theil der inneren und nach vorn gerichteten Fläche des Os pubis; median daneben bei Alligator noch ein kleines Bündel II., welches sich bald mit dem Haupttheil I. verbindet. Der Insertionstheil des Muskels verbindet sich mit dem des M. pubi-ischio-femoralis externus zu einer starken Sehne, die sich am Trochanter inserirt.

M. pubi-ischio-femoralis posterior (Taf. LXXVII. Fig. 1., Taf. LXXVIII. Fig. 1).
Wohl beschrieben, nicht bezeichnet: Meckel.
Adductores (partim): Buttmann.
Gemellus: Stannius.
Obturator internus: Stannius.
Pubi-ischio-femoralis posterior: Gadow.

M. extensor longus digitorum (Taf. LXXXIX. Fig. 2. 3).
Long exteuseur commun: (Cuvier) Dumeril.
Gemeinschaftlicher Fussheber oder Beuger: Meckel.
Extensor communis digitorum: Haughton.
Extensor longus digitorum: Gadow.

M. tibialis anticus (Taf. LXXVII. Fig. 1., Taf. LXXIX. Fig. 2. 3).
Jambier antérieur: Cuvier.
Vorderer Schienbeinnmuskel: Meckel.
Tibialis anticus (partim): Buttmann, Haughton.
Tibialis anticus: Gadow.

Entspringt sehnig fleischig von der vorderen Fläche des Caput et Collum tibiae, um sich kurz darauf mit dem folgenden Muskel zu vereinigen.
M. peroneus anterior (Taf. LXXXIX. Fig. 2. 3).
Nicht bezeichnet, wohl beschrieben: Meckel.
Peroneus longus: Haughton.
Peroneus anterior: Gadow.

Reptilien.

Springende am Zehenrudimenten sich inserirt, während der grössere, mehr auswärts liegende plantarwärts über das Os calcanei läuft und sich dann wie die Hauptportion bei Alligator verhält.

M. peroneus posterior (Taf. LXXVIII. Fig. 4., Taf. LXXIX. Fig. 2. 3).

Plantaris: Haughton.

Peroneus posterior: Gadow.

M. gastrocnemius (Taf. LXXVII. Fig. 1. 3., Taf. LXXVIII. Fig. 4., Taf. LXXIX. Fig. 2. 3).

Solenmuskeln (Soleus): Meckel.

Outer head of gastrocnemius: Haughton.

Gastrocnemius: Gadow.

Der stärkste, aus zwei Köpfen bestehende, oberflächliche Beuger auf der Hinterfläche des Unterschenkels.

II. Caput tibiale s. internum. Entspringt fleischig von der Hinterfläche des Kopfes und des proximalen Drittels der Tibia. Der breite und etwas flache Muskel inserirt sich: 1) am plantaren und medialen Rande der Basis metatarsi I.; 2) mit dem Haupttheile schräg fibularwärts absteigend und die eine Hälfte des Tendo Achillis bildend (es ist daran noch die Sehne des M. flexor tibialis externus betheiligt), mit breiter Sehne, verstärkt durch die abwärts steigende Endsehne des M. flexor ilio-tibialis externus, wie ein Gelenkband am äusseren Rande des rudimentären fünften Fingers.

M. flexor longus digitorum (Taf. LXXVIII. Fig. 4).

Langer durchbohrender gemeinschaftlicher Zehenbeuger: Meckel.

Flexor longus digitorum: Haughton, Gadow.

Ein mehrköpfiger Muskel, der auf der Hintersite des Unterschenkels nach Fortnahme des vorigen Muskels sichtbar wird. Caput externum. Ein platter, ziemlich breiter Muskel, der von der Aussen- und Hinterfläche
der Fibula entspringt. Am Os astragalo-scaphoideum angelangt, geht er in eine sehr starke Sehne über, die sich mit der noch mächtigeren des anderen Kopfes verbindet, worauf beide zusammen die breite Anfangssehne des M. flexor digitorum communis brevis bilden. Caput internum: entspringt fleischig von der ganzen Hinterfläche der oberen Hälfte der Tibia, von der Kniekehle an ab, bisweilen, wie Crocodilus zeigt, mit dem Caput femoralis des M. gastrocnemius verwachsen.

Die gemeinschaftliche Sehne spaltet sich in drei Zipfel für die 1., 2. und 3. Zehe.

- M. tibialis posticus (Taf. LXXIX. Fig. 2).
- Jambier postérieur: Cuvier.
- Hinterer Schienbeinnuskel: Meckel.
- Tibialis posticus: Gad ow.

- M. interosseus eruris.
- Kniekehlmuskel: Meckel.
- Interosseus eruris: Gad ow.

- M. flexor digitorum brevis.
- Flexor digitorum brevis: Haughton.
- Flexor longus accessorius: Haughton.
- Flexor brevis perforatus: Buttmann.

- M. extensor hallucis proprius (Taf. LXXIX. Fig. 3).
- Kurzer gemeinschaftlicher Zehenstrekker z. Th. Meckel.
- Extensor hallucis: Haughton.
- Extensor hallucis proprius: Gad ow.
Entspringt mit kurzer, platter, ziemlich starker Sehne vom äusseren, dorsalen Rande der distalen Fibula-Hälfte. Insertion: an der proximalen Hälfte des Os metatarsi I.; ein zweiter viel schwächerer Theil verbindet sich mit der zum Os metatarsi I. tretenden Insertionssehne des M. tibialis anticus + Extensor longus digitorum.

Schwanzmuskeln.

M. ilio-ischio-caudalis (Taf. LXXVII. Fig. 1, 2.; Taf. LXXVIII. Fig. 3).
Ischio-coceygien: (Cuvier) Duméril.
Ischio-coceygens: Gorski, Hair.
Ilio-ischio-caudalis: Gadow.

Hatteria (Taf. LXXVIII. Fig. 2., Taf. LXXIX. Fig. 1).
Muskeln der hinteren Extremität.
M. ambiens.
Second and slender head of the Extensor cruris: Günther.
M. ambiens: Gadow.

Entspringt mit starker langer Sehne zusammen mit dem M. pubi-tibialis von der lateralen Ecke des Proc. lateralis pubis. Der Muskel verbreitert sich allmählich, wird in seinem distalen Drittel plattsehnig und verwächst theilweise mit dem medialen Rande des M. extensor ilio-tibialis, über welchen er sich hinschiebt, zum grössten Theil aber inserirt er sich mit Hilfe der Sehne des M. femoro-tibialis an der Vorderfläche des Caput tibiae.
M. extensor ilio-tibialis (Taf. LXXVIII. Fig. 2).
Rectus portion of the Extensor cruris: Günther.
Extensor ilio-tibialis: Gadow.
Ein Muskel mit äusserst breit ausgedehnten sehnnigen Ursprung. Seine Ursprungsssehne bildet nämlich in ihrer vorderen Hälfte die directe Fortsetzung des dorso-lateralen Theiles des M. obliquus externus, ihre hintere Hälfte entspringt von der Aussenfläche des Os ilei und zwar zieht sich diese Ursprungslinie vom Vorderrande der Mitte des Os ilei bis zum Hinterrande des dorsalen Endes dieses Knochens hin. Der breite Muskel vereinigt seine kurze, breite Sehne im distalen Viertel des Oberschenkels mit dem tiefer liegenden M. femoro-tibialis; schwache Verbindung mit der Sehne des M. ambiens.

M. femoro-tibialis (Taf. LXXVIII. Fig. 2.; Taf. LXXIX. Fig. 1).
Femoro-tibialis: Gadow.

M. ilio-fibularis (Taf. LXXVIII. Fig. 2).
Ilio-fibularis: Gadow.

Entspringt vom Hinterrande des dorsalen Endes des Ilium als ein allmählich etwas breiter werdender Muskel, verläuft zur Außenkante des zweiten Viertels der Fibula, wo er ziemlich bedeutend mit dem Ursprung des M. peroneus anterior verwächst.
M. ilio-femoralis (Taf. LXXVIII. Fig. 2).
Iliacus internus: Günther.

Entspringt von dem grössten Theil der Lateralfläche des Os ilei; die dorsale Grenze fällt mit der Ursprungslinie des hinteren Abschnittes des M. extensor ilio-tibialis zusammen. Der dreieckige, sehr dickfleischige und dreikantige Muskel inserirt sich auf der Aussen- und Hinterfläche der proximalen Femurhälften.

M. caudali-ilio-femoralis (Taf. LXXVIII. Fig. 2).
Caudali-ilio-femoralis: Gadow.

Entspringt nirgends vom Ilium, sondern dick von dem zweiten Sacralwirbel und der Rippe (Querfortsatz: Gadow) des ersten Sacralwirbels, weiter caudalwärts geht der Muskel ohne sichtbare Grenze in den vordersten Theil des M. caudali-femoralis über. Er ist zum grössten Theil von dem sich weit caudalwärts erstreckenden Ursprunge des M. flexor tibialis externus dorsal bedeckt (Taf. LXXVIII. Fig. 2. F.t). Insertion: fleischig an der Hinterfläche des Femur, unmittelbar distal vom Trochanter.
M. caudal-femoralis (Taf. LXXVIII. Fig. 2., Taf. LXXIX. Fig. 1).
Extensor femoris caudalis: Günther.
Caudal-femoralis: Gadow.

M. flexor tibialis externus (Taf. LXXVIII. Fig. 2., Taf. LXXIX. Fig. 1).

Part of the great flexor cruris: Günther.

Flexor tibialis externus.

Ursprung: von den Proc. transversi (Rippen!) des 1. bis 5. oder 6. Schwanzwirbels. In der Schenkelbeuge, dort wo Schwanz und Ober- schenkel in einem rechten Winkel zusammenstossen, bildet der Muskel eine dicke, halbfleischige Sehne, von deren Hinterrand sich ein breites Sehnenband zum Tuber ischii beugt, während aus dem Haupttheil der Sehne selbst zwei Muskelbäuche entspringen. 1) Der dorsale, parallel dem N. ischiadicus zum Unterschenkel gehend, nachdem schon am Ende des proximalen Femurdrittels ein fleischiger Muskelkopf vom Tuber ischii herkommend, sich mit ihm verbunden hat. In der Region der Kniekehle Spaltung in zwei distinete Sehnen, deren eine sich am Caput fibulae inserirt, während der andere einen schwachen, oberflächlichen Kopf des Caput internum M. gastrocnemii bildet. 2) Der zweite, ventrale Muskelbauch bildet den M. flexor tibialis internus (Taf. LXXIX. Fig. 1).

Adductor femoris (partim): Günther.

Flexor tibialis internus: Gadow.

Insertion. mit kurzer, rundlicher Sehne an der medialen Kante der Tibia.

M. pubi-ischio-tibialis (Taf. LXXIX. Fig. 1).

Pubi-ischio-tibialis: Gadow.

M. ischio-femoralis (Taf. LXXIX. Fig. 1).

Ischio-femoralis: Gadow.

M. pubi-ischio-femoralis internus (Taf. LXXIX. Fig. 1).

Pectineus: Günther.

Pubi-ischio-femoralis internus: Gadow.

Theil II. Ursprung: von der ganzen Innenfläche des Os pubis.

Theil III. Ursprung: vom vorderen Innenrande des Os ischii, in dessen ganzer Ausdehnung, theilweise dort mit II. verwachsen. Zwischen
beide hindurch tritt aber der N. obturatorius. Beide Theile vereinigen sich dann zu einem ziemlich breiten und dicken Muskel, der auf der Innenfläche des Femur sich an dessen proximalem Drittel inserirt.

M. pubi-ischio-femoralis externus (Taf. LXXVIII. Fig. 2).
The principal Adductor: Gönther.
Pubi-ischio-femoralis externus: Gadow.

Ursprung: von der gesammten Ventralfläche des Os pubis, der das Foramen obturatum schliessenden Membran, und vom grösseren Theile des Os ischii. Insertion: am oberen Ende des Femur, in der Umgebung des Trochanter (Trochanter externus nach Gadow).

M. pubi-ischio-femoralis posterior.
Quadratus femoris: Gönther.
Pubi-ischio-femoralis posterior: Gadow.

Ursprung: vom Hinterrande des Os ischii. Insertion: am Trochanter (Trochanter externus nach Gadow).

M. extensor longus digitorum.
Extensor digitorum communis longus: Gönther.
Extensor longus digitorum: Gadow.

Ursprung: vom Condylus externus femoris. Insertion: in zwei Köpfe gespalten an der Basis metatarsi II. und III.

M. tibialis anticus.
Tibialis anticus: Gönther, Gadow.

Ursprung: von der Vorder- und Innenfläche der Tibia. Insertion: am Os metatarsi I.

M. peroneus anterior.
Peroneus longus (partim): Gönther.
Peroneus anterior: Gadow.

Ursprung: von der Vorderfläche und Aussenkante der Fibula. Insertion: Aussenfläche des Metatarsus II.

M. gastrocnemius.
Gastrocnemius: Gönther.
Soleus: Gönther.
Gastrocnemius: Gadow.

Ursprung mit zwei Köpfen. I. Caput femorale; entspringt von der Endsehne des M. caudi-femoralis, er theilt sich in eine oberflächliche und in eine tiefere Masse. Erstgenannnte geht in die erste Lage sämtlicher plantaren Zehenmuskeln über. Der tiefere Theil vereinigt sich mit dem M. flexor longus digitorum, beide gehen in eine platte, breite Sehne über, die sich dann in zwei Zipfel spaltet; der eine für die Basis phalangis I. digitI I., der andere für die phalanx I. digitI V. II. Caput femorale. Von der Fibular- und Hinterfläche der Tibia. Insertion auf der Plantarfläche des Os tarsale digit. I. und der Basis phal. I. digitI V.

M. flexor longus digitorum.
Flexor digitorum communis longus: Gönther.
Flexor longus digitorum: Gadow.
Reptilien.

M. tibialis posticus.
Tibialis posticus: Gadow.

Ursprung: von der gesammten Hinterfläche der Tibia und in der distalen Hälfte auch von der Fibula. Insertion: an den Basen der Ossa metatarsi I.—III.

M. interosseus eruris.
Interosseus eruris: Gadow.

Zwischen der distalen Hälfte der Tibia und Fibula mit fast querem Verlauf; Richtung disto-tibialwärts, also entgegen dem Ligamentum tibio-fibulare, parallel dem M. extensor hallucis proprius.

M. extensor hallucis proprius.
Extensor hallucis proprius: Gadow.

Ursprung: von der Dorsalfläche der distalen Verbreiterung der Fibula und vom Ligamentum tibio-fibulare. Insertion: an der Tibialseite des Os metatarsi und der Phalanx I. digiti I.

III. Nervensystem und Sinnesorgane.

a. Centralnervensystem.

Ausser den schon erwähnten Schriften sind noch hervorzuheben:

Rückenmark.

Saurier. Bei den Sauriern bildet das Rückenmark wie bei den Schildkröten einen cylindrischen Strang, welcher sich vom Kopfe bis zum äussersten Ende des Schwanzes erstreckt. Der Durchmesser des Rücken-
Anatomie.

marks ist nicht überall derselbe; vielmehr kann man hier wie bei den Schildkröten zwei deutliche Anschwollungen, eine vordere (Intumescentia cervicalis, Nackenanschwelleung) und eine hintere (Intumescentia lumbalis, Lendenanschwelleung) unterscheiden. Zwischen der Medulla oblongata und der Cervicalanschwellung ist auch hier eine geringe, zwischen der Cervical- und Lumbalananschwellung eine beträchtliche Abnahme des Volumens zu bemerken (Pars dorsalis medullae spinalis). Hinter der Pars lumbalis ist eine sehr bedeutende, continuirlich bis an das Schwanzende sich erstreckende Verjüngung des Rückenmarks zu constatiren. Der hinter der Lumbalananschwellung befindliche Abschnitt des Rückenmarks kann als Pars caudalis medullae spinalis bezeichnet werden. Der Querschnitt des Rückenmarks ist im Allgemeinen rundlich-oval.

Untersucht man das Rückenmark auf Querschnitten (Taf. LXXX. Fig. 1—11.), so lässt sich ein deutlicher Gegensatz zwischen grauer und weisser Substanz unterscheiden; nahezu im Centrum des Schnittes ist der Centralkanal (c. f.) sichtbar. Die Gestalt der grauen Substanz ist auf verschiedenen Abschnitten des Rückenmarks entnommenen Querschnitten eine verschiedene. Bei Luerria agilis hat derselbe am Uebergangstheil zwischen der Medulla oblongata und der Nackenanschwelleung mehr oder weniger die Gestalt eines Ovals. (Taf. LXXX. Fig. 1). An der unteren Fläche ist ein etwa bis zur Hälfte der Höhe des Querschnitts eindringender Spalt (Sulcus longitudinalis inferior) zu bemerken (s. l. i.), in diesen senkt sich die Pia mater hinein. Oben ist nur eine sehr kleine, wenig ausgebildete Furche zu bemerken (Sulcus longitudinalis superior) (s. l. s.). Die graue Substanz lässt einen den Centralkanal umgebenden centralen Abschnitt und zwei nach oben und zwei nach unten gerichtete Fortsätze (Hörner) unterscheiden. Die nach unten gerichteten Fortsätze (Unterhörner) sind die grösseren, sie sind an der Verbindungsstelle mit dem centralen Theil etwas verengt. Die nach oben gerichteten Fortsätze (Oberhörner) sind bedeutend kleiner, mit breiter, dem centralen Theile angefügter Basis. Das Rückenmark füllt die Höhlung des Rückenmarkskanals vollständig aus, wo es nicht ausdrücklich erwähnt wird, gilt dasselbe für alle folgende Schnitte.

In der Pars cervicalis (Taf. LXXX. Fig. 2.) hat mit der Vermehrung der Masse des Rückenmarks auch der Querschnitt an Ausdehnung zugenommen, die Gestalt des Querschnittes ist hier eine mehr rundliche. Die graue Substanz hat sich nicht unbedeutend vergrössert, besonders gilt dies für die Unterhörner. Der an der unteren Fläche befindliche Spalt, der Sulcus longitudinalis inferior dringt tief bis in das Centrum des Querschnittes hinein, der Sulcus longitudinalis superior ist auch hier nur sehr schwach ausgebildet. Die Veränderungen, welche das Rückenmark beim Übergang der Pars cervicalis in die Pars dorsalis erleidet, bestehen wesentlich in einer bedeutenden Abnahme, sowohl des ganzen Rückenmarksquerschnittes, als auch insbesondere der grauen Substanz. Der Querschnitt der Pars dorsalis (Taf. LXXX. Fig. 3.) ist wieder mehr oval.
Der Sulcus longitudinalis inferior dringt sehr tief ein, der Sulcus longitudinalis superior hat seine Gestalt nicht verändert. Die graue Substanz hat ihre Gestalt bedeutend verändert, die Unterhörner sind viel kleiner geworden.

Bei dem Uebergang der Pars dorsalis in die Pars lumbalis ändert sich die Gestalt des Rückenmarkquerschnittes sehr wenig (Taf. LXXX. Fig. 4.). Die graue Substanz dagegen nimmt wieder an Umfang zu. Der Sulcus longitudinalis superior und inferior bleibt unverändert. Die Zu- nahme der grauen Substanz bezieht sich vorwiegend auf die Hörner.

An der Pars sacralis (Taf. LXXX. Fig. 5.) ist die graue Substanz sehr vergrößert, dies gilt sowohl für die Hörner als für die centrale Masse, besonders stark sind die Unterhörner. Der Sulcus longitudinalis inferior reicht nicht so tief centralwärts als in den vorigen Schnitten. Auf dem Uebergang der Pars lumbalis in die Pars caudalis nimmt der Querschnitt sehr schnell an Masse ab. Die graue Substanz wird geringer, besonders in den Hörnern, während der centrale Abschnitt an Ausdehnung zunimmt.

Taf. LXXX. Fig. 6. ist ein Querschnitt durch den vorderen Theil der Pars caudalis. Der Centralkanal liegt nicht mehr vollständig in der Mitte des Querschnittes. Der Sulcus longitudinalis inferior reicht viel weniger tief nach innen, der Sulcus longitudinalis superior ist noch eben angedeutet; die Unterhörner sind noch gut entwickelt, bedeutend an Umfang abgenommen dagegen haben die Oberhörner. Noch mehr nach hinten (Taf. LXXX. Fig. 7.) erscheint der Querschnitt immer und umfangreich kleiner, der Sulcus longitudinalis superior ist nicht mehr vorhanden, der Sulcus longitudinalis inferior viel weniger stark entwickelt; Oberhörner und Unterhörner lassen sich indessen noch gut unterscheiden.

Taf. LXXX. Fig. 8. ist ein Querschnitt wieder mehr nach hinten genommen. Im Allgemeinen gleicht er dem vorher beschriebenen, nur überwiegt die graue Substanz immer mehr die weisse.

Am eigentümlichsten verhält sich das Rückenmark in der Schwanzspitze. Das Rückenmark füllt hier nicht mehr die Höhlung des Rückenmarkkanals aus, sondern nimmt nur einen Theil desselben ein. Taf. LXXX. Fig. 9. und 10. sind zwei Querschnitte durch die Spitze des Schwanzes, von welchen Fig. 9. den Schnitt vorstellt, welcher am meisten nach vorn genommen ist. Der Querschnitt ist hier elliptisch geworden und sowohl der Sulcus longitudinalis superior als der Sulcus longitudinalis inferior sind verschwunden. Die graue Substanz ist auf eine geringe, den Centralkanal umgebende Masse beschränkt. Ober- und Unterhörner fehlen gänzlich. Fig. 10. ist ein Schnitt noch mehr nach hinten genommen. Der Querschnitt des Rückenmarkes wird von elliptisch mehr rundlich. Rings um den Centralkanal lagert sich nur eine dünne Schicht von grauer Substanz, dagegen fehlt die weisse Substanz hier vollständig. Untersucht man endlich das Rückenmark ganz am äussersten Ende der Schwanzspitze, dann ergiebt sich, dass nur der Centralkanal vorhanden ist, dagegen

Die graue Substanz ist nicht scharf von der weissen geschieden, sondern der Übergang ist ein allmählicher, indem von der ganzen Peripherie der grauen Substanz Fortsätze strahlenförmig in die weisse Substanz hineingedießen, die Fortsätze anastomosiren mit einander und bilden so ein Masehenwerk. Die weisse Substanz sonders sich wie bei den anderen Wirbeltieren in die Vorder-, Seiten- und Hinterstränge und ist aus der Hauptmasse der longitudinal verlaufenden markhaltigen Fasern zusammengesetzt.

Am Rückenmark sind zwei Häute oder Hüllen zu unterscheiden; die eine, dem Rückenmark eng anliegende, ist die sogenannte Pia mater, die andere, locker der Pia sich anschliessende, ist die sogenannte Dura mater. Die Pia mater ist eine dicke, bindegewebige Haut. An der unteren Fläche des Rückenmarks senkt sie sich in den Suleus longitudinalis inferior ein. Der Länge des Rückenmarks entsprechend, läuft an der unteren Fläche ein grosses Blutgefass; von diesem gehen, wie bei den Schildkröten, in bestimmten Entfernungen einzelne Aeste senkrecht ab, welche mit der Pia mater in die Tiefe des Suleus longitudinalis inferior eindringen. Das Gewebe der Dura mater besteht dagegen mehr aus festen Bindegewebslamellen, besonders an dem äussersten, den Wirbeln zugekehrten Theil. Die innere der Pia zugekehrte Partie besteht aus lockerem Bindegewebe, gebildet aus einem Netzwerk von Fasern, Fibrillenbündeln, Zellen und Zellenfortsätzen, welche kleine Räume zwischen sich lassen. Gegen die Pia hin ist das lockere Bindegewebe der Dura mater, das ausserdem stellenweise sehr stark pigmentirt ist, nicht scharf abgegrenzt, sondern
durch vereinzelte Balken und Bälkchen mit der äusseren Faserlage der Pia verbunden, so dass Pia und Dura nicht durch einen einzigen grossen Raum, sondern durch eine Unzahl kleinerer Räume von einander geschieden sind. Man kann also hier wie bei den Schildkröten sagen, dass die bindegewebige Hülle des Rückenmarks aus zwei festen Lamellen besteht, einer inneren der Pia und einer äusseren der Dura, zwischen welchen beiden sich ein lockeres Gewebe befindet. Besonders in dem hintersten Theil des Schwanzes, wo das Rückenmark nur einen kleinen Theil der Höhlung des Rückenmarkkanals ausfüllt, ist das Maschengewebe zwischen den beiden Hirnhäuten sehr stark entwickelt.

Das Bindegewebe des Rückenmarks. Wie bei den Schildkröten, so dringen auch bei den Sauriern von der Pia mater keine lamellenartigen Fortsätze oder Scheidewände in das Rückenmark hinein. Dagegen sind auch hier die Stütz- und Radialfasern in sehr auffallender Weise entwickelt; indem man auch hier an der ganzen Peripherie des Markes von der Innenschicht der Pia aus sehr feine, zarte, meist starre Fäden sieht, die ziemlich dicht bei einander abgehen und in das Mark eintreten, um bald zu verschwinden. Ausserdem findet man in der weissen Substanz ein Netzwerk feiner Fibrillen und Lamellen.

Berger (100) verdanken wir eine kleine Mittheilung über das Vorkommen eines eigenthümlichen Bandes am Rückenmark der Saurier. An in Chromsäure erharteten Präparaten lässt sich dieses Band schon mit freiem Auge erkennen als ein längsverlaufender Streifen, der von dem übrigen gelb respective gelbbraun gefärbten Rückenmark durch seine weisse Farbe und seinen Glanz absticht. An dem frischen Rückenmarke, so wie an dem in Alcohol gehärteten, lässt sich dieser Streifen weniger deutlich wahrnehmen.

Aus Querschnitten lässt sich entnehmen, dass zwischen der Pia mater und dem Seitenstrange ein Gebilde liegt, das sich durch verschiedene

Nach Schwalbe (Archiv f. mikrosk. Anatomie Bd. IV. 1868) liegt bei denselben die Ganglienmasse nur einseitig den sensiblen Fasern an; letztere weichen nach ihm kaum von der geraden Richtung ab und nehmen deshalb nur sehr spärliche Ganglienzellen zwischen sich. Die Ganglienzellen der Spinalganglien der Eidechse unterscheiden sich nur darin von denen des Frosches, dass bei jenen der Breitedurchmesser die übrigen Durchmesser an Grösse übertrifft, während beim Frosch alle drei Durchmesser wesentlich gleich sind. Der simple, sensible Stamm bildet nach ihm eine Masse und zerfällt nicht in mehrere gesondert eintretende sensible Bündel. Die Nervenzellen der Spinalganglien sind nach Schwalbe immer unipolar.
Gehirn und verlängertes Mark.

Es folgt jetzt nach hinten das paarige Mittelhirn; dasselbe ist an seiner oberen Fläche sowohl von dem vor ihm liegenden Vorderhirn, als auch von dem dahinter liegenden Cerebellum durch eine tiefe Querfurche getrennt. Der obere Abschnitt des Mittelhirns, die Decke desselben, erhebt sich über das Cerebellum und das Zwischenhirn; dabei ist derselbe Abschnitt durch eine Längsfurche in zwei kugelige Hälften geschieden. Die Hälften führen gewöhnlich den Namen „Lobi optici“, auch wohl „Corpora quadrigemina“, geeigneter wäre wohl zu sagen „Corpora bigemina“. Der untere oder basale Abschnitt des Mittelhirns kann wie bei den Schildkröten als Pars basilaris bezeichnet werden. Das Mittelhirn ist hohl, die
Anatomie.

Höhle entspricht der bei den Schildkröten beschriebenen, welche nach Stieda dem Aquaeductus Sylvii zu vergleichen ist, sie kommunizirt nach hinten unterhalb des Cerebellum mit dem vierten, nach vorn mit dem dritten Ventrikel. Die am Boden der Höhle befindliche, mediane Furche ist die directe Fortsetzung des Sulcus centralis des vierten Ventrikels, vorn dringt sie sehr in die Tiefe und reicht fast bis zur Hirnbasis. Vor dem Mittelhirn erhebt sich der Stiel der verhältnissmässig sehr grossen Zirbel, welche letztere eine faltige Oberfläche darbietet.

Mit der basalen Fläche des Zwischenhirns steht die Hypophysis cerebri durch einen dünnen langen Stiel in Verbindung. Die Hypophyse erscheint stark rückwärts gerichtet und zeigt, wie die Epiphyse, eine anscheinend faltige Oberfläche.

Taf. LXXXI, Fig. 1. ist ein Querschnitt durch den vorderen Theil der Medulla oblongata. Mit der Erweiterung des Centralkanals zum vierten Ventrikel ist auch die charakteristische Gestalt der grauen Substanz des Rückenmarks verschwunden. Kleine Nervenzellen liegen mit Ausnahme der peripherischen Schichten über die ganze graue Substanz zerstreut, ohne sich an bekannten Localitäten anzuhäufen. An drei Stellen sind die Nervenzellen grösser, liegen dichter auf einander und bilden sogenannte Nervenkerne. Einer dieser Nervenkerne liegt in dem oberen Theil (Fig. 1. a), die beiden anderen in dem unteren Theil der Medulla oblongata (b, c).
Einige der grossen Nervenzellen liegen auch am Boden und längs des unteren Theiles der Seitenfläche des vierten Ventrikels.

Das Cerebellum bildet die Decke des vierten Ventrikels. Aus einer Reihe von Querschnitten stellt Taf. LXXXI. Fig. 2. einen vor. Der basale Abschnitt des Hinterhirns (b) ist die unmittelbare Fortsetzung der Medulla oblongata oder des Nachhirns, letzterem auch in seinem feineren Bau ähnlich. Der obere Abschnitt des Hinterhirns, das eigentliche Hinterhirn oder Cerebellum zeigt folgenden Bau. Nach innen bemerkt man zuerst das den Ventrikel auskleidende Epithel. Dasselbe ist ein Cylinder epithelium, doch sind die Zellen kegelförmiq oder pyramidal, mit ihrer Basis dem Ventrikel, mit der Spitze der Peripherie zugekehrt. Von der Spitze jeder Zelle geht ein langer feiner Fortsatz aus. Die peripherische Schicht des Cerebellum besteht aus granulirter Grundsubstanz mit äusseren zahlreichen kleinen Kernen, dieselbe bildet die sogenannte Körnerlage der Autoren und ist bei Lacerta ausserordentlich mächtig entwickelt (Taf. LXXXI. Fig. 2. k). Dann folgt nach innen eine ebenfalls mächtige Schicht von mässig grossen Ganglienzellen (g), während der centrale Theil des Cerebellum nur aus granulirter Grundsubstanz besteht. In letzteren verlaufen sehr viele Nervenfasern, dagegen enthält sie keine Nervenzellen. Jederseits des vierten Ventrikels trifft man noch einen Haufen von grossen Ganglienzellen (Fig. 2. g').

Taf. LXXXI. Fig. 3. ist ein Querschnitt durch den mittleren Theil des Mittelhirns. Der Hohlraum des Mittelhirns, der Aquaeductus Sylvii oder Ventriculus lobi optici hat annähernd die Form eines T; der senkrechte Theil ist der tief einschneidende Sulcus centralis, die Fortsetzung des Sulcus centralis des Ventrikels; der quere Theil trennt den basalen Abschnitt des Mittelhirns (die Pars peduncularis) von dem oberen Theil oder der Decke (Lobus opticus). Während nach Sti e d a's Angaben bei den Schildkröten das Mittelhirn wie das Rückenmark ein geschlossenes Rohr bildet, kann man dasselbe nicht mit Bestimmtheit von den Sau riern (Lacerta) sagen, indem hier zwischen den beiden Lobi des Mittelhirns eine ausserst feine Spalte übrig bleibt, durch welche der Ventriculus lobi optici nach aussen mündet. An der Decke des Mittelhirns trifft man eine überaus prägnante Schichtung. Auf Querschnitten folgen auf einander von innen nach aussen gehend: 1) Das Ventriklelepithel (a), 2) dann eine Schicht granulirte Substanz ohne Nervenzellen (b), 3) darauf eine Schicht dicht auf einander gedrängter kleiner Nervenzellen, welche sich längs der ganzen Höhle — auch in der Pars peduncularis — fortsetzt (c), 4) dann eine Schicht quer verlaufender Nervenfasern (d), 5) wieder eine dickere und mehrere dünner Schichten kleiner Nervenzellen, welche sich nicht in der Pars peduncularis fortsetzen (c), zwischen diesen letzteren begegnet man sehr zahlreichen Nervenfasern und 6) schliesslich wieder eine Lage von Grundsubstanz granulirten Aussehens mit einzelnen zerstreuten, spindelförmigen Nervenzellen und längs laufenden Nervenfasern.
Anatomie.

Taf. LXXXI. Fig. 4. ist ein Querschnitt durch das Zwischenhirn und den hinteren Theil des Vorderhirns. In der nächsten Umgebung des dritten Ventrikelns finden sich Nervenzellen in grosser Menge vor. Es sind alle kleine Nervenzellen, die reihenweise in geringer Entfernung vom Ventrikelepithel liegen. In dem unteren Abschnitt des Zwischenhirns, im Tuber einereum liegen die Zellen ebenfalls reihenweise am Ventrikel. Zahlreiche kleine Nervenzellen bilden ferner in den beiden Thalami optici einen ovalen Complex, den Nervenkernen der Thalami (t. o).

Die Nervenfasern des Zwischenhirns sind zum grössten Theil die Fortsetzungen der Bündel der Pars peduncularis, welchen sich eine Anzahl kleiner Faserbündel, die aus den Thalami optici hervorgehen, anfügen.

fasern, in welcher man keine oder nur vereinzelte Ganglienzellen antrifft. Die peripherischen Schichten der Lobi olfactorii enthalten ebenfalls keine Ganglienzellen (Taf. LXXXI. Fig. 5). Zwischen diesen beiden Schichten liegen dann die Nervenzellen ziemlich dicht und zahlreich bei einander, sie hängen sich besonders dort, wo alsbald an der Peripherie die an Ganglienzellen freie Schicht beginnt, auf und zwar hauptsächlich an dem nach oben gekehrten Theil dieser Lobi. Die Ganglienzellen selbst sind gewöhnlich spindelförmig, indessen sind auch sternförmige nicht gar selten.

Das Vorderhirn. Das ganze Vorderhirn, d. i., die beiden Lobi hemisphaericci und der beide unter einander verbindende basale Hirntheil haben zwar einen einfachen, aber nicht überall denselben Bau. Taf. LXXXI. Fig. 6 ist ein Querschnitt durch den vorderen Theil des Lobus hemisphaericus. Der Ventrikel ist überall von einem einschichtigen Cylinderepithelium ausgekleidet. In dem Corpus striatum und in dem ventralen Theil des Vorderhirns liegen die Ganglienzellen überall zerstört. Unmittelbar unterhalb des Ventrikellepithels fangen sie an und reichen fast bis zu der Peripherie, nur die ganz äusserste Schicht ist frei von Ganglienzellen. Anders dagegen verhält sich der dorsale Theil, hier liegen die Ganglienzellen in zwei Haufen sehr dicht bei einander, der übrig bleibende Theil wird nur von in der grannlierten Grundsubstanz eingebetteten Nervenfasern gebildet, die Nervenzellen fehlen hier entweder vollkommen, oder man trifft sie nur vereinzelt an. Auf einem Querschnitt etwas mehr nach hinten genommen (vergl. Taf. LXXXII. Fig. 6) zeigen die Ganglienzellen noch dieselbe Lage, sowohl in dem Corpus striatum als in den übrigen Theilenden Vorderhirns. Die in Rede stehenden Zellen sind meist birnförmig, 0,016 — 0,020 Millim. lang und 0,010 — 0,012 Millim. breit. Dort wo sie in den beschriebenen Haufen bei einander liegen, rücken sie einander so nahe, dass sie einander fast unmittelbar berühren.

Taf. LXXXI. Fig. 7 stellt einen Querschnitt vor, welcher dem Vorderhirn da entnommen ist, wo es mit dem Zwischenhirn in Zusammenhang steht. In dem medialen und oberen Theil des Vorderhirns begegnet man wieder den eigenthümlichen Zellhaufen (a), einem ähnlichen Zellhaufen begegnet man in dem lateralen Theil des Vorderhirns (b), desselbe setzt sich in das Zwischenhirn fort, je mehr man aber dessen Zellencomplex bis in das Zwischenhirn verfolgt, um so weniger dicht liegen die Ganglienzellen zusammen. Auch in dem Corpus striatum haben sich die Nervenzellen in der Umgebung des Ventrikels in dichten Reihen zusammengedrängt, während sie lateralwärts mehr regellos zerstört liegen. Der im Corpus striatum gelegene Zellhaufen setzt sich ebenfalls bis in das Zwischenhirn fort.

Ein ähnliches Bild ungefähre erhält man, wenn man das Vorderhirn auf Querschnitten untersucht, die noch mehr nach hinten genommen sind (vergl. Taf. LXXXI. Fig. 5).

Jeder Lobus hemisphaericus ist rundlich, dieselbe Form besitzt die starke Anschwellung im Seitenventrikel. Abweichend von denen aller übrigen Saurier zeigen sich die Geruchsnerven, insofern nicht nur disrete Tubera ihnen mangeln, sondern auch die Bildung eines hohlen Riechkolben ausbleibt.

Mikroskopisch untersucht ergiebt sich, dass der Körper aus länglichen, einem Cylinderepithel ähnlichen Zellen besteht, die so geordnet sind, dass sie zusammen eine flache Grube von rundlichem Umriss bilden. Der

Ueber den Bau des Gehirns von Hatteria liegen, soweit mir bekannt ist, bis jetzt noch keine Mittheilungen vor. Wenigstens fand ich über dasselbe bei Günther (26) nichts angegeben.

Crocodilo.

Das Rückenmark.

Beim Alligator nimmt das Rückenmark die ganze Länge des Wirbelkanals ein, indem es erst am vorletzten Schwanzwirbel als dünner, rundlicher Faden endet. Es zeigt eine wechselnde Dicke und Gestalt des Querschnittes. Dieser ist fast überall elliptisch, nähert sich aber stellenweise einem Kreise.

Cervical- und Lumbalanschwellung sind, entsprechend dem Abgänge nur dünner Nervenwurzeln, als mässige, spindelförmige Verdickungen vorhanden. Während aber die Lumbalanschwellung schnell und gleichmässig zum Schwanzmark sich verjüngt, nimmt das Halsmark nach der Medulla oblongata direct an Umfang zu, so dass sein senkrechter (dorso-ventraler) Durchmesser in der Gegend des ersten Halsnerven dem der Halsanschwellung gleich kommt, während der quere Durchmesser den des letzteren sogar übertrifft. Dadurch erscheint der Querschnitt hier flach querelliptisch, und rundet sich auf der Höhe der Cervicalanschwellung derart ab, dass sich der renkrechte zum queren Durchmesser wie 2 : 3 verhält.

Hinter dem Abgang der Nerven der Vorderextremität nimmt das Rückenmark an Dicke ab; immer mehr nach hinten nimmt dann der im oberen Abschnitt des Brustmarks fast runde Querschnitt die flach elliptische

Wie bei den Schildkröten und Sauriern, so fehlt auch bei Crocodilen (Alligator) den beiden ersten Spinalnerven die dorsale Wurzel gleichfalls. Dies gilt, wenn man als ersten Spinalnerv das unmittelbar hinter den hinteren Hypoglossuswurzeln entspringende Wurzelbündel anspricht. Möglicherweise ist letzteres noch dem N. hypoglossus zuzurechnen, obgleich, wie Rabl-Rückhard hervorhebt, die Lage nicht gerade dafür spricht. Entscheiden lässt sich die Sache nur durch eine Verfolgung des peripheren Verlaufs dieser Wurzel und ihrer etwaigen Anastomosenbildung mit dem zwölften Hirnnerven. Wie dem auch sein mag, jedenfalls fehlt dieser und der nächst hinteren, sicher als ein Cervicalnerv aufzufassenden Wurzel, der dorsale Theil, und erst am dritten Nerv (dem ersten, der hinterwärts von dem Foramen occipitale magnum aus dem Halsmark entspringt) findet sich eine obere Wurzel als ein einfacher, sehr langer und dünner Faden, der, dicht lateralwärts vom Sulcus intermedius die Pia durchdringend, sehr schräg von vorn oben nach hinten unten zieht. Auch die nächsten drei Cervicalnerven besitzen nur je zwei obere Wurzelfäden. Überhaupt stehen die dorsalen Wurzeln den ventralen an Zahl und Mächtigkeit nach,
was vielleicht mit der geringen Sensibilität der verhornten und verknöcherten Hautbedeckung in Beziehung steht. Berger (100) faßt das von ihm bei den Sauriern beschriebene Rückenmarkband bei *Alligator* (*A. sclerops*) rudimentär entwickelt.

Gehirn und verlängertes Mark.

Das Halsmark geht unmerkbar in das verlängerte Mark über. Dabei wird die dorsale Mittelfurche etwas breiter und seichter, lässt sich aber bis zu der Stelle verfolgen, wo die Oberstränge, unter spitzem Winkel auseinanderweichend, den vierten Ventrikel zu Tage treten lassen. Zu beiden Seiten dieser Furche verlaufen die bereits erwähnten Seitenfurchen, die der Grenze zwischen Ober- und Seitensträngen entsprechen. Dazu gesellen sich noch mehrere oberflächliche Linienzüge, die den Obersträngen ein fein längsgestreiftes Aussehen verleihen. Da wo der vierte Ventrikel beginnt, schwellen sie, sich abrundend, zu zwei Keulen an (Taf. LXXXIII. Fig. 1 b. *Clv*). Die lineare Furche, welche die Oberstränge laterals umschreibt, ist im Bereich der Keulen nicht mehr erkennbar, indem hier die Grenze durch die Wurzeln der zahlreichen Hirnnerven bezeichnet wird. Dagegen tritt bereits in der Höhe der vierten Bündelgruppe dieser Nerven (Taf. LXXXIII. Fig. 3 b. bei XI) eine neue Furche auf. Dieselbe biegt unter einem nach unten convexen Bogen erst auf die laterale, dann auf die ventrale Wölbung der Medulla oblongata (Taf. LXXXIII. Fig. 2 b., Taf. LXXXII. Fig. 1 b. *sl*), zieht dicht an der unteren Trigeminuswurzel entlang, wendet sich dann wieder nach oben und endet an dem tiefen Spalt, der Kleinhirn und Corpora bigemina von einander trennt (Taf. LXXXII. Fig. 1 b. *Sl*). Durch diese Furche erscheint somit die ganze Medulla oblongata und die Brückeinscheibe (Pars commissuralis: Reissner, Stieda) in zwei scharf begrenzte Halb cylindere getheilt: einen ventralwärts gelegenen kleineren, den man nach Rabl-Rückerhard als Pyramidenstrang bezeichnen kann (Taf. LXXXIII. Fig. 2 b. *Pm*), und einen dorsalen, der im Bereich des vierten Ventrikels sich keulenförmig ver dickt. In diesen Keulen (Clavae: Rabl-Rückhard), innerhalb derer sämtliche hintere Hirnnerven, mit Ausnahme des N. abducens und des N. hypoglossus treten, sind offenbar Seiten- und Oberstränge mit einander ver einigt enthalten. Im Querschnitt erscheinen diese Keulen seitlich stark convex gewölbt und von hinten nach vorn an Ausdehnung zunehmend, ihre stärkste Entwickelung fällt in die Höhe der Trigeminuswurzel.

An der ventralen Fläche der Medulla oblongata bemerkt man zunächst eine Fortsetzung der unteren Rückenmarkspalte. Dieselbe verflacht sich allmählich zu einer seichten Furche und endet, eine kurze Strecke gabelig getheilt, in der Höhe der Trigeminusursprüngte (Taf. LXXXIII. Fig. 2 b. *Fmv*). Ausserdem bemerkt man noch mehrere kleinere Furchen, z. B. da, wo der erste Cervicalnerv frei wird, in der Gegend der Hypoglossuswurzeln u. a.

Der Verlauf des Hals- und verlängerten Marks ist, beide als Ganzes genommen, kein geradliniger, sondern stellt einen ventralwärts convexen...
Bogen dar, dessen Beginn mit der Umbiegung der Oberstränge zusammenfällt und der nach vorn in den concaven ventralen Abschnitt der Vierhügelregion übergeht. Im Querschnitt zeigt sich, dass hier die Medulla oblongata ihre grösste Dieke erreicht. Rathke (24) giebt schon an, dass diese Wölbung auch bei Embryonen vorkommt.

Der vierte Ventrikel tritt dadurch zu Tage, dass die keulenförmig verdickten Oberstränge unter einem nach hinten spitzen Winkel aus einander weichen. Die flache convexe dorsale Fläche dieser erscheint, entsprechend dem Zuge der an ihrem lateralen Rande freiwendenden Nervenwurzeln, fein quergerunzelt. Diese Faserrichtung kann man nach Analogie als Fibrae arciformes bezeichnen. Zwischen dem Winkel, den die medialen Ränder der Clavae erzeugen, ist ein dünn, dreiseitiges Markblatt ausgespannt, der Riegel (Obex) nach Rabl-Rückhard (Taf. LXXXIII. Fig. 1b. Ob). Nach vorn setzt sich dasselbe jederseits in einen schmalen, dünnen Markstreifen fort, die beide, den medialen Rand der Clavae umsäumend, divergierend nach vorn laufen, um schliesslich mit den Seitentheilen des Kleinhirns in einer unten näher zu beschreibenden Weise in Verbindung zu treten. (Taf. LXXXIII. Fig. 1b. T.) Der freie Saum dieser Streifen ist medianwärts gerichtet, längs derselben befestigt sich die häutige Decke des vierten Ventrikels. Auch der Längsspaß des Obex wird durch dieses dreieckige Blatt geschlossen, durch einen äusserst zarten, durchsichtigen Übergang der Gefäßhaut, die völlig pigmentfrei und zu beiden Seiten des Spaltes leicht verdickt ist. Man kann nach Rabl-Rückhard die beschriebenen Markstreifen der paarigen Lamelle homolog ansehen, die am menschlichen Gehirn den Seitenrand des vierten Ventrikels begrenzt. Nahe dem lateralen Rande der Clavae treten nun die zahlreichen Gruppen der den hinteren Hirnnerven angehörigen Wurzelfäden zu Tage. Ueber deren Zahl und Ursprung wird bei den Hirnnerven weiter gehandelt werden. Es sind dies bekanntlich die Wurzeln des Glossopharyngeus, Vagus, Accessorius und Hypoglossus. Bei der Betrachtung der dorsalen Fläche der Medulla oblongata, insbesondere der Gegend des vierten Ventrikels, fällt zunächst der sehr breite und platte N. acusticus ins Auge. Derselbe beginnt bereits an der lateralen Wand des Ventrikels als platte Verdickung eines nach dessen Höhle vorspringenden rundlichen Wulstes. Sein vorderes Ende bildet einen unmittelbar unter dem hinteren Ende des Kleinhirns endenden, nach vorn convex abgerundeten Buckel (Taf. LXXXIII. Fig. 1b., 3b). Rabl-Rückhard bezeichnet den Buckel als Tuber nervi acustici (T. a,c), den ganzen Strang als Eminentia acustica (E. a,c). Bei seinem quer nach aussen gerichteten Verlauf liegt der Acusticus, wie schon hervorgehoben, auf der dorsalen Fläche der Clavae. Am Aussenrande derselben angelangt, theilt er sich in zwei fast gleich starke, von oben nach unten abgeplattete Endäste für die betreffenden Theile des Gehörorgans. Unmittelbar vor und unter ihm liegt die dünne, ebenfalls platte Wurzel des N. facialis (Taf. LXXXIII. Fig. 2b s, Taf. LXXXII. Fig. 1). Der Nervus trigeminus erscheint als ein mächtiges Nervenbündel an der
Das Kleinhirn des Alligators zeigt sich nach Rabl-Rückhard, gegenüber dem anderen Reptilien, bedeutend entwickelt. Während es bei den Sauriern bereits eine deutliche mittlere Wölbung besitzt, aber in Bezug auf Grösse und Differenzierung seiner seitlichen Theile sehr zurücktritt, während es bei den Cheloniern eine dünne, aber lange und breite Platte ist, die, mit ihrer zungenförmigen Spitze frei nach hinten gerichtet, den vorderen Theil des vierten Ventrikels überdacht, erscheint das Cerebellum der Crocodilinen, wie längst bekannt ist, in einer Entwicklung, die schon auf Beziehungen zur Organisation höherer Wirbeltiere, insondere der Vögel, hinweist. (Vergl. Taf. LXXXIII. Fig. 1. 2., Taf. LXXXII. Fig. 1.) Von oben gesehen erscheint das Kleinhirn als eine aus der schlank kugelige Bildung. Eine quer verlaufende, seichte, leicht nach hinten convexe Furche theilt äusserlich das Cerebellum in einen breiteren vorderen und einen kleineren hinteren Abschnitt. Nach vorn fällt das Kleinhirn steil ab. An das Mittelstück schliessen sich eigenthümliche Bildungen, den Processus laterales in mancher Beziehung vergleichbar, an. Sie zeigen, von oben gesehen (Taf. LXXXIII. Fig. 1b. Rl') die Form einer von hinten betrachteten menschlichen Ohrmuschel, deren Spitze nach vorn gerichtet ist.

Ueber das Verhalten des Hohlraumes des Kleinhirns und seine Beziehungen zum vierten Ventrikel giebt am besten ein Längsschnitt durch die dorso-ventrale Medianebene Aufschluss (Taf. LXXXIII. Fig. 3a., 3b). Das anscheinend so massige Kleinhirn wiederholt im Wesentlichen nur die blattartige Form niedriger organisirter Reptilien. Es bildet eine zweifach winkelig nach innen umgebogene Platte, die einen in Längsschnitt unregelmässig viereckigen Raum umschliesset. Der vordere spitze Knickungswinkel entspricht der grössensten Wölbung an der Oberfläche des Kleinhirns. Er stellt die Dachfirste des Binnenraumes dar und lässt sich nach Rabl-Rückhard als Fastigium bezeichnen. Die dem Binnenraum zugekehrte Platte zeigt in der Mittellinie eine seichte, aber deutliche Längsfurche. Dieselbe beginnt (Taf. LXXXIII. Fig. 4.) an der Basis der vorderen Dachfläche und lässt sich längs der Mitte des Daches bis zum abgerundeten Rand der hintern Platte verfolgen. Zur Seite dieser wölbt sich jederseits ein Längswulst hervor, die, weiter nach hinten in einen zu sammenfließenden, am hintern Umbiegungswinkel als spitzer Keil enden.

Die Hauptverbindung zwischen den lateralen Theilen der Pars commissuralis mit den Seitenabdachungen der Kleinhirnplatte werden durch
die Crura cerebelli ad medullam oblongatam dargestellt. Sie scheinen als Modellirungen der Seitenwände des Binnenraumes in Gestalt je eines massigen Halbacylinders, der, von hinten unten nach vorn oben ziemend, in die Seitenwände der die vordere Dachfläche darstellenden Kleinhirndecke übergeht (Taf. LXXXIII. Fig. 3 b. Cc). Nach hinten oben von ihm liegt das frei nach vorn hervorspringende Tuber nervi acustici (Fig. 3 b. Ta), nach unten wird er durch eine Längsfurche vom ventralen Theil der Seitenwand abgegrenzt, nach hinten unten geht er in einen höckerigen Längsstrang über, der, zwischen Fascieuli teretes und Eminentia acustica gelegen, zur Bodenfläche des vierten Ventrikels gehört.

Eine zweite Verbindung besteht zwischen dem vorderen Ende des Kleinhirns und dem Dach der Lobi bigemini. In der Medianebene wird dieselbe durch eine dünne, quer ausgespannte Lamelle gebildet, die man nach Rabl- Rückhard als Velum medullare anterius auffassen kann (Taf. LXXXIII. Fig. 3 b).

Der vierte Ventrikel stellt eine weite, nach hinten continuirlich in den Centralkanal des Rückenmarks übergehende, nur von unten, sowie teilweise an den Seiten durch Nervenmasse begrenzte Rinne dar. Dagegen ist ihre hintere Begrenzung, soweit dieselbe nicht vom Kleinhirn gebildet wird, rein häufig, indem hier Pia mater und Ependym nebst Plexus choroideus mit einander verschmelzen und den Hohlraum abschliessen. Sie verschliesst, wie schon erwähnt, auch die spaltförmige Öffnung der Recessus laterales. Unmittelbar vor dem vorderen Rande der Striae acusticae befindet sich noch ein kleiner, länglicher Höcker, der mit seinem längern Durchmesser nach vorn aussen gerichtet ist. Er ist auf Taf. LXXXIII. Fig. 1 b. und Taf. LXXXII. Fig. 1 b. mit t bezeichnet. Am Boden des vierten Ventrikels findet sich eine in der Medianebene verlaufende Längsfurche (Taf. LXXXIII. Fig. 1 b. Slo), zu deren Seite je ein leicht convex in den Hohlraum hervorspringender Längswulst, die Fascieuli teretes, verläuft. Die Längsfurche nimmt allmählich von hinten nach vorn an Tiefe zu und geht so in einen senkrechten Spalt mit abgerundetem und erweitertem Boden über, der später den tiefsten Theil des Aquaeductus Sylvii darstellt. Lateralwärts von den Fascieuli teretes schliessen sich die übrigen zum Theil bereits beschriebenen Modellirungen der Dachfläche der Ventrikelwände an: zunächst im hintern Theile des letzteren ein cylin- drischer Strang, der, bei dem Übergang des Centralkanals in den Venti-ikel beginnend, bis unter die Mitte der Eminentia acustica reicht. Rabl- Rückhard bezeichnet denselben als Eminentia vaginalis (Taf. LXXXIII. Fig. 3. Er). An den Seitenwänden des Ventrikels bemerkt man einen unregelmässigen Strang von mehr als doppelter Breite des oben beschriebenen, der in seinem Verlauf nach vorn höckerig anschwillt und als kleiner, flacher Wulst unterhalb und etwas hinten dem vorderen Ende des Tuber nervi acustici endet (Fig. 3 b. x).

Den oberen Rand der Seitenwände nimmt die Eminentia acustica ein. Im Bereich des Kleinhirns tritt zwischen die Fascieuli teretes und die
Pedunculi cerebelli, an Uebergang des Bodens in die Seitenwände des Ventrikels, in flach rundlicher Hügel zu Tage. Nach oben, aussen und vorn wird derselbe durch eine bogenförmige Furche von den Pedunculi, nach der Mittellinie zu dagegen durch eine seichte Längsfurche vom entsprechen den Fasciculus teres abgegrenzt (Taf. LXXXIII. Fig. 3 b. T. tr). Rabl-Rückhard bezeichnet diesen Hügel als Tuberculum trigemini, weil sich hier eine ansehnliche Gangliengruppe findet, die den Kern der motorischen Quintuswurzel darstellt.

Die Zweihügel erscheinen bei der Betrachtung des Gehirns von oben als zwei länglich runde Körper, die, mit ihrem Längsdurchmesser von innen hinten nach aussen vorn aneinander weichend, durch eine hinten schmale, vorn breitere Längsspalte von einander geschieden werden (Taf. LXXXIII. Fig. 1 b. Ccb). Eine Querfurche grenzt sie nach hinten von dem Kleinhirn ab. Lateralwärts tritt aus ihr der N. trochlearis hervor (Taf. LXXXII. Fig. 1 b. IV). Eine zweite, bedeutend tiefere Spalte scheidet vorn die hinten abfallende Wölbung der Grosshirnhemisphären von ihnen. Zwischen den vorn aneinander weichenden medialen Rändern der Corpora bigemina und dieser Querspalte bleibt ein dreieckiger, mit der Spitze nach hinten gerichteter Raum übrig, innerhalb dessen zwei flache und sehr viele kleinere Hervorwölbungen liegen (Taf. LXXXIII. Fig. 1 b. Ccb). Sie entstehen dadurch, dass die mediale Abdachung der Hügel durch eine seichte Furche unterbrochen wird. Zu beiden Seiten fällt die Wölbung der Zweihügel ohne eine scharfe Grenze in die Seitengegend der Pars peduncularis ab, welche die Fortsetzung der Pars commissuralis nach vorn darstellt. Der Hirnstock zeigt an dieser Stelle eine erhebliche Einschnü rung, die, unmittelbar vor der Trigeminuswurzel beginnend, bis zum Aus tritt des N. trochlearis reicht (Taf. LXXXIII. Fig. 2 b. zwischen III und V).

Die Pars peduncularis erscheint, als Ganzes betrachtet, an ihrer ventralen Fläche von vorn nach hinten concav; nach jener Richtung senkt sie sich allmählich zum Tuber cinereum, nach hinten dagegen in die stark concave Wölbung der Pars commissuralis (Taf. LXXXII. Fig. 1 b. zwischen III. und VI). Der Sulcus medianus ventralis der Medulla oblongata hat bereits auf der Höhe des Trigeminusursprungs aufgehört. Der Scheitel der Coneavität der Pars peduncularis wird durch eine flache Grube ange deutet, zu deren beiden Seiten der Nervus oculomotorius zu Tage tritt (Taf. LXXXII. Fig. 2 b. III).

Betrachten wir jetzt den Hohlraum der Corpora bigemina. Quer- und Längsschnitte geben über ihr Verhalten den besten Aufschluss. Am Längsschnitt bemerkt man (Taf. LXXXII. Fig. 3. b Ccb) unmittelbar vor dem Velum medullare anterius — eine äusserst dünnse Verbindung zwischen Vierhügelddecke und Cerebellum, einen länglich runden Körper, der zur Seite der Medianebene gelegen, den ganzen hinten Theil des Hohlraumes der Lobi bigemini einnimmt. Rabl-Rückhard bezeichnet diese Hügel als Colliculi lorum bigemini. Die directe Fortsetzung des Velum nach vorn ist die dorsale Decke des Hohlraums (Tectum lorum bige-
minorum, Taf. LXXXIII. Fig. 3. b Tlb). Dasselbe ist im hinteren Abschnitt der Lobi mit den Collienni verwachsen. Nach vorn zu treten zunächst zwei längliche, lateralwärts abgerundete, medianwärts zugespitzte Spalten auf, die schliesslich mit ihren einander zugewandten Spitzen verschmelzen, und, mit dem eigenflehten Aquaeductus durch einen senkrechten Spalt in Verbindung tretend, einen im Querschnitt Y-förmigen Hohlraum darstellen. Der Aquaeductus Sylvii erscheint im Querschnitt als ein von lanter nach aussen concaven Seiten begrenztes Fünfleck, dessen ventrale Seite nochmals in der Medianlinie einen tiefen, schmalen, im Grunde wieder abgerundet erweiterten Spalt, den Boden der Wasserleitung besitzt. Auch nach vorn wölben sich die Hügel frei hervor, so dass im Längsschnitt der Hohlraum der Lobi bigemini als ein C-förmiger Spalt erscheint (Taf. LXXXIII. Fig. 3. b), dessen unterer Schenkel nach hinten in den Boden des Aquaeductus übergeht. Allmählich weichen nun, weiter nach vorn, die einander zugekehrten Wölbungen auseinander. Weiterhin verschmelzen die einander zugekehrten Flächen des Tectum und der Pars peduncularis. Durch eine Wucherung des Ependyms entsteht weiter nach vorn je ein leicht zu überschreitender Vorsprung neben der Mittellinie am keulenförmigen dorsalen Ende des Aquaeductus, so dass dieser streng genommen dreispitzig erscheint.

Der dritte Ventrikel des Alligatorgehirns erscheint als ein schmaler, senkrecht gestellter Spalt, zu dessen beiden Seiten die Sehhügel gelegen sind. Seine Begrenzung bilden folgende Theile: hinten unten das sich vom Scheitel der Concavität der Pars peduncularis nach vorn unten zur Hypophysis absenkende, dünnwandige Tuber cinereum, als Boden des Ventrikels; lateralwärts die einander zugekehrten Innenflächen der Sehhügel, vorn zunächst die medialen Verdickungen der Grosshirnmantelflächen der Fissura pallii mit ihrer noch zu besprechenden Commissur, weiter unten das Chiasma nervorum opticorum und die sehr dünne Lamina terminalis (Taf. LXXXIII. Fig. 3. b Ch und Lt). Nach hinten findet sich als Begrenzung eine Commissur, die ihrer Lage nach als Commissura posterior anzusprechen ist, sowie das längliche, runde Conarium. Die Decke des dritten Ventrikels ist rein häutig.

In seinem vorderen obem Theil steht der dritte Ventrikel durch eine ansehnliche, rundliche Öffnung (Taf. LXXXIII. Fig. 3. b PM) jederseits lateralwärts mit einem Hohlraum in Verbindung, der sich in der Grosshirnhemisphäre findet. Starke Plexus chorioidei dringen aus ihm durch jene Öffnungen in diese Hohlräume ein, um sich hier nach allen Richtungen hin auszubreiten. Am Längsschnitt (Taf. LXXXIII. Fig. 3) sieht man zunächst, dass die Decke der Vierhäügel vorn etwas verdickt endet. Daran anschliesst sich ein dünnes Markblatt, kaum so dick wie das Velum medullare anterius. Die knotige Verdickung, mit welcher dasselbe scheinbar vorn aufhört, rührt von einem quer gestellten Saum her, der beiderseits nach vorn rechtwinklig umbiegend, in einen kurzen, geraden Schenkel übergeht. Längs dieses ganzen Saumes befestigt sich die Tela chorioidea.

Weiter nach vorn kehren die Thalami optici ihre obere Fläche frei gegen die Höhlung des Ventrikels und biegen sich gleichzeitig unter Bildung eines vorn offenen Winkels lateralwärts um. Hier schliessen sich die Tractus optici (Taf. LXXXIII. Fig. 2. b Tro) an sie an, und vereinigen sich endlich zu einem Chiasma, welches in der Richtung von hinten nach vorn seine anschaulichste Ausdehnung hat (Taf. LXXXIII. Fig. 2. b, 3. b Ch). Im hinteren Winkel desselben liegt der Trichter mit stark convexer, vorderer Begrenzung (Taf. LXXXIII. Fig. 2. b, 3. b Inf). Die Hypophysis cerebri ist ein Körper von länglich-eiförmiger Gestalt, dessen sich verjüngende Spitze nach hinten gerichtet ist (Taf. LXXXII. Fig. 1. b Hp). Seine ventrale Wölbung erscheint zusammengedrückt, die Seitengrenzen sich durch einen hervorspringenden Wall ab. Die dorsale Fläche ist stark abgeplattet und zeigt in ihrer Mitte eine flache, hügelige Hervorwölbung. Ein Hohlräum der Hypophysis cerebri ist nicht vorhanden. Wenn man auf einem Längsschnitt durch das Gehirn die mediale Wandung der Schädelhügel betrachtet, so fällt der runde Querschnitt eines starken Zapfens ins Auge (Taf. LXXXIII. Fig. 3. Cmth). Derselbe stellt ein Commissurgebilde dar, welches, quer durch den Ventrikel ziehend, die einander zugekehrten Oberflächen der Thalami optici in weiter Ausdehnung verbindet. Es handelt sich hier — wie Rabl-Rückhardt hervorhebt — um ein Homologon der Commissura media höherer Wirbeltiere.

Hinter und vor der Commissura media geht der dritte Ventrikel in den Hohlräum des Trichters über. Im Querschnitt erscheint derselbe spaltförmig mit senkrechten lateralen Wandungen. Nach vorn, jenseits der Commissura media, verbreitert sich der Ventrikel. Diese Erweiterung wird an der Seitenwand des Ventrikels durch eine vom untern vorderen Rande der Commissura media nach oben zum vorderen Saum des Foramen Monroi (Taf. LXXXIII. Fig. 3. b FM) verlaufende, nach vorn convexe Linie angedeutet, die Grenze zwischen Thalami optici und Pedunculi cerebri. Letztere, welche die ventrale Oberfläche der Pars peduncularis bilden und durch keine Trennungslinie von einander geschieden sind, ziehen nach vorn (Taf. LXXXIII. Fig. 2. b Pdc). Die Tractus optici (Taf. LXXXIII. Fig. 2. b, Taf. LXXXII. Fig. 1. b Trs) steigen von oben, aussen und hinten zur ventralen Fläche hinab und schlagen sich dabei um die Pedunculi herum, während letztere, nach vorn, oben und lateralwärts ziehend, zum medialen Theil der Grosshirnemisphere gelangen, um sich in deren Stammlappen einzusenken. So liegen die Pedunculi
Anatomie.

Was die deren gelegenen 72$ treten, trikels cerebri gerundet, Noch sondern förmige (Taf. Seite sich der Name ausstrahlende AVand, Form Beginn mit Letzterer Diese von caven Wand einem salen, senkt. Oberfläche zeigt Hemisphaeren bildet auf erwähnten Schenkel zwischen, So der Hemisphaere erscheint nach vorderen ventrale oben, die ventralwärts abgerundete erscheint nach vorn, die ventrale Oberfläche von der der anderen Seite lateralwärts abweicht. Für diese bogenförmig in die Mantelwand ausstrahlende hufeisenförmige Commissur hat Rabl-Rückhard den Namen „Commissura pallii anterior“ gewählt.

Die Gestalt des Grosshirns ist im Ganzen kegelförmig und erinnert, von oben gesehen, wie Rabl-Rückhard hervorhebt, an einen Rettig mit nach vorn gerichteten doppelten Wurzelenden (Taf. LXXXIII. Fig. 1). Die ventrale Ansicht zeigt mehr die Pfeilspitzen- oder auch Kartenherz-Form mit gespaltener Spitze (Taf. LXXXIII. Fig. 2). Die Hemisphaeren kehren ihre stark gewölbte Oberfläche nach oben und aussen. Die mediale Wand, welche beide einander zukehren, ist abgeplattet, und beide lassen einen tiefen, langen und schmalen Spalt — die Fissura longitudinalis cerebri — zwischen sich, in den sich der schon erwähnte Piafortsatz einsenkt. Vorn fällt die dorsale Wölbung ziemlich plötzlich und steil ab.

Diese Abdachung erscheint von oben als eine Querfurche, welche den Beginn des eigentlichen Riechkolbens andeutet (Taf. LXXXIII. Fig. 1. b Ro). Letzterer ist an der ventralen Oberfläche noch weniger, als an der dorsalen, vom Grosshirn abgesetzt, so dass man nicht wohl von ihm als einem eigenen Gehirnabschnitt (Lobus olfactorius) reden kann. Die hintere Wand jeder Hemisphaere fällt steil nach der Vierhügelregion ab. Sie zeigt eine mehr medianwärts gelegene flache Vertiefung für die Aufnahme der vorderen Wölbung des entsprechenden Lobus bigeminus, einen convexus medialem, einen convexen lateralen Rand, die, ventralwärts zusammenstossend, hier einen nach innen gekrümmten spitznülllichen Fortsatz bilden. Oben gehen sie unter einer convexen Biegung in einander über. So erscheint jede Hemisphaere von hinten als Halbmond, deren obere abgerundete Sicheln dicht an einander stossen, während die ventralen Schenkel zwischen sich den Hirnstock aufnehmen. Mit diesem eben erwähnten Fortsatz überwölbt nun die Grosshirnhemisphaere die laterale Oberfläche des Hirnstockes, insonderheit des Sehhügels. Indem ersterer auf die ventrale Fläche des Grosshirns umbiegend, sich in starker Krümmung gegen die mehr nach vorn gelegene Partie dieser absetzt, bildet er das Rudiment eines Schläfenlappens. Die laterale Wölbung der Hemisphaeren ist an der Umbiegungsstelle zur ventralen, nahe der der Hinterfläche, etwas aufgetrieben, die ventrale Oberfläche selber flach, und
nur hinten stärker gewölbt, da, wo die hintere und seitliche Hirnpartie sich mit medianwärts gerichteter Convexität, in eben beschriebener Weise, neben den Tractus optici, als rudimentärer Schläfenlappen nach innen umbiegt (Taf. LXXXIII. Fig. 2. b). Beide Gebilde, also Hirnstock und Grosshirnhemisphaere, werden hier durch eine tiefe Furche beiderseits von einander abgesetzt.

Über den medialen platten Theil der Hemisphaeren (Taf. LXXXIII. Fig. 3. a und 3. b) theilt Rabl-Rückhard Folgendes mit. Eine seichte Furche zieht vom vorderen Theil, horizontal nach hinten, um sich dann über dem Foramen Monroi nach oben zu krümmen (f). Innerhalb der Krümmung liegt die am meisten abgeplattete und einander genäherte Region der Wände, nach oben und unten weichen sie auseinander. Der vordere Abschnitt ist dadurch ausgezeichnet, dass die Gefässhaut durch zahlreiche stiftförmige Fortsätze mit der Hirnoberfläche inniger, als an anderen Stellen, in Zusammenhang steht, derart, dass letztere nach Entfernung jenes durchlöchert er scheint.

Den Übergang in den Hohlraum der Hemisphaeren stellt eine rundliche Öffnung dar (Taf. LXXXIII. Fig. 3. b FM), die erst nach Entfernung des sie ausstopfenden Plexus chorioideus lateralis deutlich wird. Die Öffnung zeigt einen scharfen, concaven, oberen und unteren Rand; den dorsalen Rand bildet der freie, verdickte Saum der medialen Mantelwand. Längs ihres ventralen Umfangs liegen vor die Hirnschenkel, weiter nach hinten die dorsale Oberfläche der Schüägel. Der vordere Theil dieser Öffnung stellt eine offene Verbindung des dritten Ventrikels mit den Seitenventrikeln dar und ist als Foramen Monroi zu bezeichnen.

Die Seitenventrikel werden dadurch erzeugt, dass jede Halbkugel des Grosshirns sich in zwei Bestandtheile scheidet: einerseits die Mantelgeschicht als eine ziemlich gleichmässig dicke Lamelle, und die, den durch diese ungeschlossenen Hohlraum zum grössten Theil ausfillende, Nervenmasse, den Stammblappen mit dem Corpus striatum. Letzterer lässt sich als eine Verdickung der unteren (ventralen) Mantelregion auffassen, welche als rundlicher Wulst frei nach oben und innen in den Hohlraum hervorspringt, und diesen bis auf einen schmalen Spalt, den Seitenventrikel, ausfüllt.

Während nun nach vorn Mantel und Stammblappen in unmittelbarem Zusammenhang stehen, erhält sich der den Seitenventrikel darstellende Spalt zwischen beiden im Bereich der ganzen hintern Hemisphaerenwand,
desgleichen längs der medialen, oben und teilweise der lateralen. In diesem Sinne lässt sich allenfalls auch von verschiedenen Hörnern der Seitenventrikel reden, deren breitester Theil längs der medialen Wand des Mantels liegt.

Da, wo der mediale Theil des Mantels im Grunde des Spaltes mit dem Stammlappen verschmilzt, zeigt er eine im Querschnitt als Einbuchtung erscheinende Längsfurche. Auch der Stammlappen zeigt an der medialen Binnenoberfläche Besonderheiten. Hier erscheint er im Bereich des Foramen Monroi durch eine nach unten concave Ausbuchtung (Taf. LXXXIII. Fig. 6) scharf von der dorsalen Oberfläche des entsprechenden Thalamus opticus geschieden und halsartig eingeschnürt. Vom Grunde dieser Bucht zieht ebenfalls eine Furche mit nach oben gerichteter Convexität längs der medialen Wölbung des Stammlappens nach vorn und senkt sich von vorn wieder zum Grunde der Ventrikelrinne. Zwischen Mantel und Stammlappen schieben sich überall ausgebreitete Plexus chorioidei ein. Schliesslich sei noch erwähnt, dass die concave Binnenoberfläche des Mantels stellenweise eine mit blossem Auge sichtbare, feine und zierliche Streifung aufweist.

Die Riechnerven ziehen, der eine dicht neben dem andern, nach vorn. Indem sie dabei an einer Stelle etwas auseinander weichen, bilden sie einen Spalt zwischen sich, durch den die beiden zur Arteria ethmoidalis communis verschmelzenden vorderen Aeste der Carotis cerebralis, die in der Fissura longitudinalis der Hemisphären verlaufen, zur Grundfläche der Schädelhöhle hinabsteigen.

b. Peripherisches Nervensystem.

Ausser den schon erwähnten Schriften sind noch hervorzubeheben:

(104) G. Cuvier. Leçons d'anatomie comparee. 2. Ed. publiée par Du méril. 1815.

Die Hauptschrift über den peripherischen Verlauf der Gehirnnerven ist die Abhandlung von J. G. Fischer (105); dieselbe enthält eine sehr genaue Beschreibung der Gehirnnerven sowohl von zahlreichen Arten von Saukern, als von den Crocodilen.
Gehirnnerven.

I. Nervus olfactorius.

II. Nervus opticus.

Die peripherischen Enden dieser beiden Gehirnnerven werden bei den Sinnesorganen (Geruchsorgan und Gesichtsapparat) speziell behandelt werden.

III. Nervus oculomotorius.

Nachdem der N. oculomotorius in die Augenhöhle getreten ist, entsendet er sofort einen starken Zweig:

a) den Ramus pro M. recto superiore (Taf. LXXXII. Fig. 4, III. 1), welcher den M. rectus superior innervirt und in mehrere feine Zweige aufgelöst, in demselben sich verliert.

Als zweiter Ast entsendet er den ziemlich starken
b) Ramus ciliaris (Taf. LXXXII. Fig. 4, III. 2).

Dicht neben demselben entspringt dem N. oculomotorius ein feines, zuerst von Weber entdecktes Ästchen, der
c) Ramus accessorius pro M. recto inferiore (Taf. LXXIX. Fig. 3, III).

Auf seinem weiteren Verlaufe in die Nähe des Knorpelstabes des Septum interorbitale angekommen, theilt sich der Oculomotoriusstamm in drei Äste, nämlich:

d) den Ramus pro M. rect. inf.;
e) den Ramus pro M. obliq. inf.;
f) den Ramus pro M. rect. int.

Das Ganglion ciliare Ant. (Ganglion oculomotorii: Schwalbe). Dasselbe erscheint als eine längliche Anschwellung im Stämme des zweiten Astes des N. oculomotorius (Radix motoria). Als Radix sensitiva tritt ein äusserst zartes Zweigchen des Ramus nasalis aus dem Ramus ophthalmicus nervi trigemini zur Mitte des Ganglion ciliare. Eine Radix sympa-

Zu bemerken ist ferner, dass, während sonst bei allen Sauriern der Ramus ciliaris oculomotorii an Stärke den Ciliarast des Trigeminus bedeutend übertrifft, bei Euprepes Sebae beide von gleicher Stärke sind und das Ganglion selbst so schwach entwickelt, dass es kaum noch eine Anschwellung genannt werden kann. — Angaben über einen zweiten vollständig zum Augapfel verlaufenden Ramus ciliaris trigeminii liegen nicht vor.

IV. Nervus trochlearis.

Frontale anterius anheftet, weggezogen ist, liegen sie zwischen dem Bulbus und dem M. obliquus superior, in dessen Fasern der Nervus trochlearis eindringt, während der Nervus nasalis seinen Weg zur Nasenhöhle fortsetzt.

V. Nervus abducentis.

VI. Nervus trigeminus.

Bekanntlich sind die Zweige des N. trigeminus:
1) Ramus ophthalmicus,
2) Ramus supramaxillaris,
3) Ramus inframaxillaris.

Betrachten wir jetzt die drei Hauptäste des N. trigeminus und ihre Verzweigungen, zuerst den:
1) Ramus ophthalmicus nervi trigemini und seine Aeste.
2) Der erste Ast ist immer der schwächste und in der Regel kaum halb so stark, wie jener der beiden anderen. Gleich nach seinen Ursprung theilt er sich gewöhnlich in zwei Zweige, einen
a) Ramus frontalis, und einen
b) Ramus nasalis.

Bei Salvator Merianae hat nach Fischer der erste Ast keine besondere Öffnung im Schädel, wohl aber ein eigenes längliches Ganglion, welches ausserhalb der Schädelhöhle liegt. Aus demselben gehen drei Nerven hervor:
1) ein Ramus ciliaris, der nach vorn und innen gehend, mit dem stärkeren Ramus ciliaris nervi oculomotorii zum Ganglion ciliare zusammentritt,
2) der stärkste ist der Ramus nasalis;
c) der dritte, der Ramus dorsalis steht an Stärke zwischen den beiden vorigen. Er theilt sich bald nach seinem Ursprung in mehrere Zweige, für die Stirnhaut.

2) Ramus supramaxillaris nervi trigemini und seine Aeste.

Gewöhnlich tritt der N. maxillaris superior ohne Zweige abzugeben durch die vordere und äussere Partie der Kaumuskeln schräg nach vorn und aussen bis hinter das Auge, um dann nach Fischer folgende Aeste abzugeben:

a) Zweige für die Haut der Stirn, für das obere und untere Augenlid.

Die ersteren gehen zugleich mit dem sofort näher zu beschreibenden Ramus recurrens hinter dem Augapfel aus dem zweiten Ast des Nervus trigeminus hervor. Dieselben zeichnen sich durch besondere Feinheit aus. Derselbe Punkt, wo die eben erwähnten Zweige für die Stirnhaut entspringen, ist, anscheinend beständig, auch die Ursprungsstelle mehrerer feiner Nerven für das obere und untere Augenlid.

b) Zwei sympathische Verbindungzweige: der eine an den Ramus palatinus (Ramus vidianus), der andere — Ramus recurrens an den hinteren Hauptstamm des N. facialis selbst.

Nach Abgabe dieser erwähnten Aeste durchbohrt die Fortsetzung des Ramus supramaxillaris als eigentlicher Nervus infraorbitalis von hinten her die äussere Partie des M. depressor palpebrae inferioris (Adductor maxillae superioris: Fischer), um zwischen diesem und dem äusseren Theil der unteren Fläche des Augapfels seinen Weg nach vorn fortzusetzen. Bei diesem Verlauf entsendet er nicht ganz unbeträchtliche Nervenzweige.

Der Hauptstamm tritt dann wieder aus dem M. depressor palpebrae inferioris hervor und wendet sich nach aussen an den Oberkieferknochen, um alsdann abzusenden, oder mit Zweigen des letzteren einen kurzen Nervenstamm zu bilden, der, sowie jene Schlingen, mit dem Plexus sphenopalatinus verglichen werden muss. Der Antheil des Ramus palatinus an diesen Schlingen wird bei Gelegenheit des N. facialis besprochen werden, so wie auch einer späteren Erörterung vorbehalten bleiben muss, welche aus dem Ramus palatinus austretenden Nervenzüge diesen aus dem Trigeminus in denselben übergehenden Nervenfasern entsprechen. Hier nur so viel, dass nur der Ramus communicans posterior nervi palatini cum nervo maxillare superior an diesem Analogon des Sphenoidalgeflechtes Antheil nimmt.

Nach Abgabe dieser Zweige tritt der N. maxillaris superior in den Kanal des Oberkieferns ein und verläuft in ihm als eigentlicher:

f) Nervus alveolaris superior nach vorn bis zur Spitze des Praemaxillare.

Auf diesem Wege gehen zweierlei Zweige aus ihm hervor:

α) Rami dentales, bei den Sauriern ausserordentlich fein,

Nach diesem Forscher geht der Ramus supramaxillaris über die Kau- Muskeln weg zur Augenhöhle und teilt sich, sobald er den Rand des M. temporalis erreicht hat, in zwei Aeste. Der eine derselben, der N. supraorbitalis, der bei weitem stärkste, setzt seinen Verlauf zur Augenhöhle in gerader Richtung fort und durchbohrt, nachdem er dieselbe erreicht hat, den M. depressor palpebrae inferioris. Zwischen dem Bulbus und dem Muskel, demselben eng anliegend, zieht er nach vorn, durch-
bohrt in der Nähe des vorderen Augenwinkels den Muskel nochmals und dringt in das Foramen palatinum ein. Von hier aus setzt er als N. dentalis (s. N. alveolaris superior) seinen Weg im Knochenkanal des Oberkiefers weiter fort, von Stelle zu Stelle Aeste an die Zähne und die äussere Haut der Gesichtsfläche abgebend; diese letzteren treten nach Weber durch die feinen Löcher oberhalb der Zähne durch die Knochenwand des Oberkiefers nach aussen.

Die Verbindungszweige des zweiten Astes des N. trigeminus zum Ramus palatinus n. facialis (Fischer) fand Weber ebenfalls bei Lacerta in Gestalt von 1—2 feinen Reiserchen, die den N. infraorbitalis, während derselbe noch innerhalb des M. depressor palpebrae inferioris verläuft, verlassen.

Der zweite Ast des Ramus supramaxillaris, im Verhältnisse zum N. infraorbitalis, der dorsale, ist viel schwächer entwickelt als der vorhergehende. Er entlässt zwei nahezu gleich starke Zweige, von denen der dorsale nach oben zum hinteren Augenwinkel verläuft, während der ventrale in ziemlich horizontaler Richtung dem unteren Lide zustrebt.

Der dorsale Ast geht nun, ohne sich weiter zu verzweigen, unter die zarte Haut des unteren Augenmuskels. Erst im Bereiche der Glandula lacrymalis zertheilt er sich in verschiedene Reiser. Eins, vielleicht einige derselben von äusserster Feinheit treten in diese Drüse selbst ein. Der eigentliche Stamm, jedenfalls das stärkste der Reiser, dringt in das obere Lid, woselbst er sich noch weiter zertheilt.

Der dritte Ast des Nervus trigeminus, Ramus inframaxillaris, und seine Aeste.

Der dritte Ast des Trigeminus hat, obgleich mit dem zweiten, wie erst erwähnt, aus einem gemeinschaftlichen Ganglion entspringend, doch bisweilen eine besondere Öffnung im Schädel, in dem Falle nämlich, wenn das Ganglion nicht theilweise aus dem Knochen hervorragt. Dann
liegt die Öffnung für den dritten Ast etwas hinter und unter derjenigen für den zweiten Ast, allseitig vom Prooticum begrenzt. Dies ist z. B. der Fall bei *Istiaurus amboinensis*. In den meisten Fällen ist, wie oben angegeben, beiden Aesten eine Öffnung gemeinschaftlich. Von seinem Austritt an ist er sogleich schräg nach aussen und unten gerichtet, von dem Quadratbein abwärts bis zum Unterkiefer verlaufend. Auf diesem Wege entsendet er einen Zweig nach vorne und aussen,

a) für die Haut der Wange (Ramus subcutaneus malaec),
der bei oberflächlicher Betrachtung aus dem zweiten Ast zu stammen scheint, da er demselben an seiner unteren Seite dicht anliegt, und ganz dieselbe Richtung verfolgt, wie jener. Verfolgt man seinen Weg aber in centripetaler Richtung, so überzeugt man sich von seinem Ursprung aus dem dritten Trigeminus-Aste.

Schon gleich nach seinem Ursprung legt sich dieser Nerv dicht an die untere Seite des zweiten Astes an und tritt mit demselben durch die vordere und äussere Partie der Kaumuskeln hindurch schräg nach vorne und aussen, wendet sich, an der Haut über dem Mundwinkel angelangt, um die vordere Grenze der Kaumuskeln herum nach aussen und eine kurze Strecke nach hinten, und breitet sich in der Haut über und hinter dem Mundwinkel aus. Von dieser Form fand Fischer diesen Nerv bei *Lacerta occulta*, *Varanus bengalensis*, *Iguana tabacula*. Bei *Salvator Merianae* und *Salvator nigropunctatus* dringen seine Fasern nur theilweise in die Haut des Mundwinkels ein: seine hauptsächliche Verbreitung erfolgt hier in dem nach Fischer ausnahmsweise bei *Salvator* vorhandenen M. levator oris (vom äusseren Rande des Os frontale posterius schräg nach unten und vor an die Haut des Mundwinkels).

Ausser dem oben erwähnten Nerven, der nur bisweilen an Muskeln sich verbreitet, gehen beständig noch drei Muskelnerven aus dem Stamme des dritten Astes hervor:

b) Ramus temporalis,
für den M. capiti-mandibularis s. temporalis;

c) Ramus pterygoideus externus,
für den M. pterygo-mandibularis s. pterygoideus externus;

d) Ramus pterygoideus internus,
für den M. pterygoideus internus.

Beim allen darauf untersuchten Sauriern fand Fischer diese Nerven in der angegebenen Form.

Beim allen Sauriern tritt der Nervus inframaxillaris nach Entsendung aller Muskelnerven nach aussen und unten an den Oberkieferknochen heran. Bevor er in seinen Kanal tritt, entspringt aus ihm ein Nerv von sehr eigenthümlicher Form. Während der Stamm selbst nämlich nach vorne umbiegt, wendet sich dieser, an seiner hinteren Seite entspringend, nach hinten, und tritt vor dem Gelenk des Quadratum in einen eigenen Kanal des Unterkiefers ein, um in demselben, unter diesem Gelenk durch, nach hinten zu verlaufen.
Fischer fand diesen Nerv bei allen darauf untersuchten Formen, nämlich: Iguana tuberculata, Istiurus amboinensis, Varanus bengalensis und niloticus, Lacerta ocellata, Euprepes Sebac und Chamaeleo vulgaris. Seine Stärke ist indessen so gering und der Knochen an dieser Stelle so fest, dass es Fischer nur bei einer Eidechse (Salvator nigropunctatus) gelang, seine Endigung in der den Unterkiefer bedeckenden Haut zu ermitteln. Er hat diesen Nerv als:

e) Ramus recurrens cutaneus maxillae inferioris bezeichnet.

Nach Abgabe des eben abgehandelten Astes tritt er, am Unterkiefer angelangt, in den Canalis alveolaris inferior ein, um selbst als

f) Nervus alveolaris inferior nach vorn zu verlaufen. Auf diesem Wege verbindet er sich mit einem Zweige vom hinteren Hauptstamme des Nervus facialis, der Chorda tympani, entsendet zahlreiche Zweige aus dem Knochen nach aussen an die den Unterkiefer bedeckende Haut, und schickt endlich regelmässig einen nicht unbeträchtlichen Ast nach innen, der sich theils in der Haut des Unterkiefers als

g) Ramus cutaneus n. alveolaris, theils in dem M. mylo-hyoides als

h) Ramus hyoideus, theils endlich als

i) Ramus lingualis zugleich mit Endzweigen des N. hypoglossus in der Zunge verbreitet.

VII. Nervus facialis.

Die Wurzel des N. facialis (vergl. Taf. LXXXIV. und LXXXV. auf allen Fig. mit 7 bezeichnet) ist immer ein einfacher, feiner Nervenstrang, hart von der Wurzel des N. acusticus von der Seitenfläche des verlängerten Markes entspringend, und immer durch einen eigenen feinen Knochenkanal des Prooticum aus dem Schädel tretend. Bei allen Sauriern bleibt, im Gegensatz zu der Bildung vieler Fische und Amphibien, diese Wurzel von derjenigen des N. trigeminus völlig getrennt und nur in den letzten Endigungen beider Nerven werden oft eigenthümliche Schlingenbildungen beobachtet. Eben aus dem Schädel getreten, bisweilen noch im Knochenkanale selbst, schwillt sie zu einem beständig vorhandenen, zwar nicht grossen, aber immer deutlichen Ganglion an (in allen Abbildungen mit C bezeichnet). Fischer hat dies Ganglion bei allen untersuchten Arten, am grössten bei Iguana tuberculata angetroffen. Gewöhnlich hat dasselbe eine abgestumpft dreieckige Gestalt, und dann gehen aus zwei seiner Ecken die beiden Hauptstämme des N. facialis hervor, während die dritte Ecke der Punkt ist, wo die Wurzel selbst in das Ganglion eintritt. Bei einigen, z. B. bei Iguana (Taf. LXXXIV. Fig. 2 C) ist die Gestalt des Ganglion oval, dann gehen ausser den beiden Hauptstämmen noch andere Nervenzweige aus ihm hervor.
Constant trifft man nämlich zwei aus dem Ganglion des N. facialis austretende Hauptstämme an: 1) einen vorderen, den Ramus palatinus, und 2) einen hinteren Hauptstamm. Unter sämtlichen untersuchten Formen fand Fischer keine, wo einer dieser Hauptstämme fehlte, oder auch nur durch Verschmelzung mit anderen Hirnnerven seinen Ursprung vom N. facialis aufgegeben hätte, — ausser ihnen gehen zuweilen aus dem Ganglion noch Verbindungszweige an das Ganglion petrosum des N. glossopharyngeus hervor, die indessen in der Regel aus dem Ramus palatinus, nur ausnahmsweise aus dem Ganglion entspringen.

1) Der Ramus palatinus (Taf. LXXXIV. Fig. 1 p. p.).

Nach seinem Ursprung aus dem Ganglion wendet er sich nach innen und unten, um dann nach vorn durch einen kurzen Kanal im Sphenoideum basilare (Taf. LXXXIV. Fig. 1) zu verlaufen. Aus ihm hervorgehen, läuft der Ramus palatinus über das Pterygoid nach vorn, fast auf der Mitte des Bodens der Orbita seinen Weg verfolgend. Auf seinem Wege nach vorn entspringen dreierlei Nerven von ihm, nämlich:

a) Verbindungäste zum N. infraorbitalis.
b) Verbindungäste zum N. glossopharyngens.
c) Zweige an die Schleimhaut des Gaumens.

Was zunächst die ersteren dieser Nerven betrifft, so trifft man gewöhnlich zwei Verbindungsstellen zwischen dem Ramus palatinus und dem N. maxillaris superior, die eine, bald nachdem der Ramus palatinus auf das Gaumengewölbe getreten, die zweite im vorderen Abschnitt der Orbita. Die erste ist der

a) Ramus communicans posterior rami palatini cum maxillari superiore (Taf. LXXXI. Fig. 4 gg); die zweite bildet der

b) Ramus communicans anterior rami palatini cum maxillari superiore (Taf. LXXXIV. Fig. 1 g).

Der Ramus communicans posterior zwischen Ramus palatinus und Maxillaris superior erscheint entweder als einfache brückenartige Verbindungsschlinge zwischen beiden Nerven, oder die aus den letzteren
stammenden Elemente treten auf dem Boden der Orbita zu einem kurzen Stamm zusammen, über sein Verhältniss zum Kopftheil des Sympathicus wird nachher gehandelt werden.

Nachdem der Ramus palatinus die hintere Verbindungsschlinge mit dem zweiten Aste des Trigeminus gebildet hat, tritt er meist ohne Abgabe weiterer Zweige mehr oder weniger nahe an das Praesphenoid heran, läuft auf dem Boden der Orbita nach vorn und spaltet sich an der vorderen Grenze derselben in mehrere Zweige. Einige derselben breiten sich in der Schleimhäut des Gaumens auf der vorderen Decke der Mundöhle aus, einer derselben, der Ramus communicans anterior rami palatini cum maxillari superiore tritt beständig nach aussen an den Oberkieferast des Trigeminus heran, um mit ihm eine neue Verbindung von eigenthümlicher Form einzugehen. Ueberall tritt nach Fischer dieser Ramus communicans anterior als wirklicher Ast des Ramus palatinus auf, und indem es wahrscheinlich ist, dass durch den hinteren Verbindungssast Nervenfasern an den N. facialis übergeführt werden, kann hier fast nur von solchen Fasern die Rede sein, die umgekehrt aus dem Ramus palatinus an den Trigeminus hinübertreten. Denn meistens lässt sich dieser vordere Verbindungssast als besonderer Nerv, der nur vom Maxillaris superior Verstärkungsfasern erhält, bis zu seiner endlichen Ausbreitung an der die innere Fläche des Zahnrandes des Oberkiefer s bedeckenden Mundhaut verfolgen.

Der N. facialis steht mit dem N. glossopharyngeus beständig durch zwei Nerven in Verbindung, die sich in Bezug auf ihre Einmündung in den letzteren ziemlich gleich verhalten, sofern sie beide entweder in das Ganglion petrosum sich einsenken oder sich mit dem Stamm des N. glossopharyngeus selbst verbinden. In ihrem Ursprunge sind beide sehr verschieden, der eine, innere, entspringt beständig aus dem Ramus palatinus, höchstens aus dem Ganglion des N. facialis selbst; der andere, äussere, geht immer aus dem hinteren Hauptstamm des N. facialis hervor. Den ersten (auf allen Figuren mit i bezeichnet) hat Fischer mit dem Namen des Ramus communicans internus rami palatini cum N. glossopharyngeo belegt, — der letztere (überall mit e bezeichnet) wird sich von ihm als Ramus communicans externus nervi facialis cum glossopharyngeo unterscheiden lassen.

Der Ramus communicans internus rami palatini cum glossopharyngeo gehört zu den feinsten Nerven der Saurier, zugleich aber auch zu den beständigsten und scheint ganz allgemein zum Plane des Nervensystems der Saurier zu gehören.
Anatomie.

Aus dem Ganglion des N. facialis geht ausser dem Ramus palatinus und einigen unbeständigten Aesten (bei lyrama dem Ramus communicans internus cum n. glossopharyngeo) noch der hintere Hauptstamm des siebenten Paares hervor, an Stärke den Ramus palatinus meist um ein Geringes übertreffend, der eine dem letzteren entgegengesetzte Richtung einschlägt (vergl. Taf. LXXXIV. Fig. 1 f). Er wendet sich nämlich sogleich nach hinten, anfangs der Seite des Schädels dicht anliegend, tritt über die Stapes fort und theilt sich gleich darauf in seine drei Endäste. Vor der Theilung oder an der Theilungsstelle selbst, seltener etwas später, empfängt er den ober- und ausserhalb des Schädels in einem grossen Bogen nach hinten verlaufenden Ramus recurrens aus dem N. trigeminus. Als seine Fortsetzung ist der dritte der aus dem hinteren Hauptstamm des Facialis hervorgehenden Aeste zu betrachten, nämlich der vorhin abgehandelte R. communicans externus cum n. glossopharyngeo. Zieht man diese Verbindungszweige, wodurch der N. facialis einerseits mit dem Glossopharyngeus und dem sympathischen Halstheil, andererseits mit dem N. trigeminus (Ramus recurrens) verbunden ist, ab, so bleiben, als dem eigentlichen Verbreitungsbezirk desselben angehörig, nur zwei Nerven übrig, nämlich:

1) die Chorda tympani,
2) der Muskelast.

Einen als Chorda tympani sich verhaltenden Nerven, der, aus dem hinteren Hauptstamm des N. facialis hervorgehend, sich längs der hinteren

Der Muskelast des N. facialis wird allgemein durch den zweiten der beiden Endzweige gebildet, in die sich nach Aufnahme des Ramus recurrens und nach Abgabe des R. communicans externus cum n. glossopharyngeus der hintere Hauptstamm des N. facialis spaltet. Sein Ursprung aus dem letzteren ist bei der Chorda tympani schon erwähnt. Sein Verlauf, schräg nach aussen und hinten an den M. parietali-mandibularis s. digastricus, sowie seine Verbreitung in diesem und in dem Sphincter colli (M. longissimus colli Bojanus, Fischer), ist so beständig bei allen Aesten dieselbe.

VIII. Nervus acusticus.

Der Nervus acusticus wird genauer bei dem Gehörapparat behandelt werden.

IX. Nervus glossopharyngeus.

Bei allen Sauriern entspringt der N. glossopharyngeus, wie Fischer angiebt, getrennt vom Vagus. Seine feine Wurzel entspringt von der Seitenfläche der Medulla oblongata (Taf. LXXXIV. Fig. 1—3. g) ziemlich nahe hinter dem Ursprung des N. acusticus. Durch ein eigenes feines vor dem des Vagus im Occipitale laterale gelegenes Loch tritt er aus dem Schädel. Obgleich ein getrennter Ursprung des Glossopharyngeus bei allen Sauriern sich nach Fischer nachweisen lässt, bleibt dieser in seinem Verlaufe nur selten frei. Bisweilen verschmilzt er früher oder später mit dem Stamm des N. hypoglossus, um dann als dessen Ast aufzutreten, oft erhält er Verstärkungsbündel vom Vagus, die dann wieder aus einem Stamm als eigenthümliche Zweige hervortreten — überall endlich finden sich die schon oben abgehandelten Verbindungszweige vom N. facialis (Ramus communicans internus rami palatini und Ramus communicans externus n. facialis). — Alle diese fremden Beimengungen machen es oft schwierig zu entscheiden, welche der austretenden Zweige dem N. glossopharyngeus selbst, und welche den benachbarten Hirnnerven angehören.

Das Ganglion petrosum des N. glosso-pharyngeus. Das in Rede stehende Ganglion — durch dessen Vermittelung meist die Vereinigung des Glossopharyngeus mit jenen Verbindungszweigen aus dem Facialis, oft auch mit denjenigen aus dem Vagus erfolgt — liegt, wenn es überhaupt vorhanden ist, in der Bahn des Glossopharyngeus, meist kurz nach dessen Austritt aus dem Schädel, nimmt den von hinten kommenden

a) Kehlkopfzweige,
b) Schlundzweige,
c) Muskelzweige,
d) Zungenzweige.

Einzelne dieser Zweige fehlen hin und wieder, weil es Elemente anderer Nerven sind, die nicht bei allen Eidechsen in der Bahn des Glossopharyngeus verlaufen.

a) Der Kehlkopfzweig (N. laryngeus superior). Bei vielen Sauriern entspringt aus der Bahn des N. glossopharyngeus ein Nerv, der trotz seiner eigen tümlichen Form als ein Analogon des Nervus laryngeus superior n. vagi der höheren Thiere zu betrachten ist.

Beweis für die Richtigkeit des schon von Stannius hervorgehobenen Ausspruches, dass der Ramus recurrens nicht dem Glossopharyngeus, sondern dem Vagus zugehört.

Ein eigentlicher Ramus lingualis des Glossopharyngeus wird bei allen denjenigen Formen vermisst, wo eine Verschmelzung des letzteren mit dem Hypoglossus stattfindet (Istius amboinensis, Agama spinosa, Salvator Merianae, Chamaeleon vulgaris), — die Vermuthung liegt nahe, wie Fischer hervorhebt, dass hier die Zungenfasern des Glossopharyngeus durch den Hypoglossus selbst bis zum Punkt ihrer Ausbreitung geführt werden.

X. Nervus vagus.

Nur selten bleibt der Vagus in seinem ganzen Verlaufe vollständig frei (Euprepes Schae, Lacerta ocellata). In der Regel findet früher oder später eine Verbindung mit dem Glossopharyngeus oder dem Hypoglossus,

Mit dem Hypoglossus dagegen findet immer die erstere Art der Vereinigung statt. Nie wird diese durch Zweige bewirkt, die vom Vagus an den Hypoglossus, oder von diesem an jenen entsandt werden, sondern wo eine Verbindung beider Nerven beobachtet wird, erfolgt diese immer nur dadurch, dass der vordere Stamm des N. hypoglossus, aus einer oder auch beiden Hirnwurzeln desselben gebildet, sich auf eine Strecke mit dem N. vagus vereinigt.

Ein dem Vagus selbst angehöriges Wurzelganglion kommt nicht allen Sauriern zu, und auch da, wo ein solches als unzweifelhaft vorhanden angegeben wird, findet häufig eine Verschmelzung mit dem Glossopharyngeus oder mit dem Halstheil des Sympathicus statt, so dass diese Anschwellung auch als Ganglion petrosum oder als Ganglion cervicale primum gedeutet werden kann.

Die Aeste des N. vagus sind:

a) Der N. laryngopharyngeus. Von allen Zweigen des Vagus zeigen die den Kehlkopf und den Schlund versorgenden Aeste die grösste Nei-
gung, sich von den übrigen Elementen desselben früh zu isoliren. So hält der in Rede stehende Ast nur selten etwas länger mit den übrigen Fasern des Vagus zusammen, erst jenseits des Ganglion trunci austretend — eine Form, welche Fischer nur bei *Euprepes Sebae* und *Lacerta ocellata* beobachtete, welches sich vielleicht aus dem verhältnissmässig kurzen Hals dieser Eidechse erklärt. Ebenso selten erscheint der N. laryngopharyngeus als ein gleich vom Anfange an selbständiger Nerv, enthält aber in diesem Falle auch noch diejenigen Fasern des Vagus, wodurch die am Halse selbst liegenden Eingeweide (Oesophagus und Trachea) versorgt werden.

XI. Nervus accessorius Willisii.

Der Accessorius nimmt mit fünf bis neun, meistens nach hinten an Stärke zunehmenden Wurzelbündeln seinen Ursprung, die in einer schrägen Linie, welche von der Ursprungsstelle des Vagus an der Seitenfläche des
verlängerten Markes entspringend, sich nach hinten und oben zur Rückenfläche desselben bis hinter den zweiten Halsnerven erstreckt.

Auffallend ist eine deutliche Schlinge, welche, vielleicht beständig, die letzte, später nach innen wieder einziehende Endigung dieses Ramus externus mit einem Aste des dritten Halsnerven bildet. Da, wie schon bemerkt, nicht immer der Accessorius mit dem Vagus verschmilzt, so findet auch in Bezug auf den Ursprung des Ramus externus ein doppeltes Verhälttniss statt. Entweder entspringt er aus dem freien, mit dem Vagus nicht verschmelzenden Accessorius selbst, oder er tritt als Ast des Vagus auf.

früher oder später entspringender Ast. Eben diese Verschiedenheit der früheren oder späteren Abzweigung (selbst bei nächstverwandten Thieren) giebt ihm nur die Eigenschaft eines variabeln Astes, nicht aber die eines definitiv differenzirten, selbständigen Hirnnerven.

XII. Nervus hypoglossus.

Der Hypoglossus zeigt sich bei den Sauriern sehr beständig in der Form seiner Wurzeln. Er wird niemals, wie bei den Amphibien, ausschliesslich durch Zweige der Spinalnerven gebildet, und auch nicht wie bei vielen höheren Thieren, lediglich aus eigentlichen Hirnfasern gebildet, sondern immer tragen sowohl besondere Hirnwurzeln, als auch Zweige der Halsnerven zu seiner Bildung bei.

Immer entspringen die Hirnwurzeln des Hypoglossus von der Grundfläche der Medulla oblongata (Taf. LXXXIV. Fig. 1—3 h', h", h'"). Wenn, wie bei Varanus bengalensis der Fall ist, keine Verschmelzung mit dem Vagus vorkommt, so tritt jede dieser Hirnwurzeln durch ein besonderes feines Loch nahe dem Condylus ossis occipitis im Occipitale laterale aus dem Schädel. Auch die beiden ersten, zur Bildung des Hypoglossus beiträgenden Halsnerven besitzen in der Regel nur untere, keine obere Wurzeln und zeigen kein Ganglion. Nur eine schwache Andeutung des letzteren und einer oberen Wurzel findet sich zuweilen beim zweiten Halsnerven. Der dritte Halsnerv dagegen hat immer eine sehr deutliche untere und obere Wurzel, und, analog den übrigen Spinalnerven, ein deutliches Ganglion.

Die Fälle, wo der Hypoglossus mit Vagus und Glossopharyngeus innigere Verbindungen eingeht, sind schon früher erwähnt.

Eine völlige Vereinigung mit dem Vagus ausserhalb des Schädels erfolgt bei Salvator nigropunctatus. Nur theilweise verschmilzt der Hypo-
Mit Glossopharyngeus und Vagus endlich verbindet sich der Hypoglossus zu einem gemeinschaftlichen Stamm bei *Salvator Meriana*.

Welche der drei oder vier Wurzeln des N. hypoglossus zu der Bildung jedes der eben aufgezählten Zweige beitragen, lässt sich auf anatomischem Wege mit Sicherheit nur für den Ramus descendens ermitteln; dessen bei allen Sauriern gleicher Verlauf so eben angegeben ist.

Nach Abgabe seines Ramus descendens zeigt sich der N. hypoglossus fast bei allen Sauriern dieselbe Form. Abweichungen von dem oben abgegebenen Verlauf finden sich nur, wo eine abweichende Bildung der Zungenbein- und Zungen-Muskeln vorkommt.

Ueber die Gehirnnerven von *Hatteria* liegen bis jetzt noch keine Angaben vor.

Crocodile.

Ueber die beiden ersten Gehirnnerven — den N. olfactorius und den N. opticus — wird später ausführlicher bei den Sinnesorganen gehandelt werden.
III. Nervus oculomotorius.

Bei den Crocodilen (Crocodilus biporatus) zeigt nach Fischer der N. oculomotorius folgendes Verhältniss:

a) Ramus pro M. recto externo — am weitesten nach innen gelegen;

b) Ramus pro M. obliquo inferiori — weiter nach aussen gelegen;

c) Ramus pro M. recto inferiori — noch mehr nach aussen gelegen;

Die Unterschiede zwischen Crocodilen und Sauriern bestehen also — wie Fischer hervorhebt, darin: 1) dass hier kein eigenes Ganglion ciliare im Stamme des vom N. oculomotorius abgegebenen Ramus ciliaris sich findet, sondern dass der ganze Stamm des dritten Paares vor dem Abgang des Ciliarnerven eine ganglienartige Anschwellung zeigt, an der die Fasern des N. trigeminus keinen oder nur einen sehr geringen Antheil nehmen; 2) dass der aus dem Ganglion hervorgehende Truncus ciliaris nicht wie bei den Eidechsen neben dem N. opticus, sondern grösstenteils erst viel weiter nach aussen in den Augapfel eindringt.

IV. Der Nervus trochlearis s. pathetiens und VI. der Nervus abducens verhalten sich im Allgemeinen wie bei den Eidechsen.

V. Nervus trigeminus.

Der N. trigeminus erscheint als mächtiges Nervenbündel an der Seite der Medulla oblongata, gerade unterhalb des Cerebellum, am vorderen Ende der keulenförmig verdickten Corpora restiformia. Nach Fischer entspringt bei Crocodilus biporatus der Trigeminus mit vier gesonderten Wurzeln. Eine, die stärkste von allen, ist ihrem Ursprunge nach die vordere oder untere, die drei anderen entspringen höher, in gleicher Linie.
Anatomie.

Dagegen giebt Rabl-Rückhard an, dass bei Alligator der N. trigeminus mit zwei Wurzeln entspringt, einer dieken Oberen, sich aus zahlreichen rundlichen Bündeln zusammensetzende, und einer viel düneren, platten, unteren, die aus wenigen Bündeln besteht (Taf. LXXXIII. Fig. 1. b V). Diese Nervenbündel sind durch ein äusserst derbes Bindegewebe, welches stellenweise schwarz pigmentirte Fortsätze zwischen die Gruppen sendet, zu einem gemeinschaftlichen Stamm verbunden. Quer nach aussen und vorn gerichtet, schwillt der Stamm alsbald zu dem ansehnlichen Ganglion Gasseri an. Fischer's untere Trigeminuswurzel beim Crocodilus entspricht der gleichnamigen des Alligator bei Rabl-Rückhard, von denen durch Fischer beim Crocodilus beschriebenen drei oberen Wurzeln, vermochte Rabl-Rückhard bei Alligator nichts zu finden. Ein Querschnitt des Stammes vor der Bildung des Ganglion zeigt nach Rabl-Rückhard vielmehr, selbst wenn man ihn unmittelbar am Corpus restiforme führt, bereits eine compaete, aus etwa acht grösseren rundlichen, gleich dicken Bündeln zusammengesetzte dorsale, und eine dazu in scharfem Gegensatz stehende, platte ventrale Wurzel. Letztere legt sich einfach an die ventrale Fläche des Ganglions an, ohne irgend welche Verbindungen mit den anderen Bündeln oder mit diesem selber einzugehen, und biegt so in die Bahn des aus dem hinteren Umfange des lateralen Randes des Ganglion hervorgehenden dritten Trigeminus-Astes ein, dessen untere kleinere Partie bildend.

Die Hauptsätze des N. trigeminus sind: der
1) Ramus ophthalmicus;
2) Ramus supramaxillaris;
3) Ramus inframaxillaris.

Auss der diesen drei gewöhnlichen Asten kommen bei den Crocodilen noch zwei kleinere Nebenzweige vor. Der eine, ein feiner Nerv kommt aus der Portio minor und innervirt wie bei den Saurnien den M. depressor palpebræ inferioris (M. adductor maxillae superioris: Fischer). Der zweite accessorische Ast ist der Ramus recurrens (Taf. LXXXV. Fig. 1 a), welcher bei den Saurnien aus dem Ramus supramaxillaris, bei den Crocodilen dagegen aus dem Ganglion selbst hervorgeht.

Der Ramus ophthalmicus und seine Aeste.

Die beiden Aeste des Ramus ophthalmicus bei den Crocodilen wie bei den Saurnien sind:

a) der Ramus frontalis,
b) der Ramus nasalis.

Die Crocodile zeigen indessen insofern eine abweichende Bildung, als nicht alle zur Stirnhaut über dem Auge sich vertheilende Fasern von einem einfachen Ramus frontalis ausgehen, sondern der erste Ast nach Absendung eines Ramus ciliaris noch wiederholt Fasern an die Stirnhaut sendet. Bei Crocodilus biporcatus trennt sich die Wurzel des ersten Aastes unter rechtem Winkel von denjenigen des zweiten und dritten Aastes, und geht nach vorn und unten, um durch ein eigenes Loch aus dem Schädel zu treten. Noch halb im Knochenkanal bildet sie ein sehr deutliches, ovales, plattes Ganglion (Taf. LXXXV. Fig. 1 A), aus welchem zwei Aeste hervorgehen.

a) Der schwächere wendet sich sogleich nach aussen, schmiegt sich hinter dem Rectus externus herum bis zum hinteren Augenwinkel und breitet sich mit mehreren Zweigen in der Haut des unteren und oberen Augenlides aus.

b) Der bei Weitem stärkste ist der eigentliche Hauptstamm. Er geht gerade aus nach vorn, giebt einen schwachen Ast (Taf. LXXXV. Fig. 1 c) in das benachbarte liegende Ganglion ciliare (gc), tritt über den Opticus und läuft an der Innenfläche des Augapfels, bis zur vorderen Ecke der Orbita. Hier tritt er unter dem M. obliquus superior fort nach vorn, und
gieht mehrere Zweige nach aussen, die sich am vorderen Augenwinkel in der Haut des oberen und unteren Augenlides verbreiten, während der Hauptstamm selbst in die Nasenhöhle eindringt.

Die Aeste des Ramus supramaxillaris n. trigemini sind:

a) Der Ramus recurrens ad nervum facialem. Derselbe ist bei den Crocodilen viel stärker als bei den Sauriern, er entspringt hier aber schon aus dem Ganglion des N. trigeminus selbst, um nicht, wie bei den Eidechsen, in einem grossen Bogen über den Kopf nach hinten zu laufen, sondern um, dem Schädel nahe anliegend, in dem vorderen Theil der äusseren Gehörkapsel nach hinten zu gehen, um dort, gerade wie bei den Eidechsen, mit dem hinteren Hauptstamm des N. facialis zu verschmelzen (Taf. LXXXV. Fig. 1. a).

b) Zweige für die Haut der Stirn, für das obere und unsere Augenliden. Dieselben haben einen ähnlichen Verlauf wie bei den Sauriern.

c) Rami für die Conjunctiva und die Harder'sche Drüse. Bei den Crocodilen tritt der zweite Ast des Trigeminus (Taf. LXXXV. Fig. 1. n) von hinten und innen nach vorn und aussen bis hinter den Augapfel, tritt hier über die hinterste, dickste Schicht des M. adductor maxillae superioris: Fischer (M. depressor palpebrarum inferioris) und gieht, über desselben liegend, einen starken Zweig, den später zu beschreibenden N. alveolaris posterior (μ), ab. Gleich nach seiner Abgabe entsendet er einen sehr feinen Nerven (Taf. LXXXV. Fig. 1. y), der mit ihm selbst parallel, und sogar in der Mitte des Bulbus wieder auf eine kurze Strecke mit ihm verschmelzend, nach vorn verläuft. Er löst sich im vorderen Theile der Orbita in mehrere feine Fäden auf, die sich geflechtartig auf der Conjunctiva ausbreiten.

d) Rami communicantes posteriores e. nervo palatino. Viel stärker als bei den Sauriern ist das Sphenoidalgeflcht bei den Crocodilen ausgebildet. Bei Crocodilus biporcatus (Taf. LXXXV. Fig. 1.) gieht, wie schon erwähnt, der N. infraorbitalis, nachdem er über den M. depressor palpebrae inferioris getreten, einen starken Nervenstamm nach aussen (μ), den Ramus alveolaris posterior, während er selbst viel später den Charakter eines N. alveolaris anterior annimmt. Jener, der Ramus alveolaris posterior, gieht bald nach seinem Ursprunge 2.—3 deutliche starke Zweige nach aussen ab (δ, δ'), zu denen sich noch ein fünfter (ε), vom Infrarostralisis selbst herrührender, gesellt. Alle diese Zweige vereinigen sich zu einem Geflecht. Aus diesem Geflecht gehen nach allen Seiten Nerven, zur Haut der Wangengegend, zum Mundwinkel und zum Ramus palatinus n. facialis, mit dem letzten bilden sie eine Schlinge, aus welcher keine Zweige hervorgehen.

e) Gaumenzweige, Ramus communicans anterior nervi palatini cum maxillari superiore (γ, γ′).

f) Rami für die Haut des Oberkiefers.

g) Nervus alveolaris anterior und posterior. Bei den Crocodilen existirt ausser dem als Ramus alveolaris anterior endigenden Hauptstamm
des N. infraorbitalis (Taf. LXXXV. Fig. 1. λ, μ') noch ein Ramus alveolaris posterior (μ) von ansehnlicher Stärke. Dieser wird schon nach aussen abgegeben, sobald der Infraorbitals den M. depressor palpebræ inferioris durchbohrt hat, um unter dem Augapfel nach vorn zu verlaufen. Dieser Ramus alveolaris posterior entlässt die meisten der das Sphenoidalgefl echt bildenden Zweige (δ, δ'), läuft dann nach aussen, um in der Gegend des vierzehnten Zahnes in den für ihn bestimmten Kanal des Oberkiefer einzutreten. (Die eigentliche Fortsetzung des N. infraorbitalis tritt als N. alveolaris anterior erst in der Gegend des neunten Zahnes in den Oberkieferkanal ein.) Bei seinem Eintritt in denselben entlässt der Ramus alveolaris posterior zuerst einen Zweig nach hinten, um auch die hinteren Zähne mit Zweigen zu versorgen, und läuft dann im Knochen bis zum zehnten Zahn nach vorn, in jeden der auf seinem Wege liegenden Zähne einen starken Zweig entsendend (d). Durch diesen Abgang bedeutender Aeste wird seine Stärke rasch so verringert, dass in der Gegend des neunten Zahnes nur ein sehr schwächer Rest desselben sich mit dem nun in den Kanal eintretenden und seine Stelle einnehmenden Alveolaris anterior (μ') verbinden kann. Der neunte Zahn wird noch vom Alveolaris posterior versorgt. — Der Alveolaris anterior, die Fortsetzung des eigentlichen Infraorbitals, nimmt bei seinem Eintritt in den Kanal das letzte Ende des Alveolaris posterior auf und läuft im Knochen bis zur Spitze des Praemaxillare nach vorn, ebenfalls an die Wurzel jedes auf seinem Wege liegenden Zahns einen starken Zweig abgebend.

Der dritte Ast des N. trigeminus, Ramus inframaxillaris und seine Zweige.

Bei den Crocodilen entspringt der Ast für den M. adductor maxillae superioris (Depressor palpebræ inferioris) deutlich aus der Portio minor. Ein zweiter Nerv, von gleicher Feinheit wie der vorige, der aber den Sauriern völlig zu fehlen scheint, wurde von F s c h e r bei Crocodilus biportalitis aus der Portio minor ausgebend gefunden (Taf. LXXXV. Fig. 1. ν). Dieser wendet sich, noch bevor der ganze dritte Ast über das Ganglion hinausgekommen ist, auf dem unteren Boden der Orbita über der Gaumenhaut nach vorn, läuft bis zum vorderen Rande der vom Maxillare superior, Palatinum und Transversum begrenzten Grube, um hier mit vielen feinen Zweigen in der unteren und inneren Partie des M. pterygoideus zu endigen. Die Aeste des R. inframaxillaris sind:
a) Zweige für die Haut der Wange,
b) Aeste für die Kaumuskeln,
c) Ramus recurrens cutaneus maxillae inferioris.

An der Stelle, wo der dritte Ast des N. trigeminus nach vorn umbiegt, um in seinen Knochenkanal einzutreten, entsendet er aus seiner hinteren Fläche zwei Nerven:

\(\alpha\) der vordere tritt in ein feines, vor dem Gelenk des Unterkiefers gelegenes Loch des letzteren ein, verlässt jedoch gleich darauf wieder den Knochen durch eine an der inneren Seite desselben gelegene Öffnung und verbreitet sich an die Haut des Unterkiefers;

\(\beta\) der hintere Nerv ist nur halb so stark als der vorige, wendet sich rückwärts und theilt sich in zwei Aeste:

\(\alpha\alpha\) der vordere durchläuft den Knochenkanal im Unterkiefer, um sich schliesslich in die Haut des Unterkiefers zu verbreiten;

\(\beta\beta\) der hintere dringt noch weiter nach hinten als der vorige und breitet sich ebenfalls in die Haut des Unterkiefers aus.

d) Ramus alveolaris inferior.

Bei den Crocodilen liegt die Öffnung für den Austritt dieses Nerven ziemlich weit nach hinten. Gleich nachdem nämlich der in Rede stehende Nerv in seinen Canal eingetreten, um in ihm nach vorn zu verlaufen, entlässt er einen starken Nerven, der sich wieder in zwei Zweige theilt.

a) Einer derselben bleibt im Canalis alveolaris inferior und theilt sich in der Gegend des dreizehnten Zahns wieder in zwei Aeste:

\(\alpha\) der stärkere tritt hier aus dem Canal hervor und breitet sich in der inneren Haut des Mundes aus;

\(\beta\) der feinere läuft weiter nach vorn bis zur Gegend des neunten Zahns, verlässt hier ebenfalls den Knochencanal und endet wie der vorige.

b) Der zweite Ast tritt sogleich nach seinem Ursprung durch ein Loch an der Innenseite des Knochens hervor und theilt sich in vier Aeste. Zwei davon verbreiten sich in dem M. intermaxillaris (mylohyoideus) und in der Haut des Mundwinkels, einer geht in die hier liegende Hautdrüse und der vierte endlich verbreitet sich auf dem muskulösen Boden der Mundhöhle.

VII. Nervus facialis.

Wie bei den Sauriern bleibt auch bei den Crocodilen die Wurzel des N. facialis von derjenigen des N. trigeminus völlig getrennt. In seinem allgemeinen Verhalten gleicht er bei den Crocodilen vollkommen dem der Saurier; wie bei diesen entlässt er

a) den Ramus palatinus (Taf. LXXXV. Fig. 1. \(\nu\)).

Derselbe liegt dem Praesphenoid fest an, verläuft nach vorn und erinnert dadurch an die Fische. Er entsendet den

\(\alpha\) Ramus communicans posterior rami palatini e. maxillari superiore.

Sobald der Ramus palatinus, dem Prooticum dicht anliegend, bis zur Basis des Sphenoidaeum basilarre getreten und bis zur hinteren Ecke der Orbita über die vordere flache Ausbreitung des M. pterygoideus gelangt
ist, giebt er einen Zweig ab (Taf. LXXXV. Fig. 1. g), der unter rechtem Winkel sich von der bisherigen Richtung ab und nach aussen wendet, um mit dem fruher beschriebenen, aus dem Sphenoidalgefl echt hervorgehendem Ast des N. trigeminus sich zu verbinden.

b) Ramus communicans anterior rami palatini cum maxillari superiori.

Nach der Bildung der hinteren Verbindungsschlinge (Taf. LXXXV. Fig. 1. g) läuft der Ramus palatinus (p) gerade aus nach vorne, dem vorderen Theil des Sphenoidicum basilare dicht anliegend. In der vorderen inneren Ecke des Orbita endigt er in mehreren feinen Zweigen in der Gaumenhaut (μ') und bildet Anastomosen mit dem zweiten Aste des N. trigeminus (ν).

c) Zweige der Gaumenhaut.

Diefeinen gehen als letzte Endzweige des Ramus palatinus da aus, wo dieser den vorderen Verbindungsast zum Trigeminus entsendet (μ').

b) Die Verbindungszweige zwischen N. facialis und glossopharyngeus. Dieselben sind:

a) Ramus communicans internus rami palatini cum glossopharyngeo.

b) Ramus communicans externus rami palatini cum glossopharyngeo.

Letztgenannter Nerv entspringt da aus dem hinteren Hauptstamm des N. facialis, wo dieser den Ramus recurrens (ζ) aus dem Ganglion N. trigemini aufgenommen hat. Er verschmilzt jedoch nicht mit dem Glossopharyngeus, sondern verläuft in einem eigenen Knochenkanal nach hinten bis zum gemeinschaftlichen Ganglion (D) der hinteren Hirnnerven, in dessen vorderen kleinere Halftte er zugleich mit den Wurzeln des N. vagus, glossopharyngeus und accessorius eintritt.

Die Aeste des

c) hinteren Hauptstammes des N. facialis sind:

a) die Chorda tympani.

Der hintere Hauptstamm des N. facialis (ι) tritt schräg nach unten, hinten und aussen, und verbindet sich hinter der knöchernen Gehörkapsel mit dem starken Ramus recurrens (ζ) aus dem Ganglion trigemini unter spitzem Winkel, aus dessen Scheitelpunkt nicht nur der schon erwähnte Ramus communicans externus cum Glossopharyngeo, sondern auch noch ein zweiter Ast hervorgeht, der ganz die Richtung des vorherigen hinteren Hauptstammes verfolgt.

b) Muskeläste des N. facialis.

VIII. Nervus acusticus — vergl. das Gehörorgan.

IX. Nervus glossopharyngeus.

Während Fischer angiebt, dass er bei allen untersuchten Sauriern den Ursprung des Glossopharyngeus getrennt von dem des Vagus gefunden hat, konnte er einen ähnlichen getrennten Ursprung bei den Crocodilen (Crocodilus biporcatus, Crocodilus acutus und Alligator punctulatus) nicht aufinden.
Das Ganglion petrosum.

Fischer fand, dass bei den Crocodilen die Wurzeln des N. glossopharyngeus, vagus, accessorius und theilweise auch die des hypoglossus in ein grosses, hart am Schädel gelegenes Ganglion zusammenmünden. Das in Rede stehende Ganglion entspricht also nicht ganz dem Ganglion petrosum der Saurier, sondern kann als aus drei verschmolzeneren Ganglien (Ganglion petrosum, Ganglion cervicale primum und Ganglion radicis nervi vagi) gebildet angesehen werden. — Dagegen schreibt Bendz bei Alligator lucius dem N. glossopharyngeus ein kleines ovales Ganglion petrosum zu, das dicht vor dem Ganglion cervicale supremum liege und mit diesem durch Zellgewebe verbunden sei. Der Glossopharyngeus ist nach Bendz hier vollständig vom Vagus getrennt, und nur durch einen feinen Nervenfaden sollte das Ganglion radicis nervi vagi mit dem Ganglion petrosum verknüpft sein.

Nach dieser Schilderung sind bei Alligator lucius drei sehr benachbarte Ganglien vorhanden, Ganglion cervicale primum, Ganglion radicis nervi vagi und Ganglion petrosum, — eine Bildungsweise, die Fischer bei keiner Eidechse und bei keinem Crocodil aufgefunden hat.

Bei den Crocodilen entsteht der Stamm des N. glossopharyngeus aus dem vorderen Rande des dicht am Schädel liegenden grossen Ganglion der hinteren Hirnnerven. Bei Crocodileus biporcatus (vergl. Taf. LXXXII. Fig. 1. D.) treten nach Fischer sechs Nerven aus diesem Ganglion:

1) der Sympathicus impar (s),
2) ein Verbindungszweig zum ersten Halsnerven, wie Fischer glaubt dem Ramus externus n. accessorii entsprechend (y),
3) der Ramus laryngo-pharyngeus (lp),
4) der Glossopharyngeus (gl),
5) der Vagus (v),
6) der Hypoglossus (h).

Von diesen entspringt der N. glossopharyngeus am weitesten nach vorn aus dem Ganglion. Er läuft schräg nach aussen und hinten und biegt dann hinter dem Horn des Zungenbeins nach vorn um, indem er über den Hypoglossus forttritt und gibt hinter dem Zungenbeinhorn einen beträchtlichen Zweig (E) nach innen an den aus dem N. laryngopharyngeus hervortretenden N. laryngeus superior (l. s.). Nach Abgabe dieses Zweiges tritt der N. glossopharyngeus in Begleitung des N. hypoglossus an den M. hyomaxillaris, unter welchem er sich in zwei Zweige theilt:

α) dringt in die Fasern des Hyomaxillaris ein,
β) nimmt einen Ast des N. hypoglossus auf und schlägt sich nach vorn und innen an den M. hypoglossus an. Er innervirt sowohl diesen Muskel als den M. genioglossus.

Die Zweige des N. glossopharyngeus sind:
a) der R. laryngeus superior,
b) Schlundzweige,
c) Muskelzweige (für die Mm. hyomaxillaris und Sterno-maxillaris,
d) Zungenzweige.

Wie schon erwähnt, existirt bei den Crocodilen ein schon vom Ganglion der hinteren Hirnnerven an getrennter N. laryngo-pharyngeus (Taf. LXXXV. Fig. 1. p), der alle den Kehlkopf, Speiseröhre, Luftrohre versorgenden Fäden des N. vagus enthält. Dieser läuft parallel mit dem N. glossopharyngeus, hypoglossus und dem eigentlichen Stamm des N. vagus nach aussen und unten und theilt sich da, wo Glossohypoglossus und Hypoglossus nach vorn, Vagus nach hinten umbiegen, in zwei Aeste. Der hintere, Ramus descendens n. laryngopharyngei (Taf. LXXXV. Fig. 1. lΔ) — von Vogt als Sympathicius superficialis, von Stannius als Ramus descendens Glossopharyngei bezeichnet — versorgt die Speiseröhre und entlässt die Rami recurrentes n. vagi. Der vordere (l s) verbindet sich mit einem Zweige des N. glossopharyngeus (E), den dieser bei seiner Biegung nach vorn an ihn abgibt. Nach dieser Verstärkung wird dieser vordere Ast des N. laryngopharyngeus zum eigentlichen Kehlkopfnerven, der nach Abgabe einiger schwacher Schlundzweige das letzte Ende des Ramus recurrents aufnimmt und entweder eine doppelte oder einfache Schlinge mit dem Nerven der anderen Seite unter dem hinteren Theil des Kehlkopfs bildet.

X. Nervus vagus.

Nach Fischer sammeln sich die Wurzeln sämtlicher hinteren Hirnnerven in einem gemeinschaftlich, dem Schädel dicht anliegenden grossen Ganglion, in welches ausserdem noch der oben beschriebene Verbindungsast des N. facialis einmündet. Bei Croc
dilus biporcatus treten nach ihm in dieses Ganglion sechs gesonderte Wurzeln. Zwei Bündel von der Grundfläche des verlängerten Markes (l c'), dem N. hypoglossus angehörend; vier Bündel, dem Vagus und Glossopharyngeus entsprechend (10); endlich tritt die aus sechs bis acht feinen Bündeln zusammengesetzte Wurzel des Accessorius hinzu, die nur von der Rückenseite aus sichtbar ist.

Man kann im Bereiche des vierten Ventrikels vier Gruppen solcher Fäden unterscheiden, deren oberste vorderste die zahlreichsten und stärksten Wurzeln (5—6) aufweist und einen relativ ziemlich dicken Nervenstamm bildet, dahinter folgen zwei feine lange Fäden und dann wieder je drei, die mehr schräg nach vorn streben (Taf. LXXXIII. Fig. 1b. X). Von diesen sind die hintersten drei am feinsten und vereinigen sich zu
einer Wurzel. Die Ursprungsstelle des vordersten aller Fäden liegt etwa 2 Mm hinter dem hinteren Rande der Hörnerwurzel, die des hintersten etwas nach hinten von der Spitze des Obex.

Ausser den bisher genannten darf man aber noch einige (4—5) sehr feine, sich nach hinten oben an diese anschliessende Wurzelfäden nicht übersehen, welche, genau am lateralen Rande des Corpus restiforme entspringend, bis in die Gegend des zweiten Cervicalnerven zurückreichen und sich zu einem nach oben strebenden Stamm vereinigen (Taf. LXXXIII, Fig. 1b, XI).

So viel über die Zahl und Anordnung der im Bereich des vierten Ventrikels zu Tage tretenden Nervenwurzeln. Was die Deutung betrifft, so muss man nach Rabl-Rückhard wohl sämtliche Fäden als vereinigte Vagus- und Accessoriuswurzel ansprechen, allein erst eine erneute Prüfung wird ihre Verbindung zu einem gemeinschaftlichen Ganglion (Ganglion petrosum) sicherstellen und so die Angaben von Bendz, Bischoff und Fischer erklären. Für die Wurzel des N. glossopharyngeus vermag Rabl-Rückhard dies jetzt schon. Man bemerkt nämlich vor der vordersten der oben beschriebenen Vaguswurzeln, durch einen Zwischenraum von ihr getrennt, weiter eine Wurzel. Dieselbe löst sich etwas mehr medianwärts, als jene, von der dorsalen Fläche der Clavae, unmittelbar hinter dem Hinterrande des breiten, platten Acusticus, indem sie aus drei oder vier bald verschmelzenden Fäden entsteht (Taf. LXXXIII, Fig. 1b, IX). Diesen Nerven, der jedenfalls einen intracraniell selbständigen Verlauf hat, hält Rabl-Rückhard für den Glossopharyngeus. —

Die Aeste des N. vagus sind:

a) der Nervus laryngo-pharyngeus.

Derselbe erscheint bei den Crocodilen als ein gleich vom Anfange an selbständiger Nerv, enthält aber in diesem Falle auch noch diejenigen Fasern des N. vagus, welche die am Halse selbst liegenden Eingeweide (Lufröhre und Speiseröhre) versorgen. Der vordere Ast desselben, durch Zweige des Glossopharyngeus verstärkt (Taf. LXXXV. Fig. 1. l), giebt sich als Ramus laryngeus superior zu erkennen. Der hintere Ast, der Ramus descendens (ld) breitet sich bis tief unter den Brustgürtel mit zahlreichen Fäden geflechtartig aus und entlässt nach einander mehrere längs der Trachea heraufsteigende Rami recurrentes.

b) Ramus recurrrens n. vagi.

Es ist schon hervorgehoben, dass die für die Lufröhre und Speiseröhre bestimmten Fäden aus dem Ramus descendens des N. laryngopharyngeus entspringen. Dieser Ramus descendens läuft unter der Speiseröhre und parallel mit der Trachea nach hinten bis unter den Brustgürtel, beständig feine und stärkere Fäden ausSEND, die sich geflechtartig an der ganzen Speiseröhre ausbreiten. Bei Crocodilus acutus entsendet nach Fischer dieser hintere Ast da, wo er unter die Speiseröhre tritt, um nach hinten zu verlaufen, ein Bündel stärkerer Fäden nach innen, von denen die meisten am Schlunde sich ausbreiten, einer jedoch senkrecht auf die
Lufröhre zulauft und das letzte Ende des zweiten Ramus recurrens aufnimmt. Dann biegt er wieder nach vorn um und läuft an der Lufröhre bis zum Kehlkopf zurück, um hier mit dem N. laryngeus superior gerade da zu verschmelzen, wo dieser eine Schlinge mit dem entsprechenden Nerven der anderen Seite bildet. Nach Abgabe des ersten Ramus recurrens läuft der Ramus descendens nervi laryngopharyngei in der erst angegebenen Weise nach hinten, viele Fäden an die Speiseröhre entsendend, um kurz vor seinem Eintritt in die Brust einen zweiten Ramus recurrens abzugeben, der, wie der erste, an die Trachea herantritt und nun an der äusseren Seite der Lufröhre ebenfalls zurückläuft.

c) Zweige an die Speiseröhre.

Dieselben treten auf die schon beschriebene Weise aus dem Ramus descendens des N. laryngo-pharyngeus aus.

d) Zweige für das Herz, die Lungen und den Magen.

XI. N. accessorius Willisii.

Bei der Aufzählung der einzelnen in das grosse Ganglion der hinteren Hirnnerven eintretenden Wurzeln wurde schon erwähnt, dass die feinen Wurzeln des N. accessorius, an der Rückenseite der Medulla oblongata in gewöhnlicher Weise entspringend, sich in der Gegend des Foramen lacerum zu einem feinen Nervenstamm sammeln, der von oben und hinten in den hinteren grösseren Theil des erwähnten Ganglion eintritt. Als einen Theil dieser Wurzeln entsprechender Ramus externus ist nach Fischer ein aus dem Ganglion austretender Verbindungszweig an den ersten Halsnerven zu betrachten (Taf. LXXXV. Fig. 1. y). Dieser erste Halsnerv (Fig. 1. 13) entspringt nach Fischer bei Crocodilus biporatus wie die freie Hirnwurzel des N. hypoglossus (h') mit einfach (unterer oder vorderer) Wurzel von der Grundfläche der Medulla oblongata, tritt zwischen Condylus occipitis und erstem Halswirbel nach aussen, nimmt, nach aussen gelangt, einen Verbindungszweig (z) von der freien Hirnwurzel des Hypoglossus (h') auf und theilt sich in zwei Aeste:

c) der stärkere (y') steigt hinter dem Schädel in die Höhe und innervirt den M. splenius capitis (M. occipito-cervicalis medialis).

\[\beta\) der feinere dieser beiden Zweige geht nach aussen und unten (y'), nimmt den erst erwähnten Verbindungszweig (y) aus dem Ganglion auf, giebt feine Zweige an die unteren geraden Kopfmuskeln, innervirt diese und verzweigt sich in den M. atlanti-mastoideus.\]

Dieser letztere Nerv (y') möchte nach Fischer als der dem Ramus externus Accessorii entsprechende Nerv zu betrachten sein.

XII. N. hypoglossus.

Die Crocodile nähern sich auch, was den Ursprung des N. hypoglossus betrifft, mehr den höhern Wirbelthieren, sofern die beiden diesen Nerven bildenden Hirnwurzeln keinerlei Verstärkungszweige von Spinalnerven erhalten. Von diesen beiden Hirnwurzeln mündet die erste bei
Crocodilus biporcatus in das grosse Ganglion der hinteren Hirnnerven ein (Taf. LXXXV. Fig. 1. h'), während die zweite (h'') bei demselben vorbeigeht und mit einem aus dem Ganglion hervorgehenden Nerven den Stamm des Hypoglossus bildet. Den Crocodilen fehlt ferner der Form nach ein eigentlicher Ramus descendens, obgleich auch hier der M. coraco-ceratoideus vom Hypoglossus seinen Nerven erhält. Endlich ist beständig das letzte Ende desselben der einen Seite durch eine zuerst von Vogt (102) entdeckte Schlinge mit demjenigen der anderen Seite verbunden.

Bei Alligator punctulatus zeigt der Hypoglossus folgende Form: Der Nerv steigt, wie gewöhnlich, hinter der Unterkieferwange nach unten ausserhalb des M. episterno-ceratoideus (Sterno-hyoideus: Fischer) und des M. coraco-ceratoideus (Coraco-hyoideus: Fischer), tritt über den M. maxillo-coracoideus (Sterno-maxillaris: Fischer) und theilt sich hier in drei Aeste:

a) Der mittlere, schwächste, geht in den M. maxillo-coracoideus (Sterno-maxillaris) über.
b) Der innere, stärkere, giebt ebenfalls noch einzelne Fäden an den genannten Muskel und innervirt den M. coraco-ceratoideus (Coraco-hyoideus) und den M. episterno-ceratoideus (Sterno-hyoideus: Fischer).
c) Der äussere, stärkste, dieser drei Nerven giebt zwei Aeste ab:
 α) einen Ast für den M. maxillo-hyoideus (Hyomaxillaris),
 β) einen zweiten für den M. maxillo-coracoideus (Sternomaxillaris). Nach ihrer Abgabe theilt sich der Rest des Nerven c in zwei gleich starke Zweige:
 αα) der eine innervirt den M. hyoglossus,
 ββ) der andere tritt über den M. genioglossus, bildet hier mit dem entsprechenden Nerven der anderen Seite eine Schlinge, aus welcher feine Fäden in den letztgenannten Muskel hervorgehen.

Ueber den Ursprung des N. hypoglossus verdanken wir auch Rabl-Rückhardt einige Angaben, welche nicht mit denen Fischer's übereinstimmen. Rabl-Rückhardt nämlich fand für den Ursprung des in Rede stehenden Nerven einen einfachen Faden als vordere, und ein kleines Bündel von drei bis vier kurzen Fäden als hintere Wurzel, beide durch einen geringen Zwischenraum von einander geschieden. Sie entspringen nicht am lateralen Rande, wo die Seitenstränge liegen, sondern zwischen diesem und den Unterkiefer- (Pyramiden-) Strängen, ziemlich nahe an der unteren Medianpalte (Taf. LXXXII. Fig. 1b. XII., Taf. LXXXIII. Fig. 2b. XII). Das grössere, platte Bündel (Taf. LXXXII. Fig. 1b. Ic), welches dicht hinter den eben beschriebenen ebenfalls am lateralen Rande der Pyramidenstränge frei wird und quer nach aussen verläuft, muss, wie Rabl-Rückhardt hervorhebt, wohl als erster Halsnerv angesprochen werden, dem, wie wir schon früher sahen, die dorsale Wurzel fehlt. Allein durch eine genaue Kenntniss des peripherischen Verlaufs kann dies festgestellt werden.
Das sympathische Nervensystem.

Ausser diesen sympathischen Schlingen kommen bisweilen Zweige von Gehirnnerven vor, die ganz die Form und Verbreitung von Nerven haben, die aber mit jenem System von Schlingen in durchaus keiner

Die erste derselben entspringt beständig als feiner Nervenfaden aus dem zweiten Aste des N. trigeminus, es ist der oben ausführlich abgehandelte Ramus recurrens ad nervum faciale. Dieser, der bisweilen einzelne Fäden aus dem ersten Aste des Trigeminus aufnimmt, steigt bis zur Stirn in die Höhe, wendet sich dann rückwärts, steigt hinter dem Schädel abwärts und senkt sich gewöhnlich in den hinteren Hauptstamm des N. facialis da ein, wo dieser sich in die Chorda tympani und den Muskelast theilt.

Vom hinteren Hauptstamm des Facialis, der bei den Sauriern gewissermassen eine Station bildet auf dem Wege, den dieser äussere sympathische Bogen nach hinten verfolgt, setzt sich der letztere als der bei allen Sauriern vorhandene Ramus communicans externus nervi facialis cum Glossopharyngeo bis zum Glossopharyngeus fort. (Auf den Abbildungen von Taf. LXXXIV. und LXXXV. mit e bezeichnet.) Entweder mündet er in das Ganglion petrosum desselben ein (Iguana tuberculata, Salvator nigropunctatus, Chamaeleon vulgaris, Istinurus amboinensis, Lacerta ocellata) oder verbindet sich, ohne dasselbe zu berühren, direkt mit dem Stamme des neunten Paares (Euprepes Sebae, Platylaucltylus guttatus, Agama spinosa). Letzteres ist auch dann der Fall, wenn ein Ganglion petrosum ganz fehlt (Salvator Merianae, Varanus bengalensis). Auch bei den Crocodilen existirt die vom Trigeminus an die hinteren Hirnnerven gehende sympathische Schlinge, — auch hier kreuzt dieselbe die Fasern des hinteren Hauptstammes des N. facialis, so dass sie, wie bei den Sauriern, eigentlich aus zwei Schlingen besteht: einer vorderen vom Trigeminus zum Facialis, und einer hinteren vom Facialis zum Ganglion des hinteren Hirnnerven.

existirt zwischen Fasern des Trigeminus und Ramus palatinus ein eigen-
thümliches Sphenoidalgeflecht (Salvator nigrum punctatus, Salvador Merianae, Iguana taberculata). Crocoddilus besitzt ein Sphenoidalgeflecht (Taf. LXXXV. Fig. 1. p.l.), das aber ausschliesslich aus Zweigen des Trigeminus gebildet zu sein scheint — aus ihm geht ein einfacher Nervenzweig quer hinüber an den Ramus palatinus. Ob indessen diese Nervenanschlingen oder Ge-
flechte den Zweck haben, Fasern aus dem Maxillaris superior an den Ramus palatinus hinüber zu führen, lässt sich auf anatomischem Wege nicht entscheiden.

Bei dem innigen Verhältniss, in welchem der Ramus palatinus zum Kopftheil des Sympathicus steht, kann man fragen, ob nicht dieser ganze Nerv, der, wie wir nach den Angaben von Fischer gesehen haben, vom Wurzelganglion des N. facialis entspringend, nach vorn sich erstreckt, als ein rücklaufender Nervenzug zu betrachten sei, bestimmt, die aus dem Trigeminus und dem Sphenoidalgeflecht entstehenden sympathischen Fasern rückwärts, zunächst an den Facialis zu führen. Die vom Trigeminus ent-
 sprungenen Fasern treten als Ramus communicans posterior an den Ramus palatinus, laufen in der Bahn desselben rückwärts und verlassen dieselbe bald wieder, um als Ramus communicans internus vom Ramus palatinus aus durch Vermittlung des Glossopharyngeus in den Halstheil des Symp-
 pathicus überzugehen. Dass aber ausser diesen fremden Elementen noch eigene nach vorne verlaufende Fasern des Facialis im Ramus palatinus enthalten sind, wird nach Fischer aus folgenden Gründen mehr als wahrscheinlich:

1) Der Ramus palatinus entspringt beständig aus dem Wurzelganglion des N. facialis, die fremden, ihm von vorn her (vom Trigeminus) beige-
mengten Elemente berühren meist die Wurzel des siebenten Paares nicht, sondern verlassen den Ramus palatinus in der Regel schon vor derselben (als Ramus communicans internus).

2) Der Ramus palatinus erscheint immer stärker als die Summe der Verbindungszweige zwischen ihm und dem Trigeminus.

3) Er entlässt constant Zweige in die Gaumenhaut, und was beson-
der wichtig ist, Zweige, die sich mit dem Trigeminus oder dessen Aesten zu Gaumenhautzweigen verbinden (Ramus communicans anterior).

4) Bei vielen anderen Wirbeltieren, z. B. den nackten Amphibien, welche letztere sämmtlich den Ramus palatinus besitzen, treten die Ver-
bindungsgäste mit dem Trigeminus hinter der zuletzt erwähnten Ausbreitung an der Gaumenhaut so sehr zurück, dass sie bei einigen sogar gänzlich zu fehlen scheinen. (Siehe Brönn's Amphibien S. 220.)

Der Sammelpunkt des doppelten Kopfheils ist meist ein in der Bahn des N. glossopharyngeus gelegenes Ganglion, von Fischer nach Bendz' (103) Vorgange als Ganglion petrosum bezeichnet, — diese Anschwellung ist zugleich meist der Punkt, von wo aus der oberflächliche Halstheil des Sympathicus beginnt. Aus dieser Einmündung und Ausstrahlung sympa-

Wenn die letzteren nahe an ihrem Ursprunge mit einander verschmolzen sind (Salvator Merianae, Salvator nigropunctatus), so sammeln sich in diesem Stamm auch die beiden bogenförmigen Kopftheile des Sympathicus. In diesem Fall geht der oberflächliche Halstheil des Sympathicus mit dem Vagus zu einem Stamm vereint als hintere Hälfte aus diesem gemeinschaftlichen Strang hervor, um bald sich auch von dem Vagus wieder zu trennen und nun als einfacher Nervenstamm bis zum ersten Brustganglion zu verlaufen. In diesem einzigen Falle wird eine Verstärkung des aus dem Kopftheil entstandenen Halstheiles durch Verstärkungsfäden aus dem Glossopharyngeus, Vagus und Hypoglossus nicht beobachtet, indem jene Verschmelzung sämtlicher hinterer Hirnnerven zu einem auch den Anfang der sympathischen Halsschlinge enthaltenden Stamm die Entstehung besonderer Verbindungsfäden völlig entbehrlich macht.

Sind dagegen die hinteren Hirnnerven nicht zu einem Stamm verbunden und ist namentlich der Glossopharyngeus, mit dem, wie erst erwähnt, der Kopftheil des Sympathicus gewöhnlich sich verbindet, von den übrigen freif, so lassen sich in der Regel mehrere Hauptstämme des oberflächlichen Halstheils unterscheiden, von denen einige oft als direkte Fortsetzung der Fasern des Kopftheils erscheinen und vom Glossopharyngeus oder von
Ganglion petrosum auszugehen pflegen, während andere die aus dem Vagus und Hypoglossus abgegebenen Verbindungszweige enthalten.

Aussert der eben erörterten grossen bogenförmigen Halsschlinge, welche, ohne auf ihrem Wege mit Spinalnerven in Verbindung zu stehen, sich bei den Sauriern von den hinteren Hirnnerven bis zum Armgeflecht in einem oder mehreren Stämmen erstreckt, besitzt diese Ordnung der Reptilien noch ein zweites System von Schlingen am Halse, welches Fischer, wegen seiner versteckten Lage zwischen den Fasern der vorderen tiefen Halsmuskeln, mit dem Namen des tiefen Halstheils bezeichnet. Die betreffenden Schlingen entstehen meist dadurch, dass ein Zweig des vorderen Astes eines Halsnerven mit einem Zweig des nächstfolgenden zu einem kurzen, in den tiefen Halsmuskeln sich ausbreitenden Stamm zusammentritt. Es lässt sich indessen nach Fischer beweisen, dass diese Schlingen nicht bloss Fasern motorischer Natur, sondern auch sympathische Elemente enthalten. Bei Chamaeleo vulgaris setzt sich nämlich (Taf. LXXXV. Fig. 4.) aus denselben ein wirklich er zweiter Halsstamm zusammen (g'), der, zwischen den Fasern der tiefen Halsmuskeln nach hinten verlaufend, endlich von der Seite her in dasselbe erste Brustganglion einmündet (g'), das auch den oberflächlichen Halstheil aufnimmt, und das somit in derselben Weise den Sammelpunkt für die beiden Halstheile abgibt, wie das Ganglion petrosum es für die beiden Kopftheile zu sein pflegt. Die Schlingen dieses zweiten tiefen Halstheils stehen mit den meisten Hirnnerven in keiner Verbindung; — die sympathischen Fasern der letzteren scheinen vielmehr beständig in den oberflächlichen Halstheil überzugehen. Der Hypoglossus macht hievon insofern eine Ausnahme, als einerseits nicht nur sein Hauptstamm, sondern auch sein Ramus descendens in der Regel mit dem oberflächlichen Halstheil durch Schlingen communicirt, andererseits aber die beiden ersten Halsnerven, die zu seiner und namentlich zur Bildung des Ramus descendens beitragen, gewöhnlich diejenigen sind, mit denen dies System tiefer Halsschlingen beginnt. Ob der N. accessorius mit dem oberflächlichen Halstheil in Verbindung steht, ist äußerst schwierig zu bestimmen.

Die Andeutung einer Verschmelzung des oberflächlichen Halsstammes mit dem Vagus findet sich schon hier und da bei den Sauriern (Salvator nigropunctatus, Salvator Merianae nach Fischer und bei America Tequixin nach J. Müller (97)). Der Brusttheil des Sympathicus beginnt nahe am Armgeflecht mit mehreren grossen unmittelbar hinter einander liegenden Ganglien. Er scheint nach Fischer's Untersuchungen beständig als die Fortsetzung des oberflächlichen Halstheiles.

Bronn, Klassen des Thier-Reichs. VI. 3. 49.

stark entwickelten Brustganglien setzt sich ein feiner Grenzstrang längs der Wirbelsäule nach hinten fort, mit dem vorderen Zweige jedes der nächst folgenden Spinalnerven durch einen schwachen Faden in Verbindung stehend.

Spinalnerven.

Saurii. Bei der Beschreibung des Rückenmarks haben wir schon gesehen, dass die von demselben abgehenden Nerven wie gewöhnlich zwei Wurzeln, eine obere und eine untere besitzen, nur die beiden ersten Nervenpaare machen eine Ausnahme, indem denselben nur untere Wurzeln zukommen.

Bekanntlich teilt sich jeder Spinalnerv in einen Ramus ventralis und in einen Ramus dorsalis. Eine genauere Kenntniss des Verlaufs der Rami dorsales fehlt uns bis jetzt.

Die Rami ventrales der beiden ersten Halsnerven sind klein und auch nur schwach ausgebildet, sie innerviren die vorderen kleinen Halsmuskeln.

Der ventrale Ast des vierten Spinalnerven (IV). Derselbe verhält sich ähnlich wie der vorhergehende Nerv. Er verzweigt sich in der Muskulatur und der Haut des betreffenden Abschnittes des Halses, während einzelne feine Äste zu den Mm. episterno-cleido-mastoideus, cueullaris, collo-scapularis superficialis und profundus gehen.

Der ventrale Ast des fünften Spinalnerven (V). Entsprechend dem vorhergehenden vertheilt er sich in der hypaxonischen und ventralen Muskulatur, so wie in dem M. mylo-hyoides (Sphincter colli: Fürbringer) und der Haut des Halses und giebt kleine Äste an die Mm. collo-scapulares, episterno-cleido-mastoideus und Cueullaris ab. Bei *Platydactylus* geht ein sehr dünnes Fädchen in den Plexus brachialis ein und bildet mit dem N. spinalis VI die Ansa cervicalis V.

Plexus brachialis. (Vergl. Taf. LXXXVI. Fig. 1—6.)

An der Bildung des Plexus brachialis betheiligen sich bei den kionokrann Sauriern die ventralen Aeste des sechsten, siebenten, achten und neunten Halsnerven, zuweilen auch der des zehnten, bisweilen auch der des fünften. Es kommen aber unter den verschiedenen kionokrannen Sauriern mehrfache Differenzen vor, namentlich zeigen die fusslosen Saurier beträchtliche Abweichungen. Nach Fürbringer wird z. B. bei *Platy*
Anatomie.

Der ventrale Ast des sechsten Spinalnerven (VI) geht in der Regel (nicht bei Varanus), wie wir also gesehen haben, in die Bildung des Plexus ein und ist, abgesehen von Platydactylus, desselben schwächster Ast; bei letzterem übertrifft er das vom fünften Spinalnerven abgegebene feine Fädchen beträchtlich an Stärke. Bevor er in den Plexus brachialis eintritt, gibt er einige Aeste an die hypaxonische und ventrale Rumpfmuskulatur sowie an die Mm. levator scapulae und serratus (Nn. thoracici superiores) ab und verbindet sich hier entweder zuerst mit dem vom N. spinalis V abgegebenen feinen Aestehen zur Ansa cervicalis V und dann mit N. spinalis VII zur Ansa cervicalis (V + VI) wie bei Platydactylus, oder er vereinigt sich sogleich mit letzterem Nerven zur Ansa cervicalis VI (meiste typische Saurier ausser Varanus).

Ventraler Ast des siebenten Nervus spinalis (VII). Gleich nach seinem Austritte aus dem Foramen intervertebrale und seiner Abzweigung vom dorsalen Ast, gibt er ein kleines Aestechen an die hypaxonische Rumpfmuskulatur und verläuft dann zwischen dieser und Thoraxwand nach unten. Während dieses Verlaufes entsendet er einzelne Aeste an die Bauch- (Intercostal-) Muskulatur (10) und einen N. thoracicus superior VII (9) für den M. serratus und verbindet sich erst mit dem N. spinalis VI zur Ansa spinalis VI, dann mit N. spinalis VIII zur Ansa spinalis (VI + VII); bei Varanus fehlt die erste Verbindung. Der Ramus inferior entsendet gewöhnlich zuerst die Nerven für den M. supracoracoidens und für den M. sterno-coracoidens und verbindet sich dann entweder mit dem N. spinalis VIII (Lacerta) oder mit den vereinigten Nu. spinalis VIII und IX (Iguana, Phrynosoma, Uromastix, Platydactylus) zur Ansa spinalis inferior VII. Der Ramus superior verhält sich bei den verschiedenen Sauriern verschieden, wie aus Fürbringer's trefflichen Untersuchungen hervorgeht.

Es würde zu weit führen, das Verhältniss dieses Nerven bei den verschiedenen Sauriern zu beschreiben, nur von Platydactylus und Lacerta will ich dasselbe etwas ausführlicher mittheilen (vgl. hierzu Taf. LXXXVI. Fig. 1. u. 2). Hier theilt er sich sogleich nach der Abzweigung von dem Ramus inferior in fünf Aeste, deren erster (N. subscapularis, 29) den M. subcoracosecapularis versorgt, deren zweiter (N. dorsalis scapulae, 30) zum gleichnamigen Muskel geht und deren dritter (36) für den M. anconaeus
und M. scapulo-humeralis profundus bestimmt ist, während der vierte mit
den vereinigten Rr. superiores N. spinalis VIII und IX die Ansa spinalis
superior VII bildet, aus welcher der N. brachialis longus superior s. ra-
dialis (37 + 38) hervorgeht und der fünfte sich zugleich wieder in zwei
Zweige (Nn. latissimi dorsi, 34) theilt, deren erster direkt zum gleich-
namigen Muskel verläuft, während der letztere sich vorher erst mit einem
von dem N. spinalis VIII abgegebenen Zweige vereinigt. Bei Lacerta
dagegen spaltet sich der Ramus superior erst in einiger Entfernung von
der Theilungsstelle in drei Aeste, deren erster der N. subscapularis ist,
deren zweiter sich in einen zweiten, viel feineren N. subscapularis und
in den N. dorsalis scapulae theilt, und deren dritter, nachdem er einen
feinen N. latissimus dorsi abgegeben hat, mit dem N. spinalis VIII die
Ansa spinalis (VI + VII) bildet, von der aus sogleich ein für den M.
anconaeus und den M. scapulo-humeralis profundus bestimmter Zweig (N.
anconaeus) abgeht, während die Hauptmasse sich mit dem N. spinalis IX
zur Ansa spinalis superior VIII verbindet, aus welcher Verbindung der
N. brachialis longus superior hervorgeht.

Der ventrale Ast des achten Spinalnerven (VIII) bildet bei der Mehr-
zahl der kionokranen Sauер die kräftigste Wurzel des Plexus brachialis.
Er giebt zunächst kleine Aeste an die hypaxonische Rumpfmuskulatur
die Bauch- (Intercostal-) Muskeln (11), zuweilen einen N. thoracicus
superior VIII für den M. serratus (Varanus). Dann verbindet er sich ent-
weder ohne weiteres mit dem N. spinalis IX zur Ansa spinalis VIII
(Platydactylus, Uromastix, Iguana), oder er theilt sich zuerst in einen
Ramus inferior und superior (Lacerta, Salvator, Varanus), die ihrerseits
erst dann mit den Nn. spinalis VII und IX die Ansae spinales inferiores
und superiores VII und VIII eingehen. Im ersteren Fall (Platydactylus,
Uromastix, Iguana) theilt sich erst nach Bildung der Ansa spinalis VIII
der vereinigte Stamm der Nn. spinalis VIII und IX in einen Ramus inferi-
or und superior. Der Ramus inferior vereinigt sich dann mit dem Ram-
us inferior n. spinalis VII zur Ansa spinalis VII, die sowohl hieraus
hervorgehend als auch direkt vom Ramus inferior n. spinalis (VIII + IX)
kommenden Endäste sind die Nn. brachialis longus inferior, incl. pecto-
ralis und coraco-brachiales.

Der Ramus superior giebt entweder sofort oder nach kurzer Ver-
laufe zwei Zweige, die direct zum latissimus dorsi verlaufen (Platydac-
tylyus, Iguana), oder einen Zweig ab, der sich mit einem vom Ramus
superior n. spinalis VII abgegebenen Aestehen zum N. latissimus dorsi
(34) verbindet (Platydactylus) und vereinigt sich erst weit distaler mit
dem R. superior n. spinalis VII zur Ansa spinalis superior VII, oder er
geht gleichzeitig mit der Abgabe eines N. latissimus dorsi (34), der mit
dem einen Zweig direct zum gleichnamigen Muskel verläuft, mit dem
anderen sich erst mit einem vom N. spinalis VII kommenden N. latissi-
mus dorsi verbindet, die Bildung der Ansa spinalis superior VII ein.

Der ventrale Ast des zehnten Spinalnerven (X) betheiligt sich nur bei *Varanus* an der Bildung des Plexus brachialis, indem er nach Abgabe von Aesten für die Muskulatur und Haut des Bauches als feinste Wurzel des Plexus sich mit dem N. spinalis IX zur Ansa spinalis IX verbindet.

Das nähere Verhalten der aus dem Plexus brachialis hervorgehenden Endäste ist folgendes:

A. Nn. brachiales und thoracici inferiores.

a) N. supracoracoideus (12) wendet sich noch unter dem zwischen Sternum und Scapula an der Innenseite des Brustgürteils ausgespannten Ligamentum sterno-scapulare internum und dem M. subcoracoideus lateralwärts und tritt durch das Foramen coracoideum nach aussen, wobei er sich in zwei Aeste theilt. Der stärkere Ast (13 + 14) versorgt den M. supracoracoideus, der schwächere durchbricht diesen Muskel und geht dann zwischen den Mm. cleido-humeralis und pectoralis zur Haut der Vorderbrust.

b) Nervus thoracicus inferior s. sterno-coracoides (10 a). Derselbe verläuft in schräger Richtung nach hinten und lateralwärts und vertheilt sich in den Mm. sterno-costo-scapularis und sterno-coracoides internus sublimis et profundus.

c) N. brachialis longus inferior (21). Er geht lateral nach aussen und tritt an der Hinterseite des Brustgürteils zwischen den Insertionsteilien der Mm. pectoralis und latissimus dorsi, nach unten von dem sehnen Ursprung des M. anconaeus coracoides, durch diesen von dem N. bra-
chialis longus superior getrennt an die Medial- und Unterseite des Oberarms. Auf diesem Wege giebt er ab den:

\(\alpha\) N. pectoralis (19) für den M. pectoralis; den

\(\beta\) N. coraco-brachialis (22), der sich in den Mm. coraco-brachiales und in den proximalen Banch des M. coraco-antebrachialis vertheilt.

B. Nn. brachiales superiores.

a) N. subscapularis (subcoracoscapularis) (29) verzweigt sich mit zwei Asten in dem ventralen und dorsalen Theil des M. subcoracoscapularis.

b) N. dorsalis scapulae (axillaris) (30). Derselbe verläuft lateralwärts nach dem Hinterrand der Scapula, schlägt sich um diesen oberhalb des Ursprungs des M. anconaeus scapularis herum und tritt nun auf die Aussenfläche der Scapula und dann zwischen den M. deltoideus claviculareinerseits und die Mm. scapulo-humeralis profundus und supracoracoideus andererseits, während welchen Verlaufs er die Mm. deltoidei scapularis und clavicularis durch hintere (31) und vordere (33) Muskelaite von ihrer Innenfläche her versorgt und zugleich einen Hautast — N. cutaneus brachii superior lateralis (32) zur Haut der Schulter und der Lateralfäche des Oberarms abgibt.

c) Nn. latissimi dorsi (34). Dieselben vertheilen sich in dem M. latissimus dorsi; der eine, der vordere, giebt auch bei einigen (Trachydosaurus, Uromastix) ein sehr frühzeitig entspringendes feines Aestchen, N. teres major (29b) ab, das den gleichnamigen Muskel innervirt.

d) N. scapulo-humeralis profundus (36a) innervirt den M. scapulo-humeralis profundus.

e) N. anconaeus (36) innervirt den M. anconaeus scapularis und coracoideus.

f) N. brachialis longus superior (radialis) (37 + 38). Ein kräftiger Nerv, der durch Rami musculares (40) den M. anconaeus humeralis lateralis und medialis versorgt und einen N. cutaneus antebrae brachii lateralis (41) an die Haut der Aussenseite des Ellenbogengelenkes und des Oberarms schickt und sich weiter in den Streckern des Vorderarmus und am Handrücken verzweigt.

Die eben beschriebene Anordnung des Plexus brachialis kommt nur den typischen Sauriern zu, bei den schlangenähnlichen entstehen durch

Der Nervencomplex, welcher dem Plexus brachialis der typischen Saurier vergleichbar sein zu können scheint, setzt sich aus den ventralen Aesten der Nn. spinales IV, V und VI zusammen (Taf. LXXXVI. Fig. 4). Der ventrale Ast des vierten Spinalnerven (IV) ist der schwächste Ast des Plexus. Er giebt einen N. thoracicus superior IV ab, der sich sogleich in zwei Aeste spaltet, von denen der eine (4) den M. collo-scalpularis, der andere (7) den M. serratus innervirt. Gleich hierauf bildet er mit einem kleinen Ast zuerst einen Zweig (3) für den M. episterno-pleuro-hyoïdeus sublìmis und den M. episterno-hyoïdeus profundus und einen Ast theilt, dessen Endigung nicht mit Sicherheit festzustellen war.

Der ventrale Ast des fünften Spinalnerven (V). Derselbe verläuft nach Abgabe von Aesten an die hypaxonische Muskulatur an der Innenscheibe der Brust- und Bauchmuskulatur lateralwärts und nach unten. Während dieses Verlaufes giebt er zuerst in Aeste, die für die Bildung der Ansa spinalis IV, einen für die Bauchmuskeln bestimmten Zweig (10) und den N. thoracicus superior V (9) für den M. serratus ab und geht sodann an den hinteren Rand des Brustgürteles. Hier verbindet er sich mit einem von dem N. spinalis VI abgegebenen feinen Aeste (Ramus superior n. spinalis VI) und verliert sich noch unterhalb des M. euenlassian im Bindegewebe.

Der ventrale Ast des sechsten Spinalnerven (VI) ist der kräftigste Ast des Plexus brachialis. Er verläuft erst zwischen Thoraxwandung und hypaxonischer Muskulatur, dann zwischen den Mm. intercostales und dem M. transversus abdominis lateralwärts und nach unten, wobei er beiden, sowie den übrigen Bauchmuskeln Zweige abgibt. Dann spaltet er sich in zwei Aeste. Der vordere giebt zuerst einen sehr feinen N. thoracicus inferior s. sterno-coracoïdeus (10a) an den sehr verkümmerten M. sterno-coracoïdeus ab und theilt sich dann in einen feinen Ramus superior, der sich mit dem Ramus superior n. spinalis V verbindet, und einen wenig stärkeren Ramus inferior (Rö), der zur ventralen Längsmuskulatur geht. Der hintere Ast innervirt die Haut der Bauchmuskeln und mit einigen feinen Aesten auch die Bauchmuskeln selbst.

Bei den *Chamaeleonidae* betheiligt sich eine geringere Anzahl von Spinalnerven an der Bildung des Plexus brachialis als bei den klonokranien Sauriern. Derselbe bildet hier gebildet durch die ventralen Aeste
des dritten, vierten, fünften, sechsten und siebenten Spinalnerven, letztgenannter bildet den ersten Dorsolumbalnerven.

Der ventrale Ast des zweiten Spinalnerven (Taf. LXXXVI. Fig. 5. II) versorgt die hypaxonische und ventrale Halsmuskulatur und giebt einen N. thoracicus superior II ab, welcher den M. collo-scapularis superficialis innervirt.

Der ventrale Ast des dritten Spinalnerven (III) ist die erste und feinste Wurzel des Plexus brachialis. Er giebt Aestchen ab für die hypaxonische und ventrale Muskulatur und für die Haut des Halses (3), zwei Nervi thoracici superiores III (4) an den M. collo-scapularis superficialis, sowie einen sehr feinen N. thoracicus anterior III (3a) für den M. cueul laris. Der feine übrigbleibende Zweig bildet mit dem N. spinalis IV die Ansa spinalis II.

Der ventrale Ast des vierten Spinalnerven (IV) ist die zweit-stärkste Wurzel des Plexus brachialis. Er verbindet sich mit einem Zweig des N. spinalis III zur Ansa spinalis III und mit einem Ast des N. spinalis V zur Ansa spinalis III + IV. Von dieser letzteren entspringen die Nn. supra-coracoidens (12), thoracicus inferior (10a), subscapularis (29), dorsalis scapulae (30), ein Zweig für die Intercostalmuskulatur und den N. thoracicus superior für die Mm. serrati.

Der ventrale Ast des fünften Spinalnerven (V) betheilt sich grösstentheils an der Bildung der Ansa spinalis III + IV.

Der ventrale Ast des sechsten Spinalnerven (VI) bildet mit dem N. spinalis VII die Ansa spinalis VI. Der daraus hervorgehende Stamm giebt einen für die Intercostalmuskulatur bestimmten Nerven ab (11) und geht dann mit dem aus der Ansa spinalis III + IV sich fortsetzenden Stamm die Bildung einer neuen, am meisten distalen Ansa ein, deren Endstamm erst die Nn. scapulo-humeralis profundi (36a) und latissimus dorsi (34) abgiebt und sich dann in die Nn. brachialis longi inferior und superior spaltet, von denen wiederum einerseits die Nn. pectoralis (19) und coraco-brachialis (22), andererseits der N. anconaeus (36) sich abzweigen.

Der ventrale Ast des siebenten Spinalnerven (erster Dorsalnerv) (VII) bildet mit dem Nervus spinalis VI die Ansa spinalis VI. Vorher giebt er einen kräftigen Ast (11), der seinen eigentlichen Hauptstamm repräsentirt — während der mit dem Plexus sich verbindende Theil nur ein sehr kleiner Nebenzweig ist — an die Bauchmuskulatur.

Das speciellere Verhalten der aus dem Plexus brachialis hervorgehenden Endäste ist folgendes.

A. Nn. brachiales et thoracici inferiores.

a) N. supracoracoidens (12) für die Mm. supracoracoides und suprascapularis bestimmt; außerdem giebt derselbe einen feinen Ast an die Haut der Brust.

b) N. thoracicus inferior (10a) innervirt den M. sterno-coracoides internus.

c) N. brachialis longus inferior. Von demselben entspringen:
Anatomie.

α) N. pectoralis (19) für den M. pectoralis.
β) N. coraco-brachialis (22) für den M. coraco-brachialis.
γ) Rami muscularis (22c + 24) für die Mm. coraco-antebrachialis
 und humero-antebrachiales.

Nach Abgabe eines Hautastes für den Oberarm verläuft der N. bra-
chialis longus inferior nach dem distalen Ende des Oberarms, wo er sich
theilt und an den Vorderarm tritt.

B. Nn. brachiales superiores.

a) N. subscapularis (29) innervirt den M. subcoraco-scapularis.
b) N. dorsalis scapulac (axillaris) (30) innervirt die Mm. deltoidei
 scapularis und coraco-ternalis.
c) N. latissimus dorsi (34) für den gleichnamigen Muskel bestimmt.
d) N. scapulo-humeralis profundus (36a) innervirt den gleichnamigen
 Muskel.

e) N. brachialis longus superior (35 + 38). der dorsale Endstamm,
 welcher sich von dem N. brachialis longus inferior sehr spät trennt. Er
 giebt im Bereiche des proximalen Theiles des Oberarms einen ziemlich
 starken R. muscularis (N. anconaeus) (36) an die Streckmuskeln ab, durch-
 setzt hierauf dieselben und geht dann in die Streckseite des Vorderarms
 und der Hand.

Die Rami ventrales der Dorsolumbalnerven innerviren die Bauch-
muskeln, die Mm. intercostales, retrahentes costarum und den M. qua-
dratus lumborum.

Crocodile. Die Crocodile stimmen mit den Sauriern und Schildkröten
darin überein, dass bei ihnen die dorsalen Wurzeln der beiden ersten
Spinalnerven gleichfalls fehlen. Die ventralen Aeste der drei vordersten
Spinalnerven innerviren die ventralen kleineren Halsmuskeln; genauere
Angaben über ihren Verlauf liegen noch nicht vor.

Der ventrale Ast des vierten Spinalnerven (IV) innervirt mit seiner
Hauptmasse die hyphaxonische und ventrale Muskulatur, sowie den M.
 sphincter colli und die Haut des Halses und giebt ein kleines Aestchen,
den N. thoracicus superior quartus (2), an den vordersten Theil des M.
 levator scapulae superficialis.

Der ventrale Ast des fünften Spinalnerven (V) giebt Aeste ab für die
hyphaxonische Halsmuskulatur, einen N. thoracicus superior quintus (2b)
für den M. levator scapulae superficialis und einen kräftigen Zweig an
den M. sterno-mastoides (sterno-atlanticus), letztergenannter Zweig ist der
N. thoracicus anterior quintus (2a); der Rest vertheilt sich in dem M.
sphincter colli, in den ventralen Muskeln und der Haut des Halses.

Der ventrale Ast des sechsten Spinalnerven (VI) verzweigt sich in
der hyphaxonischen und ventralen Muskulatur, so wie in der Haut des
Halses und giebt einen ziemlich starken N. thoracicus superior sextus (3b)
an den M. levator scapulae superficialis sowie an die vorderste Zacke des
M. collo-thoraci-suprascapularis profundus ab.

Der ventrale Ast des zehnten Spinalnerven (X) ist wie der neunte Spinalnerv der stärkste Ast des Plexus brachialis. Nach Abgabe einzelner Zweige für die hypaxonische Muskulatur verbindet er sich mit dem elften Spinalnerven zur Ansa spinalis X; gibt dann einen N. thoracicus inferior ab (10a3), der zum M. costo-coracoides geht und bildet dann mit dem neunten Spinalnerven die Ansa spinalis IX. Dann gibt er die Nn. cutanei brachii medialis und brachii et antebrae brachii medialis (25 + 42) ab und theilt sich gleichzeitig in einen Ramus inferior et superior, die sich mit den entsprechenden Aesten des N. spinalis VIII zu den Ansae inferior und superior VIII vereinigen.
Der ventrale Ast des elften Spinalnerven (erster Dorsalnerv) (XI) ist der zweitschwächste Ast des Plexus brachialis. Ausser Aesten an die Rumpfmuskulatur giebt er einen feinen Zweig (18) an die Haut der Achselhöhle und verbindet sich mit dem zehnten Spinalnerven zum Plexus spinalis X.

Das speciellere Verhalten der aus dem Plexus brachialis hervorgehenden Endäste ist folgendes:

A. Nn. brachiales und thoracici inferiores.

a) N. supracoracoidens (12) innervirt den gleichnamigen Muskel und giebt einen feinen Ast an die Haut der Brust.

c) N. pectoralis (19), kräftiger Nerv, welcher den gleichnamigen Muskel innervirt.

d) N. cutaneus pectoralis (18). Feines vom N. spinalis XI abgegebenes Aeste, das sich in der Haut der Achselhöhle und des anliegenden Theiles der Brust vertheilt.

e) N. coraco-brachialis (22), für den gleichnamigen Muskel bestimmt.

f) N. cutaneus brachii et antebrae medialis (25 + 42) für die Medialseite der Haut des Ober- und Vorderarms bestimmt.

g) N. brachialis longus inferior (21). Kräftiger Nervenstamm, der erst zwischen dem M. coraco-brachialis und dem Caput coraco-secapulare m. anconaei, dann zwischen letzterem und dem M. biceps an der Medialseite des Oberarms verläuft, wobei er Rami musculares für M. biceps und M. humero-antebrae inferior abgibt. Dann geht er nach dem Vorderarm zwischen Streck- und Bungennuskulatur, wo er sich in den N. medianus und ulnaris inferior theilt.

B. Nn. brachiales superiores.

a) N. subscapularis (29) innervirt den gleichnamigen Muskel.

b) N. scapulo-humeralis profundus (36a) für den gleichnamigen Muskel bestimmt.

c) N. axillaris (32 + 33). Kräftiger Stamm, der nach Abzweigung der Nn. subscapulares, dorsalis scapulae und latissimus dorsi die Fortsetzung des vorderen Hauptastes des aus der Ansa spinalis superior VIII hervorgehenden Stammes bildet und der aus Elementen der Nn. spinales VIII und IX sich zusammensetzt. Er geht in der Achselhöhle zwischen dem M. seapulo-humeralis profundus und Caput seapulare externum m. anconaei nach unten und theilt sich hierauf unterhalb des letzteren Muskels in zwei ansehnliche Zweige, deren hinterer, N. cutaneus brachii et antebrae superior lateralis (32) sich in der Haut der Lateralseite des Oberarms und des proximalen Theiles des Vorderarms sowie mit einem nicht unansehnlichen Aste, N. humero-radialis (32a) sich in dem M. humero-
radialis verzweigt, während der vordere (33) bedeckt von der Endsehne des M. deltoideus scapularis nach vorn sich wendet und zwischen dem M. deltoideus coraco-sternalis und M. supracoracoideus eindringt, wobei er den ersteren Muskel innervirt.

d) N. dorsalis scapulae (posterior) (31) innervirt den M. deltoideus scapularis.

e) N. teres major (29b). Ein (Alligatar) oder zwei (Crocodilus) mittelstarke Nerven für den M. teres major bestimmt.

f) Nn. latissimi dorsi (34) für den gleichnamigen Muskel bestimmt.

g) N. brachialis longus superior (radialis) (35 + 38). Kräftiger Nervenstamm der zwischen dem M. subscapularis externus und Caput scapulare externum m. anconaei, dann zwischen letzterem und dem M. coracoscapulare m. anconaei an den Oberarm verläuft, senkt sich dann zwischen den beiden letzten Muskeln in die Streckmuskulatur ein und tritt dann, von dem Epicondylus lateralis, an die Streckseite des Vorderarms und darauf der Hand. (Vergleiche für die Beschreibung dieser Nerven bei den Sauriern und Crocodilen Taf. LXXXVI. Fig. 1—6).

Plexus lumbo-sacralis und pudendus. (S.Taf. LXXXVII. Fig.1—4b.)

Saurier und Crocodile. Über den Bau des Plexus lumbo-sacralis und pudendus verdanken wir Mivart und Clarke (109), Gadow (96a) und Hoffmann (45) mehr oder weniger ausführliche Mittheilungen; die genannten sind wohl die von Gadow, der auch die Innervirung der Muskeln der hinteren Extremität untersucht hat.

Die Muskeln der unteren Extremität werden durch die Aeste des Plexus lumbo-sacralis, des weiter caudalwärts sich anschliessenden Plexus pudendus innervirt, während die Schwanzmuskeln durch die regulären metameren Caudalnerven versorgt werden.

Es hat sich nach Gadow im Laufe der Untersuchung der Muskeln herausgestellt, dass ein und derselbe Muskel nicht allein bei den verschiedenen Familien und Ordnungen, sondern selbst bei nächstverwandten Species von einem Nerv innervirt wird, der einmal dem Plexus cruralis, ein anderes Mal dem Plexus ischiadicus, oder sogar dem Plexus pudendus gehört. Um nun eine kurze und vor Allem für unsere Zwecke allgemein durchführbare Bezeichnung zu ermöglichen, habe ich nach Gadow folgende Ausdrucksweise gewählt.

Der zwischen den beiden regulär vorhandenen Sacralwirbeln austretende Sacralnerv wird mit S. bezeichnet; die daneben gesetzte Zahl ist seine laufende Nummer als Spinalnerv überhaupt, beginnend beim N. cervicalis I. Der Nerv S ist hingegen Nullpunkt für die Beckenregion. Sämtliche caudalwärts auf ihn folgende Nervenstämme werden als postsacrale den kopfwärts vom Stämme S liegenden präsaicalen gegenüber gestellt, und zwar werden die postsacralen mit α, β, γ etc., die präsaicalen mit a, b, c bezeichnet.

Der vorderste, zum Plexus cruralis zu rechnende Nerv ist gewöhnlich nahe an seiner Wurzel gespalten und geht einerseits zu den Muskeln des Bauches und zum M. quadratus lumborum, anderseits verbindet er sich durch seinen zweiten Ast mit dem nächstfolgenden Spinalnerven.

Die eben erwähnte Verbindung zwischen den beiden Plexus ist oft äusserst schwach, wie bei Phrynosoma, oder kann auch ganz innerhalb des Beckens fehlen, dann findet aber eine Communication der Elemente des Plexus cruralis und Plexus ischiadicus ausserhalb des Beckens statt. Bei Hydrosaurus gigantens beobachtete Gadow auf der einen Seite einen sehr starken Verbindungsast, während auf der anderen Seite keine Spur
eines solchen innerhalb des Beckens aufzufinden war. Bald geht dieser Ast vom Plexus cruralis zum Plexus ischiadius, bald umgekehrt. Der letzte, zum Plexus ischiadius s. cruralis zu rechnende Nerv ist der, welcher sich noch mit solchen Nerven verbindet, die die Muskeln an der Hinterseite des Beckens und Oberschenkels innerviren. Er bildet häufig mit dem nächstfolgenden einen Plexus pudendus, fehlt jedoch eine solche Verbindung, so kann man nicht von einem Plexus pudendus sprechen.

Plexus cruralis. Die Stämme des Cruralgebietes gruppiren sich nach Gadow ungefähr in folgender Weise:

2) Gruppe für die Vorderfläche des Oberschenkels, für den M. ambiens, M. extensor tibialis und den M. femoro-tibialis.

3) Gruppe für die Muskulatur auf der Medianfläche des Oberschenkels: M. ischio-femoralis, M. pubo-ischio-tibialis und theilweise M. flexor tibialis internus.

Dem Cruralgebiete gehören mithin die Streckmuskeln des Unter- und die Heber des Oberschenkels an.

Der Plexus cruralis entsendet ferner ziemlich constant bei den Sau-riern und Crocodilen einen Hautast (Taf. LXXXVII. Fig. 1. 4), dessen eine Hälfte gleich auf der Oberfläche der Vorder- und Aussenseite des Oberschenkels sich ausbreitet, während die andere häufig erst einen M. extensor tibialis und den M. femoro-tibialis durchbohrt, ehe der Nerv zur Oberfläche der Medianseite des Oberschenkels gelangt.

Bei Alligator ist noch folgender Nerv bemerkenswerth (Taf. LXXXVII. Fig. 1. y). Die Mittelportion des N. obturatorius geht zwischen dem M. pubi-ischio-femoralis internus und der Aussenseite der Articulation des Os pubis mit dem Os ischi und, vom M. ambiens bedeckt, neben dem M. ischio-femoralis, giebt an letztere einige Zweige ab und tritt dann subcutan auf die Medianfläche des Kniegelenkes, biegt abwärts und verliert sich in Aesten zum Gelenk und zu den cutanen Partien der Medianseite des proximalen Drittels des Unterschenkels; der Nerv scheint grösstentheils sensibler Natur zu sein.

Bei den Sau-riern gelang es Gadow nicht, einen solchen Nervenast des Obturatorius aufzufinden.

Plexus ischiadius. Die Nerven dieses Plexus, so weit sie nicht zur Bildung des eigentlichen N. ischiadius verwandt werden, lassen sich nach Gadow in mehrere Gruppen theilen.

2. Gruppe. Längere und stärkere Aeste für die Mm. pubi-tibialis, pubi-ischio-tibialis, Flexor tibialis externus und internus und ilio-fibularis, also für sämtliche Beuger des Unterschenkels. Gewöhnlich ist ihnen der Nerv für den M. caudi-ilio-femoralis beigemengt.

Aus diesem Complexe sondert sich constant mindestens ein Hautnerv. Der eine entspringt mit dem Nerven des M. pubi-ischio-tibialis gemeinsam, tritt zwischen der Pars ischiadia und der Pars pubica dieses Muskels an die Oberfläche und verbreitet sich auf der Hinter- und Medianseite des Oberschenkels. Der andere tritt auf der dorsalen Hinterfläche zwischen den Mm. caudi-ilio-femoralis und flexor tibialis externus einerseits und dem M. ilio-fibularis anderseits aus; er versorgt die Hinteraußenfläche des Oberschenkels. Fast ganz selbständig erscheint dieser Hautnerv bei Alligator.

Der Nervus ischiadicus ist ausserdem von dem M. ilio-fibularis bedeckt und spaltet sich schon frühzeitig in mehrere Hauptstränge, zwischen welchen die lange Endsehne des M. caudifemoralis hindurchtritt. Es erwies sich nach Gadow als am praktischsten, den in Rede stehenden Nerven in vier Hauptstämme zu teilen; zwei davon liegen stets medial, der dritte stets lateral von der Sehne, während der vierte und gelegentlich die accessorische Stämme schwanken.

Stamm I tritt zwischen dem Caput internum und dem Caput externum des M. gastrocnemius in die Muskulatur des Unterschenkels ein, innervirt theilweise den M. gastrocnemius und den M. flexor longus digitorum, geht dann auf der Hinter- und Tibialseite des Unterschenkels herab und endigt entweder in Höhe des Fersengelenkes oder erstreckt sich weiter bis auf die fibularen Zehen.

Stamm II (medial von der Sehne, plantar, tibial, tief) mit theilweise ähnlichem Verlaufe wie der erste, liegt aber tiefer, dicht an der hinteren Fläche der Tibia, und endigt im Gebiete der I. und II. Zehe, er ist der tiefe tibiale Nerv der Plantarseite.

Stamm III (stets lateral von der Sehne; plantar, fibular, tief), läuft zwischen den beiden Unterschenkelknochen herab, aber fibularwärts, innervirt den M. gastrocnemius, den M. peroneus posterior und dann die sammlichen tiefen Muskeln auf der Beugeseite des Fusses. Er sendet häufig in Höhe des Kniegelenkes einen Hantast für die Hinteraußenfläche des Unterschenkels ab.

Stamm IV (sehr variabel; dorsal = N. peroneus profundus + superficialis). Bei Crocodilus, Alligator, Phrynosoma fand Gadow ihm lateral, bei den meisten anderen medial von der Sehne liegend. Ferner verläuft
er wie bei den Crocodilen, Ptyodactylus und Iguana aussen, fast subcutan über das Collum fibulae gehend, während er bei den andern gewöhnlich zwischen Tibia und Fibula hindurch auf die Vorderseite des Unterschenkels tritt.

Bei den Crocodilen ist er doppelt, bei den meisten Sauriern einfach, erscheint bei Fortnahme der Mm. extensor longus digitorum und tibialis anterior, die er mit dem M. peroneus anterior innervirt; am Fussse versorgt er sämtliche dorsale Muskeln. Häufig entsendet er einen Hautast für die Vorderfläche des Unterschenkels. Die speziellen Verhältnisse dieser Nerven sind nach Gadow folgende:

Alligator mississippiensis. Stamm Ia innervirt gleich nach seiner Ablösung vom Stamme II das Caput externum m. gastrocnemii, dessen Hauptnerv er bildet; dann wird der M. peroneus posterior von dessen tibialer Seite her durchbohrt in seinem distalen Drittel und dabei innervirt. Der Nerv kommt dann fibularwärts dicht neben dem Stamm III aus dem M. peroneus heraus und versorgt zum Theil die Zehenmuskeln an deren Ursprüngen; damit ist dieser Nerv zu Ende.

Stamm Ib. Läuft erst vereinigt mit dem vorigen zwischen dem M. flexor longus digitorum und dem Caput externum m. gastrocnemii lang, neben der abwärtsgehenden Sehne des M. flexor tibialis. Er innervirt den ersten Muskel und das Caput internum m. gastrocnemii, geht schräg unter der Sehne des letzteren hindurch und kommt auf der Plantarseite der Ferse als subcutaner planter Stamm zum Vorschein, innervirt die Fascie nebst den zugehörenden Muskeln und läuft weiter zu der ersten Zehe, zugleich die gegenüberliegende zweite innervirt: der fibulare Ast geht direkt auf die plantare Fibularseite der zweiten Zehe bis an deren Ende.

Stamm II. Mit den Stämmen Ia und Ib medial von der Endsehne des M. caudifemoralis liegend. Der Nerv spaltet sich in zwei. Der eine innervirt das Caput internum m. gastrocnemii und einen Theil des M. flexor longus digitorum und kommt schliesslich als entaner Nerv auf der Vorder-Innenfläche der Tibia in der Nähe des Ligamentum tibiofibulare zum Vorschein, sich in der dortigen Gegend verbreitend.

Der Haupttheil des Stammes geht nach vorn zwischen der Tibia und Fibula durch, läuft auf dem Aussenrande der Tibia lang, innervirt dabei mehrfach den M. peroneus anterior, den M. interosseus erurus und den M. tibialis posterior. Dann wendet er sich mehr in die Tiefe und versorgt schliesslich das Fusswurzelgelenk.

Stamm III. Abgabe eines Astes an den M. flexor tibialis in Höhe der Femurmitte, ferner eines feinen Aestchens an die Endsehne des M. caudifemoralis. Am Knie angelangt, wird ein Ast zum Ursprunge des Caput externum gastrocnemii abgesandt, darauf tritt der Nerv zwischen den Ursprungsssehnen des M. peroneus posterior und des M. flexor longus digitorum durch und läuft, ohne Zweige abzugeben, an der Plantarseite über die Furche des Os calcanei (fibulo-astragalo-calcaneus), durchbohrt
den distalen Insertionstheil des M. peroneus posterior und spaltet sich in Höhe der Basis digiti IV bandförmig in mehrere Aeste und innervirt die gesamte tiefe plantare Muskulatur der Fusswurzel und der Zehen nebst den letzteren selbst.

Crocodilus acutus. Stamp I versorgt das Caput externum m. gastrocnemii, läuft neben der herabsteigenden Sehne des M. flexor tibialis externus hin und spaltet sich in der Höhe der Mitte des Unterschenkels in zwei nahezu gleich starke Aeste. Der eine dieser beiden Aeste durchbohrt den M. peroneus anticus, der andere ist plantar tibial und verläuft schliesslich subcutan auf der Plantarfläche der ersten drei Zehen.

Der II Stamm tritt von hinten zwischen die Fibula und Tibia, sendet aber vorher einen ziemlich starken Ast durch die Ursprungsköpfe des Caput internum m. flexoris longi digitorum; dieser Ast kriecht dann zwischen letzterem Muskel und der Tibia hervor, vom Caput internum m. gastrocnemii bedeckt, geht dann auf der hinterinnernfläche der Tibia entlang und verschwindet seitwärts am Gelenk und an den Zehen. Der Haupttheil des zweiten Stammes innervirt das Caput internum m. gastrocnemii und beide Köpfe des M. flexor longus digitorum.
Der III Stamm trennt sich von dem allgemeinen Nervus ischiadicus-Stamm in der Höhe der Mitte des Oberschenkels. Er verläuft wie bei Alligator, nur geht er ausserdem schon dort, wo er über dem Ursprung des Caput externum m. gastrocnemii und wo er zwischen diesen Köpfen und der Insertion des M. ilio-fibularis durchbricht, einen subcutanen Ast ab, der neben dem M. peroneus anterior lang läuft und bis zum Os calcanei verfolgbar ist.

Der IV Stamm, N. peroneus superficialis. Er verläuft subcutan zwischen dem M. peroneus anterior und dem M. extensor longus digitorum. Er innervirt aber nur den ersten Muskel (nicht wie bei Alligator auch den M. extensor longus) und läuft theils über, theils unter dem querenden Ligamente hin und schlägt eine mehr dorsal-fibulare Richtung ein.

Der N. peroneus profundus ist stärker als der vorige. Ueberall von den Mm. tibialis anticus und extensor longus bedeckt, welche Muskeln er beide innervirt. Knotenbildung am Fussgelenk mit dem Nervus peroneus superficialis wie bei Alligator, Hydroaurus marmoratus. Der IV Stamm geht lateral von der Sehne, geht aussen über die Köpfe der Mm. peroneus posterior et anterior, dann zwischen dem M. peroneus anterior und dem M. extensor longus in die Tiefe, wobei er beide Muskeln innervirt; dann geht der Stamm dorsalwärts über das Ligamentum tibio-fibulare und spaltet sich dann in zwei Aeste, von denen der als N. peroneus superficialis aufzufassende über dem M. extensor hallucis proprius hinaus und schliesslich die dorsalen Muskeln der fünften Zehe innervirt. Der Nervus peroneus profundus geht unter dem M. extensor hallucis durch, innervirt diesen und die meisten dorsalen Zehenmuskeln und ferner die Zehenränder.

Bei Hydroaurus marmoratus, nicht bei Hydroaurus giganteus fand Gadow noch einen fünften Stamm, der sich von den Stämmen I und II losreist; er innervirt zuerst den M. tibialis anticus und ist vom Caput internum m. gastrocnemii bedeckt; dann erscheint er subcutan auf der Hinterfläche der Insertion des M. tibialis anticus und verliert sich dort im Fussgelenk.

Der IV Stamm von Ophryoessa tritt medial von der Sehne zwischen Fibula und Tibia durch, bleibt aber ein einheitlicher Ast. Dazu kommt ein Zweig, der lateral von der Sehne liegt und, vom M. extensor tibialis bedeckt, zur Kniekehle tritt, wo er Nervenäste zum Gelenk und zum Ursprunge des Caput externum m. gastrocnemii sendet. Der IV Stamm bei Iguana ist doppelt, beide liegen lateral von der Sehne und gehen subcutan aussen über die Fibula zur Vorderseite des Unterschenkels.

Der IV Stamm bei Lacerta. Der N. peroneus superficialis liegt lateral von der Sehne; er läuft an der Innenfläche des M. ilio-fibularis hin, dann

50*
aussen über das Collum fibulae, darauf zwischen dem M. extensor longus und dem M. peroneus anterior in die Tiefe; über dem Ligamentum tibio-fibulare, unter dem M. extensor hallucis zur dorsalen Füssmuskulatur. Zu diesem Nerv gehört ein schwächerer Theil, ausschliesslich Hautnerv für die Vorderfläche des Unterschenkels.

Der N. peroneus profundus liegt median von der Sehne, tritt zwischen Fibula und Tibia durch und begeht sich unter dem Ligamente und unter dem M. extensor hallucis zur dorsalen Zehenmuskulatur, besonders zur Zehe IV.

Bei Platydactylus liegt ein Theil des IV Stammes median von der Sehne, tritt zwischen Tibia und Fibula hindurch und verhält sich dann wie bei Lacerta. Ein anderer liegt lateral von der Sehne, geht aussen über die Fibula und spaltet sich in zwei Aeste, die zwischen den Mm. extensor longus et peroneus anterior in die Tiefe gehen und sich zur dorsalen Zehenmuskulatur begeben.

Bei Chamaeleon geht ausser über die Fibula gar kein Nerv. Der Stamm IV ist einfach, liegt median von der Sehne, tritt zwischen den Unterschenkelknochen in der Höhe der Mitte derselben durch nach vorn, innervirt die Mm. extensor longus et peroneus anterior in die Tiefe gehen und sich zur dorsalen Zehenmuskulatur.

Bei Phrynosoma läuft ein starker Ast, lateral von der Sehne, proximal von der Insertion des M. ilio-fibularis über das Collum fibulae, innervirt den M. extensor longus und den M. tibialis anticus und begeht sich dann zum Fuss (N. peroneus profundus).

Sinnesapparate.

Gesichtsapparat. Auge.

Literatur.

W. Müller. Ueber die Stammesentwicklung des Schorgans der Wirbelthiere als Beiträge zur Anatomie und Physiologie für Carl Ludwig. 1875.

Faber. Der Bau der Iris des Menschen und der Wirbelthiere. Gebrünte Preisschrift. 1876.

Die Schutzorgane des Auges.

Die Augenlider.

Saurier. Ueber die Schutzorgane des Auges bei den einheimischen Sauriern (Lacerta) verdanken wir besonders Weber (122) genauer Mittheilungen.

Das untere Augenlid. Bei den einheimischen Lacert der unterscheidet sich das untere Augenlid ein elliptisches Gebilde von grosser Beweglichkeit, dessen Längsachse etwas schräg zu der des Körpers steht. Die Augenlider sind als Hautduplicaturen aufzufassen, deren dem Bulbus zugewandter Faltentheil zu einer Schleimhaut (Schleimhautoerplatte) umgewandelt ist und im Verein mit dem äusseren Faltentheil (Cutisplatte) einen Hohlräum umschliesst, der Lidmuskel und andere Gebilde beherbergt.

In der Mitte des Lidrückens bemerkt man eine farblose elliptische Stelle, die nicht einmal die feine Warzenbildung des übrigen Augenlides zeigt, indem diese durch polyedrische, flache, helle, nach dem Centrum zu an Grösse zunehmende Platten vertreten ist. Durch diese Beschaffenheit
erlangt diese Stelle einen gewissen Grad von Durchsichtigkeit, ein Verhältniss, auf welches schon Leydig (37) hingewiesen hat. Dadurch passt die Cornea bei geschlossenem Lide in den schüsselartig ausgebildeten pelluciden Tarsus, ober welchem die Cutisplatte hell ist und so ein Uebergang zu den brillenähnlichen Partien im unteren Lide mancher Säugetier darstellt.

Die Pigmententwicklung auf dem Lidrückens ist sehr gering. Die Lederhaut ist entsprechend der allgemein zarten Beschaffenheit der Lider, eine wenig mächtige Schicht, an der sich die drei Lagen, welche Leydig als die Lederhaut der Reptilien aufbauend beschrieben hat, wieder erkennen lassen.

Die zarte äussere Grenzschicht ist auch hier der vorwiegende Träger des Pigmentes, wie das Vorkommen der Chromatophoren zeigt; an der eben erwähnten durchsichtigen Stelle ist die Pigmententwicklung dagegen eine auffallend geringe. Die mittlere Lage ist zwar zart angelegt, unter-scheidet sich aber nicht von dem gleichen Gebilde anderer Körperstellen.

Die innere Grenzschicht dagegen ist eigenständlich modifizirt, indem sie sich nämlich zu grossmaschigen Lymphräumen ausfüllt, die dadurch, dass sie mit gleichen Gebilden der entsprechenden Lage des subconjunctiven Corium zusammenfließen, einen grossen Lymphraum bilden.

Was den Lidrand betrifft, so ist derselbe verhältnissmässig breit und zeigt eine abgerundete vordere und hintere Lidkante, welche letztere eine besonders starke Ausbildung der Epidermis besitzt. Pigment ist in grosser Quantität vorhanden. Die Pigmentzellen bilden hier eine continuirliche Lage, die schon dem blossen Auge den Lidrand schwarz gefärbt erscheinen lässt, wodurch derselbe scharf gegen die im Allgemeinen helle Farbe des übrigen Lides absteht.

Die Schleimhautplatte. Die Betrachtung der Schleimhautplatte lehrt, dass die Lider durchaus als Hautduplikaturen aufzufassen sind, wobei sich, wie stets bei Einstülpungen der Epidermis in eine Körperhöhle, dieselbe in eine Schleimhaut umgewandelt hat. Die Umwandlung ist eine ziemlich plötzliche, denn gleich unter der Lidkante tritt auf ein Mal eine Einbuchtung auf, die mit Becherzellen gefüllt ist. Auf diese Schicht folgt eine andere, die aus zwei Lagen polyedrischer, heller, kernhaltiger Zellen besteht, die straff über den Tarsus wegziehen und in ihrem äusserst plat-ten Wesen die Abzeichen eines beständigen Druckes an sich tragen im Gegensatz zu den räumlich wenig beengten Schleimzellen. Erkennt man in der Schleimhaut der Conjunctiva eine modifizierte Epidermis, so wird nun das Aequivalent der Lederhaut zu untersuchen sein, und unter den
Wesentlichen Veränderungen, welche dieselbe erlitten hat, ist zunächst der Tarsus zu nennen, da bis zu diesem der bindegewebige Theil der Schleimhautplatte eine unveränderte Fortsetzung des Corium von der Cutisplatte darstellt.

Zwischen der Cutis- und Schleimhautplatte befindet sich ein grosser Hohlraum (Taf. LXXXVIII. Fig. 1), der durch einen quergestreiften LId-muskel in zwei Abschnitte getrennt wird, die auch ihrem Inhalt nach verschieden verhalten. Der eine Abschnitt stellt einen Lymphraum dar. Das Balkenwerk desselben, die innere Grenzscheicht der Lederhaut, lässt sich noch leicht an einem äusserst zarten, hier und da durch das Lid gestrickten, areolären Bindegewebesnetz erkennen, das aber sehr zurücktritt gegen gröbere, grösstentheils verwiesigte Bindegewebsbalken, welche sich zwischen den Wänden des inneren Raumes ausspannen und nach Art der Lymphscheiden die Leitungseanäle parallel, histologisch sehr dichter Gebilde sind.

wenig nach aufwärts dem Bulbus sich anlegend, zwischen diesen und den Grund der Augenhöhle. Der in Rede stehende Muskel kann zu Folge seines Faserverlaufes und seines Ansatzes zunächst nur das untere Augenlid herabziehen.

Es wurde schon mitgetheilt, dass der Sinus sich von diesem ausgehendstenen, im Lide gelegenen Theile aus weiter unter und hinter das Auge ausdehnt. Bezüglich der Begrenzung des Sinus im Ganzen betrachtet, sei noch bemerkt, dass er sich genau auf den Umfang der Orbita beschränkt. Soweit diese durch knöcherne Theile abgeschlossen ist, ist es auch der Blutraum; dies geschieht jedoch unten am Boden der Augenhöhle durch den M. depressor palpebrae inferioris, hinten durch das Septum interorbitale und nach der Schläfenseite zu durch die Fascie, welche sich zwischen den Augapfel und die Kaumuskeln einschiebt.

Dieser so wohl abgeschlossene orbitale Sinus scheint nach Weber seinen Abfluss durch einen Canal zu nehmen, der am unteren äusseren Augenwinkel nach der Columella zu zieht. Injectionen zeigten jedoch, dass nicht nur besagter Canal in einen zweiten Canal überführt, sondern auch, dass am Kopfe der Saurier ein ganzes System gleichartiger Bluträume, die unter einander in Communication stehen, vorkommt.

Ausserdem zeigt sich ausser dem genannten, unter der Columella gelegenen Sinus ein weiterer oben am Schäeldach, der sich in ziemlicher Breite fast bis zum Foramen magnum erstreckt. Auch dieser steht

Auch der als ein Lymphraum gedeutete Abschnitt des betrachteten Hohlraumes besitzt am unteren Theil des Tarsus sinuös erweiterte Venen, desgleichen auch Lymphscheiden, jedoch weit sparsamer. Dieselben bergen vereinzelt elastische Fasern, ganz besonders aber sind sie die Leitungswege eines glatten Lidmuskels, über welchen wir, da er allen dreien Augenlidern angehört, später handeln werden.

Schliesslich muss noch das Vorkommen eigentümlicher Zellen erwähnt werden, die sich an den Lymphscheiden namentlich, doch auch durch den ganzen Lymphraum hin oberflächlich in den Wänden gelegen finden. Sie sind meist grösser als die Blutkörperchen desselben Thieres und haben einen körnigen Inhalt, innerhalb dessen sich dann und wann ein kernartiges Gebilde zu differenzieren scheint. Wahrscheinlich sind sie mit Zellen zusammengestellt, die sich an der Wand der Lymphräume unter der Haut der Amphibien wahrnehmen lassen.

Das obere Augenlid. Während wir in dem unteren Lide ein Gebilde mit mannigfachen Vorrichtungen zur Unterstützung der Beweglichkeit desselben und des Schutzes für das Auge kennen lernten, tritt uns das obere Lid als eine einfache Falte der Haut entgegen, die auf den ersten Blick klein und unbedeutend von dem oberen, durch die Superciliar- knochen erweiterten Augenhöhlenrande herabhängt und wenig Beweglichkeit zeigt. Auf diese Art der Bewegung werden wir später ausführlicher zurückkommen. Hier sei nur erwähnt, dass die Superciliarknöchen an derselben sich betheiligen. Ihre enge anatomische Beziehung zum Augenlid, welches sie stützen, hat denn auch Leydig (37) zu der Ansicht gebracht, dass sie wohl dem Knorpel des oberen Lides beim Menschen einigermassen zu vergleichen seien. Auch Weber glaubt, dass die Lamina superciliaris, physiologisch sowohl als morphologisch, als zum oberen Lide gehörig zu betrachten ist. In physiologischer Hinsicht nämlich verleihst sie dem Augapfel Schutz in einer Weise, wie es nur das als Augendeckel wirkende Lid thun kann; auch betheiligt sie sich an der Bewegung der Lider.

Vom morphologischen Standpunkt aus ist daran zu erinnern, dass nach Weber der Mehrzahl der Saurier eine knöcherne Lamina superciliaris fehlt; hier zieht einfach eine Decke, die sich nicht von der allgemeinen Körperbedeckung unterscheidet und die sich am oberen Orbitalrand anheftet, an der Stelle unserer Lamina über den oberen Theil des Augapfels weg. Die Hautfalte, die, wie bei den eigentlichen Lacertens, vor dem Auge herabhängend zunächst nur allein an ein Lid denken lässt, steht hier wie dort mit dem fraglichen Theil in untrennbarer Continuität. Auf Grund des Vorgebrachten glaubt Weber, die den oberen Theil des Bulbus bedeckende Partie, die sich bei den Lacertens durch discrete
Anatomie.

Knochentafeln charakterisirt, bei anderen dagegen ganz oder zum grössten Theil häufig sich vorfindet, dem oberen Lide beizählen zu dürfen.

Der freilich vor dem Auge herabhängende Theil des Augenlides, welchen man als den häufigen bezeichnen kann, ist klein und hat eine ovale Gestalt; in seinem Bau gleicht er dem des unteren Lides.

Was die Schleimhautplatte des unteren Lides angeht, so sei hierüber bemerkt, dass nur der „häutige“, frei vor dem Auge herabhängende Theil einen inneren Faltentheil besitzt, hiemit ist gleichzeitig die Ausdehnung der Conjunctiva palpabralis angegeben; dieselbe erstreckt sich also von der inneren Lidkante bis zum äusseren Rande der Lamina superciliaris. Die Schleimhautplatte des oberen Augenlides unterscheidet sich von dem gleichen Gebilde des unteren Lides wesentlich dadurch, dass ihr ein Knorpel mangelt. Ihr epithelialer Beleg besteht durchweg aus Becherzellen, die sich an der inneren Lidkante allmählich aus den oberflächlichen Epidermiszellen umbilden. Die Conjunctiva beginnt auch hier mit einer Einbuchtung, welcher sich andere von gleicher Art, aber verschiedener Tiefe anreihen. Der bindegewebige Theil der Conjunctiva ist auch hier eine directe Fortsetzung der Lederhaut der Cutisplatte, die jedoch derart verändert ist, dass sich die drei bekannten Lagen nicht mehr erkennen lassen.

Der Binnenraum zwischen den beiden Faltentheilen des oberen Lides zeigt ganz ähnliche, aber weit einfachere Verhältnisse als im unteren Lide. Der Hohlraum im Faltenwinkel wird ebenfalls von Bindegewebsbalken durchzogen, die nach Art der Lymphscheiden die Leitungsweges abgeben für elastische Fasern, vereinzelt auch für Nerven, namentlich aber für eine glatte Muskulatur. Ein quergestreifter Muskel irgend welcher Art fehlt nach Weber bestimmt.

Der Bewegungsapparat der Nickhaut besteht aus einer Sehne, die sich einerseits am unteren Winkel der Nickhaut, andererseits an der Nasenwand der Augenhöhle anheftet, und einem Muskel, der mit dieser Sehne in Verbindung steht.

Für die glatte Muskulatur im oberen Lide gilt eigentlich dasselbe, wie für die des unteren Lides. Sie nimmt auch hier ihren Ursprung aus dem reticulären Gewebe, welches sich zwischen dem Bulbus und der Lamina superciliae ausspannt; vornehmlich der letzteren haftet sie ziemlich fest an. Der Schleimhautplatte, und zwar deren innerster Lage eingeheftet, ziehen ihre Fasern nach vorn, wo sie sich allmählich gegen den Liderand hin verlieren. Ein Theil derselben tritt aber dort, wo die Conjunctiva sich auf die Sclerotica umschlägt, in die wenig zahlreichen Lymphscheiden ein. Ihren Verlauf auf der Cutisplatte konnte Weber nicht verfolgen, wie denn auch überhaupt diese glatte Muskulatur äusserst zartfaserig ist.

Der drüsigc Apparat des Auges.

Thränendrüse und Harder'sche Drüse.

Wie bei den Schildkröten, findet man bei den Sauriern zwei Arten von Drüsen: die eigentliche Thränendrüse, Glandula lacrymalis, und die Nickhautdrüse, Glandula Harderi. Der Ausführungsgang der Nickhautdrüse ist sehr schwierig aufzufinden, und noch mehr ihre Ausmündung. Wie schon angegeben, kommt (wenigstens bei Lacerta und Anguis, und nach den Untersuchungen von H. Müller (117) bei Chamaeleon, über die anderen Saurier liegen noch keine Untersuchungen vor) in der Nickhaut eine von Leydig aufgefundene Knorpelspange vor und zwei pigmentirtc Leisten, welche der äusseren Fläche des Lids angehören; das vordere

Ueber die Tränenwege der Lacertae verdanken wir wieder Weber genauere Angaben. Was zunächst die Eingänge in die beiden Tränen- canälchen, also das was man bei höheren Thieren Puncta lacrymalia nennt, anbelangt, so ist hervorzuheben, dass dieselben ähnliche Verhältnisse wie bei den Vögeln darbieten. Es sind nämlich ebenfalls spalt- förmige Öffnungen, die sich am besten mit der einer schrag geschnittenen Federspule vergleichen lassen, beide liegen (Tafel XXXVIII. Fig. 2.) dicht neben einander am inneren Augenwinkel, doch so, dass das untere schon im unteren Lide sich befindet. Von Belang für den leichten Einfluss der Tränenfeuchtigkeit und daher wohl der Erwähnung werth mag es sein, dass beide rinnenförmig anfangen, der Art, dass in der inneren Lidkante für jedes der Tränenröhrchen, namentlich aber für das untere ein halbkreisförmiger Ausschnitt sich vorfindet. Aus dem Mitgetheilten geht wohl hervor, dass die Bezeichnung „Punctum lacrymale“, soll sie
wennigstens eine Vorstellung von der Form des Beginnes der Thränen- cañálen geben, für unsere Thiere nicht passt.

Die genannten Rinnen führen in zwei Hohlgänge, die Canaliculi lacrymales, die dicht nebeneinander in fast horizontaler, nur wenig schräg nach unten gehender Richtung vom inneren Augenwinkel her zum Foramen lacrymale verlaufen. Sie liegen in der Schleimhautplatte des Lides und geht das Epithel der Conjunctiva continuirlich in Form von Becherzellen in dieselben hinein. Beide Röhren, die auch weiterhin übereinander gelagert bleiben, sind durch eine dicke Bindegewebschicht getrennt, die, da dieselben allmählich convergirend verlaufen, dentsprechend an Mächtigkeit abnimmt. So wird diese Schicht, während sie anfangs die Breite eines Thränenröhrchens hatte, immer schmaler, bis zuletzt nur noch die beiderseitige Epithel-Auskleidung die Thränenröhrten scheidet. Auch diese verschwindet schliesslich: die beiden Canäle haben sich zu einem vereinigt.

Die Lichtung beider Thränenröhrhen scheint keine ganz gleiche zu sein, auf allen Querschnitten fand Weber nämlich, dass das obere stets um ein Gutes weiter ist als das untere. Mag dies nun auch zum Theil der Ausdruck des wahren Zustandes sein, so glaubt doch Weber andererseits, dass dies ganz wesentlich der Art des Verlaufes des oberen Thränenröhrchens in Anrechnung zu bringen ist. Diese allmähliche Convergenz nämlich, die von beiden schon ausgesagt wurde, kommt vorzugsweise durch den schrägen, nach abwärts gerichtetem Verlauf des oberen Thränenröhrchens zu Stande, während das untere in mehr horizontaler Richtung zum Foramen lacrymale eilt. Auf dem Querschnitt wird daher ein grösseres Stück des ersteren getroffen werden und dem Beobachter das an und für sich schon weitere Caliber noch weiter erscheinen lassen.

Die Weite des durch die beiden Canaliculi gebildeten einzigen Hohl- ganges entspricht der der beiden Thränenröhrten zusammen, von einem Saccus lacrymalis kann man also nicht sprechen. Man hat vielmehr mit einem einfachen Ductus naso-lacrymalis zu thun, der nebenbei schon durch seine Kürze eine Trennung in einen Saccus und einen Ductus unmöglich macht, da anderenfalls der Saccus dem Ductus und umgekehrt nichts mehr übrig lassen würde. Die Vereinigung beider Thränenröhrten geschieht nun, sobald dieselben in das Foramen lacrymale eingetreten sind.

Dasselbe wird gebildet nach aussen vom Lacrymale, nach innen vom Praefrontale; beide haben nämlich einen halbkreisförmigen Ausschnitt, der sich mit dem des angelagerten Knochens zu einem ovalen Loche vereinigt. Von hier an hat man dann den Ductus naso-lacrymalis zu rechnen. Seine knöcherne Wandung beginnt also mit dem Praefrontale und Lacrymale. Letzteres wird allmählich von der senkrecht aufsteigenden Platte des Oberkiefers, welcher sich an das Lacrymale anlehnt, vertreten, so dass der Oberkiefer weiter nach vorn die laterale Wand des Thränencañales bildet. Das Praefrontale begrenzte ursprünglich den Canal nach unten, oben und medianwärts, da es sich jedoch von unten her nach der Nasenhöhle
zu verschmälerter, und dem entsprechend den Canal bald nur noch oben überdeckt, so wird seine Stelle durch einen Theil des Nasenknorpels verfangen. Dieser Knorpel, der vor der Mündung des Canals dessen obere, untere und mediale Wand darstellt, verdient wohl in seinem Verlaufe eine nähere Berücksichtigung. —

Crocodile. Der Bau der Augenlider bei den Crocodilen weicht nicht unbedeutend von dem der Sauern (Lacertae) ab. Was auch hier wieder zunächst den Lidrücken betrifft, so findet man, dass die Oberhaut hier ebenfalls aus einer tiefen Lage von Cylinderzellen besteht, die von einer mehrreihigen Schicht abgeplatteter Zellen bedeckt wird, die also allmählich in die Hornschicht übergehen. Die Pigmententwickelung auf dem Lidrücken (ich untersuchte Crocodilus porosus) ist nur sehr gering. Am Lidrande wird das Epithel höher und sehr stark pigmentirt und wandelt sich so allmählich in ein wieder niedriges Cylinderepithelium, welches sehr reich an Becherzellen ist und das Epithel der Schleimhantplatte bildet. Das in Rede stehende Epithel ist einschichtig und unter demselben findet man kleine Zellen mit grossen Kernen in ein bis zwei Lagen angeordnet. Ein Tarsusknorpel fehlt bei den Crocodilen (wenigstens bei dem
Anatomie.

von mir untersuchten *Cr. porosus*). Die so charakteristische, von Leydig zuerst beschriebene Schichtung der Lederhaut lässt sich am Lidrücken schwierig, an der Schleimhautplatte gar nicht mehr auffinden. Die so eigentümlichen grossen Hohlräume im unteren Augenlid der Lacertae lassen sich bei den Crocodilen nicht wiederfinden. Zwischen der Cutis und Schleimhautplatte, findet man, anser den glatten und willkürlichen Muskelfasern nur lockeres, an elastischen Fasern sehr reiches Bindegewebe, welche hier und dort nur kleine Hohlräume, die vielleicht dem Lymphgefäßsystem zuzurechnen sind, frei lassen.

Der in Rede stehende Muskel liegt der Schleimhautplatte am nächsten. Nur im unteren Theil des unteren Augenlides liessen sich Faserbündel deutlich nachweisen; im oberen Drittel des unteren Augenlides konnte ich sie nicht mehr finden.

Oberes Augenlid. Das obere Augenlid gleicht in seinem Bau dem des unteren, nur mit dem Unterschiede, dass hier ein Bindegewebsknochen (Superciliarknochen) zur Stütze des Augenlides vorhanden ist. Schon bei eben den Eihüllen entschlüpften jungen Thieren war die erste Spur dieses Superciliarknochens bereits vorhanden. Auf Taf. LXXXVIII. Fig. 3. habe ich einen Querschnitt durch das obere Augenlid eines zwei Tage alten Embryo von *Crocodilus porosus* abgebildet. Was zuerst die Cutisplatte betrifft, so zeigt hier das Epithel denselben Bau wie dasjenige des unteren Augenlides, nur dass dasselbe viel reicher pigmentirt ist. Die eigentümliche Schichtung der Lederhaut ist am oberen Augenlide deutlicher aus-
geprägt, als am unteren. Die Lederhaut selbst enthält zahlreiche ver-
ästelte Pigmentzellen. Dort, wo die Schleimhautplatte in die Cutisplatte
übergeht, wird das Epithel höher und die Schleimhautplatte selbst ist wie
beim unteren Augenlid ein an Becherzellen reiches Cylindrecpithelium.
Die nach aussen auf dieses Epithel folgende Bindegewebschicht ist ver-
hältnissmässig sehr dünn und der übrig bleibende Raum zwischen Cutis-
platte und Schleimhautplatte wird wieder von einem an elastischen Fasern
sehr reichen, äusserst lockerem Bindegewebe eingenommen.

Während nun, wie wir gesehen haben, ein zu dem oberen Augenlid
gehöriger besonderer Muskel, durch den dasselbe gehoben werden kann,
den Eidechsen fehlt, und ähnliches von Rath k e auch für die Crocodile
angegeben wird, ergiebt sich doch, dass für letztgenannte Thiere ein
wahrer quergestreifter Muskel als Heber des oberen Augenlides vorhanden
ist. Dieser Muskel, welchen man als M. levator palpebrae superioris
bezeichnen kann, ist äusserst winzig.

Wie der M. depressor palpebrae inferioris breitet er sich fächerförmig
aus und ist am vorderen Theil des Augenlides, dort wo der Superciliar-
knochen liegt, am stärksten entwickelt. Er entspringt von dem oberen
knöchernen Rand der Augenhöhle, ist in seinem ersten Drittel sehlig
und wird erst dann muskulös.

Das dritte Augenlid, die Membrana nictitans, die Nickhaut ist bei
den Crocodilen ebenfalls sehr kräftig entwickelt. Auf ihrer äusseren Ober-
fläche bemerkt man zwei ziemlich hohe Fältchen, die schon äusserlich
durch die starke Pigmentierung des die Nickhaut bekleidenden Epithel ins
Auge springen. Ein Nickhautknorpel, welchen Ley dig bei Lacc rta zu-
erst beschrieben hat, fehlt bei den Crocodilen, wenigstens war er bei dem
von mir untersuchten jungen Exemplar von Crocodilus porosus nicht vor-
handen.

Für die Nickhaut besitzen die Crocodile nach den Untersuchungen
von Rath k e nur einen einzigen, aber im Verhältniss zum Umfange des
Auges ziemlich grossen Muskel. Derselbe entspringt über und etwas vor
dem N. opticus, läuft dann um die hintere Hälfte des Augapfels diesem
dicht anliegend, in einem Bogen nach vorn und geht zuletzt etwas nach
unten unterhalb der Cornea mit einer kurzen Aponeurose in das untere
Ende des hinteren Randes der Nickhaut über. Der vor dem Sehnenven
auf der Sclerotica liegende Theil reicht beinahe bis zur Cornea, ist fächer-
förmig; anfangs ansehnlich breit, aber nur sehr dünn, wird nach dem
Sehennerven hin immer schmäler und dicker und geht dann über dem Seh-
nerven in den erst beschriebenen schmalen Theil über. Er läuft dann
nach dem Muskel um einen grossen Theil des Umfanges der Sclerotica
herum.

Ausserhalb der schon erwähnten quergestreiften Muskeln für das obere
und untere Augenlid, kommen dann für die beiden Lider noch glatte
Muskelfasern vor, über deren Anordnung noch keine genauer Angaben
vorliegen.
Ueber den Bau der Augenlider bei der Gattung *Hatteria* liegen bis jetzt noch keine Angaben vor.

Der Drüsenapparat des Auges.

Thränendrüse, Harder'sche Drüse und Conjunctivaldrüsen.

Ueber die Thränendrüse und die Harder'sche Drüse verdanken wir Rathke schon genaue Angaben. Die Thränendrüse, sagt er, hat im Verhältniss zu dem Augapfel nur eine geringe Grösse, besitzt eine langgestreckte, schmale und fast bandartige Form, befindet sich unter dem Dache der Augenhöhle ganz in der Nähe des Randes dieser Höhle und hat mit ihrem grössten Durchmesser eine Richtung von hinten nach vorn. Von Bindegewebe und fibrösem Gewebe ist sie so eingehüllt, auch mit demselben so fest vereinigt, dass sie nur mit Schwierigkeit sich auffinden lässt.

des Thränenbeins vorkommt. Am oberen Augenlid hat Rathke keine Thränenpunkte finden können und muss daher annehmen, dass die Thränenflüssigkeit nur durch das untere Augenlid abfliessen kann.

Bei einem eben gebornen Exemplare von *Crocodilus porosus* konnte ich ebenso wenig als Rathke im oberen Augenlid Thränenpunkte aufinden. Im unteren Augenlid fand ich aber nur einen Thränenpunkt.

Anatomie.

Lucius aber, bei welchem Rathke diese Schicht verhältnissmässig am dicksten gefunden hat, nur durch einen grösseren Theil derselben.

Ausser der genannten Harderschen und Thränen-Drüse kommt nun bei den Crocodilen (Crocodilus porosus) noch eine dritte Art von Drüsen vor, die man am besten als Conjunctivaldrüsen bezeichnen kann. Ich fand dieselben nur am unteren Augenlid und zwar dort, wo die Schleimhautplatte — die Conjunctiva palpebralis in die Conjunctiva bulbi übergeht. Dieselben bilden vereinzelte acinöse Drüsen. Die Drüenschläuche bestehen aus einer Membrana propria und einem Epithel, welches aus ziemlich hohen und breiten Cylinderzellen besteht. —

Der Augapfel, Bulbus oculi.

Ausseres Augenbein. — Sclerotica s. Selera.

Der Augapfel sieht soweit die knorpelige Grundlage der Sclerotica geht, schwarz aus, da das Pigment der Chorioidea durch den hyalinen Knorpel durchscheinnt kann; weiter nach vorn, wo die Knochenplättchen folgen, ändert sich das Schwarz in Bläulich um, da jetzt das Pigment der Chorioidea durch das Grau des Knochenringes und des bindegewebigen Theils der Sclerotica gedämpft erscheint. Denn es geht der Knorpel der Sclerotica, wie Leydig an Lacerta viridis sich überzeugte, keineswegs bis zum Rande der Hornhaut, sondern hört viel früher auf. Der vordere Theil der Sclerotica ist bindegewebig und diesem Theil gehört der Knochenkranz an; jedoch so, dass die Stiele der Knochenplättchen noch etwas den Knorpel bedecken.

Die Knochenplättchen, von dünner zarter Beschaffenheit, und leicht isolirbar, sind ihrer Entstehung nach Verknöcherungen des Bindgewebes; und wegen ihrer besonderen Dünnheit verbreiten sich gegen das Ende des stielartigen Abschnittes die Knochenkörperchen nur in einfacher Schicht, am vorderen Theil, welcher etwas dicker ist, in mehreren Lagen. Ihr Kern ist in frischen Präparaten meist sichtbar. Auch theilt Leydig noch mit, dass bei Embryonen von Lacerta vivipara, welche schon ganz schwarz getönt und auch sonst schon reif waren, sich die Knochenplättchen bereits vorhanden zeigten.

Bei Chamaeleon ist der Knorpel der Sclerotica nach den trefflichen Untersuchungen von H. Müller durch seine geringe Ausdehnung ausgezeichnet. Derselbe bildet nach ihm nur eine rundliche Platte von 4 mm Durchmesser im Hintergrund des Auges und erreicht den Aequator bei
Anatomie.

Der Knochenring ist so in die Sclerotica eingelagert, dass eine faserige Lamelle an seiner Aussen- und Innenseite hinzieht. Die letztere wird an der hinteren Hälfte des Knochenrings rasch beträchtlich dicker. Der Knochenring erstreckt sich nicht bis zur Ora retinae nach rückwärts, sondern bildet nur eine Zone um die Linse, indem die einzelnen Plättchen sich in der Art decken, dass ein meridionaler Schnitt meist zwei, bisweilen drei zugleich trifft. Diese Plättchen sind nach aussen umkrümmt, so dass in der Gegend des Linsenrandes eine Furchen ringsum läuft.

Hornhaut. Cornea.

Über die histologische Struktur der Hornhaut liegen bei den Sauriern und Crocodilen noch keine genauerer Untersuchungen vor. Nur so viel lässt sich sagen, dass dieselben fünf Schichten (von innen nach aussen gehend: Cornea-Epithel, vordere Basalmembran, eigentliches Hornhautgewebe, hintere Basalmembran und Cornea-Endothel) auch hier, wie bei den übrigen Wirbeltieren wiederkehren. Nach H. Müller beträgt bei Chamaeleon die Basis der stärker als die Sclerotica gewölbten Hornhaut 2 1/2 mm. gegen 8 1/2 mm. Aequator, ein Verhältniss welches in sehr ähnlicher Weise auch bei der Eidechse wiederkehrt. Die Dicke der Hornhaut beträgt bei Chamaeleon in der Mitte nur 0,01—2 mm.; nimmt aber
gegen den Rand auf 0,06—7 mm. zu. Sie geht dort, wie Müller erwähnt über: 1) in die Conjunctiva, welche den Augapfel in sehr grosser Ausdehnung, bis in die Gegend des Equators bekleidet, ohne Zweifel im Interesse der grossen Beweglichkeit des Auges, 2) an die fibrösen Platten der Scera, welche den Knochenring innen und aussen bekleiden, 3) in eine Lamelle, welche wie bei den Vögeln sich an der Aussenseite des Ciliarkörpers hinziehend, dem Ciliummuskeli zum Ursprung dient.

Chorioidea und Iris (Tunica vasculosa).

Chorioidea.

Die Chorioidea bildet eine dünne, sehr gefäßreiche Haut, die an zwei Stellen fester mit der Sclerotica verbunden ist; nämlich an der Eintrittsstelle des Nervus opticus und vorne an der Uebergangsstelle der Sclerotica in die Cornea. Was für die Amphibien und Schildkröten angegeben ist, gilt ebenfalls für die Sauier und Crocodile, dass nämlich die äussere Fläche der Chorioidea nicht nur durch Gefässe und Nerven, sondern auch sonst ziemlich innig an der Sclerotica anhängt, so dass beim Abheben dieser Haut gewöhnlich ein Theil bald mehr, bald weniger an der Sclerotica hängen bleibt. Die innere Oberfläche der Chorioidea ist der Retina zugekehrt, an der Ora serrata haftet sie fest, sonst nur locker an der Retina, von der Ora serrata an dagegen und namentlich an den Processus ciliares ist sie sehr innig mit der Pars ciliaris retinae verbunden. Auch hier besteht die Chorioidea aus einer äusseren Faserhaut und einem inneren Ueberzuge, ungeschichtetem pigmentiertem Plattenepithel, welches wie die Entwicklungsgeschichte lehrt der Retina zugehört und dort als die Pigmentschicht der Retina, als das Retinalpigment beschrieben werden soll. Die Grundlage der Chorioidea besteht aus einem Netzwerk sehr stark verästelt, mehr oder weniger sternförmiger, oder
auch wohl unregelmässig gebildeter Pigmentzellen und ist ausserordentlich reich an Gefässen.

Der Ciliarkörper ist, wie H. Müller (117) von Chamaeleon erwähnt, wie bei den Raubvögeln durch die bedeutende Breite des Ringes ausgezeichnet, welchen er zwischen Ora retinae und Iris bildet. Diese Breite beträgt auch auf der schmäleneren Schnabelseite mehr als die der ganzen Iris samt Pupille. Um so geringer ist die Oberflächen-Vergrösserung, welche sonst durch die Ciliarfortsätze bewirkt wird. Statt solcher sind nur kleine warzige Unebenheiten und, weiter vorn, ganz schwache meridional gestellte Leistchen vorhanden, welche jenen Namen kaum verdienen. Das Gewebe ist ein fast homogenes Stroma mit Gefässen und Pigmentzellen.

Zwischen Ciliarkörper und Knochenring liegt ein quergestreifter Muskel (Taf. LXXXIX. Fig. 9), der schon und zuerst von Brücke (Müller's Archiv 1846. p. 376) erwähnt ist. Seine Lage ist nach Müller bei Chamaeleon ziemlich eigen tümlich, nämlich da, wo der Knochenring sich nach aussen krümmt, also weit hinten. Brücke bezeichnet ihn wohl deswegen als M. tensor chorioideae, und nicht als M. Cramptonianus. Die genannten Verhältnisse sind aber nach Müller folgende: Vom Rande der Hornhaut setzt sich die oben erwähnte innere Lamelle derselben zwischen Ciliarkörper und Knochenring nach hinten fort und an der äusseren Fläche derselben entspringen dann die quergestreiften Muskelfasern. Der grösste Theil derselben wenigstens geht nun offenbar von vorn und innen, nach hinten und aussen, zu dem Fasergewebe an der Innenfläche des Knochenrings. Dieser Verlauf entspricht aber nach H. Müller dem M. Cramptonianus der Vögel, der auf diese Weise weit nach hinten gerückt erscheint. Es ist jedoch zu bemerken, dass von hinten her ein pigmentirter Fortsatz sich so an der Aussenseite des Muskels nach vorn zieht, sich dort verlierend, dass die hintersten Bündel desselben ebensogut als an die äussere Lamelle der Chorioidea treten, bezeichnet werden können. Es dürfte sonach, wie H. Müller angiebt, das 0,7—8 mm. lange, 0,06—9 mm. dicke Muskelchen wohl als Aequivalent der beiden Gruppen zu bezeichnen sein, welche bei Vögeln im exquisiten Fall so deutlich getrennt sind.

Über die Wirkung des Muskels ist bei Chamaeleon um so weniger etwas bestimmtes abzunehmen, als der Grad der Verschiebbarkeit an der Sclera nicht zu beurtheilen war.

Bei Lacerta agilis liess der Ciliarmuskel, trotz seiner Kleinheit wenigstens an einer Stelle, wo der Ciliarnerv in die Schnitte fiel, die drei Portionen erkennen, welche bei Vögeln vorhanden sind. Die vordersten Bündel gingen von der aus der Hornhautplatte stammenden Lamelle rück und auswärts zu einer dem Knochenring innen anliegenden Lamelle. Die hinteren Bündel dagegen waren von diesen durch den Cilarnerven getrennt und legten sich an die Chorioidea an, endlich kamen hinter dem Nerven
Anatomie.

einige sparsame Bündelchen, welche von der Seleraplatte einwärts zur Chorioidea gingen.

Die Linse.

Über den Bau der Linse ist besonders der schönen und ausführlichen Abhandlung von Henle (124) zu gedenken, der sowohl den histologischen Bau als die Entwicklungsgeschichte der Linse sämtlicher Wirbeltiere behandelt.

Wie bei den Schildkröten kann man auch bei den Sauriern dieselben Bestandtheile unterscheiden, die zelligen Elemente, die gleichsam den Körper der Linse (ihre eigentliche Substanz) bilden und eine Hüllle (die Linsenkapsel). Histogenetisch entspricht auch hier (wie bei allen Wirbeltieren) die Substanz der Linse einem zweischichtigen Epithel, dessen vordere Schicht als inneres Epithel der vorderen Kapselwand bezeichnet wird, dessen hintere Schicht, das Epithel der hinteren Kapselwand, zu Fasern auswächst, welche die Linse in meridionaler Richtung durchsetzen, um den Raum zwischen der hinteren Kapselwand und dem Epithel der vorderen auszufüllen.

Unter den Sauriern zeichnet sich das Chamaeleon durch einen Ringwulst aus, der, nach Müller's Beschreibung, sich zum äquatorialen
Durchmesser der ganzen Linse etwa wie 1:6 verhält und weiter auf die Vorderfläche der Linse übergreift, als auf die hintere. Der Ringwulst der Eidechse misst nach Henle \(\frac{1}{8} \) (Siehe Taf. LXXXVIII. Fig. 6), der der Blindschleiche \(\frac{1}{10} \) des Durchmessers der ganzen Linse (Fig. 7). Für die Reptilien verdanken wir weiter dann Henle noch folgende Maasse der Linsenfasern (in Millimetern).

<table>
<thead>
<tr>
<th>Thierspecies</th>
<th>Rinde</th>
<th>Kern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Breite</td>
<td>Dicke</td>
</tr>
<tr>
<td>Anguis fragilis</td>
<td>0,016</td>
<td>0,007</td>
</tr>
<tr>
<td>Lacerta agilis</td>
<td>0,046</td>
<td>-</td>
</tr>
</tbody>
</table>

Ueber das Verhältniss der Breite des Ringwulstes zum Aequatorial-durchmesser der Linse, giebt Henle folgendes an. (Maasse in Millimetern.)

<table>
<thead>
<tr>
<th>Thierspecies</th>
<th>Aequatorialdurchmesser der Linse</th>
<th>Breite des Ringwulstes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anguis fragilis</td>
<td>1,60</td>
<td>0,15</td>
</tr>
<tr>
<td>Pseudopus Pallasii</td>
<td>3,30</td>
<td>0,30</td>
</tr>
<tr>
<td>Lacerta agilis</td>
<td>1,25</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Die Netzhaut. Retina.

Bei den Sauriern und Crocodilen lassen sich an der Retina wieder die folgenden Schichten unterscheiden:

1. Die Membrana limitans externa.
2. Die Opticusfaserschicht.
3. Die Ganglienzellenschicht.
4. Die innere granulirte Schicht.
5. Die innere Körnerschicht.
7. Die äussere Körnerschicht.
8. Die Membrana limitans externa.
10. Die Pigmentschicht der Retina.

Sämtliche zwischen den beiden Grenzmembranen liegenden Schichten der Netzhaut werden ausserdem von einer bindegewebigen Substanz durchsetzt, deren zarte Fasern in radialer Richtung die Netzhaut durchlaufen und als die radialen Stützfasern oder nach ihrem Entdecker Heinrich Müller, als die Müller'schen Fasern bekannt sind.

Die nervösen Bestandtheile der Netzhaut.

1) Die Schicht der Schmernervenfasern besteht während seines ganzen Verlaufes durch die Augenhöhle bis zu der Stelle, wo er die äussere Oberfläche des Augapfels erreicht, aus in Bündeln gruppirten markhaltigen Nervenfasern, ihr Bau stimmt mit dem der Schildkröten überein.
2) Die Ganglienzellschicht, welche sich aussen von der Opticusfaserschicht befindet, besteht bei den Crocodilen (Crocodilus porosus) und Sauriern (Lacerta agilis) aus kleinen Nervenzellen, welche einen sehr grossen Kern umschliessen. Dieselben sind gewöhnlich in zwei Schichten angeordnet. Genaue Angaben liegen bis jetzt über die von denselben abgehenden Fortsätze noch nicht vor; ihre Isolation ist sehr schwierig.

3) Die innere granulirte Schicht. Bei Lacerta agilis bildet die innere granulirte Schicht eine 0,075—0,080 mm. messende Lage, welche zwischen den Ganglienzellen und der inneren Körnerschicht eingeschoben ist und aus einer Mischung der radialen Stützfasern, der äusseren Fortsätze der Ganglienzellen und ihrer Verästelungen und der eigentlichen inneren granulirten Schicht gebildet wird, und deren feinere Structur der der Schildkröten und Amphibien ähnlich ist. Auch hier wird die granulirte Substanz von zwei heterogenen Formelementen durchsetzt, von Radialfasern und Nerven.

4) Die innere Körnerschicht, zwischen der inneren und äusseren granulirten Schicht eingeschoben, hat bei Lacerta agilis eine Dicke von 0,060 bis 0,065 mm. Dieselbe enthält auch hier die zweierlei Arten von Elementen, wie bei den Schildkröten und Amphibien angegeben ist.

5) Die äusseren granulirten Schichten hat bei Lacerta agilis nur eine Dicke von 0,003—0,004. Was bei den Amphibien von dieser Schicht gesagt ist, gilt auch für die Saurier.

Das Sinnesepithel der Netzhaut (Stäbchen- und Zapfen-Schicht) sowie äusserer Körnerschicht. Das Sinnesepithel der Netzhaut bei den Sauriern hatte ich leider im frischen Zustande nur bei Lacerta muralis zu untersuchen. Bei den Sauriern fehlen die Stäbchen (die langen Sehzellen: W. Müller) und es kommen nur Zapfen (die kurzen Sehzellen: W. Müller) vor, und nur bei den Schildkröten einfache und Doppelzapfen. Wie die Schildkröten, so unterscheiden auch die Eidechsen durch auffallend kleine Aussenglieder, was sowohl für die einfachen wie für die Doppelzapfen gilt.

An der Stelle wo das Innenglied in das Korn der äusseren Körnerschieht übergeht, zeigt das Innenglied entweder keine oder nur eine höchst geringe Einschnürtung, so dass die Körner der äusseren Körnerschieht — die Zapfenkörner — entweder unmittelbar unter der Membrana limitans externa oder wenigstens in einer zweiten Reihe liegen müssen.

Wird der Retina 24 Stunden in Osmiumsäure von 1% behandelt und darauf in Wasser oder in Glycerin macerirt, dann haben die meisten Zapfen ihre Aussenglieder verloren. Die planeoneav linsenförmigen Körperehen werden durch Osmiumsäure mehr oder weniger intensiv schwarz gefärbt und erscheinen dann oft, wie schon gesagt, feinkörnig granulirt; die Ellipsoiden treten bei dieser Behandlung ausserordentlich deutlich hervor. Auch die Faserkorben sind an Osmiumsäurepräparaten prächtig zu sehen. Aus der Substanz des Zapfeninnengliedes, dem äusserst dünnen feinkörnigen Protoplasmamantel, welcher hüllennartig das planeoneave, linsenförmige Körperehen umgibt, entwickeln sich wie bei den Schildkröten äusserst feine Haare, die aber bei den Eidechsen noch viel zarter, feiner und vergänglicher sind als bei den Schildkröten und über welche ich leider mit Sicherheit nichts weiteres mittheilen kann.

Osmiumsäure-Präparate eignen sich am besten, um die Verhältnisse der Zapfenfasern zu studiren. Dieselben schwellen nämlich, dort wo sie in die äusseren Körnerschieht übergehen zu kleinen dreieckigen Verdickungen an, die Basis dieser Verdickungen ist zackig und mittelst dieser Zacken wurzeln die Zapfenfasern an der äusseren granulirten Schicht.

Theile sehr schmal ist, besitzt, wie bei den Schildkröten, in seinem äusseren Ende ein planconvexes, linsenförmiges Körperchen, das nach dem Tode ausserordentlich schnell körnig sich trübt, während der übrige Theil des Innengliedes fein granulirt ist.

Was die gefärbten Kugeln angeht, so begegnet man Doppelzapfen wo die beiden Innenglieder eine gelbe Kugel besitzen, anderen, wo das eine Innenglied (gewöhnlich das des Nebenzapfens) eine gelbe, blau oder farblose Kugel, zuweilen gar keine besitzt, kurz alle mögliche Combinationen kommen vor. Doppelzapfen, bei welchen in den beiden Innengliedern die gefärbten Kugeln fehlen, sind gar nicht selten. Wenn man von der Farbe der Kugeln absieht, sind sonst die Doppelzapfen der Saurier den der Schildkröten sehr ähnlich.

Indessen sieht man auch wohl, dass diese fein granulirten Kolben nicht mit den Körnern der äusseren Körnerschicht in Verbindung stehen, sondern einfach als Stützfasern zwischen der Membrana limitans externa und der Granulosa externa ausgespannt sind.

Besondere Erwähnung verdienen noch die sehr langen, schlanken Zapfen wie ich sie auf Taf. LXXXIX. Fig. 3. abgebildet habe. Oft bemerkt man noch längere und dünnere, und besonders bei diesen fangen die gefärbten Kugeln sehr klein zu werden an, ja fehlen zuweilen vollständig. Die so eigenthümlich gebildeten Zapfen weisen wohl unzweifelhaft auf das Vorkommen einer Fovea centralis auch bei der Eidechse hin.

Eine sehr genaue Beschreibung der Stäbchenschicht bei Chamaeleon verdanken wir Heinrich Müller (117). Am merkwürdigsten ist wohl seine Entdeckung der Fovea centralis bei dieser Saurier-Gattung. Wenn auch die Fovea centralis bei Reptilien, wie H. Müller angiebt, mehreren
früheren Beobachtern nicht entgangen ist, so gebührt ihm jedenfalls das Verdienst den feineren Bau der Fovea selbst zuerst genauer festgestellt zu haben. Bei Chamaeleon entspricht dieselbe nach ihm in der Lage dem hinteren Pol des Auges, sofern bei dessen Assymmetrie von einem solchen die Rede sein kann. Dieselbe ist auch an Weingeistpräparaten, deren Retina stark gefaltet ist, leicht aufzufinden. An den Chrom säurepräparaten aber erschien sie als ein trichterförmiges Grübchen, dessen vertikale Ausdehnung (fast \(\frac{1}{2} \) mm.) etwas größer war als die horizontale. Um die eigentliche Grube her fiel noch ein etwas bräunlicher Hof auf. So weit, und noch etwas darüber hinaus lag die Retina glatt an der Chorioidea an.

Von den perciptirenden Elementen fand H. Müller nur Elemente einerlei Art, die wie er sagt als Zapfen (coni) angesprochen werden müssen, während eigentliche Stäbchen (bacillii) fehlen. Die Zapfen haben eine flaschenförmige Gestalt. Die Zapfenkörper sind bei einer Höhe von 0,03—0,033 gegen die Basis hin 0,05—0,007 dick, gegen die Spitze verschmäler, die Zapfenspitze (das Aussenglied) selbst ist gleich von Anfang dünner und dann gegen das äussere Ende noch mehr zugespitzt, dabei circa 0,015 mm. lang. Die Uebergangsstelle des Zapfenkörpers (Innenglied) in die Spitze (Aussenglied) ist durch ein stark lichtbrechendes, sehr kleines Tröpfchen bezeichnet (H. Müller konnte das Auge nicht frisch untersuchen). Die äusseren Enden (Aussenglieder) der Zapfen steeken zwischen den sogenannten Pigmentscheiden des Retinalpigmentes.

Eine Eigenthümlichkeit besitzen die Zapfen, wie H. Müller angiebt noch darin, dass sich in der Basis derselben, nahe über der Stäbchenkörnerlinie, ein senkrecht ovaler Körper von 0,01 mm. Höhe vorfindet, welcher einem Kern sehr ähnlich und wohl auch für einen solchen zu halten ist. Es sind dies die sogenannten Ellipsoiden.

Sehr bemerkenswerth sind nun nach denselben Forscher die Veränderungen, welche die Zapfen von der Peripherie der Retina bis zu der Fovea centralis erleiden. Dieselben werden beträchtlich länger, besonders aber dünner und in der Fovea selbst erreicht dies den höchsten Grad. 1—2 mm. von der Fovea hat die Länge der Zapfenkörper schon auf 0,044 zu, die Breite auf 0,0028 abgenommen, und die flaschenförmige Gestalt ist cylintrisch geworden. Die Zapfenspitze ist einfach cylindrisch, einem dünnen Stäbchen (wie bei Vögeln) ähnlich geworden, circa 0,016 lang. In der Fovea endlich erreichen die Zapfen im Ganzen eine Länge von 0,1 mm., wovon circa 0,028 auf die Spitze kommen. Dabei beträgt die Dicke des Körpers nur 0,001—0,0013, der äussere Theil (Zapfenspitze) ist noch merklich dünner, aber der Uebergang allmählicher, weniger abgesetzt. Der Tropfen (Oelkugel) daselbst ist schon im Umkreis der Fovea so klein und blass geworden, dass er oft nur mit Mühe, in manchen Zapfen gar nicht zu erkennen ist und in der Fovea selbst konnte H. Müller ihn nicht mehr mit Sicherheit wahrnehmen.

Max Schultze (115) untersuchte die Retina von Lacerta agilis, viridis und Anguis fragilis. Lacerta hat nach ihm ansehnliche, intensiv

Außer Anguis fragilis untersuchte Hulke auch die Retina von Gecko und Chamæleon. In der Unterscheidung von Stäbchen und Zapfen scheint dieser Autor nicht sehr zuverlässig zu sein; Stäbchen scheinen doch bei den Sauriern immer zu fehlen.

Für alle übrigen vorher genannten Formen kann man ein gemeinschaftliches Schema aufstellen. Es lassen sich nach Heinemann zwei Hauptformen von Zapfen unterscheiden, solche mit Pigmentkugeln und solche ohne dieselben; Elemente mit stäbchenförmigen Aussengliedern fehlen durchaus. Die Pigmentkugeln der Eidechsen zeigen nicht die
Mannigfaltigkeit der Farben, wie man sie bei den Schildkröten bewundert, es kommen vielmehr nur gelbe in verschiedenen Nuancen und farblose vor, ausserdem findet man das Stützfasersystem viel mächtiger als bei den Schildkröten entwickelt.

Die Kugelzapfen lassen nach Heinemnann so ziemlich dieselben Modificationen unterscheiden wie bei den Schildkröten, nur dass die Form der Innenglieder sich häufig noch mehr der Stäbchenform nähert. Von voluminösen Zapfen mit grossen linsenförmigen Körperehen finden sich alle Uebergänge zu sehr schlanken und zarten, nach innen sich stark verjüngenden Formen, denen ein linsenförmiger Körper meistens abgeht, sie sind mit den Kugellosen zu Doppelzapfen vereinigt.

Im Innengliede liegt dicht hinter der Pigmentkugel ein trübkörniger Körper, welcher sich in Osmiumsäure graugelb färbt. Nach der Struktur der inneren Abtheilung des Innengliedes kann man nach Heineman folgende Unterarten von Kugelzapfen unterscheiden.

2. Alles Uebrige unverändert, der linsenförmige Körper aber mit dem Zapfenkorn durch eine scharf contourirte Faser verbunden.

3. Alles Uebrige unverändert, der linsenförmige Körper sitzt unmittelbar auf dem Zapfenkorn.

4. Der linsenförmige Körper fehlt.

5. Das Innenglied ist überhaupt nicht differenziert, vielmehr durchgängig von feinkörniger Masse erfüllt. Seltene Form.

Was die Pigmentkugel betrifft, so giebt es nach Heinemnann dunkelgelbe, hellgelbe und farblose, deren Mengenverhältnisse und Grösse an verschiedenen Stellen der Retina wechseln. In der Regel sind die farblosen die kleinsten, nur bei Chamaeleopsis findet das Gegenteil statt; bei der kleinen, zu der Familie der Xantusidae gehörigen Eidechse finden sich merkwürdiger Weise überhaupt nur farblose Kugeln; die hellgelben haben bei Corythacolus und Chamaeleopsis einen Stich ins Grünliche. Ausser den Pigmentkugeln kommt noch an einer anderen Stelle bei einer Anzahl Zapfen gelbes Pigment vor, nämlich in jener feinkörnigen schmalen Zone, welche den empfindlichen Körper von W. Müller von dem linsenförmigen trennt, man erkennt aber nach Heineman bei aufmerksamer Beobachtung, dass dies nur bei Zapfen mit dunkelgelben Kugeln der

Die Retina der beiden Geckoarten ist nach Heinemann wesentlich anders gebaut; ihre Stäbchen-schicht soll für die Classificirung und Benennung der verschiedenen Formen der Sehzellen ein wahrer Stein des Unstosses sein. Wann man nämlich die äussere Retinafläche im frischen Zustande betrachtet, so gewahrt man in der Mosaik der Aussenglieder Kreise von grösseren und viel kleinerem Durchmesser in regelmässiger Abwechslung, so dass man glaubt es mit Stäbchen und Zapfen zu thun zu haben, die weitere Präparation belehrt uns aber, dass es sich hier um Elemente von derselben Form und Beschaffenheit handelt, die nur in den Dimensionen von einander abweichen. Alle haben evident stäbchenförmige Aussenglieder, dagegen und besonders die dicken stark bauchige Innenglieder. Was das Verständniss noch mehr erschwert ist der Unstand, dass die dicken mit den dünnen, Doppelelemente bilden. Rechnet man dazu den Mangel der Pigmentkugeln, überhaupt jeglichen Pigments, so muss man, wie Heinemann angiebt, bekennen, dass man gänzlich ausser Stande ist zu sagen, ob die in Rede stehenden Elemente Stäbchen oder Zapfen sind. Den feineren Bau betreffend zeigen alle im äusseren Theil des Innengliedes den feinkörnigen, ellipsoiden, im innern den paraboloiden Körper.

Von den Crocodilen habe ich nur die Retina von Crocodylus vulgaris frisch untersuchen können. Während alle Autoren, welche sich mit dem Bau der Retina bei den Reptilien beschäftigt haben, darin mit einander übereinstimmen, dass bei den Reptilien nur Zapfen respective kurze Sehzellen an der Retina angetroffen werden, wie ich das ebenfalls für Schildkröten und Schlangen bestätigen kann, weichen die Crocodile auf eine
merkwürdige Weise dadurch von allen anderen Reptilien ab, dass in ihrer Retina nicht allein Zapfen sondern auch Stäbchen oder lange Sehzellen vorkommen.

Die Stäbchen sind am zahlreichsten vertreten, nur in der Umgebung der Fovea centralis prädominiren die Zapfen, während in der Fovea selbst nur Zapfen angetroffen werden.

Im histologischen Bau stimmen die Stäbchen der Crocodile am meisten mit denen der Frösche überein. Die Länge des Aussengliedes wechselt zwischen 0,050—0,034 mm., bei einer Dicke von 0,0065—0,007 mm. Das Innenglied zeigt wie die Innenglieder der Frösche ein planconvexes, linsenförmiges Körperehen. Auch bei den Crocodilen liegen die Stäbchenkörner in sehr vielen Fällen, nicht unterhalb, sondern zu halber Höhe der Membrana limitans externa, so dass in dem einen Falle ein kleineres, in dem anderen Falle ein grösseres Segment des Korns der äusseren Körnerschicht oberhalb der Limitans hervorragt. Die Körner der äusseren Körnerschicht liegen in zwei Reihen, in der oberen liegen die Körner, welche mit den Innengliedern der Stäbchen in Zusammenhang stehen — die Stäbchenkörner — während in der unteren die Körner gelegen sind, welche mit den Zapfen in Zusammenhang stehen — die Zapfenkörner.

Dieselbe Uebereinstimmung im Bau, welche zwischen den Stäbchen bei den Fröschen und den Crocodilen bestehen, wiederholt sich auch wieder für die Zapfen, nur mit dem Unterschiede, dass die Kugeln in den Innengliedern entweder fehlen oder wenn sie vorhanden sind, farblos sind. Das Aussenglied der Zapfen hat eine Länge von 0,006—0,007 mm. Auch Doppelzapfen kommen in der Retina der Crocodile vor und die beiden Theile des Zwillingszapfens verhalten sich gerade so, wie bei den Fröschen, nur mit dem Unterschiede, dass der Hauptzapfen immer eine farblose Kugel enthält. Das Aussenglied des Hauptzapfens ist gewöhnlich kurz und dick und hat eine Länge von 0,005 mm., während das Aussenglied des Nebenzapfens länger und schmaler und 0,008—0,009 mm. lang ist.

Nur in einem wichtigen Punkt weichen die Crocodile von den Fröschen ab, nämlich durch das eigenthümliche Verhältniss der Zapfen in der Fovea centralis. Nicht allein, dass die Stäbchen in der Umgebung der Fovea centralis stets mehr und mehr in den Hintergrund treten, um in der Fovea selber vollkommen zu verschwinden, sondern auch die Form der Zapfen wird in der Fovea eine durchaus andere. Allererst werden die Innenglieder in der Fovea viel schmaler, in der Mitte der Fovea sind sie kaum 0,004 mm. breit, während sie in den übrigen Partien der Retina eine Breite von 0,007—0,008 mm. haben. Besonders merkwürdig ist aber die Länge der Aussenglieder, welche in der Fovea selber eine Länge von 0,030—0,034 mm. erreichen können, während sie gleichzeitig ansehent dünn werden. Die mehr oder weniger linsenförmigen Körperehen weichen für vollkommen homogenen Ellipsoiden, welche fast den ganzen Umfang des Innengliedes einnehmen. In der Fovea selber scheinen nur einfache
Zapfen vorzukommen. Doppelzapfen traf ich wenigstens dort nicht an. (Vergl. hierzu Taf. LXXXIX. Fig. 8—12.)

Max Schultze (115) hat bekanntlich nachgewiesen, dass höchst wahrscheinlich die Stäbchen für die Perception des Lichtes, die Zapfen für die der Farbe dienen. Bei Tagthieren werden also die Zapfen entweder allein vorkommen, oder wenigstens in der Mehrzahl sein, bei Nachttieren dagegen wird das Umgekehrte stattfinden, dort werden die Zapfen entweder in kleiner Zahl vorkommen oder vollständig fehlen. Bekanntlich sind die Schildkröten, Schlange und Eidechse Tagthiere, welche am liebsten im hellsten Tageslicht sich aufhalten, hier müssen also — im Einklang mit der Theorie von Max Schultze — die Zapfen die Ueberhand haben. Aber eine Ausnahme machen die Crocodile, die gespaltene Pupille deutet schon darauf hin, dass wir hier nicht mit Tagthieren zu thun haben, aus der Lebensweise der Crocodile wissen wir denn auch, dass sie in der Dämmerung auf Beute ausgehen. Hier müssen also, wie a priori zu erwarten war — die Stäbchen in überwiegender Zahl vorhanden sein und die Untersuchung hat dies vollkommen bestätigt. Das scheintbar abweichende in dem Bau der Retina bei den Crocodilen bestätigt auf's Neue die geniale Hypothese von Max Schultze.

Nach Dennissenko (127) kommen zwischen den Körnern der äusseren Körnerschicht grössere und kleinere Räume vor, die keine nachweisbare Substanz weder in fester noch in flüssiger Form enthalten. Von Reptilien wurden vier Repräsentanten untersucht. So viel als man aus einer solchen Anzahl Untersuchungen schliessen darf, treten hier die äussere Körnerschicht, sowie die Hohlräume in derselben in zwei verschiedenen Formen
entgegen. Die Körner haben eine ellipsoide Form, sind ziemlich gross, jedoch etwas kleiner, als bei manchen Amphibien, dann liegen sie entweder in einer einzigen Reihe zusammen und man trifft nur stellenweise auf zwei übereinander gelagerte Körner, oder dieselben sind in zwei Reihen geordnet. Trotzdem nun die körnigen Elemente nur wenig zahlreich vertreten sind, übertrifft hier doch manchmal nach Dennissenko die äussere Körnerschicht die innere an Dicke. Dieselbe beträgt nach ihm bei manchen Reptilien nur 0,021 mm., bei anderen dagegen erreicht sie 0,060—0,074 mm. Die Dicke der äusseren Körnerschicht soll hier von der Länge der centralen Fortsätze der Körner direkt abhängen. Diese letzteren können manchmal so wenig entwickelt sein, dass sie kaum zu erkennen sind, in anderen Fällen sind sie sehr stark entwickelt und erreichen eine Grösse von 0,063 mm. Bei der grünen Eidechse liegen die Körner nach ihm entweder in einer Reihe oder regelmässig in zwei Reihen. Die äussere Körnerschicht ist demnach sehr dick, da die centralen Fortsätze hier ungemein stark entwickelt sind. Die ziemlich gut entwickelten Umhüllungshäutchen der Körner setzen sich auf die centralen Fortsätze fort. Sie scheinen nach ihm breite Streifen aus, um die benachbarten Fortsätze mit einander zu vereinigen, dadurch entstehen schmale und lange, röhrenförmige Hohlräume, die also nicht zwischen den Körnern, sondern zwischen ihren centralen Fortsätzen verlaufen. Die Länge dieser Hohlräume beträgt bei der grünen Eidechse 0,063 mm. Bei Alligator sind die hier vorkommenden Hohlräume nach Dennissenko rund und werden von der zweiten Körnerreihe und den hier entstehenden Fortsätzen hergestellt. Ihre Länge beträgt bei Alligator 0,012—0,015 mm., die Breite 0,009—0,012 mm.

Wilhelm Müller hat bekanntlich zuerst in seinen uberaus wichtigen Untersuchungen über den Bau der Retina, die Stäbchen-Zapfenschicht und die äussere Körnerschicht der Autoren als die Schicht der Sehzellen zusammengefasst.

Wohl mit vollem Recht begründet er die Wahl dieser Bezeichnung mit dem Hinweis auf die von allen Beobachtern, deren Gesichtsreis nicht auf Säugethiere und Vögel beschränkt geblieben ist, eingeräumte Unmöglichkeit der Aufstellung charakteristischer Kennzeichen, auf deren Grund die Unterscheidung der von höheren Wirbeltieren eigenthümlichen beiden Modificationen der Sehzellen für die Wirbeltiere überhaupt durchführbar wäre, die Zusammenfassung mit dem Hinweis auf die nachgerade zur allgemeinen Anerkennung gelangte Ansicht, dass die sogenannten äusseren Körner weiter nichts als die den Kern enthaltenden Abschnitte der Sehzellen vorstellen. Was es aber für einen Sinn haben soll, aus dem die Abscheidungen des Protoplasma und aus dem den Kern enthaltenden Theil einer Zelle zwei besondere Schichten zu machen, vermag W. Müller mit vollem Rechte wohl nicht einzusehen. Die Schicht enthält, wie aus seinen schönen Untersuchungen hervorgegangen ist, schon bei Myxin zweierlei Elemente, Sehzellen und Fulcrumzellen; beide Bestandtheile
lassen sich nach ihm durch die ganze Wirbeltierreihe hindurch unterscheiden, beide haben im Verlaufe der successiven Entwicklung Anpassungen erfahren, die Sehzellen in höheren Grade als die Gebilde des Fulerum.

Bei gleicher Länge und übrigens gleicher Form kann die Dicke der Sehzellen beträchtliche Unterschiede darbieten, dadurch kommen nach ihm die breiten und schmalen Sehzellen der Geckonen zu Stande. Selbst die Form der Aussenglieder kann nach ihm Modificationen erfahren; die konischen Aussenglieder der breiten Sehzellen von Platydactylus werden gegen die Area centralis hin immer mehr cylindrisch und sollen zugleich doppelt auf dem einfachen Innengliede stehen, so dass sie von den Aussengliedern der nebeneinliegenden schmalen Sehzellen kaum mehr zu unterscheiden sind. Bei Lacerta und Crocodilus habe ich ähnliche Er scheinungen dagegen nicht beobachten können.

In der Plättchenbildung der Aussenglieder sieht Müller eine Folge der lamellösen Structur, wie sie Cuticularbildungen häufig zukommt; die Längsstreifung, welche bei den mit kolossalen Sehzellen versehenen Geckonen durch das Auftreten reihenweise stehender Gräben und Vorräumen bedingt wird, kann nach ihm ebenso wohl eine Folge der Anpassung an die die Aussenglieder umschließenden Fortsätze der Pigment lamelle als ein Erbstück sein, denn das Auftreten von Sculpturen in der Zellenwand ist eine uralte Eigenschaft der Ektodermzellen.

Was das Fulerum (Specialfulerum) betrifft, so giebt Müller an, dass es bei den Reptilien mächtig entwickelt ist; es wird hier von rundlichen und ellipsoidischen Zellen gebildet, welche eine förmliche Schicht zwischen den Füssen der Sehzellen bilden und zum Theil in den zwischen den Kernstücken befindlichen Raum hineinragen. An sie schliessen sich netzförmig verzweigte mit membranartigen Verbreiterungen versehene Ausläufer an, welche mit der Membrana limitans externa und der Schicht der Nervenan sätze Verbindungen eingehen und ein ziemlich dichtes interstitielles Netzwerk herstellen.

W. Müller unterscheidet weiter noch die Schicht der „tangentialen Fulerumzellen, die bei Petromyzonten stark entwickelt, bei den höheren Wirbeltieren dagegen bedeutend reducirt ist. Er versteht hierunter eine einfache, unzusammenhangende Lage rundlicher Zellen, welche der inneren
Fläche der Schicht der Nervensätze dicht anliegt und nach ihm an gehärteten Präparate nicht selten durch einen schmalen Raum von den unterliegenden Elementen der Retina getrennt ist.

entwickeltes Septensystem, in dessen Interstitien die einzelnen Bündel der Opticusfasern gelagert sind. Dieses Septensystem setzt sich in eine mächtige, aus vielfach zusammenhängenden, im Allgemeinen in radiärer Richtung verlaufenden feinen Fasern bestehende innere Faserschicht fort, welche nach Müller bei Lacerta ocellata in einerDicke von 0,14 zwischen die Schicht der Opticusfasern und die Membrana limitans interna eingeschaltet ist.

Als Schicht der Schnervenfasern endlich betrachtet er die von den Axencylinderfortsätzen der Nervenzellen des Ganglion nervi optici gebildete Schicht.

Schliesslich will ich noch einige Maasse mittheilen, welche W. Müller (119) und Dennissenko (127) angeben.

Nach W. Müller.

<table>
<thead>
<tr>
<th>Thier-Species</th>
<th>Retina bis zum G. n. opt. incl.</th>
<th>Schzellen</th>
<th>Nervenansätze</th>
<th>Ganglion retinoae</th>
<th>Spongioblasten</th>
<th>Neurospongium n. optici.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidosternon microc.</td>
<td>−0,100</td>
<td>−0,023</td>
<td>−0,003</td>
<td>−0,013</td>
<td>−0,010</td>
<td>−0,021</td>
</tr>
<tr>
<td>Plotydactylus Th.</td>
<td>−0,239</td>
<td>−0,095</td>
<td>−0,004</td>
<td>−0,026</td>
<td>−0,020</td>
<td>−0,059</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thier-Species</th>
<th>Ort der Messung</th>
<th>Dicke der Retina</th>
<th>Schzellen</th>
<th>Nervenansätze</th>
<th>Ganglion retinoae</th>
<th>Spongioblasten</th>
<th>Neurospongium n. optici.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacerta agilis</td>
<td>Area centralis</td>
<td>−0,244</td>
<td>−0,060</td>
<td>−0,016</td>
<td>−0,044</td>
<td>−0,028</td>
<td>−0,060</td>
</tr>
<tr>
<td></td>
<td>Mitte</td>
<td>−0,204</td>
<td>−0,044</td>
<td>−0,009</td>
<td>−0,040</td>
<td>−0,028</td>
<td>−0,060</td>
</tr>
<tr>
<td></td>
<td>Nahe dem vord. Ende</td>
<td>−0,154</td>
<td>−0,039</td>
<td>−0,004</td>
<td>−0,026</td>
<td>−0,020</td>
<td>−0,052</td>
</tr>
</tbody>
</table>

Nach Dennissenko.

<table>
<thead>
<tr>
<th>Thier-Species</th>
<th>Körnerschichten</th>
<th>Körner der äusseren Körnerschicht</th>
<th>Körner der inneren Körnerschicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thier-Species</td>
<td>äussere</td>
<td>innere</td>
<td>Länge</td>
</tr>
<tr>
<td>Lepidosternon microc.</td>
<td>−0,075</td>
<td>−0,060</td>
<td>−0,012</td>
</tr>
<tr>
<td>Plotydactylus Th.</td>
<td>0,014</td>
<td>0,006</td>
<td>0,009</td>
</tr>
</tbody>
</table>

Ueber das Retinalpigment verdanken wir Angelucci (126) folgende Mittheilungen. An jeder Zelle unterscheidet man nach ihm zweckmässig einen oberen (der Chorioidea zugekehrten) und einen unteren (gegen die Retina gerichteten) Abschnitt, eine Eintheilung, die auch dadurch gerechtfertigt wird, dass bei der Maceration und auch bei der Erhärting der Pigmentschicht die Zellen bei vielen Thierspecies mit ganz besonderer Leichtigkeit in diese beiden Hälften aus einanderfallen. Den oberen Abschnitt bezeichnet er als „Protoplasmakappe“, den unteren als „Pigmentbasis“.

Die schon oben erwähnte Eigentümlichkeit des Zerfalls dieser Zellen in ihren beiden Theilen ist hier sehr stark ausgedrückt und in Osmiumpräparaten gelingt es nur sehr selten die ganzen Zellen zu isolieren; sie erscheinen dann als regelmäßige Cylinder, bedeckt von einer ziemlich starken Cuticularmembran. In der ziemlich hohen gleichmässig grau gefärbten Protoplasmakuppe ist bei dieser Behandlungsmethode ein Kern meist nicht wahrzunehmen.

Die Frage, ob auch in der Retina der Reptilien die Pigmentkörner physiologische Ortsveränderungen vornehmen, ob sie in Folge der Belichtung gegen die Membrana limitans externa vorrücken und sich unter dem Einflusse der Dunkelheit von ihr wieder zurückziehen, hat Angelucci nicht mit Sicherheit entscheiden können. Bei Lacerta fand er die Zapfenschicht immer recht stark pigmentirt, sowohl in solchen Augen, die in anhaltender Dunkelheit, als auch in solchen, die lange im intensiven Lichte verweilt haben; ob aber die Pigmentirung in den beiden physiologisch entgegengesetzten Fällen wirklich gleichmässig intensiv war, hat er nicht entscheiden können. Nur so viel liess sich aussagen, dass in der Zapfenschicht der Eidechse die physiologische Pigmentwanderung, wenn sie dort überhaupt vorkommt, weit weniger merklich ist als in der Stäbchenschicht der Amphibien.

Gehörorgan.

Literatur.

Ausser den genannten Schriften sind noch hervorzubeheben:

Saurii.

Wenn man bei den Sauriern das knöcherne Labyrinth aus den umgebenden Knochen herauspräparirt hat, so kann man mit Bezug auf die äussere Form auch bei den Eidechsen sagen, dass dasselbe einer vierseitigen Pyramide mit schräg abgestumpfter, aufwärts gekehrter Basis und abwärts gerichteter Spitze ähnelt, welche letztere von der Schenke gebildet wird, und welche sich bis ins Niveau der Gehirnfläche der Basis cranii erstreckt. Am deutlichsten tritt diese Ähnlichkeit bei der Betrachtung des Labyrinthes von vorne und hinten (Taf. XC. Fig. 1), namentlich an den Durchschnittspräparaten (Taf. XC. Fig. 2. 3.) hervor. Aber auch bei der Betrachtung von aussen oder innen lässt sich dieselbe wiedererkennen. Die vierseitige Basalfläche (Fig. 1. F) kehrt aufwärts und nach aussen. Von den vier dreieckigen Seitenwänden sieht die am äusseren Rande der Basalfläche anliegende (Fig 1. Q) nach aussen und unten; die zweite, welche von dem vorderen Rande der Basalfläche ausgeht, nach innen und vorne; die hinter dieser folgende dritte nach innen und schliesslich die nach hinten von dieser am hinteren Rande der Basalfläche mit derselben vereinigte vierte (Fig. 1. F) mit ihrem oberen, grösseren Theil nach innen und hinten. Man kann sie der Kurze halber als „obere, äussere, vordere, innere und hintere Wand“ bezeichnen.

Die nach oben und aussen gerichtete Basalfläche (Fig. 1. P) wird von vier Rändern, einem inneren, höher gelegenen, einem äusseren, tiefer liegenden, einem vorderen und einem hinteren begrenzt. Der innere Rand ist horizontal, der äussere bezüglich wesentlich dieselbe Richtung, ist aber zugleich nach aussen bedeutend convex. Der innere Rand ist so kurz, dass die ganze Fläche beinahe dreieckig genannt werden kann. Von den drei längeren Seitenwänden sind der vordere und der äussere ungefähr gleich lang, der hintere nicht unbedeutend kürzer.

Wänden ist die innere auch in dieser Beziehung sehr unregelmässig, wie eine Profilansicht derselben am besten zeigt (Taf. XC. Fig. 1).

Ramus vestibularis und des Ramus cochlearis, in die sich der N. acusticus theilt.

Die Innenwand besitzt aber noch eine Öffnung, welche derselben ausschliesslich angehört, es ist eine ausserst feine Spalte, welche die obere Mündung einer engen, aber ziemlich breiten und tiefen, nach aussen von einer dünnen Knochenlamelle verlaufenden Fissur bildet (Taf. XC. Fig. 2, 3, f). Im Aussehn erinnert sie nach Clason an den Aquaeductus vestibuli der übrigen Wirbelthiere und aus dem Boden derselben entspringt wirklich ein erst auf Querschnitten und bei Vergrösserung sichtbares Kanälchen, das nach innen im Vorhof endet. Einen Aquaeductus cochleae hat Clason vergebens gesucht, da inzwischen das Foramen cochleare nicht „membrana clausum“ ist, sondern eine weite Communication nach aussen bildet, kann nach ihm dies wohl als Ersatz des Aquaeductus cochleae dienen und ihn auf diese Weise überflüssig machen.

Wie bei den übrigen Wirbeltieren liegt das Labyrinth zwischen Foramen trigemini und jugulare. Letzteres ist unregelmässig von Form, länglich und schmal, dreimal so lang als breit, es führt zum Recessus scalae tympani, welcher aber ausserdem durch das Foramen rotundum s. cochleare mit dem Inneren des Labyrinthes communicirt. Die obere und vordere Wand derselben wird ausschliesslich vom Opisthoticum gebildet, mit Ausnahme am oberen Theile des vorderen Randes, wo sich das Occipitale laterale als eine dünne Lamelle vorschiebt.

Das Labyrinth besteht aus zwei Abtheilungen, einer grösseren oberen und einer von deren unterer Fläche nach unten sich erstreckenden kleineren, der Schnecke. Die grössere obere wird überdies in der Sagittalebene durch zwei vorspringende Winkel, einen grösseren vorderen, und einen kleineren, hinteren verlängert. In Uebereinstimmung damit findet man auch im Innern des Labyrinthes (Taf. XC. Fig. 4.) eine grössere, mittlere Höhle, das Vestibulum (a), die von drei kleineren, einer unteren, Cavitas cochleae (b), einer vorderen (c), homolog dem Cavum anterius superius, und einer hinteren (d) homolog dem Cavum posterius superius der Schildkröten, umgeben ist und mit jeder derselben communicirt. Das Vestibulum enthält den Utriculus, den Sacculus, die Endtheile der in ersteren mündenden Bogengänge und einen nach aussen von ihnen gelegenen perilymphatischen Raum, von beträchtlicher Ausdehnung. Die Cavitas cochleae enthält die Schnecke und die sogenannten Treppen derselben (Cava perilymphatica), die vordere Höhle den Recessus saccularis, die sagittale und horizontale Ampulle, die hinteren endlich die frontale Ampulle. Von der vorderen Ampullenhöhle ist das Vestibulum durch eine frontale und beinahe senkrechte, gegen den Vorhof hinaus gehöhlte Scheidewand (Taf. XC. Fig. 3, 4, c) am meisten getrennt. In der Nähe der unteren, inneren Ecke derselben befindet sich die von ihr und von der inneren Labyrinthwand begrenzte Öffnung (Fig. 3, 4, h), wodurch die beiden Räume mit einander verbunden sind, und welche dem Utriculus zum Durchgang dient. Sie ist oval, ziemlich eng und schräg nach oben und hinten gerichtet. Gegen den hinteren
Ampullenraum ist die Scheidewand schon unvollständiger, indem sie hier bloss von einer dünnen und kurzen Lamelle oder Leiste (Fig. 4 f) gebildet wird. Mit der hinteren Labyrinthwand zusammen umschliesst sie die grosse, ovale Communicationsöffnung (Fig. 3. i), worin der obere Theil der frontalen Ampulle gelagert ist. Zwischen dem Vestibulum und dem Schneckenraume ist schliesslich keine Scheidewand vorhanden und bildet der letztere deshalb eigentlich nur eine direkte, untere trichterförmige Fortsetzung des letzteren. Die Communicationsöffnung macht eben seine weiteste Stelle aus und nimmt daher dem Vestibulum einen bedeutenden Theil seines Bodens. Die Form derselben ist oval mit sagittalem Längsdurchmesser, der beinahe doppelt so lang als der quere ist, und einem inneren concaven, einem äusseren mehr geraden Rande.

den Batrachierh umgekehrt. Ein durch das untere Ende des Salacus des gemeinsamen Bogengangs gelegter, horizontaler Schnitt (Fig. 4.) trennt den Vorhof an seiner breitesten Stelle. Ein längs dem vorderen Rande der selben Furchen gelegter Frontalschnitt (Fig. 3.) trifft die höchste Stelle seines Daches. Eine Vergleichung dieser Schnitte zeigt, dass die grössten Längs-, Breiten- und Höhendurchmesser des Vestibulum ungefähr gleich lang sind.

Die innere Vorhofswand wird von der Schädelwand der Labyrinthpyramide gebildet, das Dach von der oberen oder Basalwand derselben, die übrigen seitlichen Wände dagegen von einer besonderen, inneren Lamelle (Fig. 4), welche peripherisch zum grössten Theile von den beiden Amuppenräumen und den umgebenden Bogengängen begrenzt und somit nur zwischen diesen von den oberflächlichen Knochen verdickt wird.

Unterhalb der grossen, ovalen Grube, welche die vordere Wand des Vestibulum einnimmt, findet man am Uebergange dieser Wand in die vordere der Schnecke eine kleinere Vertiefung (Taf. XC. Fig. 2. r.). Vom unteren, hinteren Theile derselben geht ein schmaler, aber tiefer Salacus aus und läuft längs dem oberen Theil dieser Wand zum Foramen rotundum s. cochleare, in welches derselbe nach einer schwachen Biegung nach unten ausmündet. Der obere Rand dieser Furche bildet die innere Grenzlinie zwischen Vorhof und Cavitas cochleae. Als äussere kann man den oberen Rand des Foramen ovale ansehen. Das Foramen ovale führt auf diese Weise nicht zum Vorhof, sondern zur Schnecke, dasselbe gehört dem oberen Theil der äusseren Schneckenumwand an und liegt der hinteren Wand etwas näher als der vorderen. In der Nähe des oberen Randes der Hinterwand, findet man das Foramen rotundum (Taf. XC. Fig. 1, 2, N).

In seiner Form ähnelt der Schneckenumraum einem kurzen, von aussen nach innen abgeplatteten und nach unten schnell sich verengenden Trichter, dessen Längsdurchmesser an der oberen Öffnung bedeutend grösser als der quere ist, dessen Tiefe ungefähr dem ersteren entspricht und der mit einer stumpf abgerundeten Spitze endet.

Die vordere Ampullenhöhle (Taf. XC. Fig. 4, 5.) kann man, was die Grundform betrifft, als eine liegende Pyramide mit hinterer, von der Grenzwand gegen das Vestibulum gebildeter Basis, an der vorderen Labyrinthwand gelegener Spitze und einer äusseren, inneren, oberen und unteren Fläche betrachten. Die Spitze wird vom sagittalen Bogengange (A'), bei seinem Ursprung aus der gleichnamigen, gleich nach hinten von ihm gelegenen Ampulle A eingenommen. Hinter dieser liegen neben einander die horizontale Ampulle (C) und der Recessus utriculi (D'), erstere aussen, letzterer innen. Die Grenzen zwischen ihnen allen werden durch niedrige Leisten gebildet, die die erste Andeutung eines vollständigen Umschlüssenseins der einzelnen Abtheilungen ausmachen. An der vorderen Ecke des Hohlraums findet man an der oberen Wand die beinahe kreisrunde Ausgangsöffnung (n) des sagittalen Bogenganges. An der Basis zeigt sich an der äusseren Seite die fast trichterförmige Öffnung (ρ) des horizontalen
Canals, an der inneren ganz in der Nähe der unteren Fläche eine krei-
runde Oeffnung (H'), durch welche der Ramus vestibularis des N. acusticus
aus der Schädel- zur Ampullenhöhle tritt, und oberhalb dieser, nur durch
eine schmale Knochenleiste davon getrennt, die zum Vestibulum führende,
länglichere Oeffnung (h) für den Utriculus. Beide sind nach hinten und
außen gewandt, letztere jedoch zugleich etwas nach unten.

Der hintere Ampullenraum (Taf. XC. Fig. 5. d) stösst zwar mit seinem
unteren, hinteren Ende an die hintere Ecke der Pyramide, füllt sie jedoch
nicht vollständig aus, denn der frontale Bogengang steigt zwischen der-
selben und der äußeren Wand aufwärts. Die Höhle liegt somit innen
an der hinteren Pyramidenwand und wird aussen vorne gegen das Vest-
ibulum von der früher beschriebenen, dünnen Scheidewand begrenzt. Ihre
Form und Richtung entspricht den unteren zwei Dritttheilen der frontalen
Amplülle, welche darin enthalten ist, während der obere Theil derselben
dem Vorhofe angehört. Ausser der Vestibularöffnung zeigt die Höhle an
der Aussenwand und ihrem unteren, hinteren Ende die ovale Ausgangs-
oeffnung des frontalen Bogengangs (o).

Die gegen das Vestibulum und gegen die Ampullenhohlräume gerichteten
Wände der Bogengänge sind so dünn, und bilden so direkt die Wandungen
derer Höhlen, dass das Freipapariren der halbkreisförmigen Kanäle, als
freistehende Bogen, unmöglich ist.

Der sagittale und frontale Bogengang gehen beide von den unteren
Enden der entsprechenden Ampullen aus und vereinigen sich am inneren
Rande der Basalfläche zum gemeinsamen Bogengang, der jedoch gleich
am unteren Rande der Crista vestibularis aufhört. Der horizontale Bogen-
gang geht vom hinteren Ende der gleichnamigen Aปลulle aus und hört
eine kleine Strecke nach innen und vor von der Kreuzungsstelle mit dem
frontalen auf. An dieser Kreuzungsstelle (Taf. XC. Fig. 4) sind die beiden
Canäle durch Schwund der zwischenliegenden Wand merklich mit ein-
ander vereinigt, besitzen aber doch jeder sein eigenes Lumen.

Denkt man sich das knöcherne Labyrinth vollständig wegpräparirt,
so findet man, was sowohl die Hohlräume als die Canäle betrifft (Taf. XC.
Fig. 6, 7.) dieselben von einer relativ dicken und festen Membran bekleidet,
welche wohl am besten als verdicktes Periost anzusehen ist. Dasselbe
lässt sich leicht von der Knochenwandung ablösen. Am Porus acusticus
und am Aqueductus vestibuli hängt es mit dem Periost der Schädelhöhle,
der Dura mater, zusammen. Ueber das Foramen ovale ist es wie eine
dasselbe umschliessende Membran ausgespannt. Es bildet also im grossen
Ganzen einen das innere, häutige Labyrinth und die Perilymphe umschlies-
senden, einfachen Sack, welcher aus einem grösserem und drei kleineren,
 durch die Bogengangumhüllungen vereinigten Abtheilungen besteht.

An der Schnecke zeigt der Sack ein selbständigeres Verhalten, als
an anderen Stellen. Als Auskleidung der zwischen dem Vorhofe und der
Cavitas cochleae gelegenen Grube (Taf. XC. Fig. 2. r) bildet derselbe
wohl eine Ausbuchtung nach vorn (Fig. 6. b), allein von dem inneren
Theile derselben geht nicht wie am Knochen eine gegen die Höhle offene Rinne (Fig. 2. G) aus, sondern ein in dieser gelegener, aber vollständig geschlossener Canal (Fig. 7. G). Dieser so eben beschriebene Canal vereinigt den perilymphatischen Labyrinthraum mit dem im Recessus scalae tympani gelegenen Sack und kann als Canalis lymphaticus bezeichnet werden. Die Wände dieses Sackes sind mit dem Periost des Recessus innig verbunden; sie scheinen jedoch eine gewisse Selbständigkeit zu besitzen. Man findet nämlich innerhalb der ziemlich festen, stark pigmentierten Membran (Taf. XC. Fig. 6. c′′), noch eine zweite dünnere und pigmentfreie, welche durch einen relativ breiten Zwischenraum von ersterer geschieden wird.

Die Vorder- und Seitenwände des Vorhofstheiles, der ganze Schneckentheil, der Canalis lymphaticus und der obere Theil des Saccus recessi, sowie die um die Bogengänge liegenden Abtheilungen sind reichlich mit Pigment versehen. Eine Ausnahme in dieser Beziehung zeigt nur ein ovaler, vollkommen pigmentfreier Ring (Taf. XC. Fig. 6. d), dessen Lage dem Knorpel entspricht, durch welchen das Opcrulum im Foramen vestibulare befestigt ist und mit welchem der Sack inniger als mit den übrigen benachbarten Theilen zusammenhängt. Das häutige Labyrinth besteht aus einem grösseren, centralen Theil (Taf. XC. Fig. 8, 9), welcher sich nach unten unmittelbar in die Schnecke (E) fortzusetzen scheint und mittelst der denselben umkreisenden Bogengänge (A′, B′, C′, C′′), nach vorne mit der vorderen, mehr entfernten Ampullengruppe (A, C), nach hinten mit der näher gelegenen, alleinstehenden frontalen Ampulle (B) zusammenhängt. Der centrale Theil wird von dem ungewöhnlich grossen und hoch emporragenden Sacke (a) gebildet, an dessen innerer Wand sich der Utriculus (D) und die Bogengänge AB, B′′, C′′, durch deren Vereinigung dieselbe entsteht, in einer Anordnung befinden, welche vollständig den Kämmen und Furchen entspricht, welche wir nach Clason's Beschreibung an der cerebralen und vestibularen Fläche der inneren Labyrinthwand kennen gelernt haben. Der wichtigste, mit Nerven versehene Theil des Utriculus, der Recessus (J′), steht in inniger Verbindung mit den zwei vorderen Ampullen.

Die Ampullen stimmen in ihrer Grundform sowohl unter einander, als mit dem Verhalten bei den übrigen Wirbeltieren überein. Sie bilden ovale (Taf. XC. Fig. 8, 9, 10; Taf. XCl. Fig. 1, 2.), an der einen Seite ein wenig abgeplattete Bläschen mit einem Längsdurchmesser, der etwa 11/2 mal so gross als der quere ist, und zwei Oeffnungen, durch welche sie einerseits mit den Bogengängen, andererseits mehr oder minder direkt mit dem Utriculus communiciren. Der Ampullenboden bildet die unmittelbare Forsetzung der convexen Wand der zugehörigen Bogengänge, er stellt eine abgeplattete, in der Mitte durch eine Querfurche eingedrückte Wand dar. Diese Querfurche (Taf. XC. Fig. 10, Taf. XCI. Fig. 1. f) bezieht sich an der sagittalen und frontalnen Ampulle, eine ganz kurze Strecke an beiden Seiten empor, dagegen erstreckt sie sich an der horizontalen nur an der einen, nämlich
an der nach oben gewandten Fläche. In diesen Furchen liegen die zu den Ampullen gehenden Nerven. An der sagittalnen und frontalen Ampulle geht nämlich der zugehörige Nervenverlauf (Taf. XCl. Fig. 1. p) zur Mitte der Furche und theilt sich dort in zwei, nach jeder Seite verlaufende Aeste; an der horizontalen dagegen (Fig. 3 p') zum einen Ende der Furche, und zwar zum tieferen, am Boden gelegenen und verläuft dann ungeheilt längs derselben. Aus dem Inneren der frontalen und sagittalen Ampulpe schimmern sowohl ihre am Boden gelegenen Cristae acusticae (Taf. XC. Fig. 10; Taf. XCl. Fig. 1 q) und die Septa cruciata (q') als auch seitlich die Plana semilunata (q''') durch; in der horizontalen dagegen (Fig. 5. C) fehlt das Septum cruciatum und nur an der oberen Wand findet sich ein Planum semilunatum (q''') ganz in Uebereinstimmung mit den Vögeln.

Die Grösse der Ampullen der Eidechsen in ihrem Verhältnisse zu einander zu beurtheilen ist schwierig. Doch scheint die frontale etwas grösser als die andere zu sein.

An ihrem einen Ende communiciren demnach die Ampullen mit dem Utriculus, von anderen gehen die Bogengänge aus. Es sei noch erwähnt, dass der horizontale Bogengang mit seinem vorderen Theile, welcher eine bedeutende nach vorne und oben gewandte Erweiterung (Taf. XC. Fig. 8, Taf XCl. Fig. 1, 2 k) besitzt, sogar eine kleine Strecke vor denselben vorbei geht, sich dann gerade nach unten biegt und mit einer länglichen, beinahe elliptischen Öffnung, mit dem untersten Theile des gemeinsamen Ganges zusammen, in das hintere obere Ende des Utriculus einmündet. (Taf. XCl. Fig. 1, 2 l). Die Erweiterung desselben beruht doch eigentlich nur auf einer Zunahme an Höhe, zu dessen Folge die Innen- und Aussenwand bedeutend grösser werden, als die obere und untere. Die innere Wand erhält ausserdem an dem Theile, welcher nach aussen von dem gemeinsamen Bogengange liegt, einen Eindruck von Seiten desselben und erscheint auf diese Weise nach aussen, oder vielmehr gegen das eigentliche Lumen des Bogengangs convex. In seinem übrigen Verlauf besitzt der horizontale Bogengang überall ein kreisrundes Lumen von überall fast der gleichen Weite. Das Lumen des sagittalen und der frontalnen Bogengangs scheint auch im grössten Theile ihres Verlaufes kreisrund zu sein. In der Nähe der Vereinigung werden sie beide allmählich weiter, oder nehmen eigentlich an Höhe zu und münden mit ovalen Öffnungen in den gemeinsamen Bogengang. Am weitesten oben, besitzt dieser ein beinahe kreisrundes Lumen, doch geht er mit einer nach unten gewandten, ovalen und zur Längsaxe sagittalen Öffnung (Taf. XCl. Fig. 1. m) in den hinteren Theil des Utriculus über. In diesen haben wir also drei Canäle verfolgt. Allein noch ein vieter mündet in denselben ein, nämlich der relativ enge Canal, das Homologon des vorderen Theils des eigentlichen Utriculus der übrigen Wirbeltiere, wozu das mittelste Stück des Utriculus, welcher den Recessus und Sinus desselben vereinigt, bei den Eidechsen reduirt ist. Der Recessus bildet eine kolbenförmige, nach aussen gerichtete Erweiterung des vorderen, unteren Utricularendes mit oberer, äusserer und unterer
convexer, dagegen beinahe ebener innerer Wand. Das Volum desselben beträgt ungefähr zwei Drittel desjenigen der Ampullen. Mit seiner unteren Wand liegt er in derselben Horizontalebene, wie die untere der horizontalen Ampullen, allein niedriger als diese erreicht er mit seiner oberen Wand nicht das Niveau der oberen derselben. An dem Boden desselben zeigt ein dreieckiger, dunkler Fleck das Vorhandensein eines Nervenepithels an und wird zum grössten Theile von einer ebenfalls dreieckigen Otolithenscheibe (Taf. XC. Fig. 10, Taf. XCI. Fig. 1, o) bedeckt. An der unteren Fläche des Bodens breitet sich ein Zweig des Ramus vestibularis nervi acustici (Fig. 1. p"') aus. Vom Recessus geht dann der mittlere Theil des Utriculus, der Utricularcanal nach hinten, oben und etwas nach innen zum unteren, vorderen Theil des Sinus utriculi. Am Sinus stossen die unteren Wände der beiden unter einem beinahe rechten, aber abgerundeten, nach unten hin offenen Winkel zusammen und bilden auf diese Weise die transversale Wand, welche man als Boden des Sinus betrachten kann.

Schwieriger ist es, sich das Verhalten an der oberen Wand, dem Dache des Sinus (Taf. XCI. Fig. 1, 2.) vorzustellen. Dasselbe ist auch zum grössten Theile von zwei Öffnungen, den Mündungen des horizontalen und des gemeinsamen Bogengangs, eingenommen. Sie sind beide länglich, die erstere (Taf. XCI. Fig. 1, 2. l) beinahe elliptisch, die letztere m oval, und an beiden ist der Längsdurchmesser von vorne nach hinten gerichtet. In der Mitte des Daches kommen die beiden Öffnungen in der ganzen Breite an einander zu liegen, und in Folge der Lage der Canäle die Öffnung des horizontalen Bogengangs nach aussen von der des gemeinsamen. Der vordere Theil des Daches wird dagegen ausschliesslich von der Öffnung des ersteren, der hintere von der des letzteren eingenommen. In der Mitte treffen auf diese Weise die einander zugekehrten Wände der beiden Canäle, die äussere des gemeinsamen, die innere des horizontalen, zwischen den beiden Öffnungen zusammen und bilden auf diese Weise eine dünne sagittale Falte (Taf. XCI. Fig. 1, 2. n). Das Verhältniss wird aber dadurch complicirt, dass die beiden Öffnungen nicht ganz dieselbe Richtung besitzen. Die hintere sieht nämlich nach unten, die vordere nach vorne und ein wenig nach innen. Die innere Wand des Sinus scheint sich mit einem Zipfel zwischen dieselben hinein und deshalb theilt sich die vorhin erwähnte Falte vorne in zwei, eine innere und eine äussere.

An der äusseren Sinuswand findet man noch gerade unterhalb des hinteren Endes der Öffnung des horizontalen Bogengangs ein aüsserst kleines Loch (Taf. XCI. Fig. 20. und 21. l). An der Innenwand des Sacculus entspricht demselben ein ähnliches; sie bilden die beiden Öffnungen eines aüsserst kurzen Canals. Beinahe vollkommen frei, jedoch nicht an der äusseren Wand des Sinus utriculi und der darin einmündenden Canäle liegt die innere Wand des Sacculus. Dieser bildet einen im Umkreise beinahe kreisrunden Sack, dessen sagittaler Durchmesser jedoch etwas grösser als der verticale ist. Nach oben erstreckt sich der
Sacke eine Strecke weit nach oben über den oberen Rand des erweiterten Endtheils des horizontalen Bogengangs. Nach unten ruht er mit seinem untersten Theil auf der äusseren Wand, oder eigentlich auf dem Dach der hängigen Schnecke und ragt auf diese Weise noch ein wenig in die Cavitas cochleae; nach vorn und hinten erreicht er nicht vollständig die entsprechenden Wände des Vorhofs. Was seine Form betrifft, so wird diese hauptsächlich von der darin eingeschlossenen, grossen Otolithenmasse bestimmt. Dieselbe bildet eine kreideweisse Scheibe (Taf. XCI. Fig. 8, 9.) von bedeutender Dicke mit beinahe vollkommen kreisrundem Rande und zwei gewölbten Flächen. Man kann sie als Flächensegmente zweier ungleich grosser Sphaeroide betrachten, deren diejenige, welcher die innere Fläche zugehört, wenigstens doppelt so gross als die der äusseren ist. Die erstere Fläche ist demnach bedeutend flacher als die letztere. dagegen ist sie gleichmassiger gewölbt als diese.

Nach der Form des Otolithen richtet sich nun auch die Grundform des Sacculus, welcher von ihm beinahe vollständig ausgefüllt wird. Er besitzt demnach wie dieser zwei gewölbte Wände, eine äussere und eine innere. Erstere (Taf. XC. Fig. 11. a") ist ausserordentlich dünn, letztere (Taf. XC. Fig. 24. Taf. XCI. Fig. 1, 2. a") besitzt dagegen eine beträchtliche Dicke und Festigkeit. Die Wölbung derselben entspricht vollkommen der Innenfläche des Otolithen. Sie ragt am ganzen Rande ein klein wenig über den Otolithen hinaus. Am hinteren Rande nimmt das auf diese Weise vom Otolithen nicht bedeckte Stück von oben nach unten an Breite zu, bis es ungefähr dreimal die Breite des übrigen freien Randes hat, um sich an der Schnecke plötzlich wieder zu verschmäulern, oder vielleicht ganz zu verschwinden. Von diesem Stücke (Taf. XC. Fig. 11. b) schlägt sich die äussere Wand nicht direct auf die Aussenseite des Otolithen, sondern biegt sich mehr nach vorne, um sich erst später im scharfen Winkel nach aussen zu wenden. So entsteht hier längs dem hinteren Rande eine von den beiden Sackwänden gebildete schmale Rinne (Taf. XC. Fig. 8, 9, 11). Verfolgt man dieselbe nach unten, so findet man ein wenig vom Boden entfernt, eine schmale, sagittale Spalte, dieselbe führt vom Sacculus zur Schnecke, bildet die einzige Communication zwischen den beiden und zeigt sich nach Clason als ein würdiges Seitenstück derselben Öffnung oder des Canalis reuniens bei Vogeln und Säugethiern.

An dem unteren Theil der inneren Sackwand breitet sich auch ein vom Schneckenaste des N. acusticus kommender Zweig (Taf. XC. Fig. 24 q") aus, er wird zum Theil vom Hauptstamme des Nerven, zum Theil von dem Zweige zur frontalen Ampulle bedeckt. Ausser den beiden erwähnten Öffnungen des Sacculus, mittelst welcher derselbe mit dem Utriculus und der Schnecke in Verbindung steht, kommt noch eine dritte Öffnung vor. Sie liegt hoch oben an dem vorderen Theil der Innenwand des Sacks (Taf. XC. Fig. 8, Taf. XCI. Fig. 1. F") und bildet die Einmündung eines Canals in den Sack, der dieselbe Weite wie das Lumen der Öffnung besitzt, und dessen Wände an ihrer Peripherie in die des Sacks übergehen.
Dieser Gang liegt jedoch dem Sack dicht an, deshalb müssen die Ränder der Öffnung ihre vorhin erwähnte Beschaffenheit bekommen, und seine Mündung das Ausschen einer Spalte annehmen. Von der Einmündungsstelle ab geht der Canal schräg nach unten und hinten zum unteren Rande des Utriculus. Ganz unten ist er durch Bindegewebe innig mit dem Utriculus vereinigt, um dessen unterem Theil er sich nach oben biegt, um darauf an der Innenwand des Sinus utriculi zur Öffnung des Aquaeductus vestibuli aufwärts zu verlaufen und, nachdem er in diese hineingetreten, sich zur oberen Mündung des Aquaeductus in der Schädelhöhle zu begeben. Beim Heraustreten aus derselben nimmt er schnell einen doppelt so grossen Umfang an, läuft nach oben und vorne, bis derselbe beinahe mit dem Canale der anderen Seite zusammenstösst, mit welchem er jedoch keine sichtbare Verbindung eingeht. Hier schwillt er nun zu einer länglichen, kolbenförmigen Bildung an und scheint damit blind zu enden.

Der so eben beschriebene Canal, der Aquaeductus vestibuli membranae us, mündet auch bei den Sauriern in den Sacculus. Wie die Cavitas cochleae so kann man auch die Schnecke mit einem nach unten geschlossenen und dort stumpf abgerundeten, oben von aussen nach innen abgeplatteten Trichter oder einer Düte vergleichen (Taf. XC. Fig. 11, 12). Sie besitzt jedoch auch eine obere Wand und ist, was ihren oberen Theil betrifft, noch mehr abgeplattet als der Hohlraum, in dem sie liegt. Da die vordere Wand beinahe senkrecht steht, beruht die Verengung des Triechters nach unten auf der allmählichen Annäherung der hinteren zu denselben. Der untere kegelförmige Theil der Schnecke ist etwas nach innen gebogen (Fig. 12). An ihrem oberen Ende biegt sich die äussere Wand mit einer abgerundeten Falte nach innen um und schliesst sich an die oberen Ränder der übrigen Wände an, auf diese Weise das nach oben aussen gekehrte Dach bildend. Mittelst einer ähnlichen Falte wird dasselbe wieder in zwei Abtheilungen geheilt.

Die innere Wand der Schnecke wird von einer Knorpelplatte gebildet, die auch zur Bildung der äusseren Wand beiträgt. Am weitesten oben ist das jedoch nur in geringem Masse der Fall; der Theil der Knorpellamelle, welcher hier der äusseren Wand angehört, ist ganz schmal, allein nach unten nimmt er allmählich immer mehr an Breite zu, während die Wand selbst sich verschmälert, und wird auf diese Weise schliesslich an der Grenze des kegelförmigen Theiles hinreichend breit, um dessen ganze äussere Wand zu bilden. Dieser Theil (Lagena) ist demnach ganz vom Knorpel umschlossen, dessen beide Ränder längs der Grenze der Hinter- und Aussenzand desselben zusammentreffen und dort eine gegen das Lumen desselben vorspringende Leiste bilden. Aber auch am oberen Rande legt sich die Knorpelplatte nach vorne um und nimmt den hinteren Theil des Daches ein. Zwischen den Rändern derselben entsteht auf diese Weise eine weite, unregelmässig dreisichtig Öffnung, welche von einer leicht zerstörbaren Membran (Taf. XC. Fig. 12, 13. c) ausgefüllt wird. Wie die Knorpellamelle reicht sie nicht ganz bis zur hinteren Kante der.
Schnecke und so entsteht hier eine Spalte, welche von einer eigenthümlichen Zellmasse (Fig. 12, 13, f) ausgefüllt wird. An der hinteren Wand der Schnecke tritt ein dunkler Rahmen hervor (Fig. 11, 12, g, h) und dann ein in der vorderen Rinne in ihrer ganzen Ausdehnung gelegener Otolith (p'). Sie lassen nach Clason keinen Zweifel über die ungleiche Bedeutung der Schneckenabtheilungen, indem die hintere die Scala media s. cochlearis s. Pars basilaris, die vordere dagegen die Lagena bildet. Letztere übertrifft den Basilartheil nicht unbeträchtlich und nimmt nur mit ihrem untersten Theil den gewöhnlichen Platz an der Schnecken spitze ein. Der obere, grössere Theil derselben liegt dagegen breitseits an der Pars basilaris und bildet mit dieser eine vollkommen zusammenhängende Höhle. Nach aussen und oben wird sie von der äusseren Schneckenwand und dem Dache begrenzt, deren häufiger Theil der Membrana Reissneri der Schildkröten homolog ist (e). Ausserhalb der Membrana Reissneri liegt der grosse, vordere; perilymphatische Raum (m). In der länglichen Öffnung, welche vom Knorpelrahmen umschlossen wird, hat man nach Clason mit Grund die Membrana basilaris zu suchen (Taf. XC. Fig. 11, 32. k, k' k''). Sie bildet nicht bloss die Innenwand der Pars basilaris, sondern auch die äusseren einer Rinne (n), die nach innen von der Hintervand des perilymphatischen Sacks (o') geschlossen. Gerade nach innen vom oberen Ende derselben zieht der Canalis lymphaticus an ihr vorbei.

Die scharfe Kante, mit der der Nervenknorpel die längliche Öffnung des Rahmens begrenzt, entspricht der äusseren Kante des hinteren Knorpels, in welche sie auch am oberen und unteren Ende der Öffnung übergeht.
Eine der inneren des hinteren Knorpelschenkels (h') entsprechende Kante besitzt der Nervenknorpel nur an seinem oberen Ende (Taf. XC. Fig. 13), und diese vermittelt hier auf eine eigenthümliche Weise die Vereinigung der beiden Knorpel mit einander. Der Nervenknorpel nimmt hier nämlich bedeutend an Dicke zu und bekommt dadurch gleichsam einen Ersatz für den Beleg, welchen sie weiter unten vom Nervus cochlearis bekommt und demnach wird durch diesen der freie Raum ausgefüllt, der sonst am oberen Rande des Nerven entstehen würde.

Die inneren Ränder beider Knorpel des Knorpelrahmens stossen nun früher als die äusseren mit einander zusammen und bilden auf diese Weise die Innenwand einer kleinen, nach unten offenen Grube. Diese Fossa bildet das obere Ende der Scala tympani, deren Hinterwand somit an dieser Stelle vom Knorpelrahmen gebildet wird und nicht wie sonst von dem perilymphatischen Sack. Sie ist jedoch ganz kurz und flach, da die Verbindungsträger zwischen den beiden inneren Rändern des Knorpels rasch an Dicke zunimmt, und somit bald die äusseren Ränder erreicht. Am untersten Ende des Rahmens ist das Verhalten umgekehrt, dort wird der hintere Knorpel so dünn, dass er seine innere Kante verliert und die allein übrig bleibende äussere vereinigt sich einfach mit der gegenüberstehenden des Nervenknorpels. Allein eine Vereinigung zwischen den beiden Knorpeln findet auch in der Mitte des Rahmens statt (Taf. XC. Fig. 11.) und zwar durch eine transverselle, in der Mitte schmale, an den Anheftungsstellen relativ breite, aber dünne Brücke (i), welche die Öffnung in zwei gleich grosse Hälften, eine obere und eine untere, theilt. Sie besitzen beide die Form eines gleichschenkligen Dreiecks, mit kurzer an der Brücke liegender Basis, langen Seiten und abgerundeten Winkeln. Beide (h', h'') werden von einer glashellen Membran verschlossen. Dass diese in der Mitte durch eine Knorpelbrücke unterbrochene Membran der Membrana basilaris entspricht, ist schon erwähnt. Die Theilung derselben durch eine Knorpelbrücke in zwei Hälften ist den Eidechsen eigenthümlich. Nur mit Hilfe dieser Knorpelbrücke trennt somit die Basilarmembran die Scala cochlearis von der Scala tympani (n) und bildet die Aussenwand der letzteren. Die gegenüberstehende innere Wand wird vom perilymphatischen Sacke gebildet. Da der Nervenknorpel nur an seinem oberen Ende mit einer Fläche und in seiner ganzen übrigen Länge blos mit der scharfen Kante an die Öffnung stösst, so würde die Treppe in entsprechender Ausdehnung eine vordere Wand nicht besitzen und auf eine Spalte reducirt sein, wenn nicht ein Zweig des Nervus cochlearis dadurch, dass er sich wie bei den Schildkröten an die innere Fläche des Nervenknorpels anlegt, eine solche bildete. Man kann diesen Zweig nach CLASON wohl als Ramus basilaris bezeichnen. Er besitzt wie bei den Schildkröten (Taf. XC. Fig. 11. q') eine bedeutende Dicke, welche durch eine, an der ganzen gegen die Schnecke gekehrten Seite befindlichen Gangliennasse (Ganglion cochleare) verursacht wird, geht von der Hinterseite des Ramus cochlearis (H'') aus und verläuft dann, der
Schneckeninnenwand anliegend, schräg über diese nach unten. Zum vorderen Rande des Nervenknorpels gelangt, theilt er sich in zwei Aeuste, welche dann jeder für sich zu einer der beiden Hälften, in die der hintere, scharfe Rand des Nervenknorpels durch die Brücke getheilt ist, verlaufen. In der Nähe dieses Randes werden sie plötzlich dünner, indem sie sich gleichzeitig an derselben in einer Ausdehnung ausbreiten, welche der Länge zweier in der Mitte der beiden Hälften der Membrana basilaris gelegenen, dunklen Streifen (l) entspricht und scheinen stark zugespitzt gerade an dem Ursprunge der Basilarmembran am Knorpel aufzuhören. Sie bilden an der Innenseite des Nervenknorpels einen Beleg, dessen Dieke der des hinteren Knorpels entspricht und gleichzeitig eine vordere Wand der Paukentreppe. Der perilymphatische periostale Sack, welcher die Innwand der Schnecke. dem scharfe welchen vorderen Schneckeninnenwand von vollständig der Fläche dünn des Seitengleicher (unten) doppelt besitzt, diese des bald die Lagena selbst der breite Basilarmembran kommt, welcher an der Fläche ebener als Seiten des Nervenknorpels das Verschwinden eines Knorpels, dessen die Wulstes breite basilarmembran er das doppelt beinahe, gelangt die Scala cochleae des doppelt Epithels, welches die Membrana tympani gewandte Fläche vollkommen ist. Dagegen erhebt sich in der Mitte der entgegengesetzten Fläche ein gleichmässiger abgerundeter, gegen die Scala cochl. mehrerter Wulst (l). Er besitzt eine etwas variirende Breite und Höhe, am breitesten und höchsten ist er am Ende der Membran. Ueberall dient der Wulst als Widerlage eines Epithels, welches vielleicht doppelt so hoch als er selber ist und wahrscheinlich aus den gewöhnlichen, haartragenden Zellen besteht. Er bildet nach Clasen das vereinfachte oder weniger vollständig entwickelte Homologon des zuzammengesetzten Corti'sehen Organs der Säuger mit dessen Nervenepithel. Leichter als die Epithelbekleidung des Wulstes lässt sich die Beschaffenheit des übrigen Epithels der Basilarmembran und des der Knorpelschenkel bestimmen. An jeder Stelle des Wulstes bis dicht an die Basis desselben treten auf beiden Seiten der Basilarmembran kleine, niedrige Epithelzellen von ungefähr gleicher Höhe und Breite auf. An dem an die Öffnung stossenden Rande des Nervenknorpels nehmen sie allmählich an Grösse zu und dieser Knorpel besitzt dann oberhalb seines Wulstes doppelt so hohe, aber auch beinahe doppelt so breite Zellen als die Basilarmembran. Auf der anderen Seite des Wulstes kommen abermals kleine, niedrige Zellen zum Vorschein und diese Zellbekleidung setzt sich dann auf den längeren (oben) oder kürzeren (unten) Zwischenraum, welcher den Wulst von dem Nervenepithel der Lagena trennt, indem die Haar- oder Stäbchenzellen wieder deutlich auftreten, fort. Auf der anderen, hinteren Seite der Basilarmembran nehmen die Zellen auch allmählich an Höhe und auch etwas an Breite zu, um bald in ein Cylinderepithelium überzugehen.
Angeheftet an das Cylinderepithelium, welches die vordere oder Lagenarseite des Wulstes am Nervenknorpel bekleidet, liegt eine dünne, unregelmässig streifige Membran, welche sich bald vom unterliegenden Epithel erhebt und sich über den Knorpelwulst gegen den Wulst auf der Basillarmembran schlägt, mit dessen Epithel sie jedoch nicht zusammenhängt. Diese entspricht nach Clason der Membrana Corti s. tectoria, (Lamina fenestra: Deiters). Ohne Schwierigkeiten lassen sich nach ihm die beiden Knorpel auf ihre Homologa zurückführen, der hintere auf den dreiseitigen Knorpel der Schildkröten und Vögel, den Knorpelbeleg der Lamina spiralis ossea der höchsten Thiere. Was die Lage betrifft, so stimmen sie jedoch nicht mit denen der Vögel, wohl aber mit denen der Schildkröten überein.

Wir haben schon gesehen, dass das auf der Schneckennfläche des hinteren Knorpels befindliche Epithel in der unmittelbaren Nähe des hinteren Knorpelrandes aus sehr hohen Cylinderzellen besteht, und dass die am äussersten gelegenen mit ihren freien Enden an die freien der Epithelzellen in der äussersten Reihe der auf der Membrana Reissneri befindlichen zu stossen scheinen, während es aussicht, als ob die Zellkörper selbst von einander divergirt. Untersuchungen von Querschnitten sowohl durch ganze entkalkte Labyrinthe, als durch in Spiritus gehärtete und in Glycerin eingebettete Schnecken haben Clason weiter belehrt, dass auch das Schneckenumen in unmittelbarer Nähe des hinteren Knorpelrandes von einer continuirlichen Epithelwand begrenzt wird. Wie die so eben beschriebene Zellmasse aufzufassen ist, darüber scheint nach Clason die Membrana Reissneri (Taf. XC. Fig. 12. c) einen Wink zu geben. Dieselbe besteht nach ihm aus einer, an Gefässen reichen Bindegewebsmembran. Auf ihrer Innenseite ist dieselbe mit einem einfachen Cylinderepithel wie bei den Schildkröten, bestehend aus ziemlich hohen, aber relativ breiten Zellen bekleidet. Die in Rede stehende Membran beginnt im Allgemeinen ziemlich dünne an der peripherischen Seite derselben und nimmt allmählich an Dicke zu, während der Knorpel sich verdünnt. Am hinteren Rande der Schnecke scheint sie dagegen gleichzeitig mit ihrem Epithel aufzuhören.
oder gerade dort zu verschwinden, wo sie die Zellmasse und zugleich den dünneren Theil des perilymphatischen Sacks erreicht.

Eigenthümlicher fast als die Pars basilaris ist die Lagena, welche wohl bei den Eidechsen ihre grösste bis jetzt bekannte Entwicklung erreicht. Sie nimmt die ganze vordere Hälfte des oberen Theils und ausserdem den ganzen kegelförmigen Theil der Schnecke ein und besteht, was ihren oberen Theil betrifft, in offener, durch keine innere Scheidewand unterbrochener Verbindung mit der Scala media. Wir können nach Clason annehmen, dass die hintere Grenze derselben auf der Innenseite vom Uebergang des Nervenknorpels in die Knorpelplatte und auf der Aussen- seite von dem dort befindlichen Rande der letzteren gebildet wird. Auch auf dieser Seite findet man gewöhnlich in der Nähe des Randes, etwas vor denselben ein niedriges Epithel (Taf. XC. Fig. 13.) welches das Nervenepithel der Lagena vom Epithel der Membrana Reissneri trennt. Was die Form der Lagena betrifft, so kann man sie mit einer abgerundeten, oben schmäleren, unten an Breite zunehmenden Rinne vergleichen, welche nach unten durch einen geschlossenen Cylinder mit abgerundetem Boden verlängert wird. Längs ihrem tiefsten Theil ist die Rinne mit dem gewöhnlichen Acusticus-Epithel (Taf. XCI. Fig. 3. r") und dessen haarragenden Stäbchenzellen versehen. Mit seinem oberen Ende erreicht er nicht ganz das Niveau des oberen Randes des Knorpelrahmens und beginnt dort als ein schmaler Streifen, welcher nach unten immer mehr an Breite zuminnt. Bis hinunter zum Boden desselben reicht das Nervenepithel nicht. In seiner ganzen Ausdehnung ist die Lagena von einem Otolithen bedeckt (Taf. XC. Fig. 11, 12. p'), welcher demnach eine entsprechende schlender- ähnliche Gestalt besitzt. Längs der Aussenseite der Schnecke verläuft der Ramus lagenae (q''). Er ist der vorderste der Zweige, welche vom Schneckenstein ausgehen und besitzt nicht dieselbe Mächtigkeit, wie der Ramus basilaris. Der Hauptstamm läuft gegen das untere Ende des Knorpelrahmens nimmt aber dadurch, dass er gerade nach unten gehende Zweige abschickt, nach und nach ab. Unzweifelhaft ist die so eben beschriebene, ungewöhnliche Grösse der Lagena und die Lage derselben zum Basilartheil das für die Schnecke der Eidechsen am meisten Eigen-
thümliche.

Ueber den Hauptstamm des Nervus acusticus und dessen Verzweigung kann noch folgendes angegeben werden. Die erste Verzweigung in den Ramus vestibularis und cochlearis findet schon im Porus acusticus statt. Jeder Ast schwilt unmittelbar nach seinem Heraustreten aus dem Hauptstamme bedeutend an (Taf. XCI. Fig. 1.) und zwar wegen eines haupt- sächlich an seiner Innenseite befindlichen Ganglion, welches theils dazu beiträgt den Knochenkanal, durch welchen der Zweig ins Gehäuse tritt, auszufüllen, theils auch nach innen von denselben sich befindet. Der Ramus vestibularis ist bei seinem Heraustreten aus der Ganglienmassen schmal und theilt sich nach kurzem Verlauf in drei Zweige. Der eine (p'') bezieht sich zum Recessus utriculi, der folgende (p) zur sagittalen Ampulle,
der äusserste (p'') zur horizontalen. Der Ramus cochlearis scheint dagegen mächtiger zu sein. Von seiner äusseren Seite geht der Ramus sacculi (Taf. XC. Fig. 11. q'') aus, von der hinteren hoch oben ein schmälerer Ast (Taf. XCI. Fig. 1. q) für die frontale Ampulle, danach der breite Ramus basilaris (q), zwischen welchem und der Schnecke sich die Ganglienmasse nach unten fortsetzt und schliesslich erscheint am vorderen Rande des Nerven der beinahe gerade nach unten gehende Ramus lagenae (q'').

Das Eigenthümlichste am Labyrinth der Eidechsen ist also, der grosse und hoch gelegene Sacculus, der im Verhältniss zum Basilartheil der Schnecke mächtige Lagena und: die im Knorpelrahmen befindliche mittlere Brücke.

Bei Anguis fragilis stimmen die Ampullen, der Sacculus und der Utriculus nach P. Meyer vollständig mit den der Eidechsen überein. Für die Schnecke ist dies nicht so, denn obgleich besser entwickelt wie bei den Schlangen, weicht sie bedeutend von der von Lacerta ab und zwar ist die Pars basilaris viel einfacher und die Membrana basilaris ist nicht durch eine mittlere Brücke in zwei getheilt. Meyer bestätigt weiter die Angaben von Deiters, dass bei Anguis fragilis die Pars basilaris viel kleiner als bei Lacerta ist und dass die Lagena derselben fast in Grösse gleichkommt, so dass also in dieser Beziehung Anguis sich vielmehr den Schlangen als den Eidechsen nähert.

Die peripherischen Endorgane des Nervus acusticus verhalten sich in dem Utriculus, Sacculus, den Bogengängen und der Schnecke vollkommen so wie bei den Lacertae (siehe gleich unten).

Letztgenannte bilden ziemlich hohe Cylinderzellen, die in ihrem mittleren Drittel bauchig angeschwollen sind; in dieser Anschwellung liegt der Kern. Nach unten zerfasern dieselben zuweilen; nach oben endigen sie mit einer cuticularen Verdickung, welche einen Wald kurzer dicker Härrchen trägt. Sie liegen sehr dicht auf einander und erscheinen selbst auf den feinsten Querschnitten nur in einer einzigen Schicht angeordnet.

Das Neuroepithelium der Ampullen unterscheidet sich dadurch von dem des Sacculi, dass der cuticular Saum der Sinneszellen hier nur ein einziges, sehr langes und dünnnes, an der Basis etwas dickeres Haar trägt.

Er fand hier nämlich die beiden selben Schichten des Neuroepitheliums wieder, d. h., eine untere der Membrana basilaris aufliegende Schicht runder Zellen oder besser gesagt, Kerne in einer allgemeinen, fein granulirten Protoplasmamischung angeordnet und eine obere Schicht Cylinderzellen, welche an ihrem peripherischen Theil von einem Cuticularsaum begrenzt werden, von welchem ein Wald feiner Flächen ausgeht. Ueberall findet man also haartragende Sinneszellen als die peripherischen Endorgane des Nervus acusticus. (Vergl. für die beiden Papillae nervi acustici Taf. XCI. Fig. 5.)

An einer soeben erschienenen Arbeit über das häufige Labyrinth der Reptilien von Kuhn (186), theilt der Verfasser mit, dass er noch eine Nervenendstelle gefunden hat, die bis jetzt noch von keinem Untersucher beschrieben worden ist. Es ist dies eine kleine Nervenpapille, die an der Innenfläche des Utricularbodens gelegen ist und der Bereiche des Nervus cochlearis entspricht. Kuhn hat dieselbe als „Papilla Retzii“ bezeichnet und den dazu gehörigen Nervenweig als „Nervus papillae Retzii“. Bei Lacerta (L. muralis und agilis) geht das in Rede stehende Nervenstämmchen an der oberen Fläche des N. ampullae frontalis ab, neigt in der Höhe des hinteren oberen Poles der Pars basilaris, breitet sich an der medianen Wandung der Verbindungsrohre der frontalen
Amplitude aus und bildet da die genannte Papilla Retzii (Taf. XCl. Fig. 4). Bei den Schildkröten, bei welchen Kuhn die histologische Struktur dieser Papille genauer untersucht hat, fand er in Bezug auf die Endausbreitung der einzelnen Nervenfasern, wie auch auf die Beschaffenheit des Neuroepithels die gleichen Verhältnisse, wie an der Maenula utriculi. Letztere besteht nach ihm aus zwei verschiedenen Zellschichten, von denen die eine aus kleinen runden Zellen besteht, während die andere Schicht auf der vorhergehenden ruht und aus grossen, hellen Cylinderzellen zusammengesetzt ist; erstere bezeichnet er als die Schicht der Basalzellen, letztere als die der Cylinderzellen. Die Cylinderzellen liegen regelmässig neben einander, bilden helle, grosse, durchsichtige Gebilde, die an frischen Präparaten scheinbar keine Kerne besitzen. Die obere Fläche dieser Zellen, die man wie erwähnt auch „Hörzellen“ nennt, ist quer abgestumpft und von einer dünnen Cuticularmembran überzogen, auf welcher feine Haare von verschiedener Länge aufsitzen (Hörhaare). Auf der Oberfläche der Papilla Retzii gelang es dagegen Kuhn nie eine Deckmembran oder irgend ein anderes Cuticulargebilde nachzuweisen, dagegen sah er zu wiederholten Malen, dass die an der Oberfläche gelegenen grossen Cylinderzellen mit dünnen, kurzen Haaren gekrönt waren. Während bei den Amphibien und bei den drei übrigen Reptilien-Ordnungen die feinsten Nervenfasern bei ihrem Eintritt in das Zellenpolster der Hör-Leisten und Hör-Flecke ihre Myelinscheide nebst der Schwann'schen Umhüllung verlieren und nur als nackte Axencylinder im Innern des Neuroepithels sich endgültig verästeln, tritt nach Kuhn bei Lacerta die doppeltcontourirte Nervenfaser durch den Basalsaum der Cristae und Maculae hindurch und geht in ihrer ganzen Dicke in das Innere des Neuroepithelpolsters, um sich hier mit dem unteren Ende der Cylinderzellen zu verbinden, ohne sich vorher seiner Schwann'schen Scheide, noch seines Myelins entledigt zu haben.

Über den Aquaeductus vestibuli von Phylodactylus und Ascalabotes mauer. verdanken wir Wiedersheim einige genauere Mittheilungen. Rechts und links von der Halswirbelsäule bemerkt man bei Phylodactylus gelbe Flecke. Zieht man an dieser Stelle die Haut vorsichtig ab, so bekommt man beiderseits einen grossen Beutel zu Gesicht. Derselbe ist von kräuterweisser Farbe und liegt nicht frei unter der Haut, sondern in einem Fettmantel eingehüllt. Den unterliegenden Fascien haftet die Blase sehr fest an und zieht sich wohl auch mit blandsackartigen Auswüchsen da und dort tiefer zwischen die Muskelpolster des Nackens hinein, constant ist dies der Fall mit einem an der vorderen Umgebung des Organs abgehenden längeren blindgeschlossenen Canal (Taf. XCl. Fig. 7. C).

Was die Lage dieser Gebilde anbelangt, so fallen sie den Raum zwischen der seitlichen Partie des Schultergürtels und dem Hinterhaupt in den meisten Fällen vollständig aus und wenden sich auch noch centralwärts gegen die Kehle hinab. Hebt man die oberflächliche Nackenmuskulatur vorsichtig ab, so wird man einen stark geschlängelten feinen
Gang (Taf. XCI. Fig. 7. Aq) gewahr, der wie ein weisses Band zum Hinterhaupt nach vorne und oben zieht. Dieser sowohl, wie der oben gesehilderte, blind endigende Canal ist mit den Fascien aufs Innigste ver- wachsen und beide können nur nach Durchschneidung aller umliegenden Muskeln isolirt werden.

Hat dieser Canal den hinteren Bogengang überschritten, so zieht er durch eine feine Spalte zwischen der Decke der Gehörkapsel und dem Parietale hinein in das Cavum cranii. Hier schwillt er bedeutend an, wendet sich mit einem blind sackartigen Ausläufer nach vorne und zieht dem der Hintergrenze des Parietale entlang, schräg nach einwärts und rückwärts gegen den hintersten Abschnitt der Scheitelnah (Taf. XCI. Fig. 7. B). Hier stossen die Hälfiten beider Seiten so nahe zusammen, dass sie fast zu verschmelzen scheinen, was jedoch nicht der Fall ist. Kurz vor der hintersten Spitze des soeben genannten Blindsacks sieht man an seiner unteren Grenze ein zartes, ebenfalls intensiv weisses Canälchen abgehen, welches sich in die Apertura aquaeductus vestibuli einsenkt, um diese zu durchsetzen und mit dem Sacculus in Verbindung zu treten.

Der Inhalt des Organes besteht aus Krystallen, welche erst bei ziemlich starker Vergrösserung sichtbar werden und die allerwechselndsten Grössenverhältnisse darbieten. In der Form gleichen sie kleinen, an beiden Seiten abgerundeten oder auch zugespitzten, viereckigen Säulen, welche mit denjenigen des Otolithensackes vollkommene Übereinstimmung zeigen, von letzteren jedoch an Grösse übertroffen werden.

Ueber den Aquaeductus vestibuli von Ascalabotes mauroth. theilt Wiedershein folgendes mit. Es finden sich hier wie bei Phylodactylus. weite Hohlräume unter der Haut, in denen sich ein vielfach durchbrochenes Balkenwerk aus Bindegewebe ausspannt. Hat man die oberflächliche Muskulatur entfernt, so bekommt man an derselben Stelle, wo bei Phylodactylus der zu den Parietalia aufsteigende Gang liegt, jederseits zwei weisse, kuchenartige Körper von annähernd dreieckiger Gestalt zu Gesicht (Taf. XCVI. Fig. 2. a). Die abgestumpfte Spitze des Dreiecks verschwindet unter dem Hinterrande der Scheitelbeine, die breite Basis sehnt nach rückwärts. Eine sorgfältig bewirkte Isolirung des Kalkbeutels lehrt, dass von seiner
Unterfläche ein feiner Gang abgeht (Fig. 2. b), der sich in senkrechter Richtung in die Muskelmasse zwischen Wirbelsäule und Opisthoticum einbohrt.

Auf der Schleimhaut, welche das Dach des hintersten Theils der Mundhöhle und des Anfanges vom Schlundkopfe bildet, schwillt der zarte, weisse Canal zu einer zweiten, noch viel grösseren Kalkmasse an, als die erstere war. Von letzterer unterscheidet sie sich auch durch ihre viel-fach gelappte Form und die Erzeugung von stark geschlängelten blind geschlossenen Canälen, welche in den verschiedensten Richtungen oberhalb der Mundschleimhaut verlaufen (Taf. XCVI. Fig. 2. cc). Ein besonders starker Gang, welcher unmittelbar zwischen Os occipitale laterale und der Mundschleimhaut liegt, senkt sich nach vorn und aussen zu in den Recessus scalae tympani ein und scheint als ein ungemein feines, fadenartiges Gebilde in das Foramen cochleare einzudringen (Fig. 2. d). Im Bereich der hinteren Circumferenz der Parietalia findet man die beschriebenen Kalbsäcke in einer Art von Tasse der Dura mater gelagert, wie dies bei Phylodactylus der Fall ist. Nach vorne zu zeigt sich keine blinde Ausstülpung, sondern die ganze, dicke Masse schlägt gleich den Weg zum Foramen occipitale magnum ein (Fig. 2. f), schiebt einen feinen Canal zur Apertura aquaeductus vestibuli (Fig. 2. aq), legt sich dann unter immer zunehmender Verbreitung an die innere Wand der Gehörgaup. Hier liegt sie zwischen Dura und der Knochenwand eingeklebt, greift bis zur Basis cerebri hinab auf den Schädeldach und schlägt endlich den Weg zur Orbitalhöhle ein, wo sie in eine wechselnde Anzahl von dicken Canälen zerfällt (Fig. 2. gg). Dieselben zeigen eine Menge perlschmuckartiger Aufreibungen und endigen theils spitz, theils mit keulenförmiger Aufreibung. Einer davon umgreift stets den Bulbus in der Richtung von unten innen nach oben und aussen und kommt in ziemliche Nähe der Gesichtsoberfläche zu liegen, während ein anderer Gang direct nach abwärts zum Boden der Orbita läuft.

Das Trommelfell besitzt bei seiner Insertion einen Wulst (Ringwulst). Das Gewebe desselben steht zum Theil in unmittelbarem Zusammenhang

Crocodile.

Die Crocodile bieten deswegen ein ganz besonderes Interesse, weil wir bei ihnen zum ersten Mal die drei einzelnen, grossen Abtheilungen des Gehörapparates der Vögel und Säugthiere, den Meatus auditorius externus, das Cavum tympani mit der Tuba und natürlich das Labyrinth aufzutreten sehen. Es ist der Meatus auditorius, der als etwas neues hinzutritt und die Thiere über die am höchsten unter den Reptilien stehenden erhebt.

Zwei starke Integumentfalten, eine obere und eine untere, decken den äusseren Gehörgang vollkommen zu und machen ihn zu einem Spaltraume, der aussen auf der Seitenfläche des Kopfes eine schlitzartige Öffnung zeigt. Diese verläuft vorne, ein wenig hinter dem hinteren Augenwinkel nach hinten und unten und dann am hinteren Ende des Kopfes, nach aussen von dem hakenförmig gebogenen Unterkieferspalt aufwärts gekrümmt. Erhebt man die obere Klappe, so übersieht man die untere Hälfte des Meatus auditorius, während die obere von dem Knochen, der
das Dach desselben (Taf. XCII. Fig. 1. A) bilden hilft, verdeckt erscheint. Im Grunde sieht man das Trommelfell. Von den beiden Falten ist die obere die grösste und sichelförmig gestaltet, während die untere mehr dreieckig und niedrig erscheint. Jene entspringt von der Aussenfläche des Squamosum und zwar vom hinteren stumpfen Winkel desselben (Taf. XCII. Fig. 1. A), bis zur vorderen Vereinigung mit dem Postfrontale (Fig. 1. E). Dort haftet sie mit breiter Basis an dem oberen, rauhen Rand und in einer breiten Furche (Fig. 1. f), die ganz besonders hinten sehr tief ist, und gerade wegen dieser breiten Befestigung des straffen Gewebes gelingt es namentlich hinten nicht die Falte über das Niveau des Schädeldaches zu erheben. Hinten ragt sie tief abwärts, vorne dagegen ist ihre Masse sehr geringfügig und endet mit einem scharfen Rande, mit dem sie vorne auf dem scharfen Rande der unteren Plica, in der hinteren Hälfte auf dem Quadratum ruht (Fig. 1. B). Da die Aussenfläche der Falte senkrecht steht und dieselbe gegen die Anheftung am Knochen immer dicker wird, so muss die Innenfläche, die nicht pigmentirt ist, schräg nach oben und unten ziehen und da das Quadratum die gleiche Richtung an seiner oberen Fläche besitzt, so bedeckt nicht bloss der freie, scharfe Rand, sondern auch der äussere, untere Theil der Innenfläche diesen Knochen. Die untere, kleine, dreieckige Falte erhebt sich hinter dem Augenwinkel am meisten und verliert sich in der Mitte der Rima auditoria, so nämlich bezeichnet Hasse die äussere Oeffnung des Meatus auditorius externus.

Ihre Aussenfläche steht senkrecht und sie ist mit breiter Basis an das vordere, stachelförmige Ende des Quadrato-jugale angeheftet.

Der Meatus auditorius externus ist mehr ein Spaltraum, der nur oben innen und hinten überhaupt als Raum existirt und verläuft schräg von unten aussen und vorne, nach oben, innen und hinten. Besser liess sich wohl die Gestalt desselben mit einem Keile vergleichen, dessen Basis nach oben innen hinten, dessen Schneide nach unten aussen und vorne gerichtet ist und von der Rima auditoria gebildet wird, während entweder Weichtheile oder Knochen die obere, äussere, vordere und hintere Wand zusammensetzen. Die Aussenwand wird durch die obere Klappe gebildet. Die Innenwand, die man in die eigentliche Innenwand, den Grund des Gehörorganes, das Trommelfell und in den Boden des Meatus trennen kann, da sie in einer Flucht gelagert sind, steht schräg von oben und innen nach unten und aussen, jedoch ist, namentlich was das Trommelfell betrifft, der vordere Theil mehr lateral gelagert als der hintere und zwar in einem so hohen Grade, dass derselbe unmittelbar an die Aussenwand, die Klappen, anstossend, die Vorderwand des Gehörganges bildet, die wegen der geringen Ausdehnung der Falten sehr niedrig erscheint. Die hintere Wand dagegen erscheint viel ausgedehnter und wird durch einen hinten hakenförmig abwärts gebogenen Fortsatz des Squamosum gebildet (Taf. XCII. Fig. 1. A), der vorne aussen ausgehöht zur Verbindung mit
dem nach hinten abwärts ragenden Quadratum (Fig. 1. B) dient. Derselbe geht ausserdem eine Verbindung mit dem Occipitale laterale ein (Fig. 1. C), das sich gleichsam von hinten her zwischen diesen Theil des Squamosum und das Quadratum einfaltet. Das Dach wird ausschliesslich von der Unterfläche des äusseren Theiles der Pars horizontalis ossis squamosi bis zu ihrer Nahtverbindung mit dem Quadratum vorne gebildet und erscheint aussen ein wenig abwärts übergebogen, und soweit ausgehöhlt, dass die obere Hälfte des Trommelfelles von demselben überlagert ist. Der ganze äussere Gehörgang ist von einer derben, innig mit dem Periost der Knochen zusammenhängenden Fortsetzung des äusseren Integumentes ausgekleidet, die sich auch hier als Lamina externa auf das Trommelfell hinüberschlägt.

Das runde Trommelfell (Taf. XCII. Fig. 2.) ist eine zarte, elastische Membran, die deutlich eine radiäre Anordnung ihrer Faserelemente erkennen lässt (Fig. 2). Sie ist trichterförmig nach aussen und oben und zwar durch die im Centrum angeheftete Spitze der Columella vorgetrieben und gegen diese Protuberantia (Fig. 2. f') strahlen die radiären Fasern. Die Anheftungsstelle ist eine weisse, konische Erhebung, da an dieser Stelle, und zwar am meisten an der Spitze, die sonst durchsichtige Membrana tympani trübe ist. Von hier aus sieht man, vorne und hinten durchschimmernd (Fig. 2.), zwei weisse Streifen ziehen, während über das untere Segment ein senkrecht abwärts verlaufender, bogenförmig und nach vorne concaver Contour verläuft, der das vordere Ende einer dreiseitigen Masse darstellt, die aus der Tiefe der Paukenhöhle zum Vorschein kommt. Die Membrana tympani ist straff ausgespannt und wenn sie sich auch nicht, wie bei den höheren Thieren in einer Knochenfurche liegt, so zeigt dieselbe doch an ihrer Peripherie eine starke Anhäufung circulärer Fasern, einen Annulus tympanicus, mittelst dessen sie dann mit der Auskleidungsmembran des äusseren Gehörganges in fester Verbindung steht. Das Trommelfell ist zum überwiegenden Theile an das Quadratum, und nur oben hinten in unbedeutender Ausdehnung an das Squamosum angeheftet, und zwar entspricht die Anheftung vorne der Naht zwischen dem Quadratum und dem horizontalen Theile des Squamosum, hinten der Naht zwischen dem absteigenden Theile des Squamosum und des Quadratum.

So entsteht also der äussere Gehörgang. Mit dem Trommelfell sinkt durch das Wachsthum der vorhin genannten Knochen das Integument als blindgeschlossene Röhre in die Tiefe.

Wenden wir uns nun zu der Betrachtung der zweiten Abtheilung des Schallzuleitungsapparates, dem Cavum tympani, das diesen Thieren ebenso wenig wie den Schildkröten und Eidechsen fehlt, so kann man nach Hasse dieselben Abtheilungen wie bei den anderen Reptilien, das eigentliche Cavum tympani und den Recessus cavum tympani unterscheiden, von denen jenes aussen gelagert ist, während dieser an die Labyrinthpyramide
stösst. Innerhalb der Paukenhöhle befindet sich dann, abgesehen von den Gefässen und Nerven, die Columnella und als Nebenanhang derselben der bei allen Reptilien vorkommende Recessus scalae tympani.

Die Paukenhöhle wird wie bei den übrigen Reptilien im Wesentlichen durch das Quadratum gebildet, jedoch trägt dieser Knochen nicht einzig und allein zur Bildung derselben bei, sondern es gesellen sich hinten das Occipitale laterale, innen die Aussenwand der Labyrinthpyramide (Taf. XCII. Fig. 1.) und oben zu einem Theile das Squamosum hinzu. Was zunächst die Grundform betrifft, so haben wir es im Ganzen genommen mit einer abgestützten, vierseitigen Pyramide zu thun, deren Basis nach unten, deren abgestumpfte Spitze nach oben kehrt und die eine vordere, eine hintere, eine äussere und eine innere Fläche besitzt.

Die von vorne oben und innen, nach hinten unten und aussen gestellte äussere Wand wird durch das trichterförmig, lateralwärts getriebene Trommelfell gebildet. Es wird wie bei sämtlichen mit einer Paukenhöhle versehenen Thieren an seiner Innenfläche von einer Fortsetzung der Schleimhaut der Paukenhöhle glatt überzogen, und man kann also an dem Trommelfell der Crocodile eine Tunica externa als Fortsetzung der Integumentalbekleidung des äusseren Gehörganges, eine Tunica propria und eine Tunica interna als Fortsetzung der Paukenhöhlenschleimhaut unterscheiden und diese drei Lagen finden sich, wenn auch nicht in derselben Weise, bei sämtlichen Thieren, die eine Paukenhöhle besitzen, selbst dann, wenn ihnen ein äusserer Gehörgang fehlt. Dann hat aber namentlich die Tunica externa einen ganz anderen Charakter. Als solche ist das Integument,welches von aussen her glatt die Membrana tympani überzieht, zu betrachten. Es kann, wie bei den Fröschen und Eidechsen, zu einer zarten Haut modifiirt sein, allein auch, wie bei gewissenen Schildkröten sich verdicken (Chelonia). Erst dann, wenn die Membrana tympani in die Tiefe sinkt, das Integument in Folge dessen sich einstülpit, erst dann sieht man die Integumentalauskleidung sich bleibend in der bei den höchsten Thieren bekannten Weise ändern. Das Dach, die obere Wand der Paukenhöhle, wird grösstentheils von demjenigen Theile des Quadratum gebildet, der sich an die untere Fläche des horizontalen Theiles des Squamosum anlegt (Taf. XCII. Fig. 1.) und der dem Processus squamosus des Quadratum der Vögel homolog, zum Theil auch in dem Squamosum selbst. Dasselbe zeigt sich nach Art eines Gewölbes nach oben convex, nach unten concav. Es findet medianwärts seine Grenze in der von vorne nach hinten sich erstreckenden Naht, die das Quadratum mit dem Parietale und dem Occipitale superius verbindet. Der Übergang in die Hinterwand ist nicht scharf abgesetzt und lässt sich nur approximativ bestimmen. Am Übergang des Daches des Cavum tympani in das die Aussenwand bildende Trommelfell findet sich im hinteren Theile des Processus squamosus quadrati ein tiefer Einschnitt, der durch das sich darüber wölbende Squamosum zu einer nach hinten unten und aussen sehenden, ründlichen Öffnung geschlossen wird. Die
Anatomie.

selbe führt in einen Raum, der wie das Antrum mastoideum der höheren Thiere, als ein Nebenraum der Paukenhöhle anzusehen ist und wie dieses ebenfalls von einer Fortsetzung der Paukenhöhlenschleimhaut ausgekleidet erscheint.

Die vordere Wand, die nach aussen wiederum an das Trommelfell stösst, lässt sich in zwei Abtheilungen, eine äussere und eine innere trennen. Die äussere, die hinter dem Trommelfell gelegen ist, ist mehr in der sagittalen Ebene gelagert, und steht von oben innen, nach unten aussen, die innere dagegen frontal, erscheint wie das Dach leicht ausgehölt und nimmt medianwärts immer mehr an Höhe zu. Diese Trennung wird durch einen halbmondformigen, leistenartigen, nach hinten ragenden Vorsprung gebildet, der medianwärts von der vorderen Hälfte der Membrana tympani in derselben Ebene wie dieses gelagert an dem Quadratum in die Paukenhöhle vorspringt und sich unter die Columella weiter am Boden fortzieht (Taf. XCII. Fig. 1). An der Mitte der ausgehöhlteten, inneren Abtheilung findet sich nach unten hin eine von einem Knochenvorsprung gedeckte, nach oben aussen hin sehende Öffnung (Fig. 1. a), die in eine nach aussen gegen das obere Ende des Vorsprunges verlaufende, seichte Furche übergeht.

Den Boden der Paukenhöhle bildet das Quadratum, das ebenfalls durch Hilfe der vorhin erwähnten, am Boden weiter verlaufenden, halbmondformigen Vorsprünge (Fig. 1.) in eine äussere und eine innere Abtheilung zerfällt, von denen jene sich viel weniger ausdehnt und von oben innen nach unten aussen verläuft, während diese den grössten Theil des Bodens bildend, medianwärts immer steller abfällt und ausgehöht erscheint. Dieselbe stösst innen an den unteren Theil der Labyrinthaußenfläche (Fig. 1. m), geht ohne scharfe Grenze in die Vorderwand über, wird aber am knöchernen Schädel von der Hinterwand durch eine von aussen nach innen verlaufende, scharfe Leiste getrennt.

Von dieser Leiste ausgehend, spannt sich die Schleimhaut der Paukenhöhle frei über einen innen sehr tiefen Sulcus (Fig. 1. k) hinüber, den Sulcus recessus scalae tympani, und verwandelt denselben zu einem geschlossenen Canal, der sich von dem hinteren Theil der Labyrinthaußenfläche, bis zum hinteren Umfang des Trommelfells erstreckt.

Was die innere Paukenhöhlenwand betrifft, so wird dieselbe einmal durch die äussere Fläche der Gehörganschale und ferner durch die oberhalb gelegene, weite Öffnung, die Apertura anteri mastoidei gebildet, die in das Antrum mastoideum hineinführt, welcher Raum sich unter das Occipitale superius, vor dem laterale und oberhalb der Labyrinthpyramide (Taf. XCII. Fig. 3. b) bis zu dem der anderen Seite erstreckt, in denselben sich öffnet und somit die beiden Paukenhöhlen mit einander in Verbindung setzt, sodass auch die Schleimhantauskleidung der beiden eine gemeinsame ist, ein Verhältniss, das uns bei keinem anderen Wirbelthiere begegnet. Die Aussenfläche der Labyrinthpyramide ist grösstenteils durch eine quer ovale Öffnung, die Apertura recessus cavi tympani (Taf. XCII. Fig. 1.)
und durch eine flache, nach oben hin convexe und schrag nach aussen oben und hinten gegen das mediane Ende des Sulus recessus scalae tympani verlaufende Furche, den Sulus canalis Fallopiae (Fig. 1. c), eingenommen, an deren vorderem Ende, nach vorne von der Apertura recessus cavi sich eine kleine, nach aussen stehende, runde Oeffnung, die Apertura externa canalis Fallopiae s. facialis (Fig. 1. b) findet. Unten schliesst sie dann mit der oberen Kante einer Incisur, der Incisura canalis carotici, gegen den Boden der Paukenhöle ab (Fig. 1. w). An dem Uebergange gegen die Vorderwand findet sich dann unten die in Gestalt einer länglichen Spalte auftretende Apertura interna tubae Eustachii (Fig. 1. a b).

Hinter den Choanen hat man dann eine einfache, durch eine von hinten her halbmondformig vorspringende Schleimhautklappe geschützte, hufeisenformige Oeffnung, die in eine mit Rachenschleimhaut ausgekleidete Grube führt, die, wie Hasse angiebt, nach vorne das Sphenoidem basilaris aushöh lend (Taf. XCII. Fig. 3. p) sich als Owen's vorderer, medianer Canal (Fig. 3. n) bis gegen die Unterflache der Sella turcica (Fig. 3. a) erstreckt und sich nach hinten oben (Fig. 3.) gegen das Occipitale basilaris (Fig. 3. i) ausbuchtet. Wo die beiden mit Rachenschleimhaut ausgekleideten Abtheilungen der Grube zusammenstossen, sieht man die Rachenschleimhaut sich in nach vorne oben aussen zu beiden Seiten verlaufende, ziemlich weite Knochencanäle begeben, die Owen als „laterale, membranöse Canäle“ beschreibt, in die Tuba Eustachii, die von dem Occipitale basilaris und Sphenoidem basilaris zusammen gebildet werden und diese öffen sich dann an der Vereinigung der vorderen und der inneren Wand der Paukenhöle, also vor der Gehörkapsel, vor der Apertura externa canalis Fallopiae spaltformig.

Es ist schon erwähnt, dass der Recessus cavi tympani eine Vertiefung im Bereiche des Foramen vestibulare, an der Aussenseite der Gehörkapsel repraesentirt. Er steht an der Mitte der Aussenflache (Taf. XCII. Fig. 1.) mittelst einer ovalen, nach hinten von der Apertura externa canalis Fallopiae (Fig. 1. b) und unter dem Sulus canalis facialis (Fig. 1. c) befindlichen Oeffnung, der Apertura recessus cavi tympani, die nach hinten
an das Ende des Sulcus recessus scalae stösst, mit der Paukenhöhle in Verbindung und stellt eine Vertiefung dar, deren Grund durch das Foramen vestibulare (Fig 1. d) eingenommen wird. Sie zieht schräg von vorne und aussen, nach hinten und innen, so dass das nahezu in der sagittalen Ebene gelagerte Vorhofsfenster, von der Apertura aus gesehen, hinten im Umfange desselben excentrisch gelagert erscheint. Die hintere Wand der Vertiefung steht frontal, die obere und untere Wand horizontal, die vordere dagegen von vorne aussen, nach hinten innen. Die Öffnung liegt nahezu in gleicher Höhe mit der Mitte der Paukenhöhleswand, der Membrana tympani.

Der Recessus scalae tympani wird in seiner vorderen Begrenzung durch die Hinterwand der Gehörkapsel und den die Hinterwand der Paukenhöhle bildenden Theil der Schleimhaut, in seiner hinteren durch das Occipitale laterale innen und das Quadratum aussen, in seiner unteren durch den Boden des Sulcus, der dem Occipitale laterale innen, dem Quadratum aussen gehört, in seiner Decke durch das knöcherne Dach des Sulcus gebildet, währenddem die Außewand durch den hinteren Umfange des Trommelfells repraesentirt ist, die Innenwand als Lücke hinter der Gehörkapsel existirt (Taf. XCII. Fig. 3. g) und das Foramen jugulare die Communication des Recessus scalae mit der Schädelhöhle vermittelt.

Was nun den Recessus scalae tympani so besonders complicirt macht, das sind die vielfachen Öffnungen, die sich namentlich an der Hinterwand desselben befinden. Verfolgt man die Öffnungen, die in dem Recessus ihre Mündung finden, so sieht man zunächst, dass der nach innen oben und vorne verlaufende, von dem Occipitale laterale, Squamosum und Quadratum gebildete Canalis ossis quadrati weit, trichterförmig im lateralen Theile des Recessus scalae tympani, nach innen vom hinteren Umfange des Trommelfells an dem Boden desselben mündet. Von dieser Öffnung aus ziehen dann zwei tiefe Furchen, die eine nach oben und innen an der Hinterwand, (Taf. XCII. Fig. 1. g), die andere nach innen und vorne (Fig. 1. k) gegen den Sulcus recessus scalae, oder besser, es bildet diese Furche das äussere Ende des Sulcus recessus. Sie trifft mit dem gerade medianwärts verlaufenden Theil des Sulcus (Fig. 1. h) an einer Öffnung zusammen, die in einen weiten Canal führt, der an der Hinterseite des Occipitale laterale mündet. Der mediane Theil des Sulcus (Fig. 1. h), ist besonders wichtig. Er ist elliptisch (Taf. XCII. Fig. 4. k), die Basis medianwärts, die Spitze lateralwärts gegen die eben erwähnte Öffnung gewandt, die hinter ihm abwärts geht. Derselbe führt gegen den medianen Theil des Recessus. An dem medianen Ende der Hinterwand dieser Abtheilung des Recessus befindet sich eine Öffnung, die mit dem Foramen pro nervo faciali an der Hinterfläche des Schädels endet und medianwärts davon findet man dann noch ein Foramen, nämlich das Foramen caroticum internum.

Das knöcherne Gehäuse des häutigen Labyrinthes hat die Gestalt einer viereitigen Pyramide (Taf. XCII. Fig. 3.) mit nach oben gekehrter

Die äussere, etwas weniger als die innere ausgedehnte, dreiseitige, nach abwärts vorne und innen gestellte Fläche geht in sanfter Rundung in die hintere, mehr schroff dagegen in die vordere Fläche über. Ihre obere Kante, die äussere Bogengangleiste ist grösstenthüls frei, nur am oberen vorderen und am hinteren oberen Winkel vom Squamosum und dem Occipitale laterale bedeckt. Die vordere Kante, die oben im Quadratum verborgen ist, stösst dagegen weiter unten frei an das spaltförmige Ostium pharyngeum tubae, die hintere, oben vom Occipitale laterale bedeckt, ist dagegen unten frei. Der mittlere Theil der hinteren Kante dient zur Anheftung der Paukenhöhenschleimhaut und stösst an das vordere Ende des Sulcus recessus scalae tympani (Taf. XCII. Fig. 1. b) Er stellt einen dicken Knochenstab dar, der das Foramen vestibulare vom cochlere trennt (Taf. XCII. Fig. 1. h, l). Der untere Theil stösst an die Paukenhöhlofenöffnung des Canalis caroticus. Unmittelbar unter der äusseren Bogengangleiste sieht man dann den tiefen, nach oben vorne convexen Sulcus canalis Fallopiae (Fig. 1. c) der sich nach hinten hin allmählich verliert. Unter diesem findet man die Oeffnung der bereits beschriebenen Recessus cavi tympani im Umfange des Foramen ovale, das, von vorne innen nach hinten und aussen gerichtet ist und zugleich vorne tiefer, hinten höher steht. Am vorderen Ende der Apertura recessus und des Sulcus canalis facialis hat man dann, die äussere Paukenhöhlofenöffnung des Canalis Fallopiae (Fig. 1. b), die sehr fein erscheint. Unterhalb der Oeffnung des Recessus heftet sich die Schleimhaut des Bodens der Paukenhöhe an, und unter dieser Anheftungsstelle, also an dem unteren Winkel der äusseren Fläche findet sich die Carotis interna.
Die innere Fläche bildet oben, entsprechend der wenig ausgedehnten inneren Kante der oberen Fläche, einen schmalen Wulst, (Taf. XCII. Fig. 3.) und gewinnt erst im mittleren und unteren Drittel eine beträchtlichere Ausdehnung, um sich dann gegen die Spitze hin wieder zu verschmäler. Der obere, etwas nach unten und hinten gerichtete Wulst ist der Ausdruck der Bogengangcommissur, an welchem eine nach aufwärts und innen sehende Öffnung, die Apertura aquaeductus vestibuli sich findet, welche zugleich den am weitesten in die Schädelhöhle vorspringenden Punkt der Gehörkapsel darstellt, von dem aus gegen die vordere und die hintere Fläche sich verlierend zwei Wülste (Fig. 3. f und e), ein vorderer, stärkerer und ein hinterer, flacherer ausgehen. Jener (Fig. 3. e) ist der Ausdruck des Utriculus, dieser der Ausdruck der Verbindungsröhre der hinteren, frontalen Ampulle.

Unter den Wülsten findet man eine schwache, vorne etwas ausgeprägtere Vertiefung, den Meatus auditores internus und im hinteren Theile desselben eine ovale, medianwärts sehende Öffnung für den Nervus cochlearis (Taf. XCII. Fig. 3. g).

Die Cavitas vestibuli ist nicht kugelförmig, sondern mehr prismatisch und besitzt eine Deeke, einen Boden, eine innere, äussere, vordere und hintere Wand. Die Ausdehnung des Daches entspricht etwa der Ausböhllung zwischen den Bogengangleisten an der Aussenfläche der Basis der Labyrinthpyramide. An dem Uebergang des Daches in die Innenwand findet sich die weite Öffnung des Cavum internum. Der Boden wird durch die stark vorspringende, horizontale Leiste, die Crista vestibuli (Taf. XCII. Fig. 4. m) eingenommen, im Übrigen stellt derselbe eine von dieser Leiste umgrenzte, ovale, sehr weite Öffnung dar, die Apertura cavitatis cochleae, die eigentlich den grössten Theil des Bodens einnimmt (Taf. XCII. Fig. 4). Die innere Wand zeigt in der Mitte eine abwärts sehende Öffnung, die Apertura aquaeductus vestibuli. Ausserdem findet man unten an der Crista vestibuli einen runden Recessus, den Recessus sacculi s. rotundus (Taf. XCII. Fig. 4. g), der im Centrum eine Öffnung zeigt, die den Nervus sacculi aufnimmt. Die Aussenwand ist wegen des Foramen vestibulare ebenfalls zum allgrössten Theil lückenhaft. Hinter- und Vorderwand repraesentiren weite Öffnungen für die entsprechenden Nebenräume, von denen jene nach vorne innen, diese nach innen hinten sieht.

Die knöcherne Schnecke stellt im Ganzen genommen einen Kegel dar, einen Kegel mit amuppenförmig erweiterter, unterer Spitze (Lagena); er zeigt eine zweifache Krümmung. Einmal erscheint sie nach vorne, dann aber auch mit der Spitze ein wenig nach innen gebogen und lässt an der Schädelhöhlenwand oben die Eintrittsstelle des Schneckenerven, an der Aussenwand aber, hinten oben das Foramen rotundum sehen. Sie heftet sich mit breiter Basis an die Unterfläche des Vestibulum. Die Form des Binnenraumes entspricht der äusseren und beginnt am Boden der
Cavitas vestibuli (Taf. XCII. Fig. 4.) mit der grossen, weiten, ovalen Öffnung, die von der Crista vestibuli begrenzt wird. Derselbe erstreckt sich (Taf. XCIII. Fig. 4. i) schräg nach vorne unten und aussen, wird dabei immer enger, biegt darauf ein wenig nach innen und hinten, um sich an der Spitze, an der Lagena, wieder ein wenig zu erweiten. Die einzelnen Theile des Gehörganges füllen den Binnenraum des knöchernen Gehäuses nicht vollständig an, sondern man sieht auch hier wieder, dass zwischen denjenigen Theilen, die in der Cavitas vestibuli, also dem Foramen ovale gegenüberliegen, zwischen der Aussenwand derselben und der Innenflächen der im Foramen ovale eingelassenen Platte der Columella ein höchst beträchtlicher und mit Flüssigkeit gefüllter Raum, ein Cavum perilymphaticum sich findet. Dieser Raum zieht nun in das Cavum internum, nach aussen von der Commissur der Bogengänge und weiter dann auf die concave Fläche der Bogengänge. Dann zieht sich das Cavum perilymphaticum über die in dem Cavum anterius und posterius gelagerten Theile, sodass also in sämtlichen bisher aufgeführten Cavitaten die darin gelagerten Labyrinththeile von einer verhältnissmässig bedeutenden Flüssigkeitsmasse bespült werden. Aber auch in der Cavitas cochleae setzt sich das Cavum perilymphaticum fort.

Dieses Cavum perilymphaticum sämtlicher Hohlräume der Gehörgänge wird durch das sich überall dicht an den Knochen schmiegende Periost, das bei den Crocodilen als eine sehr feste, weisse und halb durchsichtige Membran auftritt verschlossen. Dasselbe bildet demnach einen mehr oder minder weiten Sack um das häutige Labyrinth, und wiederholt nur im Groben die Form desselben und steht mit Ausnahme der Foramina acustica und der Apertura aquaeductus vestibuli, nur an einer Stelle, an dem weiten Foramen rotundum, an den Rändern mit dem Perioste des Recessus scalae tympani (Taf. XCII. Fig. 4. k) in Verbindung, so dass also der Liquor perilymphaticus frei in denselben strömen kann. Ein das Cavum perilymphaticum ausfüllendes Bindegewebsnetz ist bei den Crocodilen nicht vorhanden. —

Ampullen und Bogengänge. Man kann nach Hasse einen sagittalen vorderen, einen frontalnen hinteren und einen horizontalen äusseren Bogen- gang mit zugehörigen Ampullen unterscheiden, die sämtlich ebenso wenig wie bei den übrigen Wirbeltieren in den entsprechenden Ebenen liegen, sondern mindestens bis zu 30° daraus abweichen. Die horizontale und die sagittale Ampulle (Taf. XCII. Fig. 7.) liegen auch hier als vordere (Taf. XCII. Fig. 6. e, g) zusammen und stehen ein wenig höher als die hintere (Taf. XCII. Fig. 6. d). Die horizontale (Fig. 6. c) vorne am weitesten nach aussen und zugleich ein wenig höher gelegene Ampulle bietet in ihrer Form insofern eine Abweichung dar, als sie mehr einen gleichmässigen Kolben (Taf. • XCII. Fig. 7. c) darstellt, während die anderen beiden einen flachen, unteren Boden und ein stark gewölbtes Dach besitzen, was bei dieser nur wenig angedeutet ist. Von den beiden Ampullen der verticalen Bogengänge sieht das Dach der vorderen, sagittalen
(Taf. XCII. Fig. 6. g) nach oben innen und hinten, der Boden in die entgegengesetzte Richtung, während bei der frontalen, hinteren, etwas tiefer gelegenen (Taf. XCII. Fig. 5. 6. d), das Dach nach oben vorne und innen, der Boden dem entsprechend nach aussen hinten und unten sieht. Ueber das Dach schlagen sich dann die drei Bogengänge. Der horizontale Gang (Taf. XCII. Fig. 6. c) verläuft anfangs in seinem Canale nach hinten und ein wenig abwärts, schlägt sich darauf über das Dach der frontalen, hinteren Ampulle, nur dann mit einer nach vorne oben innen gehenden Krümmung an der Aussensseite des unteren Endes der Commissur, ein wenig ampullenförmig erweitert, rechtwinkelig zu münden. —

Der vordere, sagittale Gang (Taf. XCII. Fig. 6. b), der nach oben innen und hinten verläuft und länger als der hintere ist, erscheint nicht so stark gekrümmt wie bei den Schildkröten, der hintere, frontale dagegen (Fig. 6. a) nach oben innen und vorne verlaufende, erscheint leicht S-förmig gebogen und mündet mit dem vorderen in die mehr der hinteren als der vorderen Hälftre derselben angehörige Commissur (Taf. XCII. Fig. 5. f). Die vorderen Ampullen münden nämlich nicht beide gemeinsam direct in den Recessus utriculi ein, sondern man sieht zuerst die horizontale (Fig. 7.) mit der sagittalen sich vereinigen und in diese, in den hinteren Theil der äusseren Seitenwand münden, und dann erst geht die vordere, verticale Ampulle mittelst einer halbmondförmigen, verhältnissmassig schmalen Spalte (Fig. 7. b) in den Recessus utriculi über.

Die Bogengänge zeigen bei einem Schnitte, der den convexen Theil von dem concaven trennt, an der Mitte dieses (Taf. XCII. Fig. 8. a) den dunklen, schmalen leicht gewundenen Zellstreifen, die Raphe. Auf dem Querschnitt bekommt man ein kreisförmiges Lumen, das von einem Epithelknorpel glatt ausgekleidet ist. Die derbe Wandung besteht aus Spindelknorpel. An der concaven Fläche erscheint die Wand ein wenig dicker als an der entgegengesetzten. Die Innenfläche zeigt eine feine Basalmembran und auf ihr ruht ein schönes, helles, polygonales, niedriges Pflasterepithel (Taf. XCII. Fig. 9. g) mit rundlichen, dunklen Kernen im Grunde der Zellen. Gegen die Raphe hin werden die Zellen allmählich etwas höher, die an der gegenüberstehenden concaven Wand befindlichen, gleichsam ein Spiegelbild der Raphe bildenden Zellen sind nur etwas höhere Pflasterepithelien.

Bei der Betrachtung der histologischen Verhältnisse der Ampullen ist es, wie Hasse nachgewiesen hat, nöthig die Seitenwände, den Boden und das Dach gesondert zu betrachten.

Die etwas dünnen Seitenwände, die im Uebrigen in dem grössten Theile ihrer Ausdehnung von demselben Pflasterepithel wie das Dach
bekleidet sind, zeigen nur in der Mitte und zwar, was die verticalen Ampullen betrifft, gleichmässig an beiden Seiten, was die horizontale angeht, nur an der oberen Besonderheiten. Man trifft dort nämlich ein halbmondfförmig um das Ende der Crista acustica herumgelegtes, dunkleres Zellfeld an, das Planum semilunatum. Das Epithel desselben zeigt nicht die schöne Zellenmosaik wie bei den Schildkröten. Auf dem Querschnitt bieten die Zellen das Bild wie auf Taf. XCIII. Fig. 1. abgebildet ist. An der Peripherie des Planum semilunatum verwandeln sich die polygonalen Pflasterzellen in niedrige Cylinder, oder mehr cubische Zellen, die nun gegen die Crista acustica hin immer mehr an Höhe zunehmen.

Der flache Boden trägt die stark vorspringende Leiste, die Crista acustica. Diese verhält sich verschieden in den verticalen Ampullen und in der horizontalen. In dieser erhebt sie sich wenig aus dem schmalen Boden und wird erst an dem Übergang zur oberen Seitenwand am höchsten, um dann allmählich wieder zu verflachen, während dagegen bei jenen die Gehörleiste, die in der Mitte des Bodens am höchsten emporsteigt, gleichmässig an beiden Seitenflächen sich verflacht. Im Ganzen ist die Erhebung in diesen beträchtlicher, als in der horizontalen. Die obere Fläche der Crista ist abgerundet und nur an den Enden derselben plan und verbreitet. Die Crista der frontalen und sagittalen Ampulle zeigen noch eine im hohen Grade interessante Eigenthümlichkeit. Man findet nämlich nach Hasse über die Mitte der Seitenflächen der Abhänge, breite niedrige Wülste verlaufen.

Die Masse der Cristae besteht wiederum aus Spindelknorpel. Das Centrum wird von den zu Bündeln zusammengedrängten, doppelcontourirten Nervenfasern durchsetzt und erst hoch oben in der Leiste zerfallen dieselben (Taf. XCIII. Fig. 2.) in seccundäre Bündel, die ebenfalls senkrecht aufsteigen und diese lösen sich erst dicht unter der Oberfläche in ihre einzelnen Fasern auf. Vor der Durchbohrung verlieren die doppelcontourirten Fasern ihre Markscheide und werden zu blassen, mit Schwann'scher Scheide versehenen Axencylindern. Die Oberfläche der Spindelknorpelmasse zeigt wiederum die homogene Basalmembran und was die Zellbekleidung der Seitenwände betrifft, so stellen dieselben niedrige Cylinder oder mehr cubische Zellen mit grossem randlichen Kerne dar. (Taf. XCIII. Fig. 2.)

Das Nervenepithel verhält sich wie bei den andern Wirbeltieren. Ein Wald feiner Haare überragt dieses Epithel und die Haare ragen in eine homogene Membran, eine Membrana tectoria oder Cupula terminalis. Diese beginnt sich nicht über das Bereich des Nervenepithels hinaus. Dasselbe zeigt auf dem Querschnitt (Taf. XCIII. Fig. 2.) dieselben zwei Kernreihen übereinander gelagert, wie Hasse sie bei allen Gehörleisten angetroffen hat und von denen die obere zu den Stäbchen oder Gehörzellen gehört, während die untere den Isolations- oder Zahnzellen eigenthümlich ist.

Die Bogencommissur (Taf. XCIII. Fig. 5.) stellt eine kurze, nach hinten unten und aussen gerichtete, zartwandige, zylindrische Röhre dar, in die oben zunächst die verticalen Gänge münden, während unten von der Aussenseite her mit einer Erweiterung der horizontale Gang kommt. Letzgenannter mündet so dass das ausgeschnittene vordere Ende der Innenwand desselben, mit dem vorderen Ende der Aussenwand der Verbindungsröhre der frontalen Ampulle verschmilzt, während die Aussenwand continuirlich in die Aussenwand des Utriculus übergeht. Die Commissur trägt ebenso wie die gleichbeschaffene Verbindungsröhre der alleinstehenden, hinteren Ampulle an den meisten Stellen ein helles, polygonales, niedriges Pflasterepithel, ähnlich wie in den Bogengängen und Ampullen.

Der Utriculus (Taf. XCII. Fig. 5.) der sich von vorn unten und aussen, nach hinten oben und innen erstreckt und unter einem nach unten hin offenen, stumpfen Winkel mit der nach oben innen und vorn verlaufenden Verbindungsröhre der frontalen Ampulle (Fig. 5. m), am unteren Ende der Commissur zusammenstösst, lässt sich auch bei den Crocodilen in einen an die vorderen Ampullen anstoßenden Recessus utriculi (Fig. 5. n) und in einen eigentlichen Utriculus trennen, die durch einen schwachen Einschnitt an der Unterfläche und durch eine entsprechend schwache Leiste am Boden des Binnenraumes von einander abgesetzt sind. Der eigentliche Utriculus ist eine weite, dünnwandige, zylindrische Röhre, deren Wandung dieselben Strukturverhältnisse wie die Commissur darbietet. Nur das Nervenepithel bietet besonders am Dache, an der Ober- und Innen wand Besonderheiten dar. Die gewöhnliche Zellekleidung nämlich besteht aus unregelmässigen, polygonalen, hellen Pflasterzellen, wie in der Commissur, allein an den oben angegebenen Wänden findet man nach Hasse dunklere, mehr granulirte (Taf. XCIII. Fig. 3.) auftreten.

Der Recessus utriculi (Taf. XCII. Fig. 5.) der nur mittelst einer Spalte, mit dem Räume der vorderen Ampulle, speziell der sagittalen, communicirt und somit durch eine sehr tiefe Einschnürung von denselben abgesetzt ist, ist in seiner Wandung beträchtlich verdickt und namentlich am Boden, der die Macula acustica trägt und der von den Utriculariasten des Acusticus durchsetzt wird. Sie besteht aus Spindelknorpel, der im Binnenraume, an der Aussen- und Innen wand ein Epithel trägt, das wie in dem eigentlichen
Utriculus gestaltet ist. Erst an dem Boden, in der Umgebung der Macula acustica wird das Epithel allmählich höher und cylindrisch. Die Zellformen sind identisch mit denen des Planum semilunatum, glashell und sie tragen dort, wo sie wie in der unmittelbarsten Nähe der Macula acustica ihre grösste Höhe erreichen, den Kern in der Mitte. Die Macula acustica ist nicht vollkommen rundlich, sondern an der einen Kante halbmondförmig ausgeschnitten und sie ist von einer gleichgeformten Otolithenmasse überlagert. Die gegen die Ampullen hin immer mehr sich verdickende Spindel¬knorpelmasse des Bodens des Processus zeigt ausser den fächerartig ausstrahlenden Nerven, ausserordentlich reichliche Gefässe und was das Nervenepithel betrifft, so ist es Hasse besser wie in den Ampullen ge¬lungen, den Charakter desselben festzustellen. Auch hier hat man nach ihm wieder die beiden Kernreihen, von denen die der Basalmembran mehr oder minder dicht aufliegende, den hohen, cylindrischen Isolations¬zellen angehört, die in ihrem peripheren Ende fadenförmig auslaufen, während die andere zu den Gehörzellen gehört, zwischen denen sich die erste Zellform emporstreckt und die die bekannte Flaschenform, den Kern in dem Bauche der Flasche, besitzen, während sich an der freien Ober¬fläche ein Verdickungsschaum cuticulärer Natur befindet, aus welchem sich dann ein ungemine spitz auslaufendes, kurzes Haar erhebt (Taf. XCIII. Fig. 4. a). Von der Fläche betrachtet sieht man demnach, entsprechend den Stäbchen oder Gehörzellen, grössere Kreise auftreten, die von kleineren, den oberen Enden der Isolations- oder Zahnzellen umgeben sind. Was nun schliesslich die Otolithenmasse betrifft, so ist diese sehr leicht in toto abzuheben und das rührt daher, dass dieselbe von einer ziemlich festen, homogenen Otolithennembran sackartig umschlossen wird.

Der vorzugsweise unter und hinter dem Utriculus (Taf. XCII. Fig. 5, 6, 10), unter dem unteren Ende der Commissur und der Verbindungs¬röhre der hinteren Ampulle sich ausdehnende Sack besitzt nahezu (Fig. 6. l) eine kugelrunde Gestalt und liegt mit seinem oberen Theile in geringer Höhe nach aussen von den soeben erwähnten Theilen, mit dem grössten Theile seiner Innenwand aber in dem Recessus sacculi der Cavitas vesti¬buli bis zur Vorhofssleiste herunter. Vorzugsweise an diesem letzteren Theil breitet sich der Sacknerv aus. Hinten in der Mitte ziehen sich die Sack¬wände zu einer kurzen, vor der hinteren, frontalen Ampulle gelegenen, cylindrischen, derben Röhre aus, dem Canalis reniensi (Taf. XCII. Fig. 5. d). Die Sackinnenwand, die die Macula acustica trägt, ist sehr dick, die Aussenwand dagegen eine zarte Membran. Der Sack lässt sich nahezu vollständig von den anliegenden Theilen, so auch von der Aussenwand des Utriculus isoliren. Nur an einer Stelle, an dem unteren Theile der Aussenwand, wo Utriculus, Verbindungsrohr der hinteren Ampulle und Bogengangcommissur zusammentreffen, verbindet sich der Sack mit den anliegenden Theilen, und dieser Verbindung entspricht eine Öffnung im Utriculus und eine im Sacke und zwar an der Innenwand desselben, die ihr Lumen nach aussen kehrt. Unterhalb und etwas nach vorne von
Anatomie.

dieser findet man eine zweite grössere (Taf. XCII. Fig. 5. /), die nach aussen und abwärts sieht und im Niveau des unteren Randes des Utriculus gelagert erscheint. Es ist die Apertura aquaeductus vestibuli, die in eine kurze, cylindrische, medianwärts von dem unteren Ende der Commisur (Taf. XCII. Fig. 5. c) gelegene Röhre übergeht, die sich aufwärts zur Apertura aquaeductus vestibuli ossea begiebt und hier die Innenwand des Gehäuses gegen die Schädelhöhle hin durchsetzt. Die dunkle Macula acustica hat eine rundliche Gestalt. Die Aussenwand des Sacculus wird durch eine zarte, homogene Bindegewebsmembran, gebildet. Sie trägt ein hohes, schönes, regelmässige Polygone bildendes Cylinderepithel mit rundlichen Kernen, das sich erst an dem Uebergang in die Innenwand unten und namentlich oben in ein niederes, unregelmässig polygonales Blatterepithel verwandelt. Diese werden dann in der Umggebung der Macula acustica wieder zu schönen, glashellen Cylindern. Das in allem Wesentlichen mit der Schnecke der Vögel übereinstimmende Schneckenrohr der Crocodile ist allseitig geschlossen und der Binnenraum desselben, die Scala media s. cochlearis, ist wie bei allen Wirbeltieren vollkommen von dem Cavum perilymphaticum und somit von der Scala vestibuli und tympani abgetrennt. Ferner ist es an seinem unteren Ende, dem häutigen Kuppelblindsacke, oder der Lagena blind geschlossen, oben aber durch Hilfe der cylindrischen Röhre, des Canalis reuniens mit dem Binnenraum des Sacculus in Verbindung. Das Schneckenrohr ist stark gekrummt, wodurch die anfänglich an der Innenwand gelagerten Theile an der Mitte der Schnecke nach hinten, an dem Ende nach hinten aussen zu liegen kommen, und daraus kann man sich die Lage der hinteren, vorderen und äusseren Fläche leicht ableiten. Dem entsprechend ändert sich natürlich auch von oben nach unten die Lage der Cava perilymphatica cochleae, der scalae.

Das häufige Schneckenrohr ist wie das knöcherne im Ganzen genommen kegelförmig, oben die Basis, unten die ampullenförmig erweiterte Spitze, die Lagena (Taf. XCII. Fig. 5. n, Fig. 10. /). Die Schnecke besteht aus vier Theilen, aus einem Knorpelrahmen, einem Tegmentum vasculosum, dem Homologon der Membrana Reissneri und aus einer Membrana basilaris, von denen jene den Schneckenbinnenraum, die Scala media, von der Vorhofstreppe, diese denselben von der Scala tympani abtrennt.

Der Knorpelrahmen besteht wiederum aus zwei oben und unten (Taf. XCII. Fig. 10. c. /) mit einander vereinigten Knorpeln. Das ganze Schneckenrohr lässt sich fässlich in eine obere, Pars basilaris und in eine untere, Pars lagenae trennen. Erstgenannte besitzt ihre grösste Breite oben am Canalis reuniens (Taf. XCII. Fig. 10). Die Knorpel lehnen sich mit der convexen Fläche an den Knochen und zwar der vordere, dreieckige nach abwärts, der hintere dagegen nach oben. Hinten vereinigen sie sich bogenförmig und überwölben gleichsam, die erste Andeutung eines Vorhofsblindsackes, eine nach oben sehende, rundliche
Oeffnung (Taf. XCII. Fig. 10), die von dem Beginne des Tegmentum vasculosum arcadenförmig begrenzt wird, die Apertura scalae mediae. Abgesehen von der Vorderfläche, mit den man der vorderen Knorpel, das Ligamentum spirae sich an den Knochen legen sieht, findet man hier wie bei den Schildkröten anfänglich gegen die Cavitas vestibuli, später in die Scala vestibuli sehend, eine breite Fläche, die eben die Massenentwicklung des Knorpels bedingt. Erst am hinteren Rande sieht man das Tegmentum vasculosum (Taf. XCII. Fig. 5. l), die Membrana Reissneri sich anheften. Je weiter man aber nach abwärts kommt, desto schmäler wird diese vestibulare Fläche und macht am unteren Drittel (Fig. 5) einer Kante Platz. Was dann die Form des Knorpels gegen die tympanale Seite betrifft (Taf. XCII. Fig. 10, Fig. 6. b), so sieht man sie sich mit einer scharfen Leiste an die Knochenwand entlang schieben. An der dem Knochen anliegenden tympanalen Kante des Nervenknorpels (Fig. 10. d) entspringt die Membrana canalis perilymphatici. Ausserdem sieht man auf der tympanalen Fläche den Nervus cochleaee hinein und fächerartig bis hinauf zur Apertura scalae mediae strahlen. Ausserdem verläuft ein zarter Zweig (Ramus lagenae) abwärts, um sich an der Lagena auszubreiten. Die Fläche des Knorpels, die der Scala media entgegengekehrt ist, ist ebenfalls ausgehöhlt (Sulcus spiralis).

Was die Basalmembran betrifft, die die Scala tympani von der Scala media trennt, so vermag Hasse (134) darüber nur so viel zu sagen, dass dieselbe wie bei den Vögeln an der oberen bogenförmigen Vereinigung der Knorpel schmal und abgerundet beginnt und dann continuirlich an Breite zunimmt, um entweder am oberen Ende des unteren Drittels, oder, wie es Hasse wahrscheinlicher vorkommt, ganz unten an der eigentlichen Lagena zu enden. Als ausserordentlich wichtig wird von Hasse dann noch hervorgehoben, dass die Basalmembran im Wesentlichen aus einer einfachen Lage quer verlaufender, unter einander paralleler, straff ausgespannter Fasern zusammengesetzt ist.

Das Tegmentum vasculosum, oder besser gesagt, die Membrana Reissneri s. vestibularis der Schnecke bietet wesentliche Unterschiede in der oberen und unteren Hälfte der Pars basilaris dar (Taf. XCII. Fig. 5.). Sie bildet oben (Fig. 5. l, Fig. 10. a) eine gefaltete, unten eine glatte Membran.

Die allseitig knorpelig verschlossene Lagena, die durch eine halsartige Einschnürung (Fig. 5, 10.) von der Pars basilaris abgesetzt ist, ist kolbenförmig und zeigt an ihrer Innenwand die fächerartige Ausstrahlung des Ramus lagenae, und ausserdem sieht man wie bei den Vögeln eine hufeisenförmig gekrümmte Otolithenmasse (Taf. XCII. Fig. 10. /) durchscheinm.

Geruchsortgen.

Literaturangabe.

Ausser den schon erwähnten Schriften sind noch hervorzuheben:

Saurier.

Die Nasenöhle von Lacerta hat von Leydig eine sehr umfassende und eingehende Beschreibung erfahren. Man kann nach ihm die äussere Nasen- oder Vorhöhle von der eigentlichen Nasenhöhle unterscheiden. Die erstere ist eine geräumige Höhle (vergl. Taf. XCIII. Fig. 6.), in welche die äussere Nasenöffnung führt und im weiteren Sinne vom Maxillare, Praemaxillare, den gleich näher zu betrachtenden Ossa supranasalia und den Nasenbeinen umfasst wird. Enger begrenzt wird sie (nach Leydig)

Indem aber diese beiden Knöchelchen nicht in einer knorpeligen Grundlage entstehen, sondern Bindegewebsknochen sind, muss man sie als Hautknochen betrachten und ich habe dieselben als Ossa supranasalia bezeichnet.

Schon bei Betrachtung des knöchernen Skeletes dieses Nasenraumes, lässt sich am oberen freien Rande der Ossa supranasalia ein Vorsprung bemerken und die Untersuchung der Weichtheile zeigt, nach Leydig, dass die auskleidende Haut der Nasenhöhle von dieser Knochendecke weg nach vorn und aussen eine Falte bildet, welche den Raum unvollkommen halbirt.

B r o n n, Klassen des Thier-Reichs. VI. 3.
Anatomie.

Die eigentliche Nasenhöhle ist um mehr als das Dreifache länger und geräumiger als die äussere Nasenhöhle. Sie beginnt mit ganz bestimmter Grenze hinter dem Knochen, welche man oft aber ganz ungerecht als „Concha“ bezeichnet (die von mir „Ossa supranasalia“ genannten Knochenstücke) und wird außerdem von den Nasalia und dem Maxillare umgeben, und ihren knöchernen Boden bilden insbesondere die Ossa vomeris. Die Öffnung durch welche die äussere und innere Nasenöffnung mit einander zusammenhängen, ist von rundlicher Form, während die Mündung der inneren Nasenhöhle in den Raum des Rachens — die Choane — länglich ist, mit rundlicher Ausweitung am Ende. Seitwärts schiebt sich zwischen die eigentliche Nasenhöhle und die Gaumenplatte des Maxillare eine schief von der Gaumenfläche nach aussen aufsteigende Rinne ein, welche vorn zugleich mit dem Ausführungsgange des gleich näher zu beschreibenden Jacobson’schen Organs beginnt. Die Gestalt der eigentlichen Nasenhöhle wird durch die in dieselbe eiragende Muschel bestimmt. Die Musehel, von Gegenbaur (138), Leydig (37) und Solger (139) beschrieben, ist am genauesten von Born (141) untersucht. Nach dem letztgenannten Beobachter endigt dieselbe gleich am Anfange der eigentlichen Nasenhöhle als ein vorn niedriger, nach hinten höher werdender Wulst. Derselbe ist mit breiter Basis festgewachsen und nimmt allmählich fast die ganze Höhe der Seitenwand ein. Das Lumen der eigentlichen Nasenhöhle (Taf. XCIV. Fig. 1. N) gleicht daher auf dem Frontalschnitte anfangs einem nach aussen gebogenen Oval, bald aber einem rechtwinklig um den Wulst geknickten Bande, wobei der abgerundete Scheitel des rechten Winkels in die Ecke zwischen Septum und Boden etwas einspringt; dort findet sich eine zuerst von Leydig beschriebene, einwärts von der Choane, gegen die Naseheidewand zu verlaufende starke Längsrinne, wozu der Vomer die Grundlage bildet. — Weiter hinten vertieft sich die Nasenhöhle ziemlich plötzlich über die obere Seite des Wulstes hinweg bis an seine Aussenseite; zugleich damit findet dann eine erhebliche Vergrösserung des Querdurchmessers der Nasenhöhle statt und die Musehel nimmt statt der Gestalt eines breit aufsitzenden Wulstes die einer schmal angehefteten aber breiten Platte mit
dick aufgetriebenem und etwas nach unten gebogenen freien Rande an (Taf. XCIV. Fig. 3). Complicirt wird die Höhlenbildung dadurch, dass die über und nach aussen von der Muschelplatte gelegene Nische eine blinde Ausstülpung ausseendet, die sich an der Aussenseite des hinteren Theiles des Muschelwulstes eine Strecke weit nach vorn erstreckt und den Ansatz desselben so gewissermassen unterminirt (Taf. XCIV. Fig. 2). Der Querschnitt des Lumens der Nasenhöhle hat in Folge dessen, soweit diese Muschelplatte mit verdicktem Rande reicht, etwa die Form eines Bandes, welches so im Kreis gekrümmt ist, dass das obere Ende das horizontal liegende untere beinahe an der Spitzte berührt, doch reicht kurz vor der Choane der horizontal liegende, unter der Muschelplatte gelegene Schenkel weniger weit nach aussen, als der über derselben gelegene, und berührt die untere Fläche des plattenförmigen Ansatzes der Muschel nicht mehr, den dadurch gewonnenen Raum nimmt der Grund der oben erwähnten Rinne am Dache der Mundöhle ein (Taf. XCIV. Fig. 3. R). Der hintere, frei vorspringende Rand der Muschel, der etwa über der Mitte der Choane gelegen ist, zeigt sich ebenfalls aufgetrieben und geht in den inneren Rand abgerundet über. Der plattenartige Ansatz der Muschel erstreckt sich aber noch etwas weiter und verliert sich gegen die Hinterwand, nur an der unteren Seite gegen die Nasenhöhle hin ist er frei, an der unteren Seite erreichte ihn schon vorher die untere Nasenhöhlenausbuchtung nicht, an ihre Stelle tritt der Grund der Rinne am Dache der Mundöhle und der sich aus derselben entwickelnde Thränenkanal. Hinten schliesst die Nasenhöhle mit einer flachen Kuppel ab (Born). Hohes, geschichtetes Riechepithel mit den gleich näher zu erörternden Eigenschaften findet sich in der eigentlichen Nasenhöhle längs des ganzen Septum bis nahe an den unteren Rand, reicht vom oberen Rande desselben über die Decke hinweg die senkrechte Seite des Muschelwulstes hinauf und greift noch um den convexen Rand desselben mehr oder weniger auf die untere Seite herum. Ebenso ist die Ausstülpung der Nasenhöhle nach vorn an der Aussenseite des Muschelwulstes hin, mit hohem Riechepithel ausgetapezirt. Dagegen tritt im Grunde der über dem Ansatz der Muschelplatte gelegenen Nische der Nasenhöhle ein Streifen niedriges Epithel auf, der auf dem Querschnitte das die obere Fläche des verdickten Randes der Muschelplatte bekleidende hohe Epithel von dem gleichartigen an der lateralen Wand vollständig abtrennt (vergl. Taf. XCIV. Fig. 3. o N). Hohes Riechepithel besitzt auch die hinterste blinde Kuppel der eigentlichen Nasenhöhlen. Die übrigen Theile derselben zeigen einschichtiges Epithel, das Leydig als Fliimmer- und Becherzellen charakterisirt hat (Born).

Weiterhin besitzt die Gegend der Muschel reichliche Drüsen in Form kurzer cylindrischer, von Zellen mehr erfüllter als ausgekleideter Schläuche, welche dicht beisammen stehen und ebenfalls meist von Pigmentnetzen umzogen sind. Es sind dies die Drüsenschläuche der seitlichen Nasendrüse. Leydig (37) entscheidet sich nicht, ob diese seitliche Nasendrüse,
die in dem Muschelwulst und in der Muschelröhr e enthalten ist, Aus-
führungsgänge auf die Schleimhaut dieser Theile aussehend oder nur mit
dem Ausführungsgange zusammenhängt, der in die Nasenhöhle gerade
am vorderen Rande der vollständigen Seitenwand, an der Grenze zwischen
Vorhöhle und eigentlicher Nasenhöhle, einzündet. Nach dem Ergebnisse
der Schnittreihen durch Köpfe erwachsener und noch mehr embryonaler
Thiere kann Born (141) auf's bestimmtestes versichern, dass nur das letz-
tere der Fall ist. Die Ausführungsgänge, welche, wie schon Leydig (37)
beschreibt, mit schuppig gruppirten Zellen bekleidet das Epithel der
Muschel durchbrechen, gehören nach Born kleinen Krypten an, die über-
all im Bereiche des hohen Riechepithels vorkommen, aber auch denselben
nirgends überschreiten; Born steht nicht an dieselben den Bowman'schen
Drüßen der Säugethiere zu vergleichen.

Riechepithelium. Wie bei den Amphibien und bei den Schildkröten
besteht auch bei den Sau riern (ich war nur im Stande das Geruchs-
epithelium von Lacerta genauer zu untersuchen) das Riechepithelium aus
sehr langen faserförmigen Zellen zweierlei Art, den eigentlichen Epithel-
zellen und Riechzellen. Letztere haben einen mehr oder weniger ovalen
oder spindelförmigen Zellkörper mit einem fast homogenen, kugligen
Kern. Von dem Zellkörper gehen zwei Fortsätze, ein peripherischer und
ein centraler ab, die sich vollständig so wie bei den Schildkröten ver-
halten. Auch von Lacerta kann ich nicht mit Sicherheit sagen, ob hier
eben den äusserst feinen und sehr langen Riechhaaren, die frisch unter-
sucht eine leicht wogende Bewegung zeigen, auch noch starre un-
bewegliche Riechhaare vorkommen.

Die zweite Art von Zellen, welche in der Geruchsschleimhaut an-
getroffen werden, sind die eigentlichen Epithelzellen, die in ihrem Bau
und in ihren Eigenschaften vollkommen mit den der Schildkröten überein-
stimmen (Siehe Bronn's Reptilien: Schildkröten S. 228). Nur in einem
Punkt scheint mir das Riechepithelium der Sauirer — wenigstens von
Lacerta — von dem der Schildkröten abzuweichen, nämlich hierin, dass
das Riechepithelium viel weniger hoch ist als bei den Schildkröten.

Max Schultze's Angabe, dass die Riechhaare ausserordentlich
empfindlich für die Einwirkung des Wassers sind, wurde auch von
Leydig für Lacerta bestätigt. Obgleich auch Leydig wohl nicht zweifelt,
dass die eigenartigen Riechepitheliumzellen mit den Enden der faserigen
Elemente in Beziehung stehen, konnte auch er den unmittelbaren Zu-
sammenhang nicht nachweisen.

Die Jacobson'schen Organe. Die merkwürdigen Jacobson'schen Or-
gane, welche den gleichen Bildungen bei Sängern entsprechen, kommen
hier bei den Sauirern zum erstenmal zur Sprache. Sie wurden bei Vara-
minus, Podinemo, Iguana, Pseudopus, Chamaeleo durch Stannius entdeckt,
und als „paarige, enge, von den Choanen in den Gaumen mündende
Öffnungen, welche die Ausgänge von Höhlen bilden, die gewöhnlich
durch Knochen begrenzt werden, beschrieben. Jede Höhle ist nämlich umfasst vom Os vomeris und der Concha ihrer Seite, sie liegt unmittelbar unter dem knöchernen Boden der Nasenkapsel. Die Höhle besitzt eine häutige Auskleidung; sie enthält z. B. bei *Varanus* ein eigentümliches, ziemlich weiches, scharfbegrenztes Organ, das wie ein Pilz auf einem sehr kurzen Stiele sitzt.

Genanere und ausführlichere Untersuchungen verdanken wir Leydig (37) und Born (141). Ersterer hat sich bei *Lacerta* vor Allem darüber vergewissert, dass die Höhlen zwar unterhalb des Bodens des Nasenraumes liegen, jedoch mit letzterem keineswegs in offener Verbindung stehen; vielmehr sind sie nach dieser Seite hin völlig geschlossen, was um so beachtenswerther ist, als ein Haupttheil des N. olfactorius in dieser Höhle seine Endausbreitung hat. Jede der beiden Höhlen mündet für sich durch einen feinen Gang in die Rachenöhle und zwar in den Anfang der Furche, welche weiter rückwärts mit der Öffnung der Choane abschliesst. Will man die Lage der Höhlen näher bezeichnen, so ist es die Stelle, wo unmittelbar darüber die äussere und die innere Nasenhöhle in einander übergehen, doch wieder so, dass der grössere Theil des Organs unterhalb des Beginns der eigentlichen oder inneren Nasenhöhle sich hin erstreckt (Taf. XCIII. Fig. 2). Die von oben her geöffnete Höhle (Taf. XCIII. Fig. 8. q) zeigt einen quer ovalen, annähernd nierenförmigen Umriss. Der Gang zur Rachenöhle geht von dem hinteren, inneren Ecke ab.

Der mit dem Ausführungsgang des Jacobson'schen Organes zusammen an der Mundschleimhaut ausmündende Anfangstheil der Rinne ist medialwärts von diesem gelagert, sehr wenig tief, mit dem Grunde in eine Furche an der unteren Seite des Vomer eingelagert und durch eine Falte, in die ein Fortsatz desselben Knochens eintritt, von dem Ausführungsgange geschieden. Ihr erweitertes blindes Ende kommt seitwärts neben dem Innenrande des Vomer unter die Knorpelkapsel (siehe gleich unten) des Jacobson'schen Organes zu liegen, während sie an der äusseren Seite ein von dieser Knorpelkapsel herabsteigender Fortsatz begleitet, der sich an den Innenrand des Gaumenastes des Maxillare anlehnt (Taf. XCIV. Fig. 1. km). Von unten her schützt sie der Processus palatinus des
Maxillare; die mediale Hälfte der Decke bildet der Vomer, der Grund der Rinne reicht bis zum unteren Rande der knorpeligen Seitenwand der Nasenhöhle und weiter hinten bis unter den plattenförmigen Ansatz des Muschelknorpels an die Seitenwand (Taf. XClV. Fig. 8. Mp); zwischen Vomer und Knorpel bleibt die Rinne überall eine breite Strecke nur häufig von der Nasenhöhle abgeschlossen. Entsprechend diesem nun häufigen Theile der Decke öffnet sich weiter hinten die eigentliche Nasenhöhle in die obere Seite der Rinne. Die Öffnung bezeichnet Born als „innere Choane“ zur Unterscheidung von der „äußeren Choane“, welche letztere den am Dach der Mundhöhle sichtbaren Spalt darstellt, der dem Gesagten gemäß gar nicht direct in die eigentliche Nasenhöhle hineinführt, sondern zuerst in eine schräg nach aussen aufsteigende Rinne, an deren oberer Seite sich die innere Choane findet. Der laterawärts neben der inneren Choane gelegene Theil der Rinne ist von der eigentlichen Nasenhöhle durch eine dünne bindegeweibige Falte geschieden, die von der unteren Seite der Muschel nach innen vorspringt; dieser bis unter den plattenförmigen Ansatz des Muschelknorpels eingesenkte Grund ist es, welcher etwa in der Mitte der Choane sich abtrennt und in den Ductus nasolacrimalis übergeht.

hinter dem Ausführungsgange des Jacobson'schen Organs senkrecht aufgerichteten Rinne (Born).

Wir müssen jetzt den schon bei den Schutzorganen des Auges zum Theil beschriebenen Ductus naso-lacrimalis in seinem Verlauf näher betrachten. Wir haben da schon gesehen, dass der Nasenknorpel (s. pag. 797 v. w.) vor der Mündung des Canals dessen obere, untere und mediale Wand darstellt. Schon Solger (139) hat darauf aufmerksam gemacht, dass ein knorpeliger Fortsatz der Nasenkapsel, die sich an der Bildung der Wand des Thränencanals betheiligt, am Boden der Orbita, bald frei zu Tage liegend, bald von Knochen mehr oder weniger umschlossen, noch über den Anfang des Canals sich hinauserstreckt. Zuerst hängt nach Weber „der Anfang“, der über den Thränencanal sich hinauserstreckt, mit diesem nicht zusammen, es zeigt sich vielmehr (wenigstens bei Lacerta muralis und agilis nach Weber’s Beschreibung) die erste Spur dieses Knorpels in der Orbita am Foramen palatinum. Die beigegebene schematische Figur (Taf. XCIII. Fig. 10) gibt uns ein Bild, wenn auch nicht gerade vom ersten Anfang des Knorpels k, so doch ganz aus dessen Nähe. In dem Maasse wie der Oberkieferfortsatz des Palatinum in der Richtung nach vorn an Breite abnimmt, wächst der Knorpel, der, da sich während dessen der Nervus infraorbitalis und die gleichnamige Arterie in den ringsgeschlossenen Oberkiefercanal begeben haben, seine Rolle als Ueberdachung dieser Weichtheile aufgegeben hat, statt dessen aber der Thränencanal, der sich gleich nach seinem Durchtritt durch das Thränennloch etwas gesenkt hat, nach unten abgrenzt.

Der auf Taf. XCIII. Fig. 9 abgebildete Schnitt zeigt unterhalb der Muschel überhaupt nichts mehr von dem lateralen Nasenknorpel; die dorso-laterale Wand der Rinne ist nur noch eine Duplicatur des Epithels, welcher der stützende Knorpel fehlt. Sie selbst aber steht in offener Verbindung mit dem Ductus naso-lacrimalis. Hier haben wir also dessen Mündung in die Choanen, und zwar in deren Mitte, vor uns. Die Ausmündung geschieht mithin, wie wir schon gesehen haben, ungefähr in der Mitte der Choanen, durch eine Rinne, die sich nach der Rachenhöhle hin öffnet.

Born (141) verdanken wir weiter genauere Angaben über die Verhältnisse der Nasenhöhle zahlreicher anderer Sauерier. Von den Brevischnitthiern untersuchte er Gongylus ocellatus und Scienus officinalis, Lygosoma (L. smaragdimum, L. Novarne) u. A.; von den Ascaloboten: HomidactylusQuadensis, Platydactylus lugubris und muralis: von den altweltlichen Acro-

Crocodile.

Jede Seitenhälfe dieses Organes lässt in ihrem ausgebildeten Zustande zwei in Hinsicht der Form und Zusammensetzung verschiedene Abschnitte unterscheiden, von denen der eine hinter und zum kleineren Theil auch unter dem andern liegt. Der vordere begnügt an der äusseren Nasenöffnung mit einer nicht sehr grossen Erweiterung (Taf. XCV. Fig. 2. a) und geht dann in eine sehr breite aber wenig hohe Räumlichkeit über, welche über die Hälfte der Länge der gesamten Nasenhöhle ausmacht. Den Boden dieser Strecke bildet das Maxillare, welches hier einen bedeutenden Sinus umfasst (Taf. XCV. Fig. 2. mx). Eine dünne Knorpellamelle, die dem übrigen Theile der Nasenhöhle zu Grunde liegt, bedeckt jedoch auch hier den Knochen. Am Dache dieser Strecke bildet dieselbe Knorpellamelle einen allmählich stärker werdenden Vorsprung (Fig. c), indem sie sich von dem über ihr liegenden, sie deckenden Nasale abhebt. Dazwischen lagern Blutgefässse. Am Ende des genannten Abschnittes
senkt sich der Boden der Nasenhöhle, und hier ist nun die Stelle, wo der bisher einfache Raum nach hinten zu in zwei übereinander liegende Räume sich fortsetzt, beide durch eine knöcherne bis zum Septum nasi reichende Lamelle geschieden. Der untere Raum stellt den hinteren (inneren) zu der Choane führenden Nasengang (d) vor; derselbe wird durch Rathke mit dem Namen „häufige Gaumenöhre“ bezeichnet, während er den vorderen Abschnitt als die Nasenhöhle im engeren Sinne des Worts betrachtet.

Von Gegenbaur (138) wurde nun zuerst nachgewiesen, dass der obere Raum nach hinten geschlossen ist und dass derselbe laterale Vorsprünge der knorpeligen Wandfläche birgt, die man als Muscheln bezeichnet kann. Am Anfange des obern Raumes, genau an der Stelle, wo der äussere Nasengang in den inneren zur Choane führenden sich fortsetzt, und das horizontale Dach der letzteren mit einem concaven Ausschnitte beginnt, erhebt sich im oberen Raum eine Muschel (Taf. XCV. Fig. 2. C). Dieselbe beginnt vom unteren Rande einer nach vorne zu gerichteten Einbuchtung (Fig. 2. c) des knorpeligen Daches der Nasenhöhle, und stellt eine abwärts gekrümmte Lamelle vor, die eine Strecke weit in zwei sich sondert, wie am besten auf Querschnitten zu sehen ist (Taf. XCV. Fig. 3. C', C''). Diese Muschel verdeckt bei medialer Ansicht den grössten Theil eines noch bedeutenderen Vorsprungs, der erst hinter der Muschel frei zu liegen kommt. Ohne genauere Untersuchung könnte man diesen Vorsprung für eine zweite Muschel halten, wie er denn auch in den Erläuterungs-Tafeln zur vergleichenden Anatomie von d'Alton und C. G. Carus als solche aufgeführt ist (Psengoconcha nach Gegenbaur). Entfernt man aber nach Gegenbaur die zuerst beschriebene, rein knorpelige Muschel, so sieht man, dass der genannte Vorsprung (Fig. 2. D) weit unter ihr nach vorne zu sich fortsetzt, und eine langgestreckte Blase bildet, die einen grossen Theil des lateral von der Muschel befindlichen Nasenhöhlenraumes ausfüllt. Dieser blasenförmige Vorsprung wird von einem knorpeligen Randwänden besitzenden Sinus gebildet. Sein Verhalten zur Nasenhöhle ist auf dem in Fig. 2 dargestellten Querschnitte leicht zu ersehen. Er ist also, wie Gegenbaur nachgewiesen hat, von der als Muschel bezeichneten Bildung bedeutend verschieden. Während jene eine von der Nasenwand entspringende einfache Knorpellamelle ist, besteht der Blasenvorsprung aus einem sehr bedeutend in die Nasenhöhle einragenden Sinus, der allseitig von Knorpelwand (mit dünner Schleimhautbekleidung) umschlossen ist. Nur an einer Stelle findet sich eine Communication. Nahe am hinteren Grunde des Sinus liegt eine trichterförmige, nach vorne sich verengernde Öffnung; die in einen lateral an der Blase vorbeiführenden, gleichfalls in den Ethmoidalknorpel eingesenkten Canal (Fig. 3. E) führt. Derselbe mündet in einen kleineren Sinus, der unterhalb der Muschel mit dem Raum der Nasenhöhle in offener Communication steht. In wieweise diese Sinus sich auf die bei Cuvier angeführten „Poches ou cellules“ beziehen, ist bei der Allgemeinheit jener Angaben nach Gegen-
Anatomie.

Er stellt einen Blindsack dar, dessen Ausdehnung wesentlich nach rückwärts, also dem vorigen entgegen, gerichtet ist. Ein schwaches knöchernes Septum trennt beide von einander.

Solcher versucht nun weiter festzustellen, wie sich der Sinus der Pseudoconcha zu den eben beschriebenen Hohlräumen verhält. Functionell müssen sie offenbar nach ihm auf gleiche Stufe gestellt werden, denn Geruchsempfindung findet in keinem derselben statt, und der Umstand, dass in dem einen Fall Knorpel, in dem andern Knochen das Material für die Umgrenzung abgibt, ist hierbei ganz gleichgültig. Anders verhält sich's, wenn man die Sache vom morphologischen Gesichtspunkte betrachtet. Handelt es sich, wie hier, darum, mehrere ähnliche Hohlräume mit einander zu vergleichen und unter ihnen denjenigen Zustand herauszufinden, der als der ursprünglichere gelten muss, von dem die übrigen sich ableiten lassen, so wird als solcher einzig und allein der Sinus der Pseudoconcha in Betracht kommen. Denn seine Wandungen werden ringsum von Theilen der primordialen knorpeligen Nasenkapsel gebildet. Für die beiden übrigen nach vorne sich anschliessenden Sinus, die beim ausgebildeten Thier als Aushöhlung darüber gelagerter Knochen sich darstellen, lisse sich nun das beim Sinus der Pseudoconcha vorhandene Verhalten als das ursprüngliche denken, nicht aber umgekehrt. Mit anderen Worten: Man kann sich nach Solger die beiden vorderen Sinus recht wohl vorstellen als zu Stande gekommen durch eine Ausbuchtung der knorpeligen Seitenwand der Nasenkapsel, die im Laufe der Phylogenie allmählich den jetzigen Zustand (wie wir ihn vom ausgebildeten Thiere kennen gelernt haben) angenommen hat.

Nachdem somit das Verhältniss der mit der Nasenhöhle kommunizierenden Hohlräume zu einander festgestellt ist, wird es sich fragen, ob nicht etwa die Ontogenie zu irgend einer Zeit der Entwicklung einen
Die anatomische Untersuchung der primordialen NasenkapSEL zeigte, die erst später durch Rückbildung des Knorpels Deckknochen zur Wandung erhielten.

So weit die Angaben der früheren Autoren. Was ich selbst über die Nasenhöhle der Crocodile mittheilen kann, bezieht sich auf folgendes. Ich habe bei einem jungen, eben dem Ei entschlüpfnten Exemplar von *Crocodilus biporcatus* die Verhältnisse an einer Serie von Querschnitten so genau als möglich untersucht, besonders um die Ausbreitung des Geruchsepithels praecliner festzustellen. Ich werde natürlich nur diejenigen Schnitte beschreiben, welche für die in Rede stehende Frage von Bedeutung sind. Der erste Schnitt (Taf. CXIV, Fig. 4) geht durch den vorderen Theil der Nasenhöhle. Die äussere Nasenöffnung kann durch das Thier willkürlich geschlossen werden und zwar durch einen muscelösen Apparat, auf welchen ich noch näher zurückkommen werde. Das knorpelige Nasenseptum setzt sich nach vorn fast bis zum äussersten Ende der Nasenhöhle fort und verlängert sich jederseits medial- und lateralwärts unter der Nasenschleimhaut, sodass dieselbe durch eine knorpelige Röhre umschlossen wird, welche nur oben offen ist. Die Schleimhaut selbst ist sehr stark gefaltet, und von einem Wimperepithelium bekleidet, welches aus Cylinderzellen besteht, und sehr reich an Becherzellen ist. Das so charakteristische Geruchsepithelium fehlt noch überall. Mit Ausnahme der erwähnten Becherzellen sind keine Drüsen vorhanden.

Taf. XCIV, Fig. 5 ist ein Schnitt mehr nach hinten genommen. Die knorpelige Nasenkapsel ist überall von Knochen (Maxillare, Nasale) umschlossen. Die Nasenschleimhaut ist fast überall von einer Knorpelkapsel gestützt, nur in dem unteren Theil der lateralen Seite der Nasenhöhle fehlt dieselbe. Das Epithel dieser Schleimhaut ist deutlich von zweierlei Art. Das eine ist schon bei schwacher Vergrösserung als das eigentliche Geruchsepithel zu unterkennen, es bildet ein hohes geschichtetes Epithel, welches sehr reich an Drüsen ist, die in ihrem histologischen Bau vollkommen den Bowman'schen Drüsen der Säugethiere entsprechen. Das Geruchsepithel bekleidet fast die ganze Nasenschleimhaut, es ist nämlich überall dort vorhanden, wo man die Knorpelkapsel antriibt, nur dort wo der Knorpel fehlt, findet man ein an Becherzellen reiches Cylinderepithelium. Während die Schleimhaut überall wo sie von Geruchsepithelium bekleidet wird, glatt erscheint, ist sie dagegen dort wo das Cylinder epithelium die Stelle des Geruchsepithelium eingenommen hat, stark gefaltet.

Taf. XCV, Fig. 5 ein Schnitt noch weiter nach hinten genommen unterscheidet sich nur wenig von dem vorhergehenden. Das einzige auffallende ist die Ausbildung des Theils der Nasenschleimhaut, wo kein Geruchsepithel, sondern nur Cylinderepithelium sich findet. Diese Ausbildung der Nasenschleimhaut wird durch die Einmündung des Ductus naso-lacrimalis hervorgerufen. Einen Schnitt noch weiter nach hinten stellt uns Taf. XCV, Fig. 4 vor. Die Anordnung ist
Reptilien.

... dieselbe wie beim vorigen Schnitt, jederseits bemerkt man den durchgeschnittenen Ductus naso-lacrimalis. Taf. XCVI, Fig. 1 endlich stellt einen Querschnitt, abermals noch mehr nach hinten genommen vor, in welchem die Nasenhöhlen sich schon in zwei übereinander liegende Räume getrennt haben. Der obere Raum ist die eingentliche Nasenhöhle (n l), die ringsum von Riechepithelium bekleidet ist, der untere ist der zur Choane führende Nasengang, dessen Wände von einem Cylinderepithelium ausgekleidet sind (u u g). Die jederseits liegenden grossen Räume sind die von Gegenbaur als langgestreckte Blasen bezeichneten Nebenhöhlen, die ebenfalls von einem Cylinderepithel ausgekleidet sind (a).

Ein Paar Schnitte noch weiter nach hinten genommen zeigt die Communication dieser in Rede stehenden Höhle mit dem kleineren Sinus, der wie schon Gegenbaur nachgewiesen, innerhalb der Muschel mit dem Raum der Nasenhöhle in offener Communication steht.

Ich habe bereits angegeben, dass die äusseren Nasenöffnungen verschliessbar sind, und zwar durch Hautklappen, die durch glatte Muskelfasern bewegt werden. Quergestreifte Muskelfasern liessen sich nicht nachweisen.

Organ eines sechsten Sinnes.

Literatur.

Bei der Beschreibung des Integumentes und des Hautskeletes werde bereits eigenthümlicher von Leydig (37) zuerst genauer untersuchter und als becherförmige Organe bezeichneter Gebilde Erwähnung gethan (S. 451). Später wurden sie besonders von Merkel (142) einer sehr genauen Untersuchung unterworfen; er nennt sie „Tastflecke“.

Organe der Ernährung.

Literatur.

Ausser den schon erwähnten Schriften sind noch hervorzuheben:

(146) R. Owen. Odontography or a treatise on the comparative Anatomy of the teeth. 2 Vol. 1840—1845.

(155) P. Gervais. Structure des dents de l'Héodermes et des Ophiidiens; in: Comptes rendus T. 77. p. 1069. 1873 und ausführli. in Archives de zool. experim. 1873. Taf. VI.

Anatomie.

Zunge. — Saurier.

Obgleich die Zunge bei den Sauriern ein Organ von sehr grosser Bedeutung ist, indem sie bei der systematischen Eintheilung eine wichtige Rolle spielt, liegen dennoch über ihren feineren Bau bei nur wenigen Arten genauere Angaben vor. Die kionokrane Saurier lassen sich nach der Form ihrer Zunge in vier Gruppen theilen: 1) *Vermilinguia* mit weit vorschnellbarer Zunge, die *Chamaeleonidae*; 2) *Crassilinguia* mit dicker und kurzer fleischiger Zunge, welche an der Spitze kaum ausgebuchtet, in der Regel vielmehr zuerundet ist und nicht vorgestreckt werden kann, wie die *Ascalabotae*, *Iguanidae*, *Humiregae* u. A.; 3) *Brevilinguia* mit kurzer, dicker Zunge, an dem verdünnten Verderende mehr oder weniger
ausgeschnitten und wenig vorstreckbar, wie die Scincoiden und Ptycho-
pleurac und 4) Fissilinguia mit ausstreckbarer, zweispitziger Zunge, wie
die Lacertidae, Ameiridae, Monitoridae u. A.

Als Beispiel des Zungenbaues der Fissilinguia kann Lacerta dienen,
von welcher Eidechsen-Gattung wir Leydig genaue Mittheilungen ver-
danken. Hier erscheint die Zunge hinten zur Aufnahme des Kehlkopfes
wie ausgeschnitten; an ihrem Seitenrand ist sie mit einer schwachen
Einbuchtung versehen; die zwei Endspitzen haben im Näheren den
Umriss einer Zitze; an der Zungengabelung geht die Theilung weiter
nach hinten als die wirkliche Trennung reicht.

Die Oberfläche der Zunge ist nach Leydig's Angaben keineswegs
nach der ganzen Ausdehnung von gleicher Beschaffenheit, sondern man
cann an ihr drei Zonen unterscheiden. Zu hinterst, vor dem Kopfstopf
erscheint ein dreieckiges unpigmentirtes Feld, glatt und nur in der Mitte
mit einigen queren Schleimhautfalten. Zu beiden Seiten von dieser Partie
dehnt sich von hinten nach vorne die Zone der Querleisten aus, welche
am Rand der Zunge auch etwas nach unten liegen. Eingeschlossen von
diesen beiden Gegenden der Querleisten nimmt die eigentliche Mitte und
Vorderhälfte der Zunge die Zone der Papillen ein; unter sich von
ungleicher Grösse sind alle Papillen dachziegelförmig rückwärts gekehrt.
Auf den beiden Zungenspitzen bilden sich die Papillen wieder mehr zu
Längsleisten oder blattartigen Erhöhungen um.

Der freie Hinterrand der Papillen ist ausgezackt und zwar, wie
Leydig nach Durchmusterung einer grossen Zahl fand von einer einzigen
Einkerbung aus bis zur manchfaltigsten Zackenbildung. Diese Zacken,
welche zunächst lediglich dem Epithel anzugehören scheinen, werden
hervorgerufen durch die Anwesenheit kleiner höckeriger Vorsprünge oder
Wärzchen zweiter Ordnung, in welche die hindegewebige Grundlage der
Hautpapillen ausgeht.

Der zellige Beleg ist über die ganze Zunge weg ein geschichtetes
Plattenepithel, das besonders dick gegen die zwei Gabelspitzen wird und
diesen Theilen etwas steifes, hornartiges verleiht. Auch auf jeder Papille
scheidet sich die epitheliale Lage deutlich in eine Horn- und Schleimschicht.

Im Innern der Papillen steigen quergestreifte Muskeln in die Höhe,
ausserdem enthalten sie auch Gefässe. Ueber die Art und Weise wie die
Nerven enden hat Leydig nichts in Erfahrung bringen können, nur
konnte er sich überzeugen, dass auf den Papillen keine becherförmigen
Organe sich finden.

Das so eben Mitgetheilte wurde im Wesentlichen bei Lacerta agilis,
viridis, vivipara und muralis von Leydig in gleicher Weise gesehen. Nur
in der Ausbreitung der schwarzen Farbe zeigt sich einiger Unter-
schied, indem sich das dunkle Pigment bei Lacerta agilis über die ganze
Zungenoberfläche erstreckt, mit Ausnahme der an der Wurzel befindlichen
und mit Querleisten versehenen Partie; bei Lacerta vivipara ist sie weniger
pigmentirt, nur etwas vorne, sowie nach hinten, da, wo sie sich für die

Zungenmuskeln bei den Fissilingua.

Ueber die Muskulatur der Zunge hat Leydig sich an Lacerta agilis zu unterrichten gesucht und zwar an Quer- und Längsschnitten durch das ganze Organ. Man sieht nach ihm auf diese Weise zunächst Muskelzüge, welche nach der Länge der Zunge verlaufen, zu diesen gehören:

1) eine zusammenhängende Schicht gegen die Schleimhaut hin, welche oben nur von den in die Papillen aufsteigenden Muskelbündeln durchbrochen wird. Diese Schicht erstreckt sich auch lateralwärts gegen den unteren Rand der Zunge.

2) Zwei grosse, wohl abgegrenzte Muskeln, welche an der Unterseite der Zunge von hinten nach vorn verlaufen und für's freie Auge als zwei starke Wülste sich darstellen; sie sind die Hauptzurückzieher der Zunge (M. hyoglossus).

Endlich verbreiten sich Längszüge zerstreut durch die ganze Zunge und schieben sich zwischen die queren und senkrechten Bündel ein.

Man unterscheidet zweitens senkrechte Bündel oder die Ausstrahlungen des M. genio-glossus. Sie bilden zum Theil Bogen, welche von unten her die Mm. hyo-glossi umgreifen, dann nach oben aus einander tretend bis in die Papillen aufsteigen und zwar bis unter das Epithel derselben.

Endlich sind drittens noch quere Faserzüge zu unterscheiden und zwar nach oben gegen die Schleimhaut hin. Alle die aufgezählten Bündel durchkreuzen sich manchfach, woraus zuletzt für die Thätigkeit des Organs die ungemeine Beweglichkeit erwächst.

hyoglossi und genio-glossi, aber jene bei den *Fissilinqua* in der Schleimhaut noch über den Zügen des M. transversus verlaufenden Längsfasern schienen ihm hier zu fehlen.

Das Pigment, namentlich der sehr stark dunkelgefärbten Zungen spitze, liegt wieder nur im Bindegewebe.

Als Beispiel des Zungenbanes des *Vermilingua* ist Chamaeleon anzuführen.

Betrachtet man, wie Brücke hervorhebt, zuerst denjenigen Theil der Zunge im engeren Sinne, welcher, wenn dieselbe in der Mundhöhle liegt, das vordere Ende des Zungenbeins, auf dem die Zunge steckt, zunächst umgibt. Diesen bildet eine hohle, hinten drehrunde Muskelmasse, deren Fasern in sehr eigenthümlicher Weise angeordnet sind. Wenn man einen Querschnitt betrachtet, so sieht man alle Fasern vom äussern Kreise nicht radial, sondern schief und in einem nach aussen schwach convexen Bogen gegen den inneren Kreis verlaufen. Wenn man von hinten nach vorn fortschreitet, so sieht man, dass nach jeder ein-, zwei- oder dreifachen Lage die Richtung wechselt, so dass die Muskelfasern sich mit denen der vorhergehenden Schichte kreuzen. Wenn alle Fasern contrahirt sind, so ist die Gleichgewichtsfigur der Muskelmasse von der Art, dass der Axencanal zu eng ist, um wie im erschlafften Zustande das Zungenbein aufnehmen zu können, und die Zunge wird also während der Contraction von diesem heruntergleiten müssen. Aus Brücke's Untersuchungen geht hervor, dass diese Muskelmasse ein zweites, beschleunigendes Moment für die Bewegung der Zunge aufbringt. Erstens wird das Zungenbein durch den M. geniohyoideus und mylohyoideus nach vorn gezogen und zweitens gleitet in demselben Momente die Zunge auf dem conisch zulaufenden Zungenbeine von hinten nach vorn hin, indem der Druck ihrer Muskeln auf eine schiefe Ebene wirkt; die Geschwindigkeiten beider Bewegungen addiren sich; und daher rührt es, dass die geschnelzte Zunge trotz ihres geringen Gewichtes, z. B. eine Fensterscheibe, von der sie eine Fliege hascht, mit einem so lauten Schlage erschüttern kann, dass man über denselben erschrickt, indem man ihn den Kräften eines so kleinen und schwächlichen Thieres nicht zugetraut hätte.
Es ist hierbei noch zu erwähnen, dass in der Gleichgewichtslage, welcher die sich conthahrenden Muskeln zustreben, der Axencanal nicht drehend bleibt, sondern sich abplattet, was den Vortheil hat, dass dadurch die Berührungsfäche zwischen Zunge und Zungenbein und somit die Reibung verkleinert wird. Brücke schliessst dies aus der von vorn nach hinten stark abgeplatteten Gestalt, welche namentlich der mittlere Theil der Zunge zeigt, wenn man einen elektrischen Strom hindurchleitet. So sind hier alle Momente vereinigt, um die möglichst grösste Geschwindigkeit hervorzubringen. In der That sind aber auch die Zunge und nächst dieser die Augen die einzigen sich rasch bewegenden Theile des Thieres, das im übrigen äusserst langsam ist. Zu jeder Seite der beschriebenen Muskelsmasse, welche Brücke als Musculus accelerator linguae bezeichnet, liegt ein anfangs flaches Bündel von Längsfasern, eine Forsetzung der Fasern des M. hyoglossus, welches sich, am vorderen Theil der Zunge dicker werdend und etwas nach aufwärts steigend, in eine Furche des M. accelerator linguae legt, und sich so dem der anderen Seite immer mehr nähert. Die Furche wird allmählich so tief, dass der Axencanal der Zunge nicht mehr ringsum von der Muskelsmasse des M. accelerator linguae umgeben ist, sondern dass diese sich in zwei jederseits durch eine intermediäre Sehne verbundene Stücke trennt; in ein unteres, welches einen Halbeylinder darstellt und in ein oberes keilförmig zulaufendes. Im vordersten Theil der Zunge endlich, da wo der Axencanal anfährt, kommen beide Stücke, das obere pfriemförmig, das untere blattförmig, verdünnt wieder zusammen, bleiben aber durch eine dünne Schicht Sehnengewebe von einander getrennt. Im vorderen Theil des M. accelerator linguae fand Brücke auch den Faserverlauf wesentlich verändert, indem die Fasern immer weiter von der radiaaln Richtung abweichen und sich immer mehr der kreisförmigen Anordnung nähern, welche jedoch niemals wirklich erreicht wird.

Nachdem die beschriebenen Längsfasern, die Brücke von dem übrigen M. hyoglossus als M. longitudinalis linguae unterscheiden will, beiderseits in den Furchen des M. accelerator linguae bis zum vorderen Ende der Zunge verlaufen sind, setzen sie sich mittelbar an der Rückwand der Membrana glandulosa (der Theil der Schleimhant, der mit seiner klebrigen Absonderung zum Auftippen des Insects dient) fest, so dass sie durch ihren Zug dieselbe nach innen einstülpren können. Unmittelbar unter der Schleimhant liegt ein Antagonist dieses Muskels, bestehend aus einer Masse dünner aber noch quergestreifter Muskelfasern, welche unter und zwischen den Schleimdrüsen nach den verschiedensten Richtungen gekreuzt liegen, so zwar, dass, wenn sie sich zusammenziehen, die Einstülpung der Schleimhant nicht nur ausgeplättet, sondern dieselbe in ein convexes Polster verwandelt und zugleich der Schleim aus den Schleimdrüsen hervorgepreßt wird. Dieser Muskel setzt sich nach vorn und unten noch weiter fort als die Membrana glandulosa, und indem er sich über die Spitze der Zunge nach unten umbiegt, schlagen sich seine Fasern
nach hinten und jederseits nach aussen, so dass er hier zwei schwache Muskelbinden bildet, die sich in der bindegewebigen Umhüllung der Zunge verlieren. Wenn er sich also zusammenzieht, so wird die Membrana glandulosa zugleich nach abwärts und über die Spitze der Zunge hintüber gezogen und daher rührt die Gestalt, welche die Zunge jedesmal annimmt, wenn sie geschnellt werden soll. Nach seiner Lage nennt Brücke diesen Muskel den M. submucosus.

Der vorherbeschriebene Längsmuskel hat noch einen zweiten Antagonisten und zwar eine dünne Lage von Muskelfasern, welche an den Seiten der Zunge senkrecht von oben nach unten verlaufen, und so den Längsmuskel in der Weise überkleiden, dass, wenn sie sich contrahiren, während er erschlafft ist, sie ihn durch Druck zu verlängern suchen, während sie ihrerseits, wenn sich der Längsmuskel verkürzt und verdickt, ausgedehnt werden. Diesen Muskel nennt Brücke den Musculus lateralis linguae.

Auss der schon genannten, wird von Brücke noch ein starker Muskel erwähnt, welcher auf der oberen Seite des vorderen Theils der Zunge liegt und das Dach bildet über die Höhle, welche durch Einstülpung der Schleimhaut mittelst des Längsmuskels erzeugt wird. Seine Fasern laufen zur Hälfte von oben und links nach unten und rechts, so dass sich beide Systeme kreuzen. Da diese Muskelmasse vor auf der Zunge wie ein Polster aufliegt, hat Brücke dieselbe mit dem Namen „Pulvinar“ belegt: Wenn sich ihre Fasern contrahiren, so wird sie länger und schmäler und dient wesentlich dazu, in Gemeinschaft mit dem M. accelerator linguae bei Auftippen der Beute das durch den M. submucosus mit der Membrana glandulosa gebildete Polster zu unterstützen, so dass er dem Stosse einen gewissen Widerstand leistet. Die Membrana glandulosa ist durch nichts ausgezeichnet als durch die, ein höchst klebriges Secret absondernden mehlsackförmigen Schleimdrüsen, welche in geringen Abständen von einander auf ihrer ganzen Oberfläche gefunden werden. Querschnitte durch den Theil der Zunge, wo sich die Membrana glandulosa befinden, zeigen am schönsten die Anordnung der Fasern des M. submucosus und ihr Verhältniss zu den Drüsen. Ein Theil der Fasern läuft nämlich parallel der Oberfläche und bildet, sich zwischen den Drüsen hinwindernd, ein Maschenwerk, in dessen Löcher die Drüsen eingesenkt sind, während ein anderer Theil zwischen den Drüsen senkrecht gegen die Oberfläche verläuft und bis fast unmittelbar unter dieselbe verfolgt werden kann (Vergl. hierzu Taf. XCVI. Fig. 3 u. 4).

Als Beispiel des Zungenbaues bei den *Crassilingua* kann *Hemidactylus* gelten. Die Oberfläche der Zunge zeigt sehr deutlich zwei verschiedene Partien: ein hinteres, vor dem Kehlkopf gelegenes sehr stark pigmentirtes Feld, mit nur wenigen querer Schleimhautfalten und eine viel grössere vordere Partie, welche man auch hier die Zone der Papillen nennen kann. Dieselben sind an dem hinteren Umfange der Zunge viel grösser und höher als an der Zungenspitze und tragen an ihrer Oberfläche ebenfalls kleine
höckerige Vorsprünge oder Wärmchen zweiter Ordnung. Wie bei Lacerta scheidet sich die epitheliale Lage, das geschichtete Plattenepithel, auf jeder Papille deutlich in eine Horn- und Schleimschicht. Bis ziemlich hoch steigen die quergestreiften Muskeln in die Papillen hinauf. Drüsige Bildungen fehlen hier in der Drüse ebenfalls.

Schliesslich sei noch erwähnt, dass eine Einkerbung der Papillen, wie bei Lacerta angegeben ist, bei Phyllodactylus nicht vorkommt.

Zungenmuskeln der Crassilingua.

M. genioglossus.
Genio-hyo-glossus Sanders (Phrynosoma).

Entspringt von dem distalen Ende der hinteren Hörner des Zungenbeins; die oberflächlichen Fasern gehen nach vorn und inseriren sich an der Symphyse des Unterkiefers, die tiefen Fasern gehen in den lateralen Zungenrand über. Eine tiefe Furche scheidet jederseits den centralen Theil der Zunge von den lateralen Theilen, in welche die ebengenannten Fasern ausstrahlen; dadurch scheint das Thier drei Zungen zu haben, eine centrale, welche breit, fleischig und geschwollen ist und von einem Paar schmäler begrenzt wird. (Sanders).

M. hyo-glossus.
Hyo-glossus Sanders (Phrynosoma).

Derselbe wird zum Theil von dem vorigen bedeckt; er entspringt von dem distalen Ende des grossen Hornes des Zungenbeins, die Fasern gehen schräg nach vorn und innen und sind zum Theil mit den der andern Seite durch eine Raphe verbunden, zum Theil inseriren sie sich an dem Körper des Zungenbeins, während die übrigen Fasern in die untere Fläche des centralen Theiles der Zunge bis zu deren Spitze ausstrahlen. (Sanders). — Mivart erwähnt die Zungenmuskeln bei Iguana nicht.
Bei den Amphibiaenoiden ist die Zunge breit, platt, vorne in zwei feine Spitzen, hinten in paartige Fortsätze ausgezogen, unten durch eine Längsfalte am Boden der Mundhöhle befestigt. Die den Schlangen zukommende Scheide fehlt ihr. Ueber ihre fernere Struktur liegen bis jetzt noch keine Angaben vor.

Speicheldrüsen.

Die Lippendrüse, welche sich an der äusseren Seite des Unterkiefers herzieht, ist weniger massig als die Unterzungendrüse; sie kann aber dennoch nach Leydig schon mit freiem Auge unterschieden werden. Bequemer wird sie jedoch an Querschnitten untersucht; biebei zeigt sich, dass sie so wenig, wie die Unterzungendrüse eine einzige mit einem gemeinsamen Ausführungsgang versehene Drüse ist, sondern vielmehr die Zusammenhäufung einer grossen Anzahl kleiner Drüsen vorstellt, jede mit ihrem besonderen in einer feinen Rinne an der Innenfläche der Lippen mündenden Ausführungsgang. Obgleich auch hier die einzelne Drüse aus einer Anzahl zusammenhängender Blindschläuche, sammt Epithel besteht, so erhält das Organ doch eine eigenartige, von jener der Unterzungendrüsen verschiedene Tracht dadurch, dass die Schläuche gewunden und zusammengeschoben sind; das Bild erinnert nach Leydig damit mehr im Ganzen an traubige Drüsen.
Anguis fragilis stimmt nach Leydig mit den Eidechsen darin überein, dass eine Lippenrübe am Oberkiefer fehlt, diejenige des Unterkiefers ist nach ihm nicht nur wohl entwickelt, sondern entschieden stärker als bei den Eidechsen. Für das freie Auge erscheint sie beim Abhünten der Kinnlade in Form eines platten, weissgraunen Längswulstes, an welchem man alsdann mitteleist der Lupe die Drüsenbälge gut unterscheidet.

Ferner ist, gleichwie bei den Eidechsen, eine grosse Drüse vorhanden, die Leydig zuerst aufgefunden hat, es ist dies die Unterzungendrüse. Sie bildet für die Besichtigung mit freiem Auge einen länglichen Wulst, welcher am Boden der Mundhöhle zwischen der Zunge und dem Unterkiefer scharf vorsteht.

In einer so eben erschienenen Arbeit beschreibt Fischer (160) die Speicheldrüsen von Heloderma horridum Wiegm. Während er in der ganzen Oberkieferpartie nach einer Drüse vergebens gesucht hat, uberrasschte ihn die ganz enorme Entwicklung einer am Unterkiefer gelegenen Drüse, welche er als Unterkieferdrüse bezeichnet und die wahrscheinlich wohl der von Leydig bei den Lacertae als Unterzungendrüse beschriebenen Drüse gleichwertig ist. Dieselbe liegt (Taf. XCVII. Fig. 1 d, d'), ein fast spindelförmiger, median abgeplatterter Wulst, der distalen Fläche des Knochens hart an, und kommt sogleich zu Gesichte, wenn man von der ventralen Seite her die Haut vom Unterkiefer löst. Sie erstreckt sich fast von der Symphyse bis zur Gegend des Processus coronoidens. Die Drüse ist von Muskelfasern nicht überzogen, eine feste Fascie überzieht dieselbe und heftet sie an den Knochen. Vom zweiten Drittel ihrer Länge an wird sie durch drei Längsschnitte in vier Lappen getheilt. Bei Untersuchung der einzelnen Lappen findet sich, dass jeder wieder von unten her durch senkrechte Querschnitte in Nebenlappen getheilt ist, die demselben ein grobkammsförmiges Ansehen geben (Taf. XCVII. Fig. 2). Eine röhrenförmige Bildung der gröberen, die einzelnen Nebenläppchen zusammensetzenden Elemente konnte Fischer nicht ermitteln. An der nach aussen gelegenen (vom Unterkiefer abgewandten) Seite verläuft auf jedem dieser Lappen ein äusserst zartes, nach vorn gehendes Gefäss, diese Gefässe vereinen sich an der vorderen nicht zertheilten Partie der Drüse zu einzelnen grösseren Gängen für das Secret derselben. Mit dem Umstande, dass diese an der einen Seite der Drüse entlang laufen, hängt offenbar die erwähnte, grobkammsförmige Bildung der Lappen zusammen. Wie aus diesen Gängen sich die einzelnen Ausführungs gänge der Drüse zu-

Dagegen findet nach Fischer eine Ubereinstimmung mit den Giftdrüsen der Schlangen insofern statt, als die Ausführungsgänge der Unterkieferdrüse von Heloderma sich, nicht einfach in die Schleimhaut des Mundes öffnen, sondern an die Wurzeln der Furchenzähne führen. Hieraus geht hervor, dass ihr Secret doch nicht blass zur Vorbereitung der Ver- dauerung zu dienen, sondern zunächst direct auf das gebissene Thier zu wirken hat.

In Bezug auf Heloderma sind übrigens, wie Fischer noch anführt, zwei Punkte besonders auffallend. Zunächst, dass eine Oberkieferdrüse nicht gefunden wurde, obgleich auch die Zähne dieses Knochens, gerade wie die des Unterkiefers, an ihrer vorderen und medianen Seite eine

Crocodile.

Der vorderste und dünnste Theil der Zunge zeigt bei den meisten Crocodilen, an ihrer oberen Seite einige ziemlich tiefe Runzeln. Abgesehen aber von denselben, die von der dikken Schleimhaut der Zunge gebildet sind, lässt der Zungenrücken bei den meisten Crocodilen (namentlich auch bei Gavialis gangeticus), in seiner ganzen Ausbreitung flach und sehr schmale Furchen bemerken, die ihrer Mehrzahl nach so in einander übergehen, dass sie ein unregelmässig geformtes Netzwerk bilden und
die obere Seite der Zunge in sehr viele kleine Felder von verschiedenen Formen abtheilen.

Ausser den Mündungen der beschriebenen Schleimdrüsen findet man in ziemlich grosser Anzahl und zerstreut über den Zungenrücken, kleine und nur flache runde Vertiefungen. Einige von ihnen erscheinen als blosse Gruben auf der Ebene der Zunge, andere sind von einem schmalen, ringförmigen Wall umgeben, oder befinden sich, wie in der Mehrzahl der Fälle, auf niedrigen und abgeplatteten warzenförmigen Erhöhungen. Die letzteren sind am häufigsten auf dem hinteren Theil der Zunge nahe den
Seitenrändern derselben, wo sie nur in mässig grossen Entfernungen von einander liegen. Doch kommen sie auch an anderen Stellen des Zungenrückens vor, stehen aber an denselben gewöhnlich weit aus einander. Ihre Structur ist bis jetzt nicht näher bekannt.

Ich habe nun die schon so ausführlich von Rathke beschriebenen Zungendrüsen bei einem jungen Exemplar von Crocoddilus porosus ebenfalls studiren und seine trefflichen Angaben nur bestätigen können. Der

Zungenbeinmuskeln.

Hyoglossus: Rathke, Cuvier, Mayer.

Die paarigen Muskeln dieses Namens machen den bei weitem grössten Theil des Zungenfleisches aus. Sie entspringen sehnm und ziemlich dicht dicht vor den Mm. omo-hyoidei vom unteren Rande und der äusseren Seite der Zungenbeinhörner, begeben sich in schräger Richtung nach vorn zu einander hin, treffen am hinteren Ende der Zunge unter derselben zusammen, werden in ihrem Verlauf dahin allmählich dicker und breiter, und teilen sich nach ihrem Zusammen treffen, in mehrere Bündel, von denen sich die des einen zwischen denen des andern, mit denselben schräg sich kreuzend, so hindurch schieben, dass die des rechten in die linke und die des linken in die rechte Seitenhälfte der Zunge übergehen.

M. genio-glossus.

Genio-glossus: Cuvier, Mayer, Fischer.

Genio-hyoideus: Rathke.

Vorwärtszieher der Zunge: Meckel.

Zähne.

Die Zähne der Saurier sitzen den Knochen unmittelbar auf, entweder auf dem freien oberen Kieferrande (Acrodontes) oder im Grunde einer tiefen Kieferrinne befestigt und an die vorstehende äussere Knochenplatte des Kieferrandes von der inneren Seite angewachsen. Aber es sind nicht allein Maxillare, Praemaxillare und Unterkiefer, welche Zähne tragen, sondern sehr oft sind auch die Gaumenbeine damit versehen.

Bei Lacerta sind alle Zähne, auch die des Praemaxillare, zweispitzig, kein Zahn ist nach ihm in Wirklichkeit dreispitzig. Von den beiden Spitzen steht die eine (Taf. XCVII, Fig. 3), die kleinere, tiefer, nach vorne und aussen und ist gerade; die andere oder grössere erscheint nach hinten gerichtet und krümmt sich nach einwärts. An den Zähnen des Praemaxillare ist diese Spitze im höheren Grade hakig einwärts gekrümmt.

Offenbar man die Mundhöhle einer frischen Eidechse, so erheben sich nur die Spitzen der Zähne als eine Reihe glänzender Körper aus dem Zahnfleisch heraus. Eine genanere Betrachtung lehrt (vergl. Taf. XCVII, Fig. 4) dass das Epithelium der Mundschleimhaut den Zahn bis auf die Spitze umgreift, dann legt sich auch nach innen von den Zähnen eine Falte derselben Schleimhaut über die Zahnräthe her, welche an Schädeln, die sammt den Weichteilen getrocknet werden, wie ein wirkliches „Zahnfleisch“ weit herauf die Zahnräthe unmittelbar bedeckt. Im frischen
Zustände aber, wie die Figur zeigt, zieht eine tiefe Furchen zwischen den Zähnen und der Falte hin.

Die Zähne des Praemaxillare sind am kleinsten und wenigsten gekrümmt; im Oberkiefer und Unterkiefer stehen die ersten und hintersten an Grösse zurück, während jene, welche die Mitte der Kinnladden besetzen, die längsten sind.

Die Embryonen der Eidechsen und der Blindschleichen besitzen noch einen sehr merkwürdigen Zahn, der ihnen zur Eröffnung der Eischale dient. Zuerst von Joh. Müller (Archiv für Anat. und Physiol. 1841) im Praemaxillare bei Embryonen exotischer Schlangen und Eidechsen entdeckt, wurde dies Gebilde von Weinland (151), der es „Eizahn“ nannte, bei den einheimischen Arten von Lacerta und Anguis fragilis nachgewiesen. Taf. XCVII, Fig. 5 stellt eine Abbildung eines Eizahn von Lacerta vivipara vor. Derselbe ist um vieles grösser als die zunächst stehenden Zähne des Praemaxillare und ragt weit hervor; er sitzt genau in der Mittellinie mit einer wulstigen Abgrenzung auf einer besonderen Wölbung des Kiefers, und zwar ziemlich locker. Es scheint auch, dass er sofort ausfällt, wenn der mit ihm zu erreichende Zweck vorüber ist; denn an frei eingefangenen ganz jungen Thieren, die kurz zuvor geboren sein mussten, konnte ihn Leydig nicht finden. Was seine Form betrifft, so nimmt er im allgemeinen eine wagrechte Stellung zur Schnauze.
Anatomie.

ein und ist dabei stark gekrümmt, die concave Fläche nach oben gewendet; er hat eine breit schaufelförmige, glänzende, zugeschürzte Spitze. In seinem Innern sieht man eine weite Pulpahöhle und in der Wand die feinen Zahnanälichen.

Der Eizahn von *Anguis fragilis* ist kleiner als der der Eidechsen. Er ragt am unverletzten Thier nicht aus der Mundöhle heraus, weder mit freiem Auge noch mit der Lupe sieht man bei geschlossener Mundspalte etwas von ihm; ja selbst an der abgeschnittenen Kinnlade ist er noch durch bedeckende Weichtheile unsichtbar; wobei, wie Leydig mit-theilt, freilich erwähnt werden muss, dass die von ihm untersuchten Embryonen noch nicht zum Auskriechen reif waren. Der Zahn steht ziemlich weit nach hinten und der Zwischenkiefer bildet für ihn eine Art Scharte, aus welcher er so hervorkommt, dass er sich zuerst stark nach abwärts, dann nach oben krümmt.

Die Amphibbaenoiden und die Chamaeleone erlangen der Gaumenzähne, auch viele kionokrane Saurier besitzen keine Gaumenzähne, so z. B. nicht die *Ascalaborae*, die *Amuriae*, die *Varani* und einzelne Gattungen anderer Familien (Siehe gleich unten). Die sonst mehr oder weniger gleichmässig sich verhaltenden Zähne der Saurier differenziren sich bei einzelnen Formen in solche, welche man mit den Schneider-, Hunds- und Mahlzähnen der Säugethiere vergleichen kann. (Z. B. Agamen unter den lebenden Formen, ebenso bei *Hatteria*, doch sind diese Aehnlichkeiten mehr scheinbar als wirklich).

Wie schon angegeben kann man die Zähne der Saurier in Acrodontes und Pleurodontes unterscheiden. Bei den letzteren sind dieselben einer dicht neben den anderen mit ihren Sockeln auf der inneren Oberfläche des Processus dentalis festgewachsen. Die äussere Wand des Sockels, welche die kürzeste ist, erhebt sich unmittelbar von der oberen, scharfen Kante des Processus dentalis, während dagegen die viel längere Innenwand, die eine grosse Öffnung zum Durchtritt zeigt, fast bis zur Basis desselben herabsteigt. Die Grenze zwischen Knochen und Sockel zeichnet sich auf Sagittalschnitten mehr oder minder deutlich als eine ausgezackte Linie aus, welche von der Kante des Processus dentalis bis zu seiner Basis zu der Stelle herabläuft, wo die Innenwand des Sockels sich erhebt. Diese Linie, welche der Verwachungsgrenze von Knochen und Zahn entspricht, kann man mit Hertwig und Heincke, die ähnliche Linien an Amphibien- und Fischzähnen aufgefunden haben „Nahtlinien“ nennen. Nicht selten sieht man nicht eine, sondern mehrere solche Linien, welche einander mehr oder weniger parallel verlaufen, und also als Nahtlinien ausgefallener Zähne anzusehen sind, von deren Sockel geringe Reste noch nicht resorbirt worden sind und so zu Vergrösserung der Processus den tales beigetragen haben, wie Hertwig dies schon früher bei den Amphibien beschrieben hat. Diese Nahtlinien lassen sich am besten an Sagittalschnitten nachweisen, welche Zähnen entnommen sind, die in Lösungen
von Chromsäure entkalkt und nachher wieder Tage lang in Weingeist gehärtet sind.

Was die histologische Struktur der Zähne bei den Sauriern betrifft, so bestehen sie alle aus Dentin, Cement und Schmelz in der Art, dass die Zahnkrone aus Dentin oder Zahnbein und der Zahnsockel aus Cement besteht, während der Schmelz als ein im Allgemeinen nur dünnenes Käppchen das Dentin der Zahnkrone überzieht. Feine Schrägen durch den Zahn zeigen folgendes. Die Dentin- oder Zahnbeinröhren sind fein und äusserst zahlreich, sie entspringen wie bei den Amphibien dicht nebeneinander von der Oberfläche der Pulpahöhle und verlaufen in der homogenen Grundsubstanz bis zur Oberfläche meist in paralleler Richtung. Nach der Peripherie zu theilen sich sie stärker und bilden hier ein dichtes Netz mit einander anastomosirenden Röhren. Auch hier sieht man oft die Innenfläche des Zahnbeins mit vorspringenden Kugeln und Zapfen bedeckt und liessen sich Schichtungsstreifen im Dentin ebenso wenig als bei den Amphibien nachweisen.

Während also wie bei den Amphibien die Zahnkrone aus Dentin und Schmelz besteht, wird der Zahnsockel aus Cement zusammengesetzt. Das Cement unterscheidet sich bekanntlich vom Dentin durch den Mangel

Das Innere des Zahnes enthält eine Höhle, die Pulpaöhle, welche wie bei den Amphibien, in der Zahnspitze am engsten, sich in dem Zahnsockel beträchtlich erweitert und bei den pleurodonten Zähnen durch eine weite Öffnung der Innenwand nach aussen sich öffnet. Durch diese Öffnung treten die Blutgefässse, welche im Innern der Zahnhöhle feine Capillaren bilden.

Der oben mitgetheilte Bau der pleurodonten Zähne wiederholt sich in ähnlicher Weise bei den Acrodontes.

Die Angaben der verschiedenen Autoren, welche sich mit dem Bau der Reptilien-Zähne beschäftigt haben, weichen nicht unbedeutend von einander ab. Nach Santa Sirena (154) besteht der Zahn der Eidechsen (Lacerta agilis) aus drei Substanzen, aus dem die Hauptmasse der Zähne bildenden Zahnbein, aus dem Schmelz und aus einer die Seitenflächen des Zahnes unterhalb der Schmelzlage umgebenden Lage, welche er „falsches Cement“ nennt. Die Zahncanälchen erstrecken sich nach ihm bis zum Schmelz und falschen Cemente, wo sie schlingenförmig oder frei endigen, nie jedoch in den Schmelz einringen. An der Zahnwurzel hören, wie er angiebt, die Zahncanälchen allmählich auf und treten an deren Stelle kleine Körperchen, deren Fortsätze mit den Zahncanälchen anastomosiren. An ihrer Ursprungsstelle sind die Canälchen meist einfach, verzweigen sich jedoch bald. Der Schmelz bildet nach ihm eine die Kaufläche des Zahnes bedeckende Lage, welche an den Seitenflächen bis zum oberen Drittel der Zähne reicht, wo sie allmählich sich verliert, manchmal auch scheinbar mit dem falschen Cement sich verbindet. Das falsche rudimentäre Cement ist nach Santa Sirena eine die Seitenflächen des Zahnes bekleidende Lage, welche vom Schmelz an, bis etwas unter die Befestigung des Zahnes an den Kieferknochen reicht, hier auch die grösste Dicke zeigt und einen Durchmesser von 0,009—0,012 mm hat. Wo diese falsche Cementlage an das Zahnbein anstösst, ist dieselbe nicht scharf begrenzt, auch sieht man hie und da die Zahncanälchen mehr weniger weit in dieselbe eintreten, nie jedoch sie ganz durchsetzen. Der Structur nach soll diese falsche Cementlage ganz homogen sein, jedoch eine bedeutende Menge kleiner, dunkler Flecke zeigen. Was diese Flecke vorstellen, giebt der Verfasser nicht weiter an und es ist mir auch nicht ganz klar, was er unter dieser falschen Cementlage versteht, besonders indem er weiter sagt, dass bei Euprepes multicarinatus, Amphibiaena fuligiosa, Anguis fragilis, Platydactylus verus, dieses falsche Cement vollständig fehlt. Santa Sirena beschreibt auch von Lacerta agilis das Vorkommen eines Schmelzoberhäutchen; dasselbe bildet hier eine amorphe
Lage von mehr weniger dunkler Farbe und ungefähr 0,0025 mm Dicke. Bei *Anguis fragilis*, wo der Schmelz sehr tief nach unten reicht, fehlt, wie er angiebt, dasselbe wahrscheinlich.

Die Zahnpulpa besteht nach seinen Angaben aus kleinen mit granulärem Inhalte und einem Kern versehenen Zellen und aus einigen Blutgefässen. Die an der Peripherie der Pulpa gelegenen Zellen (Odontoblasten) sind cylindrisch oder gestreckt spindelförmig und stehen durch Fortsätze mit den Zahnkanälen in Verbindung, wogegen die im Innern gelegenen Zellen oval, leicht abgeplattet und ohne Fortsätze sind. Der Durchmesser der grösseren Zellen beträgt in der Länge 0,009 mm bei 0,004 mm Breite. Die Gänge bilden in der Zahnspindel ein kleinmaschiges, manchmal bis zu den Odontoblasten sichtbares Netz. Wie Leydig, so giebt auch Santa Sirena an, dass beim lebenden Thiere die Zähne mehr weniger von Epithelzellen umgeben ja, manchmal sogar gänzlich von denselben bedeckt sind, wie dies oft an kleineren Zähnen wahrzunehmen ist.

Nach Owen's sehr eingehenden Untersuchungen bestehen die Zähne aller Saurier aus den drei auch von ihm für die Amphibien beschriebenen Bestandtheilen, Cement, Email und Dentin. In dem Cement kommen nach ihm, wenn auch nicht viele, doch bestimmt Knochenteilchen vor.

Dagegen bestehen nach Tomes (156) die Zähne nur aus zwei Geweben, nämlich aus Dentin und Schmelz. Das dritte Zahnmaterial, das Cement, hat er an den Zähnen der untersuchten Reptilien (*Anguis*, *Lacerta*) vermisst und betrachtet er dasselbe als nicht nothwendig zu jedem Zahn gehört.

Die Entwicklung der Ersatzzähne habe ich für die Pleurodonten bei *Hemidactylus* etwas genauer studirt. Im Allgemeinen gleicht dieselbe sehr demselben Prozess bei den Amphibien, bei welchen sie von Hertwig in so trefflicher Weise studirt ist. Die Wand, welche die Zahnanlage trägt und die schützende Schleimhautscheide bilden auch hier, wie bei den Amphibien ein Ganzes. Dort, wo die Epidermis an der Innenseite der entwickelten Zähne in die Tiefe dringt, um dieselbe mit einer Scheide zu umgeben, senkt sich weiter nach einwärts in das Schleimhautgewebe ein Epithelialstrang, der sich an der Innenseite der Zähne, soweit diese reichen, kontinuierlich hingeröckt und den man, wie Hertwig bei den Amphibien, als „Ersatzleiste“ bezeichnen kann, indem die jüngeren Ersatzähnchen an diesem Strang ihren Ursprung nehmen. An der Ersatzleiste lassen sich die beiderlei Zellenarten, welche man in der Epidermis unterscheidet, recht deutlich wieder finden. Man kann nämlich an ihr eine äussere und eine innere Schicht unterscheiden (Taf. XCVIII. Fig. 1. e); die erste besteht aus einer Lage kleiner, cylindrischer Zellen, in einfacher Schicht angeordnet, dieselbe geht unmittelbar in die untere cylindrische Zellenlage des Stratum Malpighianum des Epithel der Mundschleimhaut über. Die innere, eine Fortsetzung der Hornschicht des Mundepithels besteht aus stark abgeplatteten, zuweilen mehr oder weniger
Anatomie.

spindelförmigen Zellen, die in zwei, höchstens drei Reihen neben einander gruppiert liegen. Nach der Peripherie ist die Ersatzleiste nur sehr dünn, während sie dagegen centralwärts nicht unbedeutend anschwillt. In diesem angeschwollenen Theil bleibt die Cylinderzellenschicht in einfacher Lage fortbestehen, während dagegen die innerlich gelegenen abgeplatteten Zellen bedeutend an Zahl zunehmen. Eine bald mehr, bald weniger deutliche Basalmembran grenzt die Ersatzleiste vom darunterliegenden Bindegewebe ab.

grannlirt (vergl. Taf. XCVIII. Fig. 1 und 2). Nach der Peripherie zu ver-
längern sich diese Zellen, die man als die Schicht der Odontoblasten be-
zeichen kann, in äusserst blasse, vollkommen homogene Fortsätze (S. die
angegebene Figur), die genau so breit sind wie der peripherische Rand der
Osteoblasten. Diese Fortsätze verlaufen einander vollkommen parallel und
haben eine Breite von 0,0032—0,0038 Millim. So zeigt sich aber das Dentin
nur in den jüngsten Zahnanlagen, denn bei etwas älteren Zahnanlagen geht
dies so überaus prachtvolle Bild bald verloren und in dem Dentinkäppchen
bemerkt man dann eine sehr grosse Anzahl feiner aber einander immer
noch parallel verlaufender Fasern. Durch Wucherung der im Papillen-
grund gelegenen Zellen wird das Dentinkäppchen weiter in die Höhe
gehoben und nimmt auch Hand in Hand damit fortwährend an Grösse
zu. Aber gleichzeitig mit dem Wachsthum der papille vergrössert sich
auch die sie bekleidende Epithelschicht, welche von jetzt an wie bei
den Amphibien nur über der Spitze der Zahnkrone als Schmelzmembran
bezeichnet werden kann, im unteren Theile jedoch mit dem indifferenten
Namen einer „Epithelscheide“ bezeichnet werden muss, während die Rand-
zellen oder das äussere Epithel allmählich in das Schmelzoberhautchen
übergiebt. Am spätesten entwickelt sich der Zahnsäckel und zwar eben-
falls in ähnlicher Weise wie bei den Amphibien, indem sich an der inneren
Seite der Epithelscheide eine dünnse Lage einer homogenen Substanz ent-
vwickelt, welche unter der Zahnkrone dicker, weiter nach abwärts sich
membranartig verdünnt und die Anlage des Cements darstellt. Erst später
setzen sich in der in Entwicklung begriffenen Grundsubstanz des Zahnsäcke
als Kalksalze ab, doch habe ich über diesen Process keine weiteren
Untersuchungen angestellt (Vergl. auch Taf. C. Fig. 2).

Mit der eben beschriebenen Entwicklung der drei Zahnsubstanzen,
des Cements, des Schmelzes und des Dentins, gehen Lageveränderungen
Hand in Hand, welche die sich vergrössernde Zahnanlage erleidet. Die
jüngsten Zahnzähne liegen nämlich an der Kante der Ersatzleiste, mit
ihrer Grösse zunahme rücken die mehr entwickelten um so mehr nach
außen, je grösser sie werden, gleichzeitig werden sie, wie bei den
Amphibien, tiefer und allseitiger in das Schleimhautgewebe eingebettet.
Schliesslich schnürt sich der wachsende Zahn von der Ersatzleiste ab,
wobei ihm ein Theil der Zellen derselben folgt und so wie bei seiner
Anlage eine Hülle um ihn bildet. Während die älteren Anlagen sich
weiter nach aussen von der Ersatzleiste entfernen, entstehen sofort am
Grunde derselben neue Zahnzähne, aus welchen sich wieder auf ähn-
liche Weise neue Zähne entwickeln, so dass man gewöhnlich neben dem
functionirenden Zahn zwei neuen Zähnen in verschiedenen Entwickelungs-
ständen begegnet (vergl. Taf. XCVIII. Fig. 3). Über die Resorption der
Zähne habe ich keine Untersuchungen angestellt.

Ueber die Entwicklung der Reservezähne verdanken wir Santa
Sirena folgendes. Nach ihm geht die Bildung derselben in doppelter
Weise vor sich, indem die Schmelzorgane derselben einmal selbständig

an der Zahnleiste an, die wir von jetzt an als Reserveleiste bezeichnen können.

Ueber die Anlage der Zähne bei den acrodonten Sauriern habe ich keine Untersuchungen anstellen können.

Santa Sirena giebt an, dass er bei der ersten Bildung der Zähne bei den Reptilien auch eine seichte Furche am Kieferrande fand. Das Epithel am Grunde dieser Furche ist es, welches durch seine Wucherung die Schmelzkeime liefert.

Mit der Längezunahme des künftigen Zahnes flacht sich die Kieferfurche allmäßliche ab, um zuletzt zu verschwinden. — Schon Tomes (156) hat mitgetheilt, dass auch bei den Reptilien in allen Fällen ein Theil des Mundhöhlenepithels in das unterliegendeBindegewebe wuchert und dass am blinden Ende desselben die Zahnkeime sich bilden. Nach seinen Beobachtungen bestehen die Zahnkeime constant aus zwei Theilen, nämlich aus der Dentinpapille und dem Schmelzorgan. Wie schon erwähnt, bestehen die Zähne nach Tomes nur aus zwei Geweben, aus Zahnbein und aus Schmelz. Das dritte Zahnsgewebe, das Cement hat er an den Zähnen der von ihm untersuchten Saurier vermisst, er betrachtet dasselbe also nicht nothwendig zu jedem Zahn gehörig.

Wenn man die Zähne der Salamander und jene der Eidechsen bezüglich ihrer Befestigung vergleicht, so ist der Unterschied nach Leydig ein nicht geringer und wie ihm scheint der bleibende Ausdruck dessen, was die Abweichungen in der Entwicklung zeigen. Dort bei
Anatomie.

Die meisten Scincoiden haben dünne, scharfe Zähne, die wahrscheinlich mehr für Insectennahrung eingerichtet sind. Die geraden, cylindrischen, an der Spitze etwas zusammengedrückten Zähne von Tropidophorus kommen nur in den Kiefern vor; bei Scincus findet man auch jederseits vier bis fünf stumpfe Gaumenzähne. Bei der Gattung Sphenops und Diploglossus fehlen die Gaumenzähne. Sehr zahlreich sind die Kieferzähne bei

Unter den pleuroodonten Iguanen fehlen den Gattungen Hyperanodon, Tropicolepis, Phrynosoma, Callisaurus Gaumenzähne; die Kieferzähne zeichnen sich bei vielen durch ihre gezähnte Krone aus.

Die Zähne der fossilen Gattung Iguanodon, obgleich deren von Iguana sehr ähnlich, unterscheiden sich jedoch von diesen durch die grössere Diene der Krone, durch ihre mehr complicirte äussere Oberfläche, besonders aber durch ihre innere Structur, durch welche Iguanodon von jedem anderen bekannten Reptil abweicht; seinen abgekauten Zähnen nach zu urtheilen, war das Thier ein Pflanzenfresser. Diese Zähne haben eine spatelförmige Gestalt: die mit Cement bedeckte Wurzel verengt sich zu einem rundlichen Stiele, auf welchem sich die breite, schmelz­faltige Krone erhebt, die auf ihrer hinteren und vorderen Seite ziemlich grobe Randkerben zeigt. Die Oberkieferzähne biegen ihre Kronen spitze nach innen, die des Unterkiefers nach aussen; oben ist aussen die Schmelzlage dicker und rundzelliger, unten dagegen innen, bei beiden also auf der convexen Seite dicker, als auf der concaven. Beim Kauen steht daher die dicke Schmelzschicht kantig hervor, und wirkt wie eine Schneide, weil die dünne Schmelzschicht schneller abgenutzt wird. Die Kauflache ist ziemlich breit und geht wie bei Wiederküvern von aussen unten schief nach innen oben. Die Zähne halten in Bezug auf ihre Befestigung im Kiefer die Mitte zwischen Pleuro- und Thecodonten, sie sind blos aussen durch eine hohe Kieferwand geschützt, an die sie aber nicht anwachsen, innen werden sie unmittelbar vom Fleisch begrenzt, doch gehen vom Aussenrande des Kiefers Querseheidewände ab, welche besondere innen offene Alveolarräume für die einzelnen Zähne absondern. Die Schmelzfalten, deren man auf der convexen Seite 2—3 findet, dringen nicht tief in die Zahnsubstanz ein. Indem die Krone sehr lang und breit wird, bietet der angekante Zahn eine bedeutende Mahlfläche dar und wahrscheinlich hat jede Kieferhälfte 20 solcher Zähne enthalten.

Bei der fossilen Gattung Hylaeosauras sind die Zähne schaufelförmig, an der Wurzel stark eingeschnürt, oben erhalten sie durch das Abkauen eine Querkante, von welcher die Kaufläche schief nach vorn und hinten abfällt.

Unter den Lacertiden aus dem Schiefer von Solnhofen haben die Zähne der Gattung Geosaurus zwar grosse Ähnlichkeit mit denen des Megalosaurus, denn sie sind comprimirt und an den Kanten gekeilt, aber an ihrer Wurzel verdicken sie sich bedeutend, sind ohne Keimhöhle, waren also nicht eingekeilt, sondern mit der oberen Kante des Kiefers innig verwachsen. Jede Kieferhälftte enthält 17 Zähne. Bei Acrosaurus waren die Zähne eigenthümlich spitzig, wie bei gewissen Acrodon-Arten unter den Fischen. —

Die Monitoridace, die durch ihren langgestreckten grossen Körper sich am meisten den Crocodilen nähern, zeigen ihre Verwandtschaft mit dieser Gruppe nicht allein durch das Fehlen der Gaumenzähne, sondern auch durch den Besitz zahlreicher Zahnkeime, welche gleichzeitig mit den bestehenden und functionirenden Zähnen vorhanden sind. Ausserdem zeigen einige Formen von Monitoridace eine Zahnform, die sich am meisten der des Megalosaurus und anderer ausgestorbenen Rieseneidechsen naht. Die Zähne sind gewöhnlich scharfspitzig, die Ränder oft gezähmt. Am eigenthümlichsten sind wohl die Zähne von Heloderma horridum, über welche wir mehrere Angaben besitzen, nämlich von Troschel (150), Kaup (153), Gervais (155), und Bocourt (Mission scientifique an Mexique et dans l'amerique centrale. Rech. zool. P. III. Etudes sur les Reptiles et Batraciens par A. Duméry et M. Bocourt 1870—1881). Sehr eingehend sind dieselben vom letztgenannten Verfasser geschildert. Im Praemaxillare kommen jederseits 3, im Maxillare superior 7, und im Unterkiefer jederseits 8 Zähne vor. Die mittleren sind die längsten, alle sind fein zugespitzt, nach hinten leicht gebogen, die vordere innere Fläche ist gefurcht und die gegenüberliegende oder hintere, äussere Fläche zeigt an ihrer Basis eine andere Fascienbildung, die äusserst fein endigt. Die Zähne von Heloderma horridum haben also, was ihre Structur betrifft, einige Ähnlichkeit mit den Giftzähnen der
Giftschlangen, doch scheint diese Ähnlichkeit mehr auf dem äusseren Bau als auf der inneren Struktur zu beruhen.

Die Zähne der Ichthyosauri sind kegelförmig oben mit schneidigen Kanten, doch sollen diese Kanten bei manchen Species sich gar nicht vorfinden. Man kann daran drei Regionen mit blossem Auge ziemlich bestimmt unterscheiden: oben die Kronenspitze mit der Schmelzlage, der Schmelz zeigt keine eigentliche Streifung, sondern nur kleine Unebenheiten, sein Glanz ist matt, doch der stärkste am ganzen Zahn; in der Mitte schneidet der Cementschichten mit gut erkennbarer Linie gegen den Schmelz ab, sich unter ihm hinziehend, so dass also der Schmelz unter den Cementringe noch eine Zeit lang fortzugehen scheint, unter das Wurzelende mit runzeligen Längsfurchen und zelligem Zwischengewebe. Am Cementringe schnürt sich der Zahn gern ein wenig ein, das Wurzelende verdickt sich dagegen etwas, unten ist es nicht zerrissen, sondern gut abgeschlossen, ein Zeichen, dass der Zahn mit den Kieferknochen nicht verwuchse, die Zähne vielmehr frei im Zahnfleische standen, aber in einer tiefen Rinne der Kieferknochen. Sie fielen daher nach dem Tode des Thieres leicht aus, und wurden zerstreut; das erschwert das Zählen sehr. Am Wurzelende findet sich öfter eine halbeiförmige Grube, an diesem Punkte entwickelte sich der neue Ersatzzahn, mit dessen Wachsthum das Loch grösser ward, bis endlich der junge den alten gänzlich hinausschob. In der Mitte des Zahnes steckt eine kegelörfmige Keimhöhle, sie beginnt mit ihrer Spitze ein wenig oberhalb des Cementringes, erweitert sich dann schnell nach unten, hört aber wieder schnell auf, so dass ein grosses Stück des Wurzelendes compact bleibt. Auf einem Querschiff gewahrt man unterhalb der Schmelzschicht noch eine leichtere Lage, ehe die Zahnsubstanzen kommt. Schneidet man den Zahn an der Unterregion des Cementringes durch, wo die Keimhöhle bereits sehr breit ist, so sieht man unterhalb der Cementschicht eine wellig eingebogene Doppellinie, welche Owen zuerst entdeckt und für Cementfalten erklärt hat. Dagegen gibt Quenstedt (Handbuch der Petrefaktenkunde) an, dass diese wellig eingebogene Doppellinie ihm vielmehr die Schmelzschicht zu sein scheint, welche unter dem Cementringe fortsetzt, und an ihrem Untenende sich ein wenig faltig einschlägt, ehe sie aufhört.
Beidi den *Plesiosauriern* sind die Zähne fein, schlank und gestreift und stehen in besonderen Alveolen; dasselbe gilt von den so höchst eigenthümlichen *Pterosauriern*.

Die Entwicklung der Zähne bei den Crocodilen in vollkommen ähnlicher Weise vor sich geht, habe ich den von Kölliker für die Säugethiere eingeführten Namen „Schmelzkeim“ gewählt.

Anatomie.

p. 347) dies für die Säugethiere beschreibt. Dies sternförmige Epithelgewebe, die Gallerte des Schmelzorganes, die Schmelzpulpa, wie Waldoyer es nennt, hat auch hier nur eine transitorische, mechanische Bedeutung, indem es gewissermassen den Platz für den wachsenden Zahn offen hält. Denn sehr bald atrophirt dies so eigenthümliche epitheliale Gallertgewebe wieder vollkommen, und zwar schon dann, wenn die Schmelzbildung kaum angefangen scheint. Ueber letztgenannte habe ich keine weiteren Untersuchungen angestellt:

Was die Entwicklung des Dentins betrifft, so gleicht dieselbe fast in jeder Beziehung der bei den Sauriern, denn auch hier ist der Dentinkeim nichts anderes als eine besondere, sehr zellenreiche und gefässreiche Abtheilung des Schleimgewebes, nur nehmen die an der Peripherie gelegenen Zellen, die Schicht der Odontoblasten nicht eine solche, ausgeprägt cylindrische Gestalt an wie bei den Sauriern der Fall ist. So bald der Dentinkeim eine gewisse Grösse erreicht hat, bemerkt man auf der äusseren Fläche der Kieferwülste schon die Stellen, wo alsbald die Zähne nach aussen durchbrechen werden, man findet hier nämlich ziemlich grosse papillenförmige Vorsprünge und jeder dieser Vorsprünge entspricht einer Zahnanlage (vergl. Taf. C. Fig. 1). Von allen Zahn- geweben entwickelt sich das Cement am spätesten. Dasselbe bildet, wie wir gesehen haben, einen dünnen Ueberzug der Zahnwurzel und der histologische Vorgang ist hier ganz derselbe wie bei der Ossification aus bindegewebiger Grundlage. Es ist das unter dem Schmelzkeim gelegene Bindegewebe, welches die Grundlage für das Cement liefert.

Langt noch bevor das Thier ausgeschlüpft ist, bildet sich der erste Ersatzzahn. Das Material fehlte mir, um die Bildungsgeschichte desselben zu studiren. Es fragt sich nämlich, ob sich dieser erste Ersatzzahn an der Zahnleiste oder aus dem Schmelzorgan des ersten Zahnes bildet. An der lateralen Seite des ersten Ersatzzahnes lässt sich nämlich noch eine Spur der ursprünglichen Zahnleiste nachweisen (vergl. Taf. C. Fig. 1 e). Auch ist die Lage des ersten Ersatzzahnes in Bezug auf den ersten, an der Zahnleiste gebildeten Zahn eine etwas andere als die Lage der späteren Ersatzzähne zu den fungirenden. Der erste Ersatzzahn liegt nämlich an der medialen Seite des erstgebildeten Zahnes, die spättern Ersatzzähne liegen nicht medial, sondern unmittelbar hinter den fungirenden Zähnen. So viel ist indessen sicher, dass bei sehr jungen Thieren, bei welchen die Zähne noch nicht nach aussen durchgebrochen sind, die Zahnleiste oder der ursprüngliche Schmelzkeim schon verschwunden ist. Die späteren Ersatzzähne bilden sich dann auch wie bei Säugethiere mit wechselnden Zähnen aus der Anlage des Schmelzorganes der vorigen Ersatzzähne. Dabei ist dann der Entwicklungsgang vollkommen derselbe wie bei der Anlage des ersten Zahnes. Bekanntlich findet man bei den Crocodilen, dass unter den fungirenden Zähnen die neuen Ersatzzähne liegen, welche von den älteren scheidenartig bedeckt werden. Es scheinen immer nur zwei Zähne unter einander zu liegen, der fungirende
und ein Ersatzzahn; am schönsten kann man sich von diesem Verhältniss an feinen Querschnitten durch einen in Chromsäure entkalkten Kiefer überzeugen (vergl. Taf. XCIX. Fig. 3). Durch welche Momente die Lageveränderung der jüngsten Ersatzzähne zu Stande kommt, die wie wir gesehen haben erst vor und später unter den fungirenden Zähnen liegen, ist mir völlig unbekannt geblieben.

Die Magendrüsen sind in überaus reichlicher Zahl vorhanden; in jedem durch den Magen geführten Querschnitt begegnet man denselben, der einen unmittelbar neben der anderen. Sie zeigen durch die ganze Magenschleimhaut einen ungefähr gleichförmigen Bau, der einzige Unterschied, der sich an ihnen beobachten lässt, ist der, dass sowohl die Drüsesenschläuche als die Ausführungsgänge (die sogenannten Drüsenhälse) nach dem Schlunde hin kürzer, nach dem Pylorus zu dagegen länger werden (Lacerta muralis).

Die Ringfaserschicht des Magens ist sehr stark, die Längsfaserschicht dagegen nur äusserst schwach entwickelt. Um die Zeit des
Anatomie.

Winterschlafes, wenn der Magen leer ist, liegt die Schleimhaut des Magens so dicht zusammengefasst, dass dadurch die Lichtung des Magenrohres fast vollkommen verschwindet (Taf. XCIX. Fig. 4). Über den feineren Bau des Magens bei andern Saurier-Arten liegen bis jetzt noch keine Angaben vor.

Beider Blindschleiche ist die beträchtliche Länge der Speiseröhre schlangenähnlich, auch hier steht der Magen ganz gerade. Bei Phyllodactylus europaeus folgt auf den kurzen Oesophagus eine ungleichmässig spindelförmige Aufreibung des Darmrohres, die den Magen darstellt und sich über zwei Drittheile des ganzen Rumpfes erstreckt.

Der Anfangsteil des Dünndarms (Mitteldarms) wird gewöhnlich durch eine Klappe deutlich vom Magen abgesetzt. Die Faltenbildung der Schleimhaut setzt sich (bei Lacerta) im ganzen Dünndarm in die Länge fort. Haben sich die Wände des Darmes stark zusammengezogen, so springen die Falten der Schleimhaut sehr stark hervor. Drüsen scheinen im ganzen Dünndarm — wenigstens bei Lacerta — zu fehlen. Über den höchst merkwürdigen Ban des Dünndarmepithelium kann auf das, was darüber bei den Amphibien und Schildkröten gesagt ist, verwiesen werden.

Da wo der Enddarm in die Cloake mündet, erhebt sich nach Leydig bei Lacerta der Schliessmuskel (Sphincter) zu einer Ringfalte, welche so weit nach einwärts und nach vorne sich wendet, dass sie bei seitlicher Eröffnung des Enddarmes wie eine weite, faltige, quer abgestutzte Papille erscheint. Sie ist bei den verschiedenen Lacerta-Arten nach Leydig's Angabe verschieden hoch, bei L. vieipara niedriger als bei L. agilis.

Abgesehen vom Pylorustheil des Magens erscheint dieses Organ so wohl bei Embryonen, als auch beim ausgewachsenen Thiere als ein von zwei Seiten etwas abgeplatteter Sack, der eine solche Lage hat, dass seine eine platte Seite nach unten und etwas links, die andere nach oben und etwas rechts gekehrt ist. Der Oesophagus tritt ein wenig links von der Mittelebene des Körpers in ihn über, weil er sich im Verlauf durch die Brustöhle etwas zur linken Seite hingewendet hat.

Ebenso wenig, wie bei den jüngsten Embryonen, findet man bei weiter entwickelten Thieren den Magen in solchem Grade über den Oeso-
phagus linkerseits ausgeweitet, dass er dort einen besonderen Blindsack bildet, er ist vielmehr an seiner linken Seite immer nur sehr mässig gewölbt oder ausgebuchtet. Dagegen weitet er sich rechtshin immer stärker und zwar in der Art aus, dass er nach Ablauf des Fruchtlebens rechts von der Cardia und dem Pylorus einen weiten und mehr oder weniger tiefen Blindsack bemerken lässt. Bei älteren Thieren erlangt er eine solche Form, dass er im ausgedehnten Zustande der Quere nach am weitesten erscheint und ein unregelmässiges Oval darstellt, das sich entweder der Kugelform annähert oder ziemlich langgestreckt ist. Die erste
Modification der ovalen Form zeigt der Magen bei den Crocodilen im engeren Sinne des Wortes, unter denen er besonders bei Crocodilus biporcatus einen Uebergang zur Kugelform bemerken lässt. Die letztere Modification kommt bei den Alligatoren vor, unter denen Rathke ihn bei Alligator selenops und punctatus am meisten länglich-oval gefunden hat. Im letzteren Falle ist er mit seinem breiteren Ende nach der linken Seite und etwas nach hinten gerichtet; wenn er aber eine rundlich ovale Form angenommen hat, so ist er mit seinem schmälern Ende entweder gerade rechts hin, oder wohl selbst nach rechts und vorn gerichtet. Die Cardia befindet sich jedenfalls sehr nahe dem breiteren Ende des Magens, das in natürlicher Lage die linke Seite desselben bildet. Erst gegen das Ende des Fruchtlebens beginnt sich an dem Magen eine Furche zu bilden, die sich ringförmig um ihn zieht, schräg von der Grundfläche des Pförtnertheils, der sich rechts von der Cardia an der vorderen Seite des Magens befindet, nach hinten und etwas rechthin verläuft und den Magen in eine linke grössere und rechte kleinere Hälfte theilt.

Die grössere Abtheilung des Magens hat in ihrem ausgebildeten Zustande eine im Vergleich zu ihrem Umfang ungefarb so dicke Wandung wie der Muskelmagen eines Adlers oder Falken. Die zwei aponeurotischen Scheiben, die sich an der oberen und der unteren Seite derselben befinden, bilden sich schon während des Eilebens vollständig aus. In der Regel haben sie eine runde Form; bei Crocodilus biporcatus aber nähern sie sich der Form einer Raute. Von ihnen gehen die Faserbündel der äusseren von den beiden Muskelschichten aus, die an der grösseren Abtheilung des Magens der Crocodile vorkommen, und von denen die eine die andere völlig verdeckt. Die innere oder tiefere von diesen Schichten hat nur eine sehr geringe Dicke und besteht aus Faserbündeln, die aus der Gegend der Cardia nach hinten zu dem Grunde des Magens gehen und an den beiden Stellen des Magens, an welchen sich die Sehnenscheiben befinden, so aus einander gewichen sind, dass der mittlere grössere Theil einer solchen Scheibe unmittelbar auf dem submucösen Bindegewebe ruht. Die andere oder oberflächliche Schicht von Muskelfasern ist um vieles dicker als jene erstere, doch im Verhältniss zu dem Umfang des ganzen Magens ungefarb nur ebenso dick, wie bei vielen von denjenigen Vögeln, welche sich einzig von thierischer Kost
ernähren. Ihre Faserbündel haben einen solchen Verlauf, dass sie von den erwähnten Sehnenscheiben strahlenförmig auszugehen scheinen.

Die Schleimhaut des Magens erlangt nach Rathke in der Hauptabtheilung dieses Organes eine ziemlich grosse Dicke, wenngleich eine etwas weniger grosse, als die Muskelhaut. Die Schleimhautfläche ist durch nahe bei einander stehende Hügelchen, die mit dem blossen Auge selbst bei grösseren Crocodilen einzeln kaum zu unterscheiden sind, sammtartig rauh. Diese Hügelchen, von denen jedes die Mündung einer Pepsindrüse enthält, stehen bis 50 und etwas darüber in Gruppen beisammen und sind durch schwache linienförmige und netzartig vereinigte Zwischenräume von einander geschieden. Im taschenförmigen Anhang des Magens oder dem Nebenmagen ist die Schleimhaut, wie die Muskelschicht dünner, als in der Hauptabtheilung, hat aber an ihrer inneren Fläche ein ähnliches Aussehen, wie in jener. Gleichfalls enthält auch sie nach Rathke in nahe bei einander liegende Gruppen geordnete Drüsenbälge, die Gruppen sind aber kleiner und die Drüsenbälge sind weiter und kürzer als die der anderen Abtheilung des Magens, mit denen sie doch nach Rathke in der Beschaffenheit ihrer Wandung eine grosse Ähnlichkeit haben.

Der Darm ist bei jungen Embryonen im Verhältniss zur Länge so wohl der Rumpföhle, als auch des ganzen Körpers noch sehr kurz; denn seine Länge beträgt im Ganzen kaum noch einmal so viel, als die der Rumpföhle. Auch ist er dann noch nicht in einen Mittel- (Drüsen-) und End- (Dick-)darm geschieden, sondern läuft gegen sein Ende nur wenig und ganz allmählich erweitert aus. Während im weiteren Verlauf des embryonalen Lebens der Darm immer mehr und sehr bedeutend an Länge zunimmt, verlängert sich auch erheblich die Schlinge, welche die Bauchscheidendrüse einschliesst, krümmt sich bei den verschiedenen Arten der Crocodile mehr oder weniger zusammen und nimmt überhaupt eine zu-
sammengesetztere Form an. Noch weit stärker aber verlängern sich die beiden Schenkel der zweiten und dritten Schlinge, welche aus dem Nabel hervorgedrungen ist und bilden in Folge davon ein Packet von mehreren Windungen und kleinen Schlingen, das aus dem grössten Theil des Dünndarms besteht.

Derjenige Theil des Dünndarms, welcher sich vom Magen bis zu der Ausmündung der Gallenwege erstreckt, besteht bei jüngeren Embryonen in dem vordersten Theil der kleineren oder ersten Darmschlingen, in der die Bauchspeicheldrüse ihre Lage hat. Im weiteren Verlauf des Ei- lebens aber nimmt dieser Theil des Darmes, indem er sich stärker verlängert, bei den Alligatoren eine solche Krümmung an, dass er für sich allein eine besondere obgleich bei den verschiedenen Arten dieser Thiere verschiedentlich grosse einfache Schlinge bildet. Am kleinsten fand Rathke dieselbe bei Alligator palpebrosus. Weit stärker als bei den Alligatoren verlängert sich der angeführte Theil des Darmes bei den eigentlichen Crocodilen und bildet bei ihnen zwei Schlingen von verschiedener Grösse, von denen die kleinere theils neben, theils in der grösseren liegt, und zwischen denen sich die Bauchspeicheldrüse befindet.

Die Wandung der ersten und der nachfolgenden Schlingen des Dünndarms, die zusammen ungefähr ein Viertel von der Länge desselben ausmachen, besitzt eine nur mässige Dicke, die der übrigen oder derjenigen Schlingen des Dünndarms aber, welche von dem längeren und engeren hinteren Theil desselben gebildet werden, ist ungefähr noch einmal so dick.

Die Schleimhaut des Dünndarms bildet bei Alligator lucius in seinem vordersten Theil ein mässig weitmaschiges Netzwerk von dünnen, aber ziemlich hohen Falten, in dessen Maschen zartere Falten vorkommen und ebenfalls netzartig verbunden sind. Ungefähr auf der Mitte des Dünndarmes gehen dann die Falten des Netzwerkes erster Ordnung ganz allmählich in niedrigere Längsfalten über, die sich auf die Dickdarmklappe erstrecken und einen sehr schwach zickzackförmigen Verlauf haben, indessen zwischen ihnen das Netzwerk zweiter Ordnung immer zarter wird, bis seine nur von dünnen und sehr niedrigen Falten umschlossene Maschenräume das Aussehen kleiner Einstiche in die Schleimhaut gewinnen. Bei anderen Crocodilen bietet die Schleimhaut im Anfang des Dünndarms zwar auch ein doppeltes Netzwerk, ein weitmaschiges und nur in diesem gelegenes engmaschiges dar; bei ihnen aber verhalten sich daselbst die Falten des Netzwerkes erster Ordnung dergestalt, dass viele von ihnen mehrere neben einander von vorn nach hinten verlaufende und stark eingeknickte oder zickzackförmige Längsfalten zusammensetzen, deren jede an je einem ihrer Winkel durch eine weniger hohe, etwas dünnere und schräge gerichtete Verbindungs falte mit einer ihr zunächst benachbarten vereinigt ist. Das ist nach Rathke der Fall bei Crocodylus acutus, Alligator palpebrosus und Alligator punctulatus.

Weiterhin werden dann die zickzackförmig verlaufenden Längsfalten immer freier, indem ihre Verbindungs falten je weiter nach hinten um so
niedriger werden und zuletzt gewöhnlich ganz verschwinden. Das Netzwerk zweiter Ordnung erhält sich meistens bis an das Ende des Dünn darmes, wird aber nach hinten immer zarter. Eine Abweichung von dieser Regel fand Rathke bei Alligator palpebratus. Hier verschwinden die Längsfalten in ziemlich grosser Entfernung von Dickdarme vollständig, auch wird das Netzwerk zwischen ihnen zuletzt ganz undeutlich, worauf im hintersten Theil des Dünn darmes die Schleimhaut eine ebene Fläche darbietet.

Die innere Fläche des End- oder Dickdarms bietet bis zum Ende ein sehr engmaschiges Netzwerk dar, das von sehr niedriger aber ziemlich, zum Theil selbst erheblich breiten leistenartiger Hervorragungen ihrer Substanz gebildet wird, und dessen Maschenräume nur als sehr kleine Gruben oder feine Einstiche erscheinen. Im Ganzen gewährt sie daher einen ähnlichen Anblick, wie die Oberfläche des Kalkgerüstes der Milleporen (Rathke).

Länge von den Magensaftdrüsen, sondern auch durch ihren Inhalt, indem sie mit einem Epithelium ausgelaufen sind, welches die direkte Fortsetzung des Epithels der Magenoberfläche ist. Das Schleimhautgewebe des Magens ist nur spärlich entwickelt und zieht am Grunde der Drüsen dahin. In ganz regelmäßigen Abständen schickt es Septa zwischen die Drüenschläuche in die Höhe, so dass jeder Drüsenschlauch von einer bindegewebsen Hülsche umfasst wird. An der ringförmigen Klappe zwischen Pylorusheil des Magens und Mitteldarm nehmen die Drüsen wieder eine andere Gestalt an, indem die kurzen Magensaftdrüsen dann wieder langen ebenfalls einfach cylindrischen Schlächchen Platz machen, die wie die Magenschleimdrüsen wieder mit einem Cylinderepithelium ausgelaufen sind. Diese in Rede stehenden Drüsen liegen sehr dicht zusammen gehäuft, sie gehen nach dem Magen hin, allmählich in die Magensaftdrüsen über, nach dem Mitteldarm zu verlieren sie sich bald.

Mesenterium.

Das Bauchfell, da wo es die Leibeswandungen überkleidet, zeigt sich bei den einheimischen Lacerta-Arten und bei beiden Geschlechtern tief schwarz gefärbt. Doch beschränkt sich diese Schwärze auf die eigent liche Bauchhöhle; jene Partie des Leibesraumes, welche von den Rippen umschlossen der Brust entspricht, hat eine helle Serosa. Das Schwarz
hört, wie Leydig angiebt, ganz scharf auf, sodass beim geöffnetem Thier der Leibesraum nach der Farbe sich scheidet in einen vorderen hellen Abschnitt von dreieckigem Umriss, dessen Spitze weit nach hinten dringt und in einen hinteren tief-schwarzen Theil, der die Seiten des hellen Dreiecks umgreift, seitwärts nach vorne bis dahin sich erstreckt, wo beim Weibchen das freie Ende der Eileiter sich anheftet.

Das Pigment des Mesenterium liegt in der bindegewebigen Schicht; das Epithel geht davon unberührt zart und blass darüber weg.

Bei Anguis fragilis, wo das Bauchfell ebenfalls ganz schwarz ist, ist die Pigmentirung nicht auf die Seitenwände des Leibesraumes beschränkt, sondern geht auch auf die verschiedenen Gekröse über und von diesen selbst zum Theil auf die Eingeweide, welche von ihnen gehalten werden, so dass die Serosa des Darmes, des Hoden u. s. w. ganz schwarz sein kann.

Während das Bauchfell beim Gecko ebenfalls eine intensiv schwarze Farbe besitzt, fehlt nach Wiedersheim (157) bei Phyllodactylus europaeus jede Spur von Pigment vollkommen.

Pancreas. Leber.

Nach Leydig's Angaben besitzt die Bauchspeicheldrüse bei allen einheimischen Lacerta-Arten eine sehr eigen tüm liche Form (Taf. XCIX. Fig. 3). Der Haupttheil stellt ein längliches Band vor, das sich weit nach vorne erstreckt bis unmittelbar an den Hals der Gallenblase; im unteren Viertel der Länge geht ein dünner, langer Balken ab, der quer gerichtet, zuletzt kuglig anschwillt. Diesem rundlich verdickten Ende ist die Milz angelöthet, ein Verhältniss, welches an die Schlangen (Natter) erinnert.

Bei Phyllodactylus europaeus liegt, an der Stelle, wo die Pars pylorica des Magens in den blasenförmigen Anhang des Duodenum übergeht, mit breiter Fläche das Pancreas festgelöthet. Es bildet an dieser Stelle eine continuirliche Masse, gabelt sich aber nach der rechten Seite des Magens hin in zwei lange Zipfel, von denen sich der eine, wie Wiedersheim angiebt, ganz wie bei Lacerta an die Milz befestigt, während der andere an die Stelle der Leber tritt, wo die Gallenblase sich befindet. Sie liegen also in sehr verschiedenen Ebenen, da jener seine Richtung direct nach hinten gegen die Wirbelsäule, dieser einfach nach rechts hin nimmt.

Sowohl bei Embryonen als bei Crocodilen von sehr verschiedenem Alter hat die Gallenblase eine langgestreckt-ovale, jedoch mitunter nicht
ganz regelmässige Form. Sie liegt an der Grundfläche des rechten Leberlappens. Ihr dünneres oder nach oben und vorn gekehrtes Ende nimmt seitwärts einen aus der Leber kommenden Canal auf, den Ductus hepaticus, und sendet diesem gegenüber einen zum Darm gehenden Canal aus, der sich am meisten dem Ductus choledochus verschiedener Säugerthiere vergleichen lässt.

Uro-genital-Organen.

Ausser den schon erwähnten Schritten sind noch hervorzuheben:

(167) **F. Leydig.** Anatomisch-histol. Untersuchungen über Fische und Reptilien. 1853.

(169) **Martin St. Ange.** Etude sur l'appareil reproducteur dans les cinq classes d'animaux vert-ébrés; in: Méms. prés. à l'Acad. Paris 1856, T. XIV.

(172) **Luigi Calori.** Sulle Splanchnologia e sui vasi sanguiferi che le appartenango, non che sul sistema linfatico dell' Uromastix spinipes Merrem; in: Memorie della Akademia delle Scienze di Bologna Serie II, T. II, 1862, p. 525.

(175) **W. Waldeyer.** Eierstock und Ei. Ein Beitrag zur Anatomie und Entwicklungs- geschichte der Sexualorgane 1870.

Nieren und Harnleiter.

Heidenhain (178), dem wir höchst interessante Mittheilungen über den Bau der Nieren bei den Säugethiere, Vögeln, Amphibien und auch bei den Schlangen (Ringelnatter) verdanken, bespricht ebenfalls, wenn auch nur mit ein paar Worten den Bau der Nieren bei den Sauern.
Was sich darüber mittheilen lässt, ist folgendes. Die Malpighi'schen Körperchen sind verhältnissmässig klein, ich fand ihren Durchmesser nur 0,045 — 0,052 mm. Die drei ersten Abschnitte der Harncanälchen entsprechen den analogen des Frosches. An die Kapsel schliesst sich ein enger Kanalstück mit Flimmerepithel; dann folgt ein weiteres mit Cylinderepithel ausgestattetes, dessen Zellen fein granulirt sind und gewöhnlich eine beträchtliche Zahl kleiner Tröpfchen einer grüngelblichen, fettigen Substanz enthalten, endlich wieder ein zweites flimmerndes Stück. Die vierte Abtheilung zeigt dann wieder die merkwürdige Stäbchenformation, ähnlich wie sie beim Frosch beschrieben ist. Es ist diese Abtheilung, welche den Schlangen (Ringelnatter) fehlt, dagegen den Schildkröten ebenfalls zukommt. Dann folgt wiederum ein Stück mit colossalen Cylinderzellen, welches nach Heidenhain wohl unzweifelhaft die Bedeutung eines Schlusstückes hat.

Wie schon erwähnt, setzt sich die Niere der Eidechsen nach hinten über das Becken hinaus fort, ein Theil der Harncanälchen verläuft also hinter der Einmündung des Harnleiters in die Cloake und muss dem entsprechend, um ihr Secret entleeren zu können, entweder nach vorn streben oder in einen gemeinschaftlichen Sammelgang zusammenfließen, in dem das Secret von hinten nach vorn fließt; das letztere ist nach Braun (180) der Fall; der bei der Entwicklung der Urogenitalorgane ausführlicher zu beschreibende Nierenzellstrang weicht als solcher nach hinten; in ihn dringt ein Canal ein, der von der Vereinigungsstelle des Wolfs'schen Ganges und des Harnleiters nach hinten entspringt und weiter der Harnleiter für den hinteren Nierenabschnitt wird.

Auch im ausgewachsenen Zustande geht von der Vereinigungsstelle von Harn- und Samenleiter, die wie wir gleich sehen werden, gemeinschaftlich beiderseitig auf einer Papille ausmünden, ein Kanal nach hinten ab, welcher der Harnleiter für den hinteren Nierenabschnitt ist und nach kurzem Verlauf in eine grüssere Anzahl von secundären Sammelröhren ausstrahlt, die in die Niere eindringen. In diesem Theil des harnleitenden Apparates findet also die Bewegung des secernirten Harnes von hinten nach vorn statt; in dem vorderen Abschnitt umgekehrt.

Harnleiter.

Beim weiblichen *Platydactylus facetanus* liegt nach *Braun* der Harnleiter genau da, wo das Bauchfellband des Eileiters an die Niere sich anheftet und gelangt weiter nach hinten, wenn die Tube in die Wand der Cloake eingetreten ist, in dasselbe Bauchfellband, das nun von der Cloake zur Niere geht; hier macht er dann hinter der Ausmündung der Tube plötzlich eine Biegung ventralwärts und mündet auf der Forsetzung der Tubenpapille, jedoch wie bei andern Sauriern getrennt vom Eileiter in die Cloake aus. Mit ihm vereinigt sich kurz vor der Mündung ein zweiter, etwas schmälerner Canal, der nach kurzem Verlauf seitlich in denselben eintritt; *Braun* hält diesen vorn blinden Canal für einen Rest des Wolff'schen Ganges, der hier beim Weibchen in seinem hintersten Theile erhalten ist, während der grösste vordere Theil resorbirt ist; dazu bestimmt ihn die seitliche Einmündung resp. Verbindung dieses Canales mit dem Harnleiter kurz vor dessen Mündung und die Thatsache, dass auch bei andern Reptilien mehr oder weniger grosse Reste oder der ganze Wolff'sche Gang beim Weibchen erhalten bleiben.

Harnblase.

Bei den Lacertae ist die Harnblase länglich rund, zarthäutig und entspringt mit einem ganz schmalen Stiel von der vorderen Fläche der Cloakenwand, gerade da, wo der Darm in die Cloake übergeht. In natürlicher Lage des lebenden Thieres scheint der Stiel der Harnblase gerade über den Ausmündungsstellen der Harnleiter zu stehen. Nur an der gegen die Bauchhöhle gewendeten Seite ist die Harnblase vom Peritoneum überzogen.

Bei der Blindschleiche ist die Harnblase größer, namentlich länger als bei den Eidechsen, das Bauchfell fasst sie nur seitlich, die Dorsalfläche umhüllend, während die ventrale Seite, von dieser Haut umbedeckt, den Bauchmuskeln sich zukehrt (Leydig).

Bei Varanus bivittatus fehlt nach den Angaben von Budge (179) eine Harnblase und an deren Stelle bemerkt man ein Bändchen, welches an die obere Fläche des Os pubis angeheftet ist; ähnliches gilt nach ihm von Monitor Saurus Laur., Calotes jubata, Amphibiaena fuliginosa. Wohl aber fand er eine Harnblase bei Platydactylus, Iguana tuberculata. Bei Lophura amboinensis vereinigen sich die beiden Ureteren anfangs in einen engeren Gang, der aber zu einem dünnwandigen, rundbläschig aussehenden, Letzteres mündet in die Cloake hinter der Eileiteröffnung durch ein rundes, kleines Loch auf einer Papille.

Was die histologische Structur der Harnblase betrifft, so lässt sich darüber folgendes sagen. Die Wand ist überaus dünn und wird innerlich von einem niedrigen Cylinderepithelium ausgekleidet. Ausserdem besitzt sie eine vollständig ausgebildete Muscularis, deren Fasern hauptsächlich in zwei Schichten angeordnet sind, nämlich in eine innere Kreisfaser- und in eine äussere Längsfaserschicht. Besonders bei den Lacertae, bei welchen das Bauchfell intensiv schwarz pigmentirt ist, lässt sich leicht nachweisen, dass nur ein kleiner Theil der Harnblase vom Peritoneum bekleidet ist.
Männliche Geschlechtsorgane.

Hoden.

Die Hoden sind von länglich rundlicher Gestalt, der rechte liegt etwas weiter nach vorne in der Bauchhöhle als der linke (Lacerta). Das Organ besteht aus den vielfach gewundenen und sich theilenden Samen-

Der Nebenhoden hat bei Lacerta, so lange seine Canäle noch ohne Samen sind, eine graue Farbe, später, wenn letztere damit erfüllt werden, erscheint er weiss und geschwollen. An seinen vielfach gewundenen Canälichen hat Leydig flaschenartige Erweiterungen beobachtet, ebenso giebt er an, dass die Epithelzellen der Nebenhodencanälchen flimmern. In der dicken Wand derselben sind bereits glatte Muskelfasern vorhanden, welche sich dann über den Samengang hin forterstrecken.

Der Körper der Papille liegt, obgleich er in die Cloake vorragt, doch eigentlich hinter der Wand der Cloake. Er besteht der Hauptmasse nach aus glatten Muskeln und Nerven.

Mit dieser Auffassung kann Braun sich jedoch nicht einverstanden erklären, er fand das Sperma nur in den dicken Theilen enthalten und in den dünnen auch nicht ein Spermatozoön, was gegen eine Communication des eigentlichen Samenleiters mit den feineren Canälehen zu sprechen scheint. Hierzu kommt nun noch nach Braun die Vertheilung dieser letzteren, welche sehr an das Verhältniss der Urnierencanälen zum Wolff'schen Gang erinnert. Auf Querschnitten findet man die kleinen Canälichen lateral vom Samenleiter angeordnet, am stärksten an der medialen Fläche desselben angehäuft. Beide Partien der dünnen Canäle stehen durch einzelne Canälehen, welche auf der ventralen Fläche des Samenleiters quer verlaufen, mit einander in Verbindung. Bei diesem Verhalten macht es nach Braun den Eindruck, als ob der sich zum Samenleiter entwickelnden Wolff'sche Gang, der an Masse zunimmt und sich vielfach windet, den Rest der Segmentalorgane zur Seite gedrängt habe, gleich als wenn er durch seine Masse förmlich in diese eingesunken sei und für die kleinen Canäle nur an seiner medialen und lateralen Seite Platz gelassen hätte.

Weibliche Geschlechtsorgane.

Ovarium.

Anatomie.

Von jedem der beiden Ureierlager auf jedem Ovarium, die sich nach den Angaben von Braun auf das hintere Ende des Ovarium beschränken, geht die Eiollikelbildung ans und, zwar wie es scheint, an einer bestimmten Linie, die ungefähr die Mitte des Ureierlagers, aber an der gegen das Bindegewebe grenzenden Schicht, bezeichnet und parallel der Wirbelsäule verläuft. Bei einjährigen, im Mai untersuchten Eidechsen hängt das Ovarium an dem noch funktionirenden Wolffschen Körper (siehe Taf. CII. Fig. 5.) der durch den Glomerulus (gI) und den Wolffschen Gang bezeichnet ist, neben ihm liegt die Nebenniere (Nn). Zu beiden Seiten des Mesovariums bemerkt man das Ureierlager und in jedem sich bildende Follikel, das Ureierlager ist in seiner Mitte gegen das Stroma hin aufgebuchtet, diese Verdickung zieht fast ununterbrochen von vorn nach hinten, soweit überhaupt das Ureierlager reicht. Von den Ureier, die ziemlich regellos in der Ureierfalze zerstreut liegen, gelangt eins in diese Hervortreibung, es vergrössert sich etwas, um dasselbe ordnen sich noch innerhalb des Ureierlagers die klein gebliebenen Peritonealzellen radien-artig, in anfangs ein- später mehrfacher Schicht an und grenzen sich nun durch eine feine Linie, welche Braun immer zuerst an der ventralen Fläche des jungen Follikels bemerkte, von den umgebenden Zellen ab. In den Zellen des Follikels beginnen dann auch alsbald Veränderungen einzutreten, wodurch allmählich mehr und mehr die Follikel in den Zustand übergeführt werden, wie man sie bei größeren Eiern antrifft, worauf wir später auch noch zurückkommen werden. Damit ist dann eigentlich der Follikel fertig, er liegt noch innerhalb des Ureierlagers, aus dem er jedoch herausrückt, indem er das dorsal vor ihm liegende Bindegewebe kannenartig um sich herumstülpt, von diesem gleichsam umfangen und völlig von seinem Entstehungsort abgeschnürt wird. Durch diese Art der Follikelbildung an einer bestimmten Linie wird also die Anordnung der Eier eine ganz regelmässige, sie bilden auf dem Querschnitt einen mehr oder minder regelmässigen Kranz. Diese Anordnung erhält sich jedoch in ihrer Regelmässigkeit nicht durch das ganze Leben; durch die bedeutende Vergrösserung, welche die Eier im weiteren Wachsthum erfahren, müssen Verschiebungen eintreten, diese bedingen es dann, dass die ältesten Eier erwachsener Thiere zwar immer noch ventral liegen, jedoch über das eigentliche Ureierlager hinausgelangt sind und zwar nach vorn; am erwachsenen Ovarium findet man nämlich die Eier nicht mehr
in parallelen Linien angeordnet, sondern in Ringen, die von dem nach hinten liegenden Ureierlager ausstrahlen. Aber auch diese Anordnung ist nur eine mehr schematische, die zu Stande kommen müsste, wenn das Wachsthum in gleicher Weise in beiden Ureierlagern vor sich ginge; dies ist aber bei älteren Ovarien nicht mehr der Fall, denn einzelne Follikel fallen aus und werden gar nicht mehr gebildet, andere scheinen früh zu degeneriren und endlich kommt die überwiegende Grösse der ausgewachsenen Follikel über die jungen in Betracht. (Lacerta, Anguis).

Im Frühjahr und Sommer überzeugt man sich leicht, dass Stadien von Eifollikelbildung in jedem Ovarium wahrzunehmen sind, im Winter dagegen stagnirt diese Follikelbildung, wahrscheinlich hat denn auch Waldeyer, wenn er sagt: „bei erwachsenen Eidechsen fand ich keine Spur einer Follikelbildung vom Epithel aus“ seine Untersuchungen im Winter oder Herbst angestellt.

Bei den Geckotiden (Platydactylus) fand Braun auf einem Ovarium immer nur ein Ureierlager, in demselben die Ureier aber so vertheilt, dass das ganze als gleichwerthig den getrennten Ureierlagern der Eidechsen erscheint. Die Ureier liegen rechts und links von der Mittellinie ihrer gemeinsamen Keimstätte, an demjenigen Theil des Ureierlagers, der in das gewöhnliche Peritonaeum übergeht und man trifft die grössten Ureier am nächsten der Mittellinie an. Weder bei Lacerta, noch bei Gecko konnte Braun sich überzeugen, dass die Follikel, wie es Leydig annimmt, in diese Lymphräume hineingelangen, er hat nie gesehen, dass die letzteren sich gegen die Ureierlager öffnen und dort etwa den jungen Follikel aufnehmen, immer fand er die Ureierlager von den Lymphräumen getrennt durch eine mehr oder weniger dicke, aber immer vorhandene Lage von jungem zellenreichen Bindegewebe.

Nach Wiedersheim soll bei Phylloclactylus europaeus das Reifen der Eier und zwar nur eines einzigen auf der einen Seite stattfinden, links häufiger als rechts und daraus schliesst er, dass das einzige reifende Ei sich zu einer solch monströsen Grösse entwickelt, dass man annehmen kann, es absorbiere die Kraft des kleinen Organismus in ihrem ganzen Umfang, abgesehen davon, dass ein zweites Ei in dem Leibesraum absolut keinen Platz mehr finden würde. Dagegen fand Braun mehrere Exemplare von Phylloclactylus europaeus, jedes mit zwei Eiern schwanger, in jedem Eileiter befand sich ein Ei, so dass er geneigt ist anzunehmen, Wiedersheim habe es mit krankhaften Thieren zu thun gehabt. Untersuchungen zahlreicher Exemplare dieser Saurierart werden also diesen Punkt näher erklären müssen.

Braun giebt weiter an, dass nicht bloss bei Phylloclactylus sondern auch bei Lacerta die Eier, welche bei der nächsten Brunst abgesetzt werden sollen, in dem einen Eierstock auf einem gewissen Stadium etwas weiter entwickelt sind als in dem andern, diese Ungleichheit der Ausbildung wird jedoch nach ihm wieder ausgelöst und ist kurz vor der Löstösung der Eier aus dem Ovarium nicht mehr zu beobachten, daraus
folgt also, dass man nicht von einer einseitigen Funktion des Ovarium sprechen kann, wie dies bekanntlich bei den Vögeln stattfindet.

Ueber den Bau des Eies der Saurier verdanken wir Waldeyer (175), Gegenbaur (171), Eimer (176), Braun (180) und Ludwig (177) eingehendere Mittheilungen. Was zuerst das Keimbläschen betrifft, so wächst dasselbe bei den Sauriern, ebenso wie wir dies bei den Schildkröten ge- sehen haben, bald zu bedeutender Grösse an. Eimer fand bei Lacerta viridis in Follikeln von 1,3 mm. Durchmesser den des Keimbläschens 0,18 mm. gross, in solchen von 0,75 mm. 0,12 mm., in Follikeln andlich von 0,31 mm. nur 0,06 im Durchmesser. Bei Eiern von Lacerta agilis fand ich bei solchen, die einen Durchm. von 0,040 mm. erreichten, den des Keimbläschens 0,018 mm; bei Eiern mit einem Durchm. von 0,090 mm. hatte das Keimbläschen einen Durchm. von 0,036 mm. Die Keimbläschen sind helle, kugelige Körper, von einer deutlichen unzweifelhaften Memran umgeben. In den kleinsten Eiern enthält das Keimbläschen nur ein einziges grosses Kernkörperehen. Mit der Grössenzunahme des Keimbläschen nehmen auch die Keimflecke an Anzahl zu, doch wird dieselbe, wenigstens bei Lacerta nie so gross als bei den Schildkröten. In den grösseren Keimbläschen liegen etwas einwärts von ihrer Peripherie, die Keimflecke in einem, mehr oder weniger deutlich ausgeprägten Kreis. Allein, wie schon Eimer mittheilt, lässt sich mittels stärkerer Vergrösserung nicht schwer erkennen, dass der bei oberflächlicher Betrachtung homogen und wasserklar scheinende Inhalt des Keimbläschens, abgesehen von jenem peripherisch gelegenen Keimflecke, von unzähligen Körperchen, welche nur kleiner, im Uebrigen aber von derselben Beschaffenheit sind wie diese, durchsetzt ist; ferner dass diese Körperchen in der Grösse Uebergänge einerseits zu dem erwähnten Kreis von Keimflecken zeigen, dass aber andererseits ebenfalls zahllose Uebergänge von ihnen ab zu feinsten Körnchen existiren, welche durch das ganze Keimbläschen zer- streut sind, besonders dicht aber sich in dessen Mittelpunkt anhäufen. Etwa 20—25 der erwähnten grossen Keimflecke liegen im grössten optischen Querschnitt, z. B. von Keimbläschen, welche ungefähr nach Eimer's Angaben 0,2 mm. im Durchmesser halten. Aber zwischen ihnen und der Membran der letzteren kann man häufig noch einen oder mehrere concentrische Kreise, von den kleineren Körperchen gebildet erkennen. In kleineren Keimbläschen findet man die grossen Keimflecke nicht nahe der Peripherie, sondern um die centrale Körnchenansammlung herumliegend, also einen engeren Kreis bildend, als in den grossen; von hier rücken sie allmählich nach aussen, und neue Kreise, welche aus jener Ansammlung gebildet werden, sliessen sich ihnen von innen an, um ebenfalls zu Keimflecken zu werden.

Im Bezug auf die Entwicklung des Dotters bei Reptiliencern schliesst Eimer, wie wir dies ebenfalls schon bei den Schildkröten erwähnt haben, sich den Angaben von Gegenbaur völlig an. Das ursprüngliche, anfangs vollständig homogene Protoplasma des Eies verändert sich bald in der
Art, dass darin einzelne, stärker glänzende Körnchen auftreten, welche sich später in Bläschen umwandeln, die fortwährend grösser und grösser werden. Diese Umwandlung des Eiinhalts beginnt in dessen Centrum und schreitet von da aus peripherisch weiter.

Über das von Eimer im Dotter beschriebene Maschennetz, sowie über das Vorkommen einer eigen tümlichen, fetthaltigen Schicht in denselben, kann ich auf die Schildkröten verweisen, wo beide ausführlicher abgehandelt sind.

Im centralen Theil kleiner Eier von

Laevata viridis (Follikel 0,4 mm.) begegnete Eimer einem, 0,02 mm. grossen, kugeligen Körper, welcher sich durch Osmiumsäure etwas dunkler färbte, als der ihn umgebende noch ganz homogene Eiinhalt, und weiter keine Besonderheiten zeigte als die, dass in seinem Umkreis einige sehr kleine, zarte, helle Bläschen gelegen waren. Jener kuglige Körper ist nach Eimer offenbar nichts anders als eine frühe Stufe der Entwickelung des bei anderen Thieren schon vielfach erwähnten und mannigfach besprochenen Dotterkerns. Die Rindenschicht des Eies (helle Randschicht; Zonoidschicht: His) ist — bei *Laevata viridis*, *Gecko platydactylus* — so lange sie noch feinkörnig ist, nach Eimer's Angaben sehr schön radiär gestreift und zwar in zweierlei Weise; einmal ziehen nach ihm, gröbere, oft messbar dicke Fäden, ungleich grosse Zwischenräume zwischen sich lassend, von der Dotterhant an durch sie hindurch und gehen direct in die nach aussen schauenden Zacken der inneren Rinde über. Andererseits aber lassen sie sich zuweilen, wie er angiebt, so weit verfolgen, dass man sie als Fortsätze der Epithelzellen der Granulosazellen erkennen kann.

Anatomie.
n

Dagegen ist das geschlechtsreife Ei vollkommen durchsichtig und klar. Sowohl der Nahrungsdotter als der Bildungsdotter sind vollkommen homogen, ohne jede Spur von Dotterkörnern oder Dotterkugeln. Beim Übergang des Eies aus dem nicht geschlechtsreifen in den geschlechtsreifen Zustand sind die zum Theil relativ grossen Dotterkugeln wieder vollständig gelöst, und so gut also diese in Rede stehenden Kugeln während des Wachsthumes des Eies, in den Inhalt des Eies wieder aufgenommen werden, können sie auch im Eie selbst entstehen und brauchen nicht von aussen her zugeführt zu werden. Dass das Granulosa-Epithel an der Ermährung der wachsenden Eizelle Anttheil nimmt, wird natürlich wohl Niemand bezweifeln.

äußerst feine, kurze Fortsätze nach unten ragen, welche Waldeyer als Protoplasmafortsätze der Epithelzellen erschienen, die in die Canälehen der Zona radiata hineinragten. Es kommt ihm wahrscheinlich vor, dass die Protoplasmafortsätze der Epithelzellen direkt bis an den Dotter hinnarbeiten und vielleicht dort sich in Dotterbestandtheile umformen.

Diese Angabe Eimer's kann ich aber nicht bestätigen, trotz wiederholter, neuer Untersuchung. Ich glaube auch nicht, wie schon angegeben, dass man um das Wachsthun des Eies zu erklären zu einer Umwandlung eines Theiles der Granulosazellen in Trompeten- oder Becherzellen seine Zuflucht zu nehmen braucht. Indessen muss ich aber erwähnen, dass Braun wieder angiebt, die Angaben Eimer's über den Bau des Follikel
epithels seien so hinreichend, dass er denselben Nichts hinzuzusetzen weiss, höchstens würde er die Function der grossen Follikelzellen als einzellige Drüsen mehr betonen, besonders nach dem was er selbst über die Geckonen darüber zu untersuchen im Stande war. Bei Gecko bilden die von Eiern erwähnten kleiner Zellen eine regelmässig vorhandene einfache Schicht an der äusseren Wand der Follikel, als Grenze gegen das Bindegewebe; ob diese Zellen zum Follikellepithel gehören und identisch mit den andern, kleinen Zellen zwischen den einzellen Drüsen sind, lässt Braun dahin gestellt sein.

Das Ei wird umhüllt von einer schon bei kleinen Eiern ziemlich resistenten Haut. So wie das Ei eine ziemliche Grösse erreicht hat, zeigt die in Rede stehende Haut schon deutlich eine uberaus feine und regelmässige Streifung, die sogenannten Poreneanälchen, wie wir dieselben auch beim Ei der Schildkröten beschrieben haben. Mit dem Wachsthun des Eies wird die fein gestreifte Haut, die Zona radiata wie man sie auch nennen kann, allmähhlich dicker und in demselben Grade werden dann auch die Poreneanälchen deutlicher. Ob die Zona radiata durch eine Umwandlung der hellen Randschicht entsteht oder ein Abscheidungsproduct des Follikellepithels bildet, ist auch für die Sauirier mit Bestimmtheit schwierig zu sagen. Wenn man aber bedenkt, dass die Zona an ihrer äusseren Fläche scharf begrenzt, nach innen dagegen allmähhlich in die Rand schicht übergeht, dass die Poreneanälchen an der Peripherie am deutlichsten sich zeigen, nach innen zu dagegen immer undeutlicher werden, um schliesslich vollständig zu verschwinden, dann wird es sehr wahrscheinlich, dass die Zona ein Abscheidungsproduct des Eies selbst ist und somit eine wahre „Dotterhaut“ repräsentirt. Ausserhalb der Zona radiata konnte ich an den Eiern der Sauirier keine weiteren Eihüllen unterscheiden, ebenso wenig als ich dies für die Schildkröten im Stande war.

Bekanntlich werden die Eier der Sauirier von besonders Hüllen umgeben, welche sich um das Ei auf seinem Wege durch den Eileiter und Uterus bilden.

bis zu den ausgebildeten Kolben finden sich alle möglichen Übergänge, bei *Lacerta agilis* sollen dieselben niemals eine grosse Ausdehnung erlangen.

Die Eischale des *Chamaeleon* ist nach Eimer ganz aus denselben Fasern gebildet, wie die des Eidechsenreiches, aber es fehlen nach ihm hier die Kolben, die wie gesagt bei *Lacerta agilis* zeitlebens klein bleiben, gänzlich.

\[
\begin{align*}
C &= 54.68 \\
N &= 16.37 \\
H &= 7.24 \\
O &= 21.10
\end{align*}
\]

was zu Elastin führt, womit jedoch der Körper nicht als identisch betrachtet werden kann.

Eileiter.

Am Eileiter (Eiergang; Leydig) kann man mehrere Abschnitte unterscheiden, die durchaus an die gleichen Theile der Vögel erinnern, und von Leydig als: Trichter, Eileiter und Uterus bezeichnet sind, Verhältnisse, auf welche Lereboullet (168) schon hingewiesen hat.

Längsmuskeln, die unter sich geflechtartig verbunden sind, die zahlreichen Blutgefäße sind sehr stark gewunden.

Indem Lacerta vieipara, wie wir wissen, gegenüber den andern einheimischen Arten lebendig gebärend ist, hat Leydig hier den eileitenden
Anatomie.

Apparat besonders untersucht, ohne aber gerade auf wesentliche Unterschiede zu stossen.

Innerhalb der Scheide bemerkt man, entsprechend der äusseren Ringsfurche, eine Ringfalte. Öffnet man beim trächtigen Thier den Uterus, so findet man, dass jedes Ei wie abgekammert von anderen liegt und je eine Kammer mit der anderen durch eine verhältnissmässig nur kleine Öffnung in Verbindung steht; hierbei wird die Wand des Uterus, wie leicht begreiflich, durch die Ausdehnung sehr dünn. Auch bei der Blindschleiche kann man am Eiergang den Thricter, Oviduct und Uterus unterscheiden. Erstgenannter auf halber Leibeshöhe an die Rückenseite der Bauchhöhle gehetet, öffnet sich mit einem sehr weit geschlitzten Spalt. Die Wände des trächtigen Uterus bestehen aus folgenden Schichten: 1) innerlich trifft man zuerst die Schleimhaut an, dieselbe erhebt sich in zarte Leisten zu Trägern der Gefässe; die von den Leisten, die sich netzförmig verbinden, gebildeten Vertiefungen stellen kuglige Drüsensäckchen vor. Wie Lacerta cichipara so ist auch Anguis fragilis lebendig gehärtend. Wenn sich, wie schon hervorgehoben, Eier im Eileiter befinden, welche immer mit ihrem Längsdurchmesser parallel der Mittellinie liegen, so entsteht eine reine Kammerung des Eileiters, es bildet sich um jedes Ei eine so gut wie völlig abgeschlossene Tasche; die Wand des Eileiters wird an diesen Stellen sehr stark ausgedehnt, unterhalb und oberhalb eines jeden Eies liegt ein kurzes Stückchen intakten Eileiters, dessen Wände ganz zusammen liegen.

gegen ziemlich fest mit seiner dorsalen Fläche der ventralen der Niere aufliegt, während bei den andern bis jetzt genauer untersuchten Sauriern der Eileiter bis zu seiner Einmündung in die Cloake frei beweglich bleibt.

Cloake und Copulationsorgane.

Die Prostatadrüse der Cloake bei Anguis fragilis ist nach Leydig kleiner als bei den Eidechsen; doch in eingestülpten Zustand der Ruthe von ähnlich dreieckiger Gestalt. Die einzelnen Drüsensollikel schienen Leydig grösser zu sein als bei Lacerta agilis, sie haben lange Cylinderzellen, und sind von glatten Muskelfasern durchwoben und durchflochten. —

Die Cloake selbst bildet nicht den Endabschnitt des Darmes, sondern besitzt eine gewisse Selbständigkeit. Am meisten nach oben und vorn mündet in die Cloake der After ein, aber nicht mit vorspringender Papille, sondern diese ist umgekehrt nach einwärts in das Lumen des Enddarmes

Die Copulationsorgane — die Ruthen — sind bei den Sauriern doppelt und liegen ausserhalb der Thätigkeit zurückgerollt unter der Haut der Schwanzwurzel. Dennach ist also auch beim Männchen diese Gegend ganz anders geformt als beim Weibchen, was in systematischer Hinsicht wesentlich zu Bestimmung der Geschlechter dienen kann. Jede der ausgestülpten Ruthen (Taf. CII. Fig. 8) bildet einen walzenförmigen Körper, dessen freies Ende oder Eichel in zwei stumpfe Spitzen ausgeht; die Furche zwischen ihnen zieht an der inneren Seite des Copulationsorganes eine Strecke weit abwärts bis zu einem länglich runden Wulst. An der nach aussen gewendeten Fläche verläuft eine Rinne von der Wurzel der Ruthe im schrägen Bogen, wie spiralig herauf bis dahin, wo die Gabelung der Eichel beginnt, dieselbe bildet den Weg zum Abfluss des Samens. Da wo die Rinne beginnt, wird sie nur gegen den Penis hin gleich von einem Hautsaum oder Lippe begrenzt, während die gegenüberstehende Begrenzung anfänglich nach Leydig's Beschreibung keine eigene Haut ist, sondern von dem Rande der Prostata gebildet wird; erst wenn die Drüse mit gekrümmttem Ende aufhört, beginnt der andere Lippensaum. Im frischen Zustande hat der Penis eine grau-röthliche Farbe, besonders roth aber zeigen sich die Lippen der Samenrinne.

Ganz eigenthümlich verhält sich das die Ruthe bekleidende Epithel, welches Leydig „Stachlepithel“ nennt. Jede Zelle geht nach ihm an der freien Seite in eine abgesetzte knopförmige Verdickung über, welche selbst wieder eine Anzahl kleiner Höckerehen hat, die Knöpfe sind schärfer contourirt als die Zellen selbst. Diese Stachelzellen überkleiden nur die Eichel, weiter abwärts trifft man gewöhnliches Epithel an, ebenso ist das Epithel der Samenrinne ein gewöhnliches stachelloses. Bei jüngeren Individuen und entfernter von der Eichel gehen die Zellen in nur einfache, kürzere oder längere Stacheln aus. Bemerkungswert ist noch die Mittheilung Leydig's, dass das freie Ende der Stacheln nach den Species bestimmte Verschiedenheiten darzubieten scheint, was in systematischer Hinsicht von Interesse ist. Von dem cavernösen Gewebe des Penis theilt Leydig mit, dass es in seinem Bau grosse Aehnlichkeit mit dem Hahnenkamm aufzeigt. Man sieht nämlich zahlreiche Bluträume als Lücken in der Substanz eines festen Bindegewebes; entweder als reine Lücken oder mit mehr oder weniger sicherer Umgrenzung, und dies sind wahrscheinlich gerade solche Stellen, welche den zum Corpus caver-
nosum herangetretenden Gefässstämmen zunächst liegen. Die scharfe Abgrenzung ist die Linie der auskleidenden Tunica intima.

Ausser dem Epithel und dem Schwellkörper bildet einen mächtigen Bestandtheil der Copulationsorgane eine Anzahl quergestreifter Muskelfasern. Einen deutlichen Nervenstamm sah Leydig unterhalb der Samenrinne bis zur Eichel aufsteigen, um dort zu enden.

Die beste Übersicht gewähren nach Leydig Schnitte (Taf. CII. Fig. 10) etwa aus der Mitte des Organes. Hier sieht man zunächst eine äussere bindegewebige feste Umgrenzung; von ihr umschlossen ist die Längsmuskulatur, welche auf vier Bündel sich vertheilt hat. Es zeigt sich jetzt auch das Corpus cavernosum von grosser Ausdehnung und zwar so, dass ein zweihörniger Theil zwischen den beiden Lumina der Eichel steht, und ihm gegenüber ein anderer die Wand der Samenrinne bildender

Auch die weiblichen Eidechsen besitzen verkümmerte Copulationsorgane an gleicher Stelle und ebenfalls paarig, auch hier muss nach Leydig die Eichel wie beim Männchen gegabelt sein, denn im Querschnitt und im eingestülpten Zustande nimmt sich die einzelne Clitoris so aus, wie wenn sie aus zwei Röhren bestände.

Sowie in der soliden Zellenkugel eine Höhlung auftritt, ist auch die früher bestehende, hohle Einsenkung des Peritoneums geschlossen und die
Höhlung der Segmentalblase ausser aller Verbindung mit der Bauchfellhöhle; nur die Wandung derselben hängt mit dem Epithel durch einen kurzen soliden Stiel zusammen.

Der Gefässknauel im Malpighi'schen Körperchen bildet sich nach Braun auf folgende Weise: Nachdem das Lumen der Segmentalblase sich in das anfangs solide Urnierenanälenfortgesetzt und dieses in den Wolff'schen Gang durchbrochen ist, stülp sich die der Aorta zunächst gelegene Wand der Blase nach innen ein, ob diese Einstülpung eine Wucherung der Wandung nach innen, also solid ist und erst später hohl wird, oder von Anfang an eine echte Einstülpung ist, hat Braun nicht recht entscheiden können; jedenfalls vermehrt sich nach ihm die Zellenlage der Segmentalblase und begrenzt später einen in die Höhlung der Blase einspringenden Hohlraum, in dessen Innerem Blutkörperchen und Zellen von zweifelhaftem Charakter liegen; der Verlauf der zuführenden Gefässe ist anfangs ein gerader, erst später kommt das Körperchen tiefer zu liegen, wodurch die Vasa afferentia einen schrägen, von vorn nach hinten gebenden Verlauf erhalten.

Das an den Glomerulus sich anschliessende Urnierenanälen beginnt mit einer trichterförmigen Erweiterung, verengt sich jedoch sehr bald, die platten Zellen der Wandung des Malpighi'schen Körperchens erheben sich und gehen allmählich in die einschichtige Cylinderzellenlage der Urnierenanälen über. An den Canälchen kann man zwei Theile unterscheiden, die dickeren (tubes ondulés ou sacs sécréteurs: Lerebouillet) sind die drüsigen Canälchen und von einer einschichtigen Cylinderzellenlage ausgekleidet. Alle Canälchen mit Ausnahme ihres Anfangs- und Endstückes flimmern nach Braun, die Cilien sind sehr lang und erhalten sich gewöhnlich nicht lange. Im Wolff'schen Gange hat Br. nie etwas von Flimmerbewegung gesehen, ebensowenig in der Höhlung der Malpighi'schen

Ueber die Entwicklung der Geschlechtsorgane verdanken wir Braun folgende Angaben. Als indifferentes Stadium bezeichnet er jenen Zustand der ersten Anlage der Keimdrüsen, in welchem es noch nicht möglich ist, das künstige Geschlecht des Embryo zu erkennen. Die ersten Spuren der Geschlechtsorgane gehen sehr weit zurück und fallen zeitlich fast genau mit der ersten Entstehung der Segmentalorgane zusammen; da wo nämlich das Peritonealepithel in das Epithel auf der Darmfaserplatte übergeht, sieht man schon bei Embryonen von 8—9 mm. in dem meist etwas verdickten Epithel einzelne grosse Zellen liegen, die von gewöhnlichen Peritonealzellen begrenzt sind, und aller Wahrscheinlichkeit nach nichts anders als vergrösserte Peritonealzellen sind, die man Ureier nennt; die Stelle des Peritoneum, welche die Ureier birgt, nennt Braun die Ureierfalte. Dieselbe beginnt hinter dem Anfange der Segmentalorgane etwa am hinteren Ende der Leber (in späteren Stadien) und reicht zuerst bis an das hintere Ende der Segmentalorgane, d. h. soweit die Leibeshöhle sich erstreckt.

Anfangs ist die Zahl der Ureier eine sehr kleine, später wird sie beträchtlicher und damit beginnen auch weitergehende Veränderungen, die das Entstehen einer wirklichen Falte zu Folge haben. Die histologische Zusammensetzung der Ureierfalte, die die Anlage für Hoden und Eierstock darstellt, ist nach Braun folgende. Man unterscheidet an ihr ein inneres Stroma, das ohne Grenze in das kleinzelige Gewebe zwischen den

Wie wir gesehen haben, sind die Segmentalstränge (bei Anguis und Lacerta) anfangs solide, erst später treten secundär Höhlungen auf und hiermit ist die Differenzirung der Geschlechter gegeben, weil nämlich nur beim Hoden, nach Braun's Untersuchungen dieser Vorgang auftritt. Die Vermehrung der ursprünglich soliden Canäle schreitet immer fort, bis die ganze Drüse von kleinen Schläuchen erfüllt ist, zwischen deren ursprünglichen Zellen noch sehr gut die Ureier als grosse Zellen, mit grossem gekörnten Kern zu erkennen sind. Mit dem zunehmenden Wachsthum der Drüse nimmt successive das Ureierlager des Hodens ab, sodass schliesslich Nichts als ein einfacher, seröser Ueberzug übrig bleibt. Dies trifft man bereits bei jungen Thieren gleich nach dem Ausschlüpfen aus dem Ei. (Taf. CII. Fig. 3). Fragen wir jetzt, wohin kommen die Ureier und was
wird in der weiteren Entwicklung aus ihnen, dann findet man als Antwort auf die erste Frage, dass die Ureier in die Hodencanälchen aufgenommen werden. Was die andere Frage nach dem endlichen Schicksal der in die Hodencanälchen gelangten Ureier anlangt, so glaubt Braun, dass dieselbe auf's innigste mit der Spermatooenbildung zusammenhängt.

Noch während des embryonalen Lebens wird die durch die Segmentalstränge hergestellte Verbindung der Hodencanälchen mit den Malpighischen Körperchen ganz gelöst. Die Verbindung, welche also ursprünglich zwischen Hoden und Segmentalorganen bestanden, verschwindet dadurch, dass noch im Verlauf des ersten Lebensjahres die Segmentalstränge, welche von den Malpighischen Körperchen zum Zellenstrang oder Zellkörper im Hoden und später zu den Hodencanälchen führten, resorbiert werden — vielleicht mit Ausnahme der vordersten zwei oder drei, welche sich zu den wenigen Ausführungsgängen des Reptilienhodens umwandeln, die wie bekannt, von am Hoden anstreten und in den Nebenhoden münden.

Wir haben gesehen, dass das Ovarium anfangs völlig dem Hoden gleich, und wie Braun nachgewiesen hat findet bei beiden Geschlechtern eine Verbindung zwischen Segmentalsträngen und Ureierlager statt, die aber beim Männchen den Schwund des Ureierlagers in Folge des Einwanderns des grössten Theiles seiner Elemente in die Segmentalstränge bedingt, während beim Weibchen im weiteren Verlauf der Entwicklung es zur Lösung der Verbindung, zur Degeneration der Segmentalstränge und zur Follikelbildung vom Ureierlager aus kommt. Bei älteren Weibchen findet man die Genitalstränge als rundliche Haufen von kleinen Zellen und an der Basis des Ovarium liegen. (Taf. CII. Fig. 4); bei jungen, einjährigen Eidechsen und Blindselechsen liessen dieselben sich nicht mehr nachweisen. Man hat also die Segmentalstränge beim Weibchen als das Homologon des Hodens zu betrachten, das eine Zeit lang neben dem Ovarium bestehen bleibt, jedoch schon nach dem ersten Jahre wahr scheinlich vollständig verschwindet.

Das Stroma des embryonalen Ovarium besteht aus grossen kernhaltigen Zellen ohne Zwischensubstanz und vereinzelten Gefässen.

wie ein Band eine grauweisse Masse ausgestreckt, die aus einem Haupt-
canal und zahlreichen vielfach gewundenen Canälichen besteht; ersterer
entspricht dem Wolff'schen Gang bei beiden Geschlechtern, auch die
Glomeruli sollen noch ganz deutlich in einer Längsreihe an der medialen
Fläche der Glomeruli zu erkennen sein. Trotzdem ist eine sichtliche
Reduction eingetreten, die Zahl der Glomeruli und der Urnierenanälichen
hat abgenommen. Auch macht sich schon ein Unterschied bemerklich je
nachdem man ein Weibchen oder ein Männchen untersucht, bei dem
letzteren nämlich bildet der Wolff'sche Körper ein vorn etwas dick au-
geschwollenes, hinter dem Hoden bandartig werdendes Organ, beim
Weibchen tritt dagegen eine Zerreissung in mehrere Portionen ein, die
hinter einander liegen und zum Theil noch mit einander durch ein
Canälichen verbunden sind, das vordere Ende des Organs ist kaum gegen
das hintere verdickt, die vorhandene Verdickung rührt von dem goldgelben
Körper her, welcher, wie wir später bei den Blutgefässdrüsen sehen
werden, die Nebenniere vorstellt und nicht, wie von einigen Autoren an-
gegeben wird, das Parovarium.

Der Wolff'sche Gang ist bei beiden Geschlechtern (Lacerta agilis)
ziemlich gleich stark im Mai, nach dem ersten Winterschlaf ausgebildet.
Der Schwund der Glomeruli und der Canälichen findet wahrscheinlich durch
tettige Degeneration statt. Endlich verschwinden im Laufe des zweiten
Lebensjahres bei beiden Geschlechtern (Lacerta agilis), die Glomeruli und
der grösste Theil der Urnierenanälichen, es bleibt dann beim Männchen
der zum Samenleiter gewordene Wolff'sche Gang tätig, der sich vielfach
schlängelt, stärker wird und den bereits oben erörterten Bau annimmt.

Die beim Weibchen (Lacerta agilis) von der Urniere übrig bleibenden
Reste sind in Form, Zahl und Anordnung sehr variabel!, sie liegen stets
in einer Reihe zwischen dem Eileiter und der Mittellinie und zeichnen sich
durch ihre graugelbliche bis bräunliche Färbung aus; es sind unregel-
mässige 0,5—1 mm. und darüber grosse, langgestreckte Körperchen, neben
denen mitunter eine grosse Zahl mikroskopisch kleiner Reste der Segmental-
organe in Form von rundlichen, mit einem Plattenepithel ausgekleideten
Cysten vorhanden ist; auch diese sind sehr variabel, sowohl im Auftreten,
as in Grösse und Gestalt; sie enthalten meist einen Hohlraum, in dem
oft Concremente liegen oder sind — namentlich die kleineren — nur
Zellenhaufen. Alles zusammen, mit Ausnahme des goldgelben Körpers,
nun nach Braun dem Nebenhoden des Männchens parallelisiert und als
Epooophoron, Nebeneierstock bezeichnet werden. Bei Anguis fragilis geht
der Process der Umwandlung und der Resorption der Segmentalorgane
auf dieselbe Weise, wie bei der Eidechse vor sich, beim Männchen ent-
steht der Nebenhoden aus dem Wolff'schen Körper, beim Weibchen der
Nebeneierstock. Letzterer, der Nebeneierstock, Epooophoron nach Braun,
enthält bei Anguis fragilis noch mehr Theile vom Wolff'schen Körper,
indem sowohl der Ausführungsgang als auch Urnierenanälichen wenigstens
zum Theil erhalten sind.
Die Entwicklung des Eileiters hat Braun bei Lacerta agilis und Anguis fragilis studirt, die hier gegebene Beschreibung ist hauptsächlich Anguis fragilis entnommen. Die Abrissstelle der Urnierenfalte bildet den Ausgangspunkt für die Entstehung des Oviducts, zuerst des Tubenrichters; man findet nämlich an dieser Stelle (Taf. CII. Fig. 6 u. 7) das Peritonealepithel besonders verdickt und eine kleine, langgestreckte Erhebung überziehend, die sich auf den Segmentalorganen gebildet hat. Im vordersten Theil liegt diese Erhebung, Braun’s „Tubenfalte“, erst ganz ventral, nachher dorsal und begleitet später den Wolff’schen Gang, im ganzen Bereich der Leibeshöhle bis hinter. Die Tubenfalte entsteht da, wo die Urnierenfalte von der ventralen Körperfläche rückt, durch Einstülpung eines ganz unschreibbaren Stückchens des Peritonealepithels nach innen in die Substanz der Urnierenfalte hinein. Nachdem nämlich nach Braun’s Angaben die Segmentalorgane in der Urnierenfalte aufgetreten sind und die Tubenfalte eine auf dem Querschnitt stempelförmige Erhöhung gebildet hat, deren Epithel stark verdickt ist, beginnt das letztere nach innen in die Tubenfalte hinein sich einzustülpen; diese Einstülpung schnürt sich endlich als Canal von dem äusseren verdickten Epithel ab. Die Tuba entsteht demnach nach Braun vom Peritonealepithel, durch Einstülpung desselben an einer ganz bestimmten Stelle, welche da liegt, wo die Ureterfalte von der ventralen Körperfläche wegtritt, wo also die erstere im Ganzen einen Peritonealüberzug erhält; der so entstandene Blindsack wächst nun nach hinten in eine vorher gebildete leistenförmige Erhebung hinein bis zur Cloake, ohne dass sich dabei andere Elemente des Peritoneum als die zuerst eingestülpten betheiligen. Ganz ähnlich verhält sich nach Braun Lacerta agilis. Bei beiden erreicht die Tuba schliesslich die Cloake, hinten durchbohrt sie seitlich und ganz wenig nach vorn vom Wolff’schen Gang die Wand der Cloake, aber nur beim Weibchen, beim Männchen endet sie dicht vor der Cloake blind und scheint sich nie mit derselben zu verbinden.

eine Schicht von Zellen ab, die durch das Auftreten von feinen Fasern sich sehr bald als Bindegewebszellen kundgeben; es ist dies die Anlage der Nierenkapsel, die aber immer nur eine geringe Ausbildung erfährt.

Die Hoden haben eine länglich-ovale Gestalt und liegen in der vorderen Hälfte der Bauchhöhle dicht nebeneinander. Das Vas deferens zeigt nur einen sehr wenig geschlungelten Verlauf. Am merkwürdigsten ist wohl die Angabe von Günther, dass bei Hatteria ein Copulationsorgan
fehlt. Sehr gross sind die Analdrüsen, grösser als bei irgend einem andern Saurier, sie zeichnen sich durch einen spongäsen Bau aus. Ueber die weiblichen Geschlechtsorgane liegen bis jetzt noch keine Angaben vor.

einer unvollständigen Teilung in zwei Lappen, das die Nieren schon bald nach ihrem Entstehen darbieten, auch weiter und wohl für immer bei. Doch werden die beiden Längenfurchen, die dieses Aussehen verursachen und von denen die eine an der oberen, die andere an der unteren Seite einer jeden Niere verläuft, im Verhältniss zu ihrer Länge mit der Zeit ein wenig schmäler, wie auch vorn mitunter auf einer mässig grossen Strecke ganz verwischt. Die beiden Lappen, aus denen jede Niere besteht, behalten das Lagerungsverhältniss und das Grösseverhältniss, in denen sie gleich anfangs zu einander standen, im Wesentlichen bei; denn für immer reicht der innere Lappen über den äusseren mässig weit nach hinten hinaus, bleibt aber in der Regel schmäler als der äussere. Mehr als an Länge nehmen die Nieren nach Ablauf des Fruchtlebens an Dicke zu. Bei Crocodilen, die schon ein Jahr oder einige Jahre alt geworden, besitzen dann die Nieren nicht mehr weit vor der Mitte ihrer Länge, sondern ungefähr auf der Mitte selbst die grösste Breite und Dicke und gehen von da nach vorn schmäler und dünner aus.

Was den inneren Bau der Nieren anbelangt, so theilt Rathke darüber folgendes mit. In den Nieren sehr junger Crocodile kommen kleine Beutelchen vor, die sich allmählich in eben so viele Röhrchen, und diese in eben so viele Zweige des Harnleiters umbilden, von denen jeder eine bedeutende Menge Harncanälchen aussendet. Stadiumliche Zweige und ihre Harncanälchen liegen dann eine kürzere oder längere Zeit dicht nebeneinander. Später aber gruppiren und scheiden sie sich in der Art, dass die Harncanälchen je eines Zweiges — indem sich zwischen ihnen eine Spalte bildet — in zwei Schichten auseinander gehen, hingegen die einander zugekehrten Schichten zweier benachbarter Zweige beisammen
bleiben und ein Nierenblatt oder doch einen Theil eines solchen zusammen-
setzen. In alle entstehende Spalten der Nierenmasse senkt sich der fibrös-
hautige Ueberzug der Nieren faltenartig hinein, bekleidet die Seitenflächen
der sich bildenden Nierenblätter und gibt den Verzweigungen des Harn-
leiters, die in diesen Blättern ausgebreitet sind, eine Unterstüttzung. Ueber
die histologische Struktur der Crocodilen-Nieren liegen bis jetzt noch keine
Angaben vor.

Die Harnleiter sind ziemlich weit, haben dicke, musculöse Wände
und brachen nur einen ziemlich kleinen Weg zu machen um zur Cloake
gelangen. Dass sie vor Eintritt in dieselbe sich erweitern, wurde von
Budge ebenso wenig als von mir selbst beobachtet.

Sie verbreiten sich mit vielen Zweigen in der Niere tief herein, und
nehmen die Sammelröhrchen der Harmanälichen auf. Nach Budge's An-
gaben münden dieselben nicht in der Cloake, sondern in der hinteren
Abtheilung des Enddarmes. Hiermit kann ich mich aber nicht einver-
standen erklären. Bei Crocodilus findet man nämlich, dass die Ureteren
wirklich in die Cloake einmünden, und zwar in einen ziemlich dünn-
wandigen Raum, der oben durch eine kräftige Ringfalte von dem End-
darm, unten ebenfalls durch eine Ringfalte begrenzt wird, welche den in
Rede stehenden Raum von dem darunter gelegenen Abschnitt der Cloake,
in welchem die Vasa deferentia ihre Ausmündung haben, trennt. (Vergl.
hierzu Taf. Cl. Fig. 1).

Nach Moore soll der Urin der Crocodile keine Spur von Harnstoff
enthalten.

Männliche Geschlechtsorgane.

Nach den Angaben von Plumier und Descourtilz trifft man von
Crocodilus acutus viel mehr weibliche als männliche Exemplare an. Ein
solches Ueberwiegen des weiblichen Geschlechtes über das männliche findet
nach Rathke wahrscheinlich auch bei anderen Arten von Crocodilen statt.
Ausser der grossen Analogie in den Organisationsverhältnissen und den
Functionen sämmtlicher Arten dieser Ordnung, dentet darauf einiger-
maassen auch der Umstand hin, dass Rathke unter 36 Exemplaren von ver-
schiedenartigen Crocodilen, nur 3 fand, die männlichen Geschlechtes waren.

An der hinteren grösseren Hälfte eines jeden Hoden zieht nach
Rathke (bei Crocodilus acutus) ein sehr schmaler, dünn und blendend
weisser Nebenhoden entlang, der seiner ganzen Länge nach mit der
äusseren Seite jenes Körpertheiles inniger verschlungen ist. Ueber seinen
inneren Bau konnte Rathke keine befriedigende Kenntniss erlangen.
Am hinteren Ende des Hodens ging er in den Samenleiter über. Dieser
ist anfangs dünn als der Nebenhode, wird aber nach hinten allmählich
etwas dicker, doch ist er selbst ganz hinten kaum zum sechsten Theil
so dick, wie der Harnleiter kurz vor seinem Uebergang in die Cloake.
Nach seinem Abgang von dem Nebenhoden verläuft er zuerst unter der

Eierstöcke und Hoden liegen bei den Crocodilien anfänglich an der nach unten und innen gekehrten Seite der Wolff'schen Körper, es ist also sehr wahrscheinlich, dass sie an denselben auch entstehen. Nach der Geburt kommen die Eierstöcke, während die Ueberreste der Wolff'schen Körper bei den Weibchen gänzlich verschwinden, unmittelbar theils unter den Nebennieren, theils unter der Rückenwand des Leibes zu liegen. Die Form von länglichen und mässig breiten Platten, die sie gegen das Ende des Fruchtlebens erlangt haben, behalten sie auch noch ferner bei, werden aber im Verhältniss zu ihrer Länge und Breite dicker. Gleichzeitig nehmen die Furchen, die sich bei einigen Arten von Crocodilien schon gegen das Ende des Fruchtlebens an ihrer nach unten gekehrten oder freien Fläche bemerken lassen, bei anderen Arten aber erst später erhalten, nicht blos an Tiefe, sondern auch an Zahl zu, und es zeigen die Eierstöcke in Folge davon ein ähnliches gelapptes Aussehen, wie einige Zeit hindurch die gleichnamigen Organe bei Knorpelfischen, Schildkröten und Vögeln. Bei zunehmendem Alter, wenn in den Eierstücken die Eier in bedeutenderer Zahl vorhanden sind, werden wahrscheinlich auch bei den Crocodilen jene Furchen ganz verstrichen und vertilgt.

Ueber den feineren Bau des Eierstockes und des Eileiters kann ich leider nichts genaues angeben; das mir zur Verfügung stehende Material war zu schlecht conservirt.

Den Bau der Cloake bei den Crocodilien hat Rathke genau untersucht. Dieselbe bildet einen mässig langen, einfachen Schlauch, der in einer Entfernung von seinem vorderen Ende am weitesten und daselbst beinahe noch einmal so weit als der Dickdarm ist, von da aus nach hinten allmäthlich etwas enger wird und von zwei Seiten, von rechts und links stark abgeplattet erscheint. Ihre Wand ist dünner als die des Dickdarms, zeigt aber dieselbe Zusammensetzung als dieser, indem sie auch eine aus longitudinalen und transversalen Muskelfasern bestehende Haut besitzt, von welchen Fasern die ersteren zu einer Schicht zusammengehäuft sind, die sich als eine gerade Fortsetzung der äusseren Muskelschicht des Dickdarms erweist und über den Ringmuskels des Dickdarms hinweggeht. Die Schleimhaut der Cloake bildet vor dem Geschlechtsgliede eine ziemlich lange und hohe Querfalze, die mit einer ihr ähnlichen zweiten und an der oberen Wandung der Cloake befindlichen zusammenhängt, indem beide mit ihren Enden in einander übergehen. Bei Alligator palpebrosus fand Rathke in derselben Gegend eine vollständige und

B r o n n, Klassen des Thier-Reichs. VI. 3. 61
Anatomie.

Gewöhnlich sind die Cloakendrüsen prall angefüllt mit einer dicken, gelblichen Masse, die stark nach Moschus riecht.

Der hinter dem Beckenansang gelegene Theil der Cloake besitzt eine anders beschaffene Muskulatur als der führige oder vordere Theil der Cloake. Dieselbe besteht in zwei besonderen Muskelpaaren, die auch die Moschusdrüsen von aussen umfassen und deren Fasern quer gestreift sind. Die des einen Paares bilden einen ziemlich breiten und massig dicken Ringmuskel, der zunächst dem After seine Lage hat, und durch ein kurzes führöses Gewebe vorn an den hinteren Rand der Sitzbeine und die Symphyse derselben, hinten aber an das Ende des zweiten Processus haemafis inserirt. Zieht er sich zusammen, so wird die von vorn nach
hinten gerichtete Afterspalte, falls sie erweitert war, verengert oder völlig geschlossen. Die Muskeln des anderen Paares haben im Ganzen eine grössere Breite aber geringere Dicke und bilden zwei auf beiden Seitenhälften vertheilte Schichten, die den ganzen ausserhalb des Beckens gelegenen Theil der Cloake umgeben.

Ihre Bündel zeigen im allgemeinen eine Richtung von oben nach unten, und zwar die vordersten eine ziemlich senkrechte, die übrigen aber eine um so schrägere von oben nach unten und hinten, je weiter sie nach hinten liegen. An der oberen Seite der Cloake sind diese beiden letzteren Muskelschichten von ihrem vorderen bis beinahe zu ihrem hinteren Ende durch einen schmalen, sehnligen Streifen mit einander verbunden, ganz hinten aber sind sie in Gemeinschaft mit dem Ringmuskel der Cloake an dem zweiten Processus haemalis angeheftet. Zu Urtheilen nach ihren Anheftungen, vermögen sie den ausserhalb des Beckens gelegenen Theil der Cloake von unten nach oben zu verkürzen, dagegen die Afteröffnung seitwärts zu erweitern.

Copulationsorgane.

Joh. Müller (166) und Rathke haben sich eingehend mit dem Bau der Copulationsorgane bei den Crocodilen beschäftigt. Die Ruthe liegt gewöhnlich in der Cloake vollständig verborgen, hat mit ihrer Eichel eine Richtung nach hinten und bildet einen starken Bogen, dessen convexe Seite, an der sich eine Rinne befindet, der oberen Wandung der Cloake zugewendet ist. Man kann nach Rathke an der Ruthe zwei fibröse Stränge, (die nach ihm den Corpora cavernosa der Säugethiere entsprechen), ein Corpus cavernosum urethrae und eine von der Schleimhaut der Cloake herrührende Hautbekleidung unterscheiden. Die beiden fibrösen Stränge bilden zwei dicke Platten, die vom Sitzbein entspringen, bald zusammen treffen und darauf an ihren einander zugekehrten Rändern vollständig verschmelzen. Auf der Strecke, auf der sie mit einander verschmolzen sind, machen sie hauptsächlich den Schaft des Gliedes aus, werden bis in die Nähe ihres Endes allmählich dünner und schmäler und bilden zuletzt eine mässig lange Spitze, die in die Eichel ziemlich tief hineindringt. Von der Stelle ihrer Vereinigung bis zu dieser Spitze sind sie so zusammengelegt, dass sie eine ziemlich tiefe, doch nur schwache Furchen zwischen sich lassen, die der oberen Wandung der Cloake zugekehrt ist, und vorn, wo sie beginnt, die grösste Tiefe und Breite hat.

Cavernöses Gewebe ist nach Rathke in diesem Theil nicht enthalten. Dagegen ist die angegebene Furchen, die bis zur kegelförmigen Spitze deselben reicht, nicht aber sich auf diese fortsetzt, ihrer ganzen Länge nach von einer dünnen Schicht cavernöser Gewebes ausgekleidet. Weiter nach hinten nimmt diese Schicht des cavernösen Gewebes, die ebenfalls eine Rinne bildet, an Masse und Umfang bedeutend zu, und theilt sich

61°
Anatomie.

in zwei auseinander gehende und der Form wie der Grösse nach verschiedene Platten, von denen sich die eine über der andern befindet. Diese Platten sind nun — wie Rathke behauptet, zusammen mit ihrem von der Schleimhaut der Cloake herrührenden Ueberzug als gleichbedeutend mit der Eichel der Säugethiere zu halten. Die obere von ihnen geht in der verlängerten Richtung der angetührten Schicht des cavernösen Gewebes fort und ist so zusammen gelegt, dass sie gleichfalls eine Rinne bildet, die sich als das Ende der von jener Schicht des cavernösen Gewebes gebildeten Rinne darstellt. Ihre Dicke und Breite ist nur gering und gegen ihr Ende wird sie immer dünner und schmäler (Taf. XCIX. Fig. 5 e). Im Verein mit ihrer sehr dünnen Hautbekleidung hat sie eine solche Form, dass Joh. Müller (166) sie mit dem vor-springenden Theile einer Dachrinne, Rathke dieselbe mit der Schneppe einer Kanne vergleicht. Den weichen und sehr biegsamen Endtheil der Ruthe nennt Rathke daher die Eichelschneppe. Die andere oder untere der beiden Platten, in die das cavernöse Gewebe der Ruthe rinne nach hinten ausgeht, besteht aus zwei dreieckigen Seitenhälften, die an der Basis der Eichelschneppe schmal beginnend, nach hinten nicht unbedeutend an Dicke zunehmen, mit ihrem nach unten gekehrten Rande sich dem kegelförmigen Ende, in welches die fibröse Antheil der Ruthe ausgeht, anschliessen und an dem dünnern Ende dieser Spitze zusammenkommen und verschmelzen. Im Verein mit diesem kegelförmigen Ende bilden sie ein nach oben schaufelförmig zusammengerolltes Blatt, das viel grösser als die Eichelschneppe ist, aber gleichfalls auf seinen beiden Seiten einen Ueberzug von der Hautdeckung der Ruthe besitzt (Vergl. Taf. XCIX Fig. 5). Rathke nennt diesen Theil das Eichelblatt. Wo die Eichelschneppe und das Eichelblatt von dem Schaf der Ruthe abgehen, sind beide an ihren Seitenrändern eine mässig lange Strecke gleichsam verschmolzen, wodurch zwischen den beiden Theilen der Eichel, wo sie von dem Schaf der Ruthe abgehen, eine Höhle hervorgebracht worden, die je mehr nach hinten (gegen das Ende der Eichel) desto weiter ist und einigermaassen die Form eines Trichters zeigt. Eine breite mittlere Haut- falte theilt diese Höhle in zwei gleiche Seitenhälften.

Die Eichel ist bedeutend kürzer als der Schaft der Ruthe. Der Ueberzug, welchen die Ruthe von der Schleimhaut der Cloake erhalten hat, ist viel dünner als an der Wandung der Cloake, am dünnsten aber in der Rinne der Ruthe bis an das Ende der Eichelschneppe hin. Auf die Eichel geht er vor dem Schaft, ohne eine Vorhaut zu bilden, geradesweges über.

Die Schenkel der Ruthe sind mit den Sitzbeinen, neben ihrer Symphysis verwachsen. Mit der Wurzel der Ruthe ist der vorderste Theil des stark entwickelten Ringmuskels der Cloake, durch eine beträchtlich grosse Masse fibrösen Gewebes innigst verbunden (Taf. XCIX. Fig. 5 f). Muskeln aber, die nur allein dem Geschlechtsgliede angehören, fehlen nach Rathke.
Von der rechten und linken Seite erscheint die Ruthe mehr oder weniger abgeplattet, besonders bei *Alligator lucius*, weniger bei *Crocodiles acutus*.

Bei der Begattung der Crocodile wird ihre Ruthe wahrscheinlich, wie Rathke vermutet, gerade gestreckt. Wodurch dies aber geschieht ist schwer zu sagen, da die paarigen Corpora cavernosa penis nur aus einem dichten fibrösen Gewebe bestehen, die Schicht cavernöser Gewebes aber, welche die Ruthe auskleidet, nur sehr dünn ist. Aus der Cloakenöffnung tritt dabei das Glied, wie es den Ansechein hat, nur wenig weit hervor, denn obgleich die Eichel durch eine stärkere Auffüllung mit Blut ziemlich verlängert werden kann, sind doch die paarigen Corpora cavernosa penis keiner erheblichen Verlängerung fähig.

Das Geschlechtsglied der weiblichen, wie der männlichen Crocodile ragt in der frühen Zeit des Fruchtlebens, wie das der Schildkröten, aus der Cloake durch den After hervor und wird erst späterhin, jedoch schon lange vorher, ehe der Embryo das Ei verlässt, in die geräumiger gewordene Cloake scheinbar hineingezogen; eigentlich aber von derselben, indem er in seiner Vergrösserung hinter ihr zurückbleibt, völlig überwachsen. Auch hat es nach Rathke allem Anschein nach, bei beiden Geschlechtern einige Zeit nicht blos eine gleiche Form, sondern auch eine gleiche relative Grösse.
Circulations-Organe.

Blut- und Lymphgefässsystem. — Blutgefässdrüsen.
Blutgefässsystem.
Herz.

Literatur.

Ausser den schon erwähnten Schriften sind noch zu erwähnen:

(185) Vrolik. Sur le cœur du Crocodile (Crocodilus lucius); in: Het Instit. 1841.

Ueber den Bau des Herzens und den Ursprung der grossen Gefässe bei den Sauriern und Crocodilen, wohl eines der meist complicirten und schwierigst zu verstandenden Organsysteme der Reptilien, verdanken wir Rathke (188) und Brücke (186) prächtige und sehr ausführliche Untersuchungen, doch haben die des erstgenannten Forschers — besonders was die Vertheilung der grossen Gefässe angeht — durch die höchst bedeutenden Mittheilungen von Fritsch 189 sehr wichtige Verbesserungen erhalten und sind auch die Angaben Brücke's durch ihn in mancher Beziehung ergänzt.

Nach Eröffnung des festen Pericardium liegt der Ventrikel frei zu Tage, welcher durch die Einstülpung des Herzbeutels sowohl oben am Ausgang des Truncus arteriosus, als auch in vielen Fällen am Apex an den parietalen Theil befestigt ist. Wenn auch höher gelegene, anderweitige Anheftungen unter die pathologischen Gebilde zu rechnen sein dürften, so erscheint doch das Ligament an der Spitze bei Crocodilen (Alligator lucius) und Eidechsen, zwar nicht durchgängig, aber doch in den einzelnen Species so regelmässig und ist meist so kräftig entwickelt, dass es besondere Beachtung verdient.

Zuweilen verläuft durch dasselbe, wie bei einzelnen Schildkröten, sogar ein Gefäss, so z. B. bei Alligator lucius nach Fritsch; als Regel lässt sich indessen ein solches Verhalten nicht nachweisen.

Es scheint das Fixiren des Apex in der That Zweck des Bandes zu sein, wofür auch der Umstand spricht, dass es unter den Schlangen, bei
denen durch die langsam abwärts rückende, bedeutende Ausdehnung des Oesophagus während des Schlingens das Herz starke Verschiebungen machen muss, eine ähnliche Bildung nicht vorkommt. Frisch nennt dies Band, wie auch schon bei den Schildkröten erwähnt ist, das Gubernaculum cordis.

Die allgemeine Form des Körpers ist nicht ohne Einfluss auf die des Herzens, indem die langgestreckten Familien in der Regel diese Streckung auch in der Bildung dieses Organs erkennen lassen, was indessen meist dem Ventrikel nur in geringerem Masse zukommt, als den übrigen Abtheilungen. So sehen wir in Gegenüberstellung mit den Schildkröten, dass bei den Crocodilen, mit dem Auftreten eines cylindrischen Körpers, sich auch der Ventrikel rundet, die Länge überwiegts die Breite und ein Apex wird deutlich, wenn auch immer noch ziemlich rundlich. Die Monitores, welche im Außeren so sehr an die Crocodile erinnern, zeigen auch durch die Bildung des Herzens einen hohen Grad von Verwandtschaft. Die Gestalt des Ventrikels besonders ist — nach Frisch's Angaben — dem der letztgenannten Thiere ebenso ähnlich, wie sie von der der übrigen Eidechsen in auffallender Weise abweicht. Sowohl Hydrosaurus als Psammosaurus zeigen einen rundlichen Ventrikel und beim letzteren ist der Apex sogar noch weniger ausgebildet, als bei den Crocodilen; für die echten Eidechsen aber, besonders die Lacertinen, ist das scharfe Vortreten desselben charakteristisch. Der steile, rechte Rand des Ventrikels wird gegen die Herzspitze hin concav und vereinigt sich mit dem linken in regelmässiger Krümmung herabsteigenden zu einer deutlichen Spitze, welche bei einigen (z. B. Lacerta) quer abgestumpft erscheint.

Bei den Species, welche sich durch den sehr langgestreckten Körper und das Verkünmmern der Extremitäten den Schlangen nähern, kommt auch in der Herzbildung eine solche Annäherung vor. Dasjenige von Pseudopus Pallasii stimmt zwar in der Wölbung mit den Lacertae überein, lässt aber durch die wenn auch geringe Streckung des Ventrikels in die Länge, sowie durch das Fehlen des vortretenden Apex eine solche Tendenz erkennen; auch überragt die linke Hälfte die entgegengesetzte nach oben (vorn) zu mehr, als es sonst bei den Eidechsen der Fall ist.

Uber dem Ventrikel wird im Pericardium die den Vorhöfen zugehörige Abtheilung sichtbar, welche eine hänfige, sehr elastische Beschaffenheit zeigen, in Bezug auf Gestalt, Grösse und Lagerung aber sehr variiren.

Die Verlängerung der inneren und besonders der unteren Ecke des rechten Vorhofes, welche besonders bei den Crocodilen (Alligator lucius) und bei den Monitoren deutlich ausgeprägt ist, bleibt dann auch bei den Eidechsen bemerkenswerth, hier behält aber der linkseitige seine unregelmässig vierkantige Gestalt in den meisten Familien in sehr auffallender Weise (bei Uromastix spinipes, Lacerta ocellata, Chamachida vulgaris, Pseudopus Pallasii) im schroffen Gegensatz zu dem stark abgerundeten rechtseitigen,

Der gemeinsame Ursprung der grossen arteriellen Gefässe, die letzt zu nennende Abtheilung des Amphibienherzens, erscheint als ein dicker, strangförmiger Körper, ausgehend vom oberen Rande des Ventrikels in seiner rechten Hälfte, scheidet in der vorderen Ansicht die Vorhöfe und spaltet sich dann an der Stelle, wo das parietale Pericardium in das viscerale übergeht, in mehrere Stämme, welche nach links und rechts auseinander weichen. Dieselbe bildet bekanntlich den Truncus arteriosus. Nicht injiectirt lässt derselbe kaum ahnen, welch’ ein umfangreiches Organ in ihm vorliegt; prall gefüllt schliesst er den Zwischenraum der Vorhöfe und giebt dem Herzen erst die vollständige, abgerundete Form. Der Umfang ist besonders bei den Crocodilen viel grösser als die Summe der aus ihm hervorgehenden Gefässe, und es ist schon deshalb unstatthaft, ihn für weiter nichts zu halten, als für eine Verschmelzung der Arterien, bei den Eidechsen dagegen erscheint er viel weniger voluminos.

Betrachten wir jetzt die verschiedenen Abtheilungen des Herzens etwas ausführlicher und fangen wir mit dem Ventrikel an. Untersucht man genauer den Querschnitt der Ventrikelbasis beim Säugenthier, so ergiebt sich schon hier, dass der linke Ventrikel sein Ostium arteriosum bekanntlich nach rechts hinüber schiebt, so dass der Eingang zur Aorta hinter dem Conus arteriosus der Pulmonalis zu liegen kommt. Ein entsprechender Durchschnitt des Crocodilenherzens zeigt nach Fritsch ein ähnliches Verhalten, nur greift der Ursprung der rechten Aorta noch etwas mehr nach rechts herüber und zieht also bei dem der Pulmonalis vorbei. Ein Querschnitt durch den mittleren Theil der Atrien (vergl. Taf. CIII. Fig. 1) ergiebt dem entsprechend den durchschnittlichen Stamm der Pulmonalis links, den der rechten Aorta rechts gelagert, während ein Querschnitt durch den dicksten Theil des Ventrikels (vergl. Taf. CIII. Fig. 2) eine schräg von vorn links nach hinten rechts verlaufende Scheidewand erkennen lässt, welche besonders im obersten Theil eine so starke quere Drehung erleidet, dass man für diesen Abschnitt des Ventrikels mit grösserem Rechte von einer vorderen und hinteren, als von einer rechten und linken Abtheilung sprechen kann.

Geht man nun abwärts in der Vergleichung, so zeigt sich zunächst bei Psammosphurus griseus (Taf. CIII. Fig. 3) in schlagendster Weise dieselbe Anordnung eines schräg verlaufenden Trabekelsystemes und dieselbe Lagerung der Arterienursprünge. Weiterhin in der Familie der Eidechsen (Taf. CIII. Fig 4. 5. 6.) werden die Durchschnitte des Ven-

Man darf nun fragen, was bleibt für den rechten Ventrikel, wenn sich der linke bis zur hinteren rechten Ecke des Ganzen ziehen soll? Und Fritsche antwortet darauf, die vordere rechte Abtheilung, welche sich an der Bauchseite bis gegen der Mittellinie erstreckt, deren Conus arteriosus aber wie beim Crocodil vor dem analogen Theil des linken Ventrikels liegt.

bei den Varanus, eng dagegen bei den Eidechsen, im allgemeinen scheint er bei den höher organisirten Formen bedeutender entwickelt als bei den niedriger stehenden.

Hinter der Stelle, wo die Muskelleiste verschwindet, wird ein halbmondförmiger Ausschnitt sichtbar, welcher die Einmündung des Atrium dextrum markirt, dessen Strom sich also direkt gegen die Rückseite der Leiste wendet und in dem vorgebildeten Canal daran abwärts steigt.

Am rechten mehr zurücktretenden Rande der Muskelleiste erscheinen oben die Ausläufer des bei Besprechung des linken Ventrikels erwähnten Trabekelsystemes und vervollständigen hier durch ihre zeitweise Anlagerung den Abschluss des Pulmonaleanales; es wird dadurch eine weitere Grenze dieser Kammerabtheilung kenntlich, und bezeichnet die Sonderung des Spatium interventriculare der Autoren.

Wenn man sich die Gesamtheit der arteriellen Ostien etwas weiter nach rechts verschohen denkt, ohne ihre relative Lagerung zu verändern, indem die beschriebenen Anlagen der Coni ihnen in gleicher Weise folgen, so verschwindet auch die letzte Schwierigkeit, um die Ventrikelgrenze im oberen Drittel, wo eine Kreuzung des absteigenden venösen und aufsteigenden arteriellen Blutstromes stattfinden muss, festzustellen. Es rückt dann der Ursprung der rechten Aorta vor das rechte venöse Ostium, die Anlagen der Coni verschmelzen zum Theil mit der sich erhebenden Scheidewand, und der früheren Kreuzung der beiden Blutströme entspricht nur noch eine sagittale Drehung der entstandenen, vollständigen Scheidewand. Man erhält so einen vorderen rechten Ventrikel mit Pulmonalis, linker Aorta und Spatium interventriculare (abgegrenzt durch den nach links hinüber gezogenen, unvollständig verschmolzten Conus arteriosus der Pulmonalis), in dem das Ostium venosum nach hinten und rechts gelagert ist, wie es thatsächlich im Herzen des Crocodils erscheint. Der linke Ventrikel hat ebenfalls sein Ostium venosum und arteriosum, der verkürzte Conus des letzteren erinnert an der ursprünglichen Lage des Ostium aorticum neben und nicht vor dem Ostium venosum dextrum.
Bei allen Reptilien findet man zwischen Vorhof und Ventrikel jederseits eine grosse, membranöse Klappe, welche ausgeht von der Basis des Ventrikels, wo derselbe an die Scheidewand der Atrien stösst, eine nach aussen und unten gerichtete schiefe Ebene mit ausgeschnittener Rande darstellend, deren vordere und hintere Zipfel sich an kurze, ebenso gerichtete Papillarmuskeln heften. Indem die Ansätze und Wirkungslinien dieser Muskelzüge rechter und linker Seite stark divergiren, dürfte dadurch, nach Fritsch, in den meisten Fällen ein Zusammenschlagen der beiderseitigen Klappe nach unten vollständig zur Unmöglichkeit werden. —

Bei den Eidechsen rücken die freien Ränder der Klappe einander sehr nahe, dennoch wirken die queren Ansatzpunkte einer Berührung der Klappenränder stark entgegen und ausserdem ist die Herzhöhle zu gross, als dass die Klappen während der Diastole dieselbe in zwei Hälften theilen könnten.

Am ausgebildetsten erscheinen die genannten Klappen bei den Crocodilen und hier allein darf man nach Fritsch von zwei Zipfeln derselben sprechen, doch ist auch bei ihnen der innere, der Vorhofscbeidewand entsprechende, bedeutend stärker und hält dieselbe Richtung nach abwärts mit leichter Drehung nach hinten ein. Am linken Ostium venosum sind beide Zipfel weniger an Grösse verschieden als am rechten, wo der äussere eine etwa halb so lange Membran darstellt, welche den Verschluss durch den inneren nur vervollständigt (vergl. Taf. CHI. Fig. 1).

Die Einündung der Körpervenen in das rechte Atrium liegt derjenigen der Lungenvenen benachbart, häufig nur durch die Scheidewand davon getrennt und ist stets charakterisirt durch eine stark ausgebildete Klappe, welche der Valvula Eustachii höherer Thiere entspricht.

Der ganze Raum, welchen die Valvula Eustachii der Quere nach durchmisst, bis zum Septum atriorum mit dem Ostium venosum ventriculi nach unten, lässt sich bei den Crocodilen besonders deutlich und mit grosser Schärfe von dem übrigen Theile des Vorhofes abgrenzen (vergl. hierzu Taf. CHI. Fig. 1). Die Anlagerung der Sinus venosi auf der hinteren Seite und die des Truncus arteriosus auf der vorderen verdockt die Trennung beider Abtheilungen bei den meisten Reptilien so vollständig, dass man die Grenze äusserlich nicht sicher feststellen kann, selbst bei den Crocodilen, wo hinten wenigstens eine tiefe Furche (Taf. CIV. Fig. 1) die Trennung markirt, sieht man vorn in der That nur die Auriculae, doch lehrt der Durchschnitt auch die vordere Grenze (vergl. Taf. CHI. Fig. 1).
Entsprechende Durchschnitte der Vorhöfe bei Eidechsen lassen das beschriebene Verhalten der beiden Abschnitte in derselben Weise erkennen, wie bei den Crocodilen, wenn es auch nicht so scharf markirt ist (Taf. CHI. Fig. 7).

Truncus arteriosus. Die gleich zu beschreibenden grossen Gefässe vereinigen sich bei allen Reptilien an der Stelle, wo der parietale Theil des Herzbeutels in den visceralen übergeht, oder eine geringe Strecke innerhalb dieser Stelle zu dem Truncus (Bulbus) arteriosus. Sie sind von da ab untrennbar mit einander verwachsen und theilweise verschmolzen; wie aber schon äusserlich an diesem Organ durch Furchen das Fortbe- stehen einzelner Blutbahnen kenntlich ist, so ergiebt auch die innere Untersuchung die Trennung durch Scheidewände in gewisse Abtheilungen.

Bei sämmtlichen Reptilien wächst die bei den Amphibien bereits angedeutete Scheidewand des Truncus in zwei Schenkel nach vorn aus und bildet so durch Anheftung an die äussere Wandung einen besonderen Canal für die linke Aorta.

Diese ihrem Ursprunge wie dem Verlaufe nach so merkwürdige linke Aorta ist, wie Fritsch wohl mit Recht hervorhebt, das durchgreifendste Merkmal für sämmtliche Reptilien und wenn man durchaus im Circulations- apparat nach trennenden Momenten der Reptilien von den Amphibien sucht, wie Fritsch angiebt, der einzige stichhaltige Unterschied.

Lässt man die linke Aorta im Crocodilherzen obliteriren, so entspricht der Apparat dem der Vögel, bleibt sie in ihrem Ursprung unvollständig abgesondert oder gar nicht getrennt, so führt dies Verhalten durch die Batrachier zu den Fischen.

Durch die Rückbildung der Musculatur des Bulbus erhält man einen Truncus arteriosus, der keine selbständigen Contractionen mehr ausführt und also auch am oberen Ende keiner Klappen bedarf. Am Ursprung aus dem Ventrikel bleiben sie bestehen und stellen durchgängig zwei Semilunarklappen dar, welche symmetrisch durch das Lumen ihrer Ge- fässabtheilung gespannt sind. Wenn oben angegeben wurde, die Trennung der Ventrikel bei den Crocodilen sei nur in gewissem Sinne vollständig, so geschah dies im Hinblick auf diese über die Semilunarklappe verlegte Communicationsöffnung beider Blutbahnen, welche bemerkenswerth erscheint als der deutlichste Beweis, dass eine völlige Sonderung des grossen und kleinen Kreislaufes auch bei keiner Abtheilung der Reptilien zulässig ist.

Während Bischoff es in seiner Abbildung als eine leicht zugängliche Oeffnung darstellte ging Duvernoy (184) sogar so weit, zu behaupten, sie schloß sich ganz bei vorgerücktem Alter; Verolik gebürt somit das Verdienst, die Angabe auf das richtige Maass zurückgeführt und auf das Uncorrecte in der Bischoff'schen Figur aufmerksam gemacht zu haben (vergl. für Gestalt und Stellung der Semilunarklappen Taf. CHI. Fig. 1 und Taf. CIV. Fig 2).

An dem Ausgang des Truncus arteriosus der Crocodile kommen zwei eigenthümlich gebildete Knorpelplättchen als Einlagerung der Wandung vor mit Fortsätzen, die Stützpunkte der Klappen abgeben.

Vertheilung der grossen Gefässe. Aus dem Truncus oder Bulbus arteriosus gehen, wie schon hervorgehoben, sämtliche Arterienstämme hervor; um aber ihr eigenthümliches Verhalten gut zu verstehen, ist es unerlässlich, die embryonalen Zustände kurz zu besprechen.

Bekanntlich geht der vorderste Abschnitt des Herzens als einfacher Stamm aus dem Ventrikel hervor, der sich alsbald in zwei Aeste spaltet, die in paarige Bögen zerfallen, welche sich an den Seiten des Halses vereinigen und nach unten zu wieder zu einem grossen Gefäss, der Aorta, zusammenlaufen. Die Bögen werden Aræus Aortæ, ihre lateralen Verbindungen Ductus Botalli, die aus den Vereinigungen hervorgehenden Stücke Aortawurzeln genannt. Rathke der sich wohl die bedeutendsten Verdienste um die Kenntniss der einschlägigen Verhältnisse erworben hat, nennt sie in solchem Entwickelungsstadium primitive im Gegensatz zu den umgestalteten spätären, die er als secundäre Aortawurzeln unterscheidet. Die letzteren lässt er bis zum Herzen verlaufen, nachdem sich der Truncus arteriosus gespalten hat, und es repræsentirt also seine secundäre Aortenwurzel etwas anderes als die primitive, in so fern die erstere nicht mehr als eine reine Verschmelzung der Aortabögen betrachtet werden kann. Nach Rathke's Vorgang hat Fritsch ebenfalls das ganze Ursprungsstück bis zum Ventrikel so genannt, es repræsentirt also eine secundäre Aortenwurzel.

Während Fritsch (189) dieses den umfassenden Untersuchungen Rathke's im Einzelnen die vollste Anerkennung nicht versagen kann, erklärt er sich doch ausser Stande, den Nutzen und die Berechtigung zu begreifen, welche die von ihm daraus abgeleiteten allgemeinen Anschauungen haben.

Rathke construit sich nämlich ein System von fünf leiterartig mit einander verbundenen Bogenpaaren des Truncus arteriosus (Taf. CV. Fig. 1—5), aus welchen er durch Obliteriren des einen oder anderen Stückes die bleibenden Verhältnisse herleiten will. In diesen Darstellungen spielt das „Verschwundensein“ gewisser Abtheilungen eine Hauptrolle, es leuchtet indessen ein, wie Fritsch hervorhebt, welch ausserordentlich schwaches Beweismittel es ist, das Verschwundensein da demonstriren zu wollen, wo man das frühere Vorhandensein an demselben Exemplare der Lage der Sache nach nicht nachzuweisen vermag.
So bildet Rathke einen Hühnerembryo ab mit 3 Paar deutlichen Aortabögen und deducirt in der Beschreibung, dass der erste (am frühesten gebildete) verschwunden sei, ehe der fünfte sich bilde. Wie er sich in diesen und in ähnlichen Fällen die positive Gewissheit von dem wirklichen Vorhandensein von fünf Paar Bügen verschaft hat, vernag Fritsch nicht anzugeben, konnte auch in den umfangreichen Publicationen des Autors nichts darüber finden.

Fragt man nun aber, nach Fritsch selbst zugegeben, die fünf Paar Bügen seien unumstösslich erwiesen, was für einen Vortheil, welche Einsicht gewinnt man durch das Festhalten derselben, so ergibt sich als Hauptresultat die Erklärung der Entstehungsweise der Carotiden, indem der untere Längsstamm der Leiter zur Carotis externa, der obere zur Carotis interna gemacht wird. Leider stimmt nach Fritsch auch dann das Schema für die bleibenden Verhältnisse noch keineswegs, wie z. B. für die Schlangen zwei Carotides communes, zwei Carotides internae und externae entwickelt werden, welche doch nirgends im ausgebildeten Thiere existiren, um das Ueberführen in die endlichen Zustände, d. h. die Hauptschwierigkeit wird mit einigen dürftigen Redensarten abgethan.

Die oberen Klassen der Wirbeltiere als nicht hierher gehörig ausser Acht lassend wird es nöthig sein zu fragen, welche Beweise hat Rathke an der Hand, die fünf Paar Aortenbügen bei den Klassen der Schildkröten, Schlangen und Saurier aufrecht zu erhalten? In Hinsicht auf die Crocodile giebt er selbst zu, dass auch die jüngsten, welche er untersucht hat, zu alt waren, um über die frühesten Stadien der Entwicklung Ausschluss zu erhalten, und betont im Verlaufe der Darstellung ausdrücklich, dass die Anlage der Gefässe bei denselben schon den bleibenden im wesentlichen entsprach. Bei der Beschreibung der analogen Verhältnisse der Schildkröten spricht er nur von mehreren Paaren von Bügen, die aus dem einfachen Trunci entspringen, ohne die Zahl anzugeben. Die Unterschiede, welche er in Hinsicht auf das Gefässsystem constatiren konnte, waren nur, dass bei den jüngsten die beiden primitiven Aortenwurzeln gleich waren und sich bereits sehr hoch oben am Halse vereinigten, bei den ausgebildeten aber die (sekundären) Aortenwurzeln ungleich wurden durch die der rechten sich auftögenden Trunci anonymi und sich erst tief unterhalb des Herzens vereinigten. Auch von den Sauriern bildet er einen Eidechsenembryo ab mit nur drei Paaren Bügen (188), ohne indessen von der behaupteten früheren Existenz von fünf Paaren abzugehen.

Aber auch in seiner „Entwicklungsgeschichte der Natter“ gibt Rathke an, dass sich der einfache Bulbus durch Scheidewände in drei Blutbahnen theilt, diesen entsprechend drei Arterienstämme ausschickt, aus deren vorderstem Paar die Carotiden und rechte Aorta, den mittleren die linke Aorta und dem hintersten die Pulmonalarterien werden, wie dies auch von Fritsch behauptet wird.

Es scheint, dass die Beobachtung von Visceralbügen (Schlundbügen), Zusammenwerfen derselben mit Kiemenbögen und Aortabügen Rathke
Anatomie.

gegen seine eigenen Beobachtungen veranlasst hat prinzipiell an den angenommenen fünf Paar Bögen hängen zu bleiben. Es sei aber bemerkt, dass die Visceralbögen keineswegs in unmittelbarer Verbindung mit den Aortabögen stehen, von welchen dies nicht gilt, die Kiemenbögen aber (d. h. wirklich Kiementragende) allerdings in gewisser Abhängigkeit stehen von ihren Gefässstämmen, und dass also beide Ausdrücke (Visceral- und Kiemenbögen) nicht ohne weiteres promissone gebraucht werden können, noch weniger aber von der Zahl der Visceralbögen auf die der Aortabögen geschlossen werden darf.

Vergleicht man nun die niedrigeren Wirbelthiere auf dieselben Organe hin, so findet man Verhältnisse, welche die obigen Betrachtungen noch viel bedenklicher erscheinen lassen.

Unzweifelhaft zeigen gewisse Familien der Amphibien in absteigender Richtung Uebergangsbildungen zu den Fischen, wie in aufsteigender Richtung solche zu den Säugethieren und Vögeln vorkommen, und zwar in der Weise, dass Eidechsen und Schlangen sich mehr an die Vögel, Schildkröten und Lurche enger an die Säugethiere anschliessen.

Das letzte, unterste Bogenpaar enthält stets in sich die Anlagen der Lungenarterien.
Das zweite Bogenpaar stellt die Wurzeln der Aorta descendens dar. Die linke Hälfte hat bei allen einen vollständig gesonderten Ursprung aus dem Ventrikel und zeigt eine viel einfachere Vertheilung als die rechte. Abgesehen von unbedeutenden Aesten für den Oesophagus verläuft sie unverzweigt abwärts, vereinigt sich durch eine unvollkommene Anastomose deselben darstellt. Wie Hyrtl schon gezeigt hat, ist die innere Communicationsöffnung beider Aorten nur klein und der Blutstrom dürfte also hauptsächlich den Weg in die Arteria coeliaca nehmen. Bei den eigentlichen Eidechsen (Lacerta, Chamaeleo, Uromastix) gehen die Adern für das chylopoetische System erst beträchtlich unterhalb der Vereinigungsstelle ab, so dass sie nicht der linken Aorta ausschliesslich zugerechnet werden können.

Gleichzeitig sind sie auch, mehr als bei den übrigen Reptilien beobachtet wird, in einzelne kleine Stämmchen mit isoliertem Ursprung getheilt, was besonders bei Uromastix in sehr auffallender Weise zur Anschauung kommt (vergl. Holzschnitt Fig. 6). Auf das in dieser Beziehung abweichende Verhalten bei den Varanen kommen wir später zurück.

Die Crocodile schliessen sich wieder den eigentlichen Eidechsen an, indem die Arteria coeliaca die hauptsächliche Fortsetzung der linken Aorta bildet, welche letztere durch eine verschieden weite, mehr oder weniger quer gestellte Anastomose mit der rechten zusammenhängt.

Aus dem ersten Bogenpaar entwickeln sich dann die Carotiden, die anderen Aeste sind zweifelhaft. Durch die schräge Stellung des Truncus arteriosus von links oben nach rechts unten, fällt dem Ursprung nach das obere, erste Paar mit der rechten Hälfte des zweiten zusammen, indem so der Stamm der rechten Aorta gebildet wird, dasselbe lässt sich daher central nicht genau sondern, peripherisch dagegen ist die Trennung beiderseitig als Regel vollständig durchgeführt. Eine Ausnahme bilden nur die Lacertae und verwandten Genera, bei denen das ganze Leben hindurch das seitliche Verbindungsstück der beiden Bögen vollständig durchgängig bleibt (Uromastix Taf. CIII. Fig. 8.), also der linke Bogen der rechten Aorta mit dem der linken, rechts die beiden übrigen Bögen der erstgenannten Aorta untereinander, ein Beweis, dass trotz der durchgreifenden Abtrennung der linken Aorta bis zum Ventrikel, die sich entsprechenden Bögen jeder Seite auch im ausgebildeten Thiere noch eine gewisse Gleichwerthigkeit behalten.
Es sollen nun jederseits die zwei vorderen Aeste des Truncus, bevor sie als Aorten- und Carotidenbögen zur Seite des Halses herabsteigen, einen gemeinsamen Stamm darstellen, welcher dem Truncus anonymus des entwickelten Thieres entsprach. Wo man darauf bei den Amphibien nach beiden Seiten aneinanderweichende Aeste der Aortenbögen fand, die in mehrere Arterien der vorderen Rumpfhälfte zerfleien, hat man dieselben ohne Weiteres Trunci anonymi genannt, unbekümmert darum, ob sie eine Carotis enthielten oder nicht.

Verlangt man von einem Truncus anonymus, dass er Carotis und Subclavia in sich enthalte, so giebt es solche zunächst nur bei den Schildkröten (vergl. Brown's Reptilien, Schildkröten, p. 305); bei den Crocodilen ist in gleichem Sinne von solchen Gefässen nicht mehr zu reden, da nur die linke Hälfte des vordersten Aortenbogens Carotiden abschied, der entsprechende rechtsseitige dagegen Nichts davon enthält. Man könnte also nur den links verlaufenden Stamm Truncus anonymus nennen, während der sich rechts wendende halb so starke nur einer Arteria subclavia entspricht, wie solche auf der anderen Seite nach Abgabe der Carotiden entsteht.

Bei allen Eidechsen haben die Art subclaviae einen gesonderten Ursprung aus der rechten Aorta und es sind also wahre Trunci anonymi überhaupt wenig unter den Reptilien verbreitet.

Die eigenlichen Carotiden, welche wesentlich allein aus den ersten Bögen hervorgehen, besitzen durch die ganze Classe nicht allein der Reptilien, sondern auch der Amphibien einen einigen Gesammttypus; ihre Verbreitung bei den Sauriern und Crocodilen wird gleich unten weiter besprochen.

Nachdem wir schon früher bei den Amphibien und Schildkröten und jetzt bei den Sauriern und Hydrosauriern den Bau des Herzens genau beschrieben haben, wird es nun wohl am besten sein, einen Blick auf die Function des Herzens bei den Reptilien und Amphibien zu werfen.

Fangen wir mit den vollkommensten, den Crocodilen, an, so haben wir gesehen, dass bei ihnen der Bau des Herzens nur wenig von dem der höheren Wirbeltiere abweicht, indem die Scheidewand der Herzkammern vollständig ist und jede ihre besondere Vorkammer besitzt. Diese Trennung beider Bahnen, welche eine centrale Vermischung der Blutarten unmöglich machen würde, ist aber theilweise wieder aufgehoben durch die in den Truncus arteriosus hineinverlegte Communication, das Foramen Panizzae, und es wird sich also gerade um die Function dieser Öffnung handeln.

Ein völliger Verschluss der Communication dürfte wegen der für Beführung der Gefässwand unzureichenden Ausgiebigkeit der Klappen niemals stattfinden, doch ist nach Frits ch eine solche Annahme auch in keiner Weise Bedürfniss und ändert in den wesentlichen Ansehungen nichts. Der Hauptverkehr durch das Foramen wird jedenfalls erst stattfinden,
wenn nach Ablauf der Kammersystole eine gewisse Spannung des Truncus arteriosus stattfindet, und es wird dann auf die Druckverhältnisse zwischen der linken Aorta und der rechten ankommen, ob das Blut den einen oder andern Weg wählt. Nach Brücke fließt in diesem Zeitpunkt, wegen des starken Druckes vom linken Ventrikel her, Blut aus der rechten Aorta, also arterielles, in die linke, welche venöses führt. Wenn auch diese Ansicht nach Fritsch jedenfalls unter gewöhnlichen Bedingungen die einzig aufrecht zu haltende ist, so dürften doch nach ihm auch Verhältnisse eintreten, welche den grösseren Druck in die linke Aorta verlegen und alsdann ein Ausweichen des Blutes in entgegengesetztem Sinne veranlassen, eine Möglichkeit, die von Brücke entgegen den Angaben von Owen, Bischoff, Fritsch und Anderen gelehnt wird. Während die letztgenannten Autoren behaupten, dass bei gestörter Circulation durch die Lungen, wo also der Druck in dem rechten Ventrikel, in der Pulmonalis und linken Aorta steigt, die Steigerung sich durch das Ausweichen des Blutes von der linken nach der rechten Aorta ausgleicht und sie den Aufenthalt des Thieres unter Wasser für einen solchen Fall ansehen, beweist Brücke durch Experimente an geöffneten Schildkröten, deren Atmung er künstlich unterdrückte, dass unter solchen Verhältnissen die Pulmonalis in gleicher Weise fortpulsirt, während auch das linke Herz sich mit venösem Blute anfüllt. Wenn auch ähnliche Untersuchungen über die Crocodile noch nicht vorliegen, so ist es doch höchst wahrscheinlich, dass die Resultate hier die gleichen sein würden. Nach Fritsch wird aber dadurch nur erwiesen, dass die Reptilien Thiere sind, welche Einrichtungen besitzen, wodurch eine zu grosse Ueberfüllung des rechten Herzens während dem Aufhören der Lungenenthärtigkeit verhindert wird.

Die Reduction des Blutlauues durch die Lungen wegen des Wegfalls der Athembewegungen, die anderweitige Vermehrung der Widerstände durch die starke Krämmung und Knickung der Gefässe in dem collabirten Gewebe, sowie die Unfähigkeit dieser Theile, in solchem Zustande ein annähernd so grosses Quantum Blut aufzunehmen, als ihnen normal zugeführt wird, alle diese Momente müssen eine Erhöhung des Blutdruckes in dem rechten Herzen zur Folge haben, und dieser wird sich durch die Communicationen mit dem linken Herzen und dem Körperkreislauf ausgleichen müssen. Solcher Communicationen gibt es dreierlei: 1) das Foramen Panizzae bei vollständiger Scheidewand der Ventrikel, 2) die Verbindung der letzteren bei unvollständiger Trennung, und endlich 3) die Anastomose der Aortenwurzeln.

Es ist die linke Aorta, deren gesondertes Vorkommen bei Amphibien und Reptilien in dem morphologischen Theil als das charakteristische betont wurde, welche in ihrer Wirkung das ganze Geheimniss birgt, indem sie als Vermittlerin des Ausgleiches zwischen den beiden Blutbahnen eintritt, soweit dies nicht schon durch den unvollständig getheilten Ventrikel ermöglicht wird. Um dies leisten zu können, muss sie zum rechten Ventrikel gezogen sein (Crocodile), oder wenigstens ein neutrales Gebiet darstellen, in welches der Blutstrom bei überfülltem rechten Herzen auszuweichen vermöge (Schildkröten, Saurier und Schlangen), wie dies zuerst von Cori bei Psammosaurus griseus nachgewiesen ist.

Überblicken wir noch einmal die anatomischen Befunde auf diese Frage hin, so ergiebt sich, dass die von Cori für Psammosaurus griseus aufgestellte Behauptung hinsichtlich der linken Aorta allgemeine Gültigkeit für die Eidechsen und Schildkröten, und wie wir nachher sehen werden, auch für die Schlangen hat, wenn auch nicht überall in gleichem Grade.

Die grossen, segelförmigen Atrioventrikularklappen, welche von der Basis der Scheidewand schräg nach aussen und abwärts gerichtet sind, werden bei der Vorhofssystole die venösen und arteriellen Blutströme, auf der schiefen Ebene die sie bilden, in die entgegengesetzt gelagerten Höhlen des Ventrikels leiten, wobei besonders der arterielle in der sehr vielfach durch quere Trabekeln getheilten linken Seite bedeutende Verzögerungen erfährt. Der venöse Blutstrom muss durch die nach hinten und links stehende Wand des Conus pulmonalis an dem Erreichen des rechten Ventrikelhandes gehindert und so abwärts in den für ihn bestimmten Canal geführt werden.

Der venöse Blutstrom schiebt sich also, geleitet von der Atrioventrikularklappe, hinter der Anlage des Conus arteriosus der Pulmonalis abwärts in die für ihn bestimmten Räume der unteren Ventrikelhälfte und gewinnt bei der Systole durch die Communication in der Tiefe sowie der Banchseite den Pulmonalcanal, in dem er zur Pulmonalis und bei starker Ausdehnung des rechten Herzens zur linken Aorta vordringt. Das Eintreten von venösem Blut in den Conus der rechten Aorta wird im Beginn der Diastole durch die noch andauernde Verengerung dieses Theiles ebenso wie durch seine Lagerung nach vorn und oben von dem abwärts gerichteten Strom zwar nicht verhindert, aber jedenfalls erschwert, im weiteren Verlauf derselben verengt die Ausdehnung des Pulmonalcanales den Zgang, bis das eindringende arterielle Blut die Verhältnisse wesentlich beeinflusst.

Der arterielle Strom hat dagegen einen viel beschwerlicheren Lauf. Durch die schräg nach abwärts gerichtete linke Atrioventrikularklappe wird er zunächst in die äusserensten linksseitigen Höhlen des Ventrikels abgelenkt und muss sich aus diesem bei beginnender Systole seinen Weg durch den vielfach von Trabekeln durchzogenen Raum des Ventrikels bahnen, bis er den als schief Ebene zur rechten Aorta ansteigenden Conus erreicht; diese Ableitung und Verzögerung des arteriellen Blutes
Reptilien.

muss bewirken, dass der venöse Strom schon grösstentheils seine Bahn im Ventrikel vollendet hat, wenn der arterielle erst in voller Bewegung ist. Je straffer der Pulmonalcanal gefüllt bleibt, um so weniger frei wird das Ostium der linken Aorta für den aufsteigenden arteriellen Strom.

Die beschriebene Weise der Circulation lässt sich am klarsten aus der Organisation des Schlangenherzens abnehmen, obgleich derselbe Plan auch den übrigen zu Grunde liegt. Bei den Varanen schiebt sich der geräumige Canal des aufsteigenden venösen Blutes weit nach vor; Chamaeleo macht alsdann den Übergang zu den Schildkröten, wo der flache breite Ventrikel die Möglichkeit einer bedeutenden räumlichen und zeitlichen Auseinanderhaltung der beiden Blutarten gibt. Bei den Eidechsen markirt sich ein Canal für den absteigenden venösen Strom nur im tieferen Theil des Ventrikels, im oberen ist eine bedeutende Vermischung beider Blutarten unvermeidlich, das direct einschliessende und gerade abwärts geleitete venöse Blut wird aber auch hier in einen streng begrenzten Pulmonalcanal gesammelt.

Die Reptilien sind also Thiere mit einem kleinen und grossen Kreislauf, deren Blutarten sich vermischen können, diese Vermischung findet aber je nach dem Bedürfniss in verschiedenen Grade statt, worauf die besonderen Einrichtungen hinziehen.

Bei freier Luftatmung ist bei den höher organisirten Arten die Trennung eine fast vollständige: wird aber die Atmung unterbrochen, wie z. B. wenn die Thiere sich unter Wasser befinden, so beginnt sich das aus dem Körper zurückkehrende venöse Blut im Lungenkreislauf zu stauen, der Eintritt in das Herz ist erschwert und es füllen sich daher zunächst die schlaffen Sinus venosi, die grossen Reservoir für das venöse Blut, straff an. Sind diese ausgedehnt und hält die Stauung an, so verbreitet sich ein Theil des Blutes, welches sonst den Weg durch die Lungen nehmen würde, vermöge der Communicationen der beiden Blutbahnen im Körper.

Um den schädlichen Einfluss des venösen Blutes auf das Leben des Organismus möglichst zu verzögern, findet die Verbreitung desselben ganz allmählich und nach einem bestimmten Gesetze statt.

Zunächst wird das Blut in die linke Aorta geführt, welche dasselbe durch die Arteria coeliaca resp. mesenterica dem Darmschlag zuteilt. Wird die Stauung stärker und ist auch das mesenteriale Gefäßsystem gefüllt, so beginnt das venöse Blut durch die Rückenanastomose in die Aorta descendens auszuweichen und der untere Theil des Körpers muss sich mit weniger arterieller Blutzufuhr begnügen. Endlich wird auch der linke Ventrikel mit venösem Blut überfüllt und schiebt dasselbe in die rechte Aorta, durch diese aber zu den vorderen Extremitäten, dem Kopf und Gehirn, welche Theile als die Hauptsitze der animalischen Funktionen nach der eigenthümlichen Gefäßvertheilung noch beständig mit möglichst rein arteriellem Blut versorgt wurden. Erst wenn dieser Zeitpunkt eingetreten ist, wird der Organismus so mit venösem Blut überfüllt sein, dass das Thier genöthigt ist, aufs Neue Luftatmung zu suchen.

Bei den Amphibien ist, wie wir dort gesehen haben, das Prinzip in der Anordnung der Circulation wesentlich dasselbe, doch entspricht der niedrigeren allgemeinen Entwicklung zugleich eine geringere Ausbildung dieses Systems. Wenn auch trennende Organe für den grossen und kleinen Kreislauf in der Anlage vorhanden sind, so ist doch die Vermischung der Blutarten unter allen Umständen eine sehr hochgradige und die erwähnten feinen Klappenverschlüsse im Bulbus verfehlen höchst wahrscheinlich ihren Zweck.

Beim Frosch kommen zuweilen Exemplare vor mit einer unvollkommenen Scheidewand der Atrien, so dass die Trennung der Blutarten im Vorhofsabschnitt schon illusorisch wird. Durchmustert man den Durchschnitt des Ventrikels, so bemerkt man, dass die rechte Hälfte mehrere grosse Lücken enthält, welche bis nahe an die Oberfläche gehen, links ist das Ganze viel dichter und von weniger Hohlräumen durchsetzt.

Das Aufrichten des sich kontrahierenden Bulbus während der Systole mag immerhin den Eintritt des aus dem äussersten linken Ventrikel nachrückenden Lungenblutes in die Aortenabtheilung rechts von der Bulbus-scheidewand begünstigen, aber eine scharfe Sonderung der Blutarten im Bulbus, während im übrigen Herzen die Vermischung unabweisbar ist, erscheint nach Frötsch widersinnig. Die grosse Masse des Körpervenenblutes im Vergleich mit dem viel spärlicheren Lungenblut lässt nur die Möglichkeit zu, dass ein bedeutender Theil direct durch die Arterien in den grossen Kreislauf zurückkehrt. Dies kann auch ohne Schaden geschehen, denn ein Theil der Venen, nämlich die der Haut, bringen schon arterielles Blut in das rechte Atrium zurück. Und dass auch das Pulmonalblut nicht rein venös ist, ergiebt sich aus dem Umstand, dass, wie wir wissen, ein Ast der Arteria pulmonalis, die Arteria cutanea, Blut zu Theilen des Organismus führt, welche sonst mit dem arteriellsten versorgt zu werden pflegen.

So wird bei den Amphibien die gesonderte linke Aorta, der Regulator des venösen Blutes, überflüssig und kommt nicht mehr zur Ausbildung, worauf auch die Art. subclaviae und vertebrales ihren gewohnten Ursprung rechterseits aufgeben und sich symmetrisch an die absteigenden Bögen der Aorten vertheilen, oder sie entspringen — wie bei den Urodelen —

Gefäße.
Arterien und Veneen.

Literatur.

Ausser den schon erwähnten Schriften sind noch hervorzuheben:

Wie wir gesehen haben, bildet sich das unterste Bogenpaar zu der A. pulmonalis um, welche sich zu den Lungen begiebt. Das zweite Bogenpaar stellt die Wurzeln der Aorta descendens dar. Die rechte Hälfte dieses Bogenpaares, die Aorta dextra, welche bei den Schildkröten zwei kurze symmetrische Stämme enthält, die als Trunci anonymi aufgefasst werden können, zeigt bei Eidechsen und Crocodilen folgendes Verhältniss. Wenn man unter Truncus anonymus einen Stamm versteht, der Carotis und Subclavia in sich vereint, so kann man sagen, dass solche Stämme den Eidechsen fehlen, indem die Art. subclaviae einen gesonderten Ursprung aus der rechten Aorta haben und die Carotiden (als drittes Bogenpaar) gesondert entspringen. Bei den Crocodilen entsendet nur die linke
Anatomie.

Hälfte des vordersten Aortenbogens Carotiden, der entsprechende rechtsseitige enthält dagegen nichts davon. Man könnte also nur den links verlaufenden Stamm Truncus anonymus nennen, während der sich rechts wendende halb so starke nur einer Art. subclavia entspricht, wie solche auf der andern Seite nach Abgabe der Carotiden entsteht.

Die Verästelungen der also aus dem vordersten Bogenpaar entstehenden Carotiden sind folgende:

Ringeleidechsen. Bei diesen Eidechsen entspringen die beiden Carotides communes mit einem ziemlich dicken, aber nur sehr kurzen Arterienstamm aus der rechten Aortenwurzel. Der gemeinschaftliche Stamm verläuft unter der Luftröhre und spaltet sich unter einem spitzen Winkel in die beiden erwähnten Gefässe — die Carotides communes. Anfangs verlaufen sie divergirend unter der Luftröhre, dann aber kreuzen sie sich mit dieser und gehen zu beiden Seiten derselben dicht unter dem Oesophagus nach dem Kopfe hin. In geringer Entfernung von ihrem Ursprung sendet eine jede gemeinschaftliche Carotis eine

1) A. thymica für die Glandula thymus ab.

Viel weiter von ihrem Ursprung tritt ein

2) Ramus muscularis ab für die seitlichen und oberen Halsmuskeln.

3) Ein der A. hyoidea vielleicht zu vergleichender Stamm, welcher die Zungenbeinmuskeln, Oesophagus, wahrscheinlich auch den Kehlkopf mit Aesten versorgt.

Dicht unter der Columella des Gehörorganes theilt jede Carotis sich in zwei Aeste; der eine, einer

5) A. carotis cerebralis vergleichbar, begiebt sich in der Gegend des Sphenoideum basilare nach der Schädelhöhle;

Schuppeneidechsen. Die beiden Carotidenstämme (Carotides communes) entspringen entweder dicht nebeneinander oder mittelst eines besonderen Stammes (Carotis primaria) von der rechten Aortenwurzel und zwar kurz vorher, ehe sie aus dem Herzbauel hervordringt, oder gleich nachdem sie aus demselben hervorgedrungen ist. Bei einigen Schuppeneidechsen ist dieser Stamm, der am besten als Carotis primaria (Rathke, Fritsche) zu bezeichnen ist, so überraschend, dass er leicht übersehen werden kann — wie bei Tegus, Platydactylus, Lacerta n. A.; etwas länger ist er bei Iguanis, am längsten aber bei den Varaniden.
Nach Rathke zeigen die Carotides communes bei den Schuppen-eidechsen, abgesehen davon, ob sie neben einander oder vereint mit einander aus der rechten Aortenwurzel entspringen, drei verschiedene Zustände. Die eine davon kommt bei den Varaniden, die andere bei den Chamaeleo-niden, die dritte bei den übrigen (meisten) Schuppeneidechsen vor.

A. Carotiden der meisten Schuppeneidechsen. Jede Carotis communis, sie möge gesondert oder mittelst eines gemeinschaftlichen kurzen Stammes ihren Ursprung nehmen, vertheilt sich auf die beiden Seitenhälften des Körpers in der Art, dass sie die Luftrohre und weite Speiseröhre von unten umfahren; bei den verschiedenen Asten steigen sie aber verschieden hoch hinauf. Dann aber theilt sich eine jede von diesen Arterien in zwei einander abgekehrte Aeste, von denen der eine nach vorn zu dem Hinterkopfe geht und sich in dem Kopfe verzweigt, der andere sich mit einer schwachen Krümmung nach hinten wendet und in den absteigenden Theil der Aortenwurzel seiner Seite übergeht. Der letztere Ast stellt also zwischen seinem Stamm und der entsprechenden Aortenwurzel eine Anastomose dar, durch die ein Theil der Blutmasse, welche in den Stamm gelangt ist, in den absteigenden Theil der hinter ihm liegenden Aortenwurzel übergehen muss. (Verg. hierzu Taf. CV. Fig. 6—10.)

Derjenige Abschnitt einer jeden Carotis, welcher von dem Ursprung derselben bis zu der erwähnten Anastomose reicht, bildet zusammen mit dieser einen unregelmässig geformten Bogen (Carotiden-Bogen, Rathke). In jedem einzelnen Falle haben dieselben eine ziemlich gleiche Lage, Form und Grösse. Ein jeder dieser Bogen sendet drei oder vier Aeste aus, nämlich:

a) den Thymusast (A. thymica). Derselbe versorgt bei einigen Arten nur die Thymusdrüse allein, bei anderen gibt er auch noch einen Zweig an die Speiseröhre und die Zungenbeinmuskeln. Zuweilen fehlt er ganz.

b) Kehlzungenast des Carotidenbogens: Rathke, (A. hyoideo-lingualis: Fritsch). Derselbe ist stärker als der vorhergehende. Sein Verbreitungsbezirk ist sehr gross, denn durch ihn und den ihm gleichen Ast der anderen Seitenhälfte des Körpers werden mit Blut versorgt: sämtliche Muskeln des Zungenbeins, die Zunge, der Kehlkopf, die vordere Hälfte der Luftrohre, die Thymus, die vordere Hälfte der Speiseröhre, der vordere Theil des Mus. episterno-cleido-mastoideus (Sterno-mastoideus Rathke), der M. capiti-dorso-elavicularis (Caeullaris), der Mylohyoidens (Sphincter colli s. Latissimus colli Rathke), zum Theil die Mm. pterygo-mandibulares (Pterygoidens externus), ausserdem nicht selten, ja selbst gewöhnlich, die Mm. parietali-mandibulares (Apertor oris: Rathke), und zuweilen auch der M. scapulo-humeralis profundus (Supraspinatus: Rathke) und die Mm. dorsalis scapulae (Deltoideus elavicularis s. inferior) und dorsalis scapulae (Deltoideus scapularis s. superior) (Deltoideus: Rathke).

Die in Rede stehende Arterie geht nach vorn und oben bis zum hinteren Zungenbeinhorn, schlägt sich um den obersten Theil derselben herum
und beigt sich dann zu der Zunge hin. Auf ihrem Wege zu dem Zungenbeinhorn sendet sie ausser einigen kleineren unbeständigen Zweigen für die Speiseröhre und für die Zungenbeinmuskeln aus:

a) einen oder einige kurze Aeste für die Thymusdrüse;

b) bei einigen Schuppeneidechsen einen langen Ast nach hinten nach dem M. scapulo-humeralis profundus (Supraspinatus) und den Mm. dorsalis scapulae und dorsalis humeralis (Deltoidens);

c) einen ziemlich starken Ast für die Speiseröhre;

d) einen ähnlichen Ast für die Mm. omo-hyoideus und sterno-hyoideus;

e) 1—3 Aeste für den M. capiti-dorso-clavicularis (Cucullaris), für den M. omo-hyoideus (Sphincter colli s. Latissimus colli), für den Digastric und bei einigen (Anagis, Polyehrus) für den M. pterygo-mandibularis und den M. genio-hyoideus.

Nachdem der Kehlkopfzungenast an den hinteren Zungenbeinhorn vorbeigegangen ist, spaltet er sich wieder in der Nähe dieses Hornes in zwei an die Dicke ungleiche Endzweige:

ξ) Der eine versorgt den M. hyoglossus und mit mehreren kleinen Aesten die Lufröhre und die Speiseröhre, um schliesslich mit dem sub η beschriebenen Ast zu anastomosiren.

η) Der andere Endzweig (Art. linguales: Rathke) beigt sich nach vorn und innen zur Zunge, welche er versorgt. Ausserdem versorgt er oft die Mm. pterygo-maxillaris und digastric.

Hinter dem oberen Ende des Quadratum theilt der Kopfast sich dann in seine beiden Endzweige.

Die Zweige, die er aussendet, sind (bei Iguana tuberculata) nach Rathke folgende:

α) einen Ast für den M. pterygo-maxillaris,

γ) A. dentalis inferior, der stärkste Ast. Dieselbe versorgt den M. capiti-mandibularis und dringt dann mit dem Nervus alveolaris inferior in den Canal des Unterkiefers ein, um sich in diesem Canal bis zu dem Kinnwinkel zu erstrecken. In dem Unterkiefer gibt sie mehrere Zweige ab, die durch eben so viele kleine Löcher im Unterkiefer hindurchdringen und die Schleimhaut der Mundhöhle versorgen.

δ) A. orbitalis superior, dieselbe verläuft dicht unter dem Dach der Augenhöhle und giebt Aeste ab: an das obere Augenlid, an die Thränendrüse, den oberen schiefen Augenmuskeln und das Bindegewebe der Augenhöhle.

Ein wenig weiter nach unten entspringt aus der A. facialis die

ε) A. orbitalis inferior, die sich in zwei Art. palpebrales theilt und einen starken Ast zur Anastomose mit der A. ophthalmica abgiebt.

Der andere Endzweig des Kopfastes des Carotidenbogens ist etwas dünner und entspricht der Carotis cerebralis höherer Wirbeltiere. Es verläuft derselben unter dem Gehörknöchelchen durch die Paukenhöhle nach unten, vorne und innen, gelangt darauf an die untere Seite des Sphenoidum basilare und theilt sich hier in einen ausserhalb der Schädelhöhle verbleibenden und einen in die Schädelhöhle übergehenden Zweig, von denen der letztere etwas dünner als der erstere ist.

α') Der erstere Zweig — Art. palatino-nasalis — geht gerade nach vorn, zieht an der inneren Seite der Columella (nicht natürlicher Columella der Paukenhöhle) vorüber, verläuft dann zur vorderen Wandung der Augenhöhle, steigt an dieser ganz nahe der Augenhöhlenscheidewand auf und geht endlich in die A. orbitalis superior so über, dass er mit dieser zusammen gleichsam eine Schlinge von verhältnissmässig ansehnlicher Grösse bildet. Dicht vor der Columella entsendet er einen Zweig für den M. capiti-mandibularis (Temporalis) und einen anderen für die Gaumenschleimhaut, so wie einen Ast für den M. obliquus oculi inferior. Die Schlinge, die diese Arterie mit der A. orbitalis superior bildet, sendet
aus ihrem vorderen Theil zwei Zweige nach hinten für die Augenlider und die beiden schiefen Augennuskeln und zahlreiche kleine Aeste an die Nasenscheidewand und die Seitenwandung der Nasenhöhle.

b) Der andere Zweig gelangt durch einen kurzen und engen Canal, der sich in dem Sphenoidum basilare befindet, in die Schädelhöhle und stellt für sich eine A. carotis cerebralis dar. Gleich nach ihrem Eintritt in die Schädelhöhle spaltet sie sich in einen vorderen und hinteren Zweig. Der erstgenannte verläuft erst an der unteren Seite des Gehirns, geht dann auf die äussere Seite des N. olfactorius über und endet allem Anschein nach da, wo dieser Nerv in die Nasenhöhle übergeht. Von ihm gehen folgende Aeste aus:

a) Ein Ast, welcher sowohl nach dem Gross- als nach dem Kleinhirn sich begiebt,

b) zahlreiche kleine Seitenzweige für die äussere, obere und innere Seite des Gehirns,

c) A. opthalmica, welche zugleich mit dem Sehnerven aus der Schädelhöhle tritt und mit einem Ast der A. facialis anastomosirt.

d) Der hintere Zweig einer jeden Carotis cerebralis, der etwas dünner als der vordere ist, vereinigt sich bald nach seinem Ursprung mit dem gleichen Zweige der anderen Seitenhälfte, mit dem er unter einem spitzen Winkel zusammentritt, zu einer A. basilaris. Von dieser A. basilaris treten ab:

ae) Aeste für die Medulla oblongata,

β) eine starke A. auditiva interna,

γ) A. spinalis inferior, die unpaare Fortsetzung der A. basilaris.

d) Muskelast des Carotidenbogens.

Dieser Ast steht an Dickel bei den meisten Schuppeneidechsen den beiden vorigen nach, nur bei Anguis und Gongylus ocillatus ist er beinahe so dick wie der Kehlzungsnast. Von seiner Ursprungsstelle geht er nach aussen und etwas nach vorn, schlägt sich in einem Bogen um die innere und obere Seite der Vena jugularis und des N. vagus herum und versorgt den M. collo-occipitalis superficialis (Levator scapulae) und gewöhnlich auch den M. costo-cervicalis (Scalenus) und den M. episterno-clidomastoideus, zuweilen selbst den M. longus colli und die tiefen Halsmuskeln. Bei Acontias melagris fehlt der Muskelast des Carotidenbogens.

c) Verbindungsast zwischen Carotis und Aorta (absteigender Schenkel des Carotidenbogens).

Nach dem Befunde, dass bei anschliesslich grossen Exemplaren einiger Arten von Schuppeneidechsen die absteigenden Schenkel der Carotidenbogen nur eine verhältnissmässig sehr geringe Dicke haben, lässt sich vermuten, dass sie bei diesen Arten von Eidechsen im Lauf des Lebens
imper dünner werden und in einem späteren Lebensalter hinter den Stellen, an welchen sie ihre Muskeläste ausgesendet haben, zuletzt durch eine Verwachsung ihre Höhlen gänzlich verlieren. Brücke fand bei einem Exemplar von *Podinema (Tejus) Teguexin* auf beiden Seiten den in Rede stehenden Verbindungsast obliterirt.

B. Carotiden der Chamaeleoniden (Taf. CV. Fig. 10). Bei diesen Eidechsen fand Rathke eine Anastomose zwischen Carotis und Aorta nur ausnahmsweise vorhanden, in der Regel fehlt sie. Die beiden Carotiden-stämme entspringen hier aus der rechten Aortenwurzel. Sie steigen neben der Speiseröhre beinahe bis zur oberen Wandung derselben hinauf und theilen sich dann in zwei ziemlich stark divergirende Aeste, von denen der eine etwas dicker als der andere ist.

Der dickere Ast, der von einer Vena jugularis und einem N. vagus begleitet wird und dem Kopfost anderer Schuppeneidechsen entspricht, spaltet sich hinter dem Quadratum in zwei ziemlich stark divergirende Endäste, die eine sehr ungleiche Dicke haben. Der eine dringt in die Schädelhöhle, der andere, drei- bis viermal dickere, gibt hinter dem Quadratum einen Ast ab für den M. oecipito-quadrato-mandibularis s. depressor mandibulae, Zweige für die Kaumuskeln und einen Ast zum Unterkiefer.

Der dünnere Ast der Carotis, welcher den Thymusdrüsenaent, den Kehlzugenast und den Muskelast anderer Schuppeneidechsen vertritt, geht neben der Speiseröhre nach vorn und unten zum Zungenbeine und der Zunge hin. Gleich nach seinem Ursprung giebt er einen starken Zweig ab, der folgende Aeste aussendet:

- α) für die Mm. collo-scapularis superficialis (Levator scapulae), capitis- sternalis (Sterno-mastoideus), omo-hyoidens, coraco-humeralis anterior und sterno-humeralis anterior (Deltoidens inferior) und costo-cevicalis (Scalenus),
- β) für die Mm. omo-hyoidens und sterno-hyoidens,
- γ) für die Thymus,
- δ) für die Speiseröhre.

Nachdem der dünnere Ast der Carotis communis den beschriebenen starken Zweig abgegeben hat, sendet er hinter dem hinteren Zungenbeinhorn einen Ast für die Kaumuskeln und die Mm. mylo-hyoidens anterior und posterior (Latissimus colli). Dann geht der in Rede stehende Ast weiter nach vorn über den M. genio-hyoidens und neben der vorderen Hälfte eines häutigen Sackes, der bei den Chamaeleoniden zwischen Kehlkopf und Luftrohre einen grossen Kropf bildet, und theilt sich endlich in vier Aeste:

- α) für den M. genio-hyoidens und den M. genio-ceratoideus,
- β) für den M. sterno-hyoidens,
- γ) für den Kehlkopf,
- δ) für die Zunge.
C. Carotiden der Varaniden.

Die beiden Carotiden entspringen hier aus der rechten Aortenwurzel mit einem gemeinschaftlichen Stamm (Carotis primaria), der viel länger ist als bei irgend einer andern Schuppenechse. In der Gegend des vorderen Randes des Brustbeines theilt er sich in die beiden Carotiden. Ganz nahe seinem Ursprung giebt der gemeinschaftliche Stamm einen kurzen, sich in zwei Art. mammariae internae theilenden Ast ab, die bei andern Schuppenechsen aus der A. subclavia ihren Ursprung nehmen.

Die gemeinschaftlichen Carotiden haben bei den Varaniden ebenfalls eine anscheinliche Länge. Vor dem hinteren Zungenbeinhorn theilt sich dann jede Carotis communis unter einem spitzen Winkel in zwei Aeste, die in Hinsicht ihrer Verbreitung denjenigen Aesten der mit Carotidenbogen versehenen Schuppeneidechsen entsprechen.

Bevor die Carotis communis sich in die beiden erwähnten Aeste theilt, sendet sie einige an Grösse sehr verschiedene Seitenäste aus:

\(\alpha\) einen Ast, welcher Luft- und Speiseröhre versorgt, sowie die Mm. sterno-coracoides internus superficialis und profundus;

\(\beta\) einen ansehnlich starken nach unten und aussen gehenden Ast, der sich in mehrere Zweige theilt und zwar für

\(\alpha\alpha\) die Thymusdrüse,

\(\beta\beta\) für den mittleren Theil der Speiseröhre,

\(\gamma\gamma\) für den Zungenbeinkörper und die Luftröhre,

\(\delta\delta\) für den M. sterno-hyoideus,

\(\epsilon\epsilon\) für den M. omo-hyoides,

\(\zeta\zeta\) für den M. episterno-eleido-mastoidens und den M. omo-hyoides (Latissimus colli: Rathke);

\(\gamma\) einen dritten, ebenfalls ansehnlich starken Ast (Ramus muscularis carotidis communis: Carti), welcher die Mm. collo-scapularis superficialis, costo-cervicalis, sowie die hintere Hälfte des M. capiti-dorso-clavicularis (Cuellaris) versorgt.

Von den beiden Aesten, in die sich die Carotis communis zwischen dem hinteren und vorderen Zungenbeinhorn unter einem spitzen Winkel spaltet, ist der eine beinahe zweimal so dick als der andere. Der dünnere Ast geht zwischen den beiden Zungenbeinhörnern seiner Seite schräg nach unten und vorn und dringt bald nach seinem Ursprung zwischen dem Mm. cerato-glossus und genio-glossus ein. Er versorgt die Mm. episterno-eleido-mastoidens, die eben erwähnten Zungenmuskeln und zum Theil auch den M. pterygo-mandibularis (pterygoideus externus) und theilt sich dann zwischen den beiden Zungenbeinhörnern in zwei Endzweige, von welchen der eine den M. hyo-glossus versorgt, der andere, der meistens dicker als der erste ist, durch den M. cerato-hyoides nach oben dringt, um an dem vorderen Theil der Luftröhre, der über dem Zungenbeinkörper liegt, und an dem Kehlkopf sich zu verbreiten.

Der andere, dickere Endast der Carotis communis, welcher dem Kopf-ast der mit Carotidenbogen versehenen Schuppenechsen entspricht, erscheint
als eine gerade Fortsetzung seines Stammes, verläuft ziemlich geradlinig nach vorn, begleitet vom N. vagus, und begießt sich zum Hinterkopf. Auf seinem Wege sendet er zahlreiche Seitenzweige aus und theilt sich darauf in einer geringen Entfernung von Quadratum in zwei Endzweige:

a) Von den Seitenzweigen, die er abgibt, gehen vier in einer Reihenfolge nach aussen und oben, dringen zwischen die Muskeln des Nackens ein und verhalten sich in Hinsicht ihrer Grösse dermassen, dass der hinterste von ihnen am längsten, der vorderste am kürzesten zu sein pflegt. Die beiden hintersten versorgen die Nackenmuskeln; die beiden vordersten sind zwar nur wenig lang, doch ziemlich dick, verlaufen neben den beiden obersten Spinalnerven nach innen und dringen als Rami spinales in den Canal der Wirbelsäule und in die Schädelhöhle ein. Bei Psammosaurus griseus geht nach Corti's Angabe vom Kopfaste einer jeden Carotis communis ein besonderer Zweig als ein Ramus cervicalis ab, der zwei Rami spinales aussendet.

b) Zwei andere Seitenzweige sendet der Kopfaste der Carotis communis nach unten und vorn ab; von diesen geht der eine nach der Speiseröhre, der andere nach den Kau- und Schluckmuskeln.

Der dickere Endaste des Kopfastes der Carotis communis (Carotis externa: Corti) läuft erst über die äussere Seite des M. capiti-mandibularis s. temporalis, dann unter dem Auge hinweg, gelangt darauf zum Oberkiefer und erstreckt sich, indem er auf dem letzten Drittel seiner Bahn eine A. dentalis superior darstellt, bis an das Ende der Schnauze hin. In einiger Entfernung von seinem Ursprunge entsendet er eine A. dentalis inferior, die in den Unterkiefer eindringt, einen zweiten starken Zweig, der unter dem Dach der Augenhöhle zu der vorderen Wandung dieser Hülse sich begiebt und Aeste für die Schleimhant der Nasenhöhle abschickt, und endlich einen dritten Ast, der an der äusseren Seite des N. opticus sich zum Auge begiebt und mit der A. ophthalmica eine Anastomose eingeht.

Crocodile. Die Art. carotides communes entspringen bei den Crocodilen mit einem gemeinschaftlichen Stamm. Rathke (24) nennt denselben Arteria carotis subvertebralis, es wird aber passender sein, ihn

a) A. inframaxillaris,
b) A. maxillaris interna,
c) A. temporalis,
d) A. carotis interna.

Die Theilung der gemeinschaftlichen Carotiden in diese ihre Aeste ist jedoch verschieden bei verschiedenen Crocodilen, ja selbst oft bei demselben Exemplar in den beiden Seitenhälften. Die Aeste der A. inframasslaris sind:

a) Zweige für den Schlundkopf und für den M. pterygo-maxillaris (pterygoidens),
b) Zweige für den M. hyoglossus, den Kehlkopf, Schlundkopf und das Gaumensegel,
c) Zweige für den M. intermaxillaris et sphincter colli (Latissimus colli);

\(\delta \) die Fortsetzung der A. inframasslaris bildet die A. lingualis, die an der unteren Seite der Zunge verläuft.

Die A. maxillaris interna theilt sich in der Gegend des Unterkiefergelenkes in eine

\(\alpha \) A. dentalis superior und \(\delta \) A. dentalis inferior.

Die A. dentalis superior versorgt den M. temporan-maxillaris, die hintersten Zähne des Oberkiefers und geht darauf durch eine ziemlich weite Oeffnung in den Zahncanal des Maxillare und Præmaxillare über.

Die A. dentalis inferior gibt einen Ast ab für den M. pterygo-maxillaris und dringt dann in den Zahncanal des Unterkiefers.

Die A. temporalis steigt nach oben und geht durch ein Loch, das sich zwischen dem oberen Ende des Quadratum, dem Occipitale laterale und dem Ptooticum befindet, in einen für sie bestimmten und nach der Paukenhöhle führenden Knochencanal über. Auf ihrem Wege entsendet sie einen:

\(\alpha \) Ramus cervicalis superior,
\(\beta \) einen Ramus cervicalis inferior zu den Nackenmuskeln,
\(\gamma \) einen Ramus anastomoticus mit der A. maxillaris interna an den Eingang des erwähnten Knochencanals.

Dann begiebt die in Rede stehende Arterie sich zur Paukenhöhle und verläuft an der hinteren und oberen Wandung derselben nach vorn. Hierauf dringt sie durch einen anderen Knochencanal hindurch, der sich zwischen Squamosum und Ptooticum befindet. Bei ihrem Durchgang durch die Paukenhöhle giebt sie Aeste an die Wandung dieser Höhle, das Paukenfell und die Ohrklappe, tritt dann in die Augenhöhle, dringt
zwischen dem M. rectus oculi externus und inferior weiter nach unten vor und geht endlich in ein Wundernetz über, das zwischen den geraden Augenmuskeln neben dem Opticus liegt. Auf dieser letzten Strecke entsendet sie einen Ast für das Dach der Augenhöhle.

Die Carotis interna steigt nach oben, aussen und vorn auf und beigt sich dann in einem nur allein für sie bestimmten Canal in die Schädelhöhle. Dieser Canal liegt zum Theil in dem Prooticum, zum Theil in dem Sphenoidenm basilare und mündet in das hintere Ende der Sella turcica. Dort angekommen, theilt sie sich in zwei Aeste, und zwar in a) eine Carotis cerebralis und b) eine A. orbitalis.

Die A. orbitalis verläuft wiederum am vorderen Umfang der Schädelhöhle dieselbe, um sich nach der Augenhöhle zu begeben. Hier beigt sie sich zwischen dem M. rectus oculi inferior und externus hindurch zur äusseren Seite des N. opticus und bildet an demselben ein ansehnliches Wundernetz, in das auch die A. ophthalmica übergeht, die nur eine geringe Dicke hat und noch eine A. temporalis abgiebt. Aus diesem Wundernetze entspringen:

- a) Art. ciliares posteriores,
- b) Rami musculares für die Augenmuskeln und Nickhaut,
- γ) Ramus muscularis für den quergestreiften Muskel des unteren Augenlides,
- d) ein den N. trigeminus theilweise begleitender und rücklaufender Ast, welcher den M. temporo-maxillaris (temporalis) versorgt.

Die Carotis cerebralis theilt sich an der Basis des Infundibulum in einen vorderen und hinteren Ast, von denen der erstere beinahe noch einmal so dick als der letztere ist.

Dieser vordere Ast, die gerade Fortsetzung des Stammes, ist besonders für das grosse Gehirn und das Geruchsorgan bestimmt. Er verläuft an der oberen Seite des Gehirns bis zum N. olfactorius und vereinigt sich, wo dieses Nervenpaar entspringt, mit dem gleichen Ast der andern Seite zu einer unpaaren Arterie, die sich zum Geruchsorgan beigt und von Rathke mit dem Namen einer A. ethmoidalis communis belegt ist.

Dicht bei ihrem Ursprung entsendet sie:

- a) einen Ast, welcher das grosse Gehirn versorgt und vor dem Chiasma nervorum opticorum eine ungemein dünne A. ophthalmica abgiebt, mit dem Schenerven aus der Schädelhöhle herausstritt und in das erwähnte Wundernetz der Augenhöhle übergeht;
- b) zahlreiche kleinere Aeste für das Grosshirn und für die Plexus chorioidei der Seitenhöhlen.

γ) Die A. ethmoidalis communis geht zwischen den Riechnerven nach unten zum vordersten Theil der Schädelgrundfläche und spaltet sich nahe dem vorderen Grunde der Schädelhöhle in eine A. ethmoidalis dextra und sinistra. Ein jeder von diesen Aesten theilt sich dann noch innerhalb der Schädelhöhle in zwei ziemlich gleich dicke Zweige. Der eine, die

Broh, Klassen des Thier-Reichs. VI. 3.

63
A. nasalis interna versorgt, die Riechhaut bis zu dem äusseren Nasenloch: der andere, die

A. nasalis externa, sendet einen Nebenzweig nach der Augenhöhle, biegt sich dann nach vorn um und verläuft bis zum äusseren Nasenloch.

Der hintere oder dünnere Ast der Carotis cerebralis vereinigt sich bald nach seinem Ursprung mit dem gleichen Ast der anderen Seitenhälfte zu einer A. basilaris. Vorher sendet er einen Ast ab für das Corpus bigemimum und das kleine Gehirn. Die A. basilaris setzt sich in eine mässig dicke A. spinalis inferior fort, die bis an das Ende des Rückenmarks verfolgt werden kann und nirgends Maschen bildet. Ehe sie aber in diese übergeht, sendet sie unter ziemlich rechtem Winkel mehrere dünne Zweige aus:

für die Medulla oblongata,

Art. auditivae internae,

noch zwei Äste für die Medulla oblongata, die sich zu einer A. spinalis superior vereinigen, welche sich ebenfalls weit nach hinten verfolgen lässt und ebenso wenig als die A. spinalis inferior Maschen bildet. Auf pag. 988 haben wir gesehen, dass bei anscheinlich grossen Exemplaren von Schuppeneidechsen die absteigenden Schenkel der Caroditenbogen nur eine verhältnismässig sehr geringe Dicke haben. Brandt (200) nennt diese absteigenden Schenkel „Ductus caroticus“, er fand dieselben auch bei den Crocodilen vorhanden (Alligator lucius) doch hier fast unwegsam.

Art. vertebrales bei den Eidechsen.

Bei den Varaniden (Varanus) entspringen die Art. vertebrales getrennt von einander aus den beiden Art. subelaviae, gehen erst an der inneren Seite der Mm. costo-cervicales (scaleni), dann aber über den Mm. longi colli nach vorn und innen, ehe sie in der bei den andern Schuppen-eidechsen vorkommenden Weise verlaufen. Nicht selten zeigen die Art. vertebrales in ihrem Ursprung noch andere Abweichungen von der Regel, die hier aber nicht alle erwähnt werden können.
Der Befund, dass bei manchen Schuppeneidechsen die beiden Art. vertebralis mit einem kurzen besonderen Stämmchen aus der rechten Aortenwurzel entspringen, lässt schon einen, obgleich nur schwachen Übergang von der paarigen A. vertebralis dieser Thiere zu der unpaarigen der Schlangen erkennen. Weit stärkere Übergänge zu den letzteren kommen bei den fusslosen Sauriern vor, wie bei Pseudopus, Anguis, Ophi-, saurus, Acontias u. A.

Arteriae intercostales. Diejenigen Intercostalarterien, welche bei den Schuppeneidechsen vor dem Vereinigungswinkel der Aortenbogen entspringen, gehen entweder a) aus verschiedenen Asten der rechten Aortenwurzel, namentlich aus den Art. subelavieae und vertebralis, oder b) unmittelbar aus ihr selbst hervor.

a) Entspringen die Art. subelavieae mit einem besonderen Stämmchen, so giebt dasselbe je nach seiner Länge für die Rippenzwischenräume ein Paar (Anguis, Pseudopus, Grammatophora) bis zwei Paar (Varanus) Art. intercostales ab. Höchst selten geben auch die Art. subelavieae selbst dergleichen Zweige ab. Die von den Art. subelavieae liegenden Art. vertebralis senden bei vielen Schuppeneidechsen ein Paar oder einige Paare Intercostalarterien aus.

b) Noch andere, aber weiter nach hinten gelegene Art. intercostales werden bei einigen Schuppeneidechsen unmittelbar vor der rechten Aortenwurzel und zwar von dem hintersten Theil derselben ausgesendet, nämlich bei denen, bei welchen die Art. vertebralis, sei es für sich mit einem besonderen Stämmchen, oder durch Vermittlung der Art. subelavieae, aus der rechten Aortenwurzel ziemlich entfernt vom Ende derselben hervorgehen.

Arteriae oesophageae. Ausser den schon beschriebenen Asten sendet bei einigen Schuppeneidechsen die rechte Aortenwurzel nach ihrer Umbiegung eine mässig starke oder zwei bis drei dünnere Arterien aus, die sich auf der Speiseröhre verbreiten. Selbst bei einigen derjenigen Schuppeneidechsen, bei welchen der hintere Theil der Speiseröhre schon einen besonderen Ast von der linken Aortenwurzel erhalten hat, kommen die in Rede stehenden Aeste vor.

Bei den Ringeidechsen sendet die rechte Aortenwurzel dicht neben einander zwei lange symmetrische Aeste aus, die als A. vertebralis bezeichnet werden können. Sie versorgen die tiefe Halsmuskeln und zum Theil auch die Nackenmuskeln und enden verdünnt in kurzer Entfernung vom Kopfe.

Hinter den soeben beschriebenen Asten sendet die rechte Wurzel der Aorta zwei bis drei Paare Art. intercostales aus.

Art. collaterales colli bei den Crocodilen.

Dieselben entsprechen nach Rathke bei den Crocodilen denjenigen Halsarterien der Vögel, welche Bauer (Disq. circa noun. avium syst. arter. Berol. 1825) als Art. cervicales adscendentem und descendentes, Barkow (Meckel's Archiv 1829) unter dem Namen der Art. cutaneous colli laterales beschrieben hat. Sie erstrecken sich fast durch die ganze
Länge des Halses und liegen zu beiden Seiten der Speiseröhre dicht unter den Venae jugulares und innen von den Nn. vagi. Von unten sind sie durch die Mm. sterno-hyoidei, oben durch die Mm. intermaxillares et spinicter colli (latus colli: Rathk e) bedeckt. In ihrem Verlauf gibt jede A. collateralis colli ab:

α) Zweige für die oben erwähnten Muskeln, den M. capiti-ster nal is (sterno-mastoidens) und den M. collo-thoraci-suprascapularis profundus (levator scapulae),

β) Aeste für Luft- und Speiseröhre,

γ) Aeste für den M. pterygo-maxillaris (pterygoidens) und den M. capiti-ster nal is.

Art. subclaviae.

Art. subclaviae kommen auch bei schlangenähnlichen Sauriern vor, welche keine Vorderbeine besitzen, sie sind jedoch hier sehr dünn und verbreiten sich ausserhalb der Rumpföhle nur in zwei kleinen Muskeln, wahrscheinlich den M. thoraci-se capularis superficialis (serratus superficialis). Art. anonymae fehlen, wie wir gesehen haben, bei allen Eidechsen, die Arteriae subclaviae entspringen denn auch ziemlich weit von den Carotiden aus dem absteigenden Schenkel der rechten Aortenwurzel, jedoch bald mehr, bald weniger weit nach hinten. Ihr Ursprung ist ausserdem noch in so weit verschieden, als sie entweder getrennt oder gemeinschaft lich mittelst eines besonderen Stammes aus der rechten Aortenwurzel hervorgehen. Es ist nicht möglich, hier alle von Rathk e genauer untersuchten und beschriebenen Verhältnisse dieser Ursprungsweise anzugeben.

Die in Rede stehenden Gefässe verlaufen gewöhnlich beinahe quer durch die Rumpföhle. In der Regel geht die linke A. subclavia über der Aortawurzel ihrer Seite hinweg, indem sie mit derselben sich kreuzt, bei Varanus geht sie vor derselben vorbei. Gewöhnlich sind diese Arte rien auf ihrem Wege zu den Achseln zum Theil von unten her durch die Mm. longi colli bedeckt, indem sie gleich nach ihrem Ursprung über denselben hinweggehen, ausnahmsweise gehen sie nicht über, sondern unter jenen Muskeln nach aussen hin. In ihrem weiteren Verlauf schliessen sie sich bald nach ihrem Ursprung den die Plexus brachiales bildenden Nerven an, um sich mit denselben zu den Achseln zu begeben, nur wenn sie unter den Mm. longi colli hinweggehen, sind sie auf einer Strecke ihres Weges von den Nerven der Plexus brachiales getrennt.

Mit den Plexus brachiales dringen die Art. subclaviae aus der Rumpföhle zwischen dem Coracoid und dem vorderen, das Brustbein nicht erreichen den Rippenpaar, indem sie unter den Mm. costo-cervicales (scaleni) hinweggehen. In ihrem Verlauf bis dahin senden diese Gefässstämme bei verschiedenen Schuppeneidechsen eine verschiedentlich grosse Zahl von Aesten aus:

α) Ueber die zuweilen aus den Art. subclaviae entspringenden Art. vertebrales ist schon gesprochen.

Reptilien.

997

γ) In der Gegend, wo die A. subclavia aus der Rumpföhle nach aussen hervordringt, giebt sie bei denjenigen Schuppeneidechsen, welche ein ausgebildetes Brustbein besitzen, einen nach hinten gerichteten Ast ab, welcher einer A. mammaria interna entspricht. Seine Länge und Dieke ist bei verschiedenen Arten sehr verschieden. Bei den Varaniden (Varanus, Psammosaurus) entspringen sie mittelst eines kurzen Stämmchens aus der A. carotis primaria und anastomosiren mit der A. epigastrica.

ε) A. thoracica, welche die Brustmuskeln versorgt. Bei einigen giebt sie auch Aeste an die Bauchmuskeln ab, und dann kann sie als A. thoracica-abdominalis bezeichnet werden (Rathke).

Die Fortsetzung der A. subclavia bezeichnet man als A. axillaris. Bei Psammosaurus griseus hat Corti die Verästelungen der A. axillaris genauer untersucht, dieselben sind:

A) Rami superiores vel adscendentes:
1) A. scapularis, welche sich theilt in eine
 α) A. subscapularis für den M. subcoracochephalis, und in eine
 β) A. acromialis für das Schultergelenk und die dort entspringenden Muskeln.

2) A. circumflexa humeri posterior für die tiefer gelegenen Muskeln dieser Gegend.

B) Rami inferiores s. descendentes.
3) A. mammaria externa für die Muskeln der Brustwand. Aus derselben entspringen:
 α) Rami pectorales für den M. pectoralis,
 β) Rami thoracici für die Brustwand.

Sobald die A. axillaris zwischen dem M. pectoralis und dem M. coraco-brachialis brevis et longus (coraco-brachialis: Corti) herausgetreten ist, nennt man sie A. brachialis. Bei der Articulatio humero-radio-ulnaris theilt die A. brachialis sich in eine
 A) A. ulnaris communis, und in eine
 B) A. radialis.

Aus der A. brachialis entspringen mehrere, zum Theil starke Aeste, die die Muskeln des Oberarms versorgen und zahlreiche Nebenäste abgeben für das Rete articularare cubiti.

Die Verästelungen der A. ulnaris communis und der A. radialis hat Corti bei Psammosaurus genau verfolgt und beschrieben. Indem er aber die Muskeln, zu welchen die Gefässe sich begeben, einfach bezeichnet und nicht beschrieben hat, ist es nicht möglich mit einiger Bestimmtheit zu sagen, welche damit gemeint sind. Ich muss daher auf eine weitere Beschreibung der Verästelungen dieser beiden Arterien verzichten.

Die Finger werden von Art. digitale dorsales und volares versorgt, und zwar findet man an jedem Finger von beiden ein Paar. Die ersteren stammen mit Ausnahme des ulnaren Astes für den fünften Finger aus der A. radialis, die letzteren stammen ebenfalls aus der A. radialis mit Aus-
Anatomie.

A. Nahe des radialen Astes für den Daumen und ulnaren Astes für den fünften Finger, welche von der A. ulnaris communis versorgt werden. —

Art. subclavia der Crocodile.

Über den Ursprung der A. subclavia bei den Crocodilen ist schon früher mit einem Wort gehandelt. Hier sei nur noch erwähnt, dass die A. subclavia sinistra gemeinschaftlich mit der A. carotis primaria (Carotis subvertebralis: Rathke) und mit der A. collateralis colli sinistra entspringt. Dieser gemeinschaftliche Stamm kann also als A. anonyma (sinistra) bezeichnet werden. Der entsprechende rechtsseitige Stamm dagegen kann nicht als A. anonyma betrachtet werden und repräsentiert nur eine A. subclavia. Dieselbe verläuft unter dem vorderen Theil der Lunge schräg nach vorn, oben und aussen, gelangt zu der äusseren oberen Hälfte des Coracoid und geht dicht hinter derselben unter einem Bogen in die Achselhöhle über. Auf ihrem Wege zu dieser Höhle giebt sie in der Regel drei Aeste ab:

2) Art. vertebralis communis. Dieselbe ist bedeutend dicker als die vorhergehende und begiebt sich an der inneren Seite einiger Rippen und Zwischenrippenmuskeln zur Wirbelsäule. Zwischen der dritten und vierten Rippe theilt sie sich dann in eine:

c) Ramus muscularis. Ehe die A. subclavia aus der Rumpfhöhle in die Achselhöhle übergeht, entsendet sie einen Ast für die Mm. scaleni: Rathke (costo-vertebralis) und Levator scapulae: Rathke (collo-secularis superficialis).

Das unterste Aortenbogenpaar bildet sich zu der A. pulmonalis um, über welche weiter nichts mitzutheilen ist, um so mehr dagegen über das zweite Aortenbogenpaar, welches die Wurzeln der Aorta deszendens darstellt. Ueber dasselbe verdanken wir Rathke folgende Angaben.

Bei den Ringeleidechsen (Amphisbaena fuliginosa, *vermicularis alba* und *Lepidosternon microcephalum*) umfassen die beiden Aortenwurzeln, also das zweite Bogenpaar, bei ihrem Aufsteigen nach dem Rücken die Luftöhre und die Speiseröhre von unten. Die linke, also venöses Blut führende Aortenwurzel — die Aorta sinistra — ist hier viel dicker als die rechte, sie bildet nur einen sehr schwachen nach vorn gekehrten Bogen und vereinigt sich mit der rechten schon nach kurzem Verlaufe. Letztere bildet, wie bei manchen Schlangen, zur Seite der Speiseröhre einen starken, nach vorn gekehrten Bogen, verläuft dann wieder eine mässig lange Strecke nach hinten, um sich mit der linken Aortenwurzel — die Aorta dextra — zur A. aorta descendens zu vereinigen. Die Verbindung beider Wurzeln findet schon gegenüber dem vorderen Ende des Herzens statt.

Die weit dickere linke Hälfte des zweiten Bogenpaares, die linke Aorta, entsendet keine Aeste. Die Aeste der rechten Aorta sind, ausser den schon früher erwähnten:

1) Die beiden Art. coronariae cordis, die noch innerhalb des Herzens abtreten.

2) Die beiden Art. vertebrales, welche die Nackenmuskeln und die tiefen Halsmuskeln mit Aesten versehen.

3) 2 — 3 Paare dünne Arteriae intercostales.

Die absteigende rechte Hälfte des zweiten Bogenpaares, die rechte Aorta, nähert sich früher und stärker der Mittelebene des Körpers, als der ihm entsprechende Theil der linken und zuletzt geht er ein wenig über ihn hinaus. Dadurch kommt der Vereinigungswinkel beider Aortenwurzeln links neben der Mittelebene des Körpers zu liegen, welche Lage dann auch der Stamm bis gegen das Ende der Rumpföhle beibehält. An dicke sind die beiden Aortenwurzeln einander häufig gleich. Mitunter
aber ist die rechte Hälfte nach ihrer Umbiegung etwas dicker als die linke, in höchst seltenen Fällen umgekehrt.

Die linke Aorta entsendet bei einigen Schuppeneidechsen gar keinen, bei anderen aber für die Speiseröhre einen mässig starken Ast oder einige wenige dünnere Äste (3—4) aus.

Die rechte Aorta gibt ansser den schon früher erwähnten Aesten gleich nach ihrem Ursprung die beiden Art. coronariae cordis ab.

Aus dem durch die Vereinigung der beiden Aortenwurzeln entstehenden Stamm, der Aorta descendens, entspringen bei den Schuppen-eidechsen die Gefässe für Darm, Leber, Milz und Bauchscheindrüse, die Zahl derselben ist indess bei den verschiedenen Arten dieser Eidechsen sehr verschieden.

Eine merkwürdige Ausnahme kommt jedoch bei Psammosaurus griseus nach der Entdeckung von Corti vor, die von Rathke und Fritsch an drei Arten der Gattung Varanus bestätigt wurde, also wohl überhaupt bei allen Varaniden vorhanden sein wird. Dieselbe besteht darin, dass zwar Magen, Leber, Milz und Bauchscheindrüse das Blut durch einen der Arteria coeliaca höherer Thiere entsprechenden Ast der Aorta descenden-s zugeführt erhalten, welcher Ast weit entfernt von der Verbindung der Aortenwurzel entspringt, der Darm jedoch (vergl. Taf. CVI, Fig. 1) durch einen Arterienast mit Blut versorgt wird, der aus der linken Aortenwurzel, also schon vor jenem, aus der Aorta entspringt. Diese Darmarterie geht von der linken Aorta kurz vor der Stelle ab, wo sie sich mit der anderen zum Stamm der Aorta descendens vereinigt; sie nimmt ihren Verlauf nach hinten und unten und spaltet sich darauf in zwei Aeste, die sich in dem Gekröse des Mittel- und Enddarmes weiter verzweigen und sich endlich einesteils am ganzen Dünndarm, anderntheils am Dickdarm bis über dessen Mitte hinaus verbreiten. Von ihrem Ursprung bis dahin, wo ihre Zweige den Darm erreichen, ist sie von einem verzeugten Muskelstrang umschlossen, der ihr wahrscheinlich zur Stütze dient.

Ansser den Aesten für den Darm entsendet die Darmarterie (bei Psammosaurus und Varanus) noch einen ziemlich starken Ast nach unten und vorne ab zu dem vorderen Drittel des Magens, verbreitet sich auf diesem Theil des Magens und sendet nur einen mässig langen Zweig nach vorn zu der Speiseröhre hin, der sich dann auf dem hinteren Theil derselben verbreitet, es ist also eine A. coronaria ventriculi und keine A. oesophageae. Die weiteren Aeste der Aorta descendens sind dann:

Arteriae intercostalis. Die Zahl derselben ist bei den verschiedenen Arten der Schuppeneidechsen eine verschieden.

Arteriae spermaticae internae für die Hoden resp. die Ovaria.

Arteriae renales für die Nieren.

Die weiteren Verzweigungen der Aorta descendens beziehen sich in der Hauptsache auf Psammosaurus griseus nach den Untersuchungen von Corti.

Beim vorletzten Praesacralwirbel giebt die Aorta jederseits die Arteria iliaca interna ab. Dieselbe begiebt sich lateralwärts und theilt sich in einen
Reptilien.

a) Ramus anterior arteriae iliacae internae, und in einen
b) Ramus posterior arteriae iliacae internae.

Der erstgenannte giebt einen Ast (A. ileolumbalis) für die inneren Beckenmuskeln ab, beginnt sich dann nach oben und anastomosirt mit der aus der A. subclavia entspringenden Arteria mammaria interna. Corti bezeichnet sie als A. epigastrica. Dieselbe giebt kleine Zweige an den Fettkörper (Rami lutei) und Rami ad parietem abdominalem.

Der Ramus posterior begiebt sich in die Tiefe zur Hüftgelenkpfanne und giebt eine
a) Arteria obturatoria, und eine
b) Arteria circumflexa femoris externa s. anterior ab.

Erstere versorgt die inneren Beckenmuskeln und mittelst Rami nutritentes die in der Umgebung des Acetabulum gelegenen Theile der Beckenknochen; letztere versorgt die Mm. adductores und extensores des Oberschenkels.

Auf der Höhe des letzten Praesacralwirbels entsendet die Aorta descendens jederseits die kräftige A. iliaca externa. Dieselbe verläuft über die Symphysis sacro-iliaca, verlässt die Beckenhöhle durch die hintere Beckenöffnung, um sich nach der unteren Extremität zu begeben. Etwas unterhalb der Hüftgelenkpfanne nimmt sie dann den Namen A. femoralis an.

Von ihrem Ursprung aus der Aorta descendens bis zu der Stelle, wo sie A. femoralis wird, entsendet die A. iliaca externa folgende Zweige:
1) Rami spinales und sacrales laterales.
2) Art. spermatica externa anterior dextra für die Cloake und den unteren Theil des Eileiters.
3) A. pudenda-muscularis, die sich in zwei Aeste theilt, eine
 a) A. pudenda communis s. interna, und in eine
 b) A. muscularis.

Erstgenannte giebt eine
 α) A. haemorrhoidalis posterior zum Enddarm, und eine
 β) A. pudenda externa ab; letztere versorgt die Gegend des Afters und die Glandulae anales.

Die andere, die Arteria muscularis, theilt sich ebenfalls in zwei Aeste. Der eine Ast, die
 α) A. circumflexa ischii versorgt die von der Symphysis ischiadica entspringenden Muskeln. Der andere Ast, die
 β) A. circumflexa femoris interna s. posterior begiebt sich zu den Muskeln des Oberschenkels.

Arteria femoralis s. cruralis bildet die Fortsetzung der A. iliaca externa. Anfangs durch die Beugemuskeln des Oberschenkels bedeckt, begiebt sie sich nach unten und wird, sobald sie in der Gegend der Kniekehle angekommen ist, A. poplitea genannt.

Die Verzweigungen der A. femoralis sind:
1) Rami musculares, die bedeutendsten derselben sind:
1) A. profunda femoris superioris et inferioris,
2) A. musculo-articularis superior.

2) A. articularis genu superior communis. Dieselbe entspringt oberhalb des Condylus externus femoris, verläuft über den Condylus internus nach der medialen Seite der Knie und gibt folgende Äste ab:
 a) Art. articulares genu superiores externae.
 b) Art. articulares genu mediae s. azygeae superiores.
 c) Art. articulares genu superiores internae.
 d) Art. anastomoticae magnae genu superiores, die sich nach der medialen Seite der Kniegegend begeben und mit der A. anastomotica magna genu inferioris anastomosirt.

Arteria poplitea. Dieselbe bildet die Fortsetzung der A. femoralis. Anfangs in der Kniekehle gelegen, begiebt sie sich nach der hinteren Fläche des Unterschenkels zwischen Tibia und Fibula. Ungefähr in der Mitte des Unterschenkels theilt sie sich in ihre beiden Endäste, von welchen der eine die

1) Arteria tibialis antica, der andere die
2) Arteria tibialis postica bildet.

Die Verzweigungen der A. poplitea sind:
 a) A. suralis, die den M. gastrocnemius versorgt und eine
 a') A. suralis superficialis entsendet.
 b) Art. articulares genu inferiores, externa und interna.
 c) A. recurrens peronea nach der lateralen Fläche des Kniegelenkes.
 d) A. recurrens tibialis.
 e) A. musculo-articularis inferior, welche mit der A. musculo-articularis superior der A. femoralis anastomosirt und die Muskeln der vorderen Fläche des Unterschenkels mit Ästen versorgt.
 f) A. anastomotica magna genu inferior, die mit der A. anastomotica magna genu superior anastomosirt.
 g) Äste für das Rete articulare genu.

Die Verzweigungen des einen Endastes, der A. tibialis postica, sind:
 a) Rami musculares.
 b) A. malleolaris posterior interna superior, die sich nach dem Tarsus begeben und sich in das Rete malleolare auflöst.
 c) Art. malleolares posteriores internae inferiores.

Der andere Endast der A. poplitea ist die A. tibialis antica. Dieselbe entsendet folgende Äste:
 a) Rami musculares.
 b) Art. tarsaea dorsalis, welche mit der A. peronea anastomosirt und den Circulus anastomoticus dorsalis bildet, aus welchem Aeste für das Rete malleolare externum hervorgehen.
 c) A. malleolaris anterior interna zum Rete malleolare internum.

Dann theilt die A. poplitea sich in ihre beiden Endäste, die
1) A. podo-tibialis und die
2) A. podo-peronea.

Die A. podo-tibialis begiebt sich ungefähr in der Mitte des Interstitium interosseum primum von dem Fußrücken nach der Plantarfläche, wo sie sich in ihre vier Endäste, Art. digitales, und zwar in eine 1) A. fibularis hallucis, 2) und 3) A. tibialis et fibularis indicis und in eine 4) A. tibialis digiti medi auflöst. Auf dem Fußrücken giebt sie:

a) Rami ad Retic malleolare internum,
b) Rami musculares metatarsae; und ausserdem in der Plantarfläche
c) A. tarsae profunda ab, die das Tarsalgelenk versorgt, endlich die
d) Art. musculares metatarsiae.

Aorta sacralis. Dieselbe bildet die unmittelbare Fortsetzung der Aorta descendens, nachdem sie die bedeutend starke A. iliaca externa und interna abgegeben hat. Sie trägt diesen Namen bis zum ersten Schwanzwirbel.

Die Zweige der A. sacralis sind:

Art. sacrales laterales. 3 Paare. Von diesen in Rede stehenden Aesten treten drei Art. spermaticae externae ab, und zwar entlässt die A. sacralis lateralis prima sinistra die A. sperm. ext. anterior sinistra, während die A. sperm. ext. posterior dextra von der A. sacralis lateralis dextra secunda abgeht und schliesslich die A. sacralis lateralis sinistra tertia die A. spermatica externa post. sinistra entsendet.

Crocodile. Mit Ausnahme der vorderen Hälfte der Speiseröhre erhalten die Verdanungswerkzeuge bei den Crocodilen zum grössten Theil aus der Aorta sinistra das ihnen nöthige Blut und für einen nur kleinen Theil aus der durch die Vereinigung der Aorta dextra und sinistra gebildeten Aorten descendens.

Von der Aorta descendens entspringt in der Gegend des zwölften oder dreizehnten Dorsolumbalwirbels eine ziemlich starke Arteria mesentérica, die durch den breiteren mittleren Theil des Gekröses hindurchgeht und zum Mittel- (Dünn-) darm sich begiebt. Ausser dieser A. mesentérica kommt bei den Crocodilen keine zweite vor. Wohl aber sendet die A. caudalis, die Fortsetzung der Aorta descendens, hinter dem zweiten Sacralwirbel eine A. haemorrhoidalis für das hinterste Viertel des End- (Dick-) darmes aus. Dieselbe theilt sich in zwei Aeste und zwar in eine
α) A. haemorrhoidalis propria für den Dickdarm, und in eine
β) A. cloacalis für die Cloake.

Etwas weiter nach unten entspringt aus der A. caudalis eine zweite
A. haemorrhoidalis für die Muskulatur und die Moschusdrüse der Cloake.

Die Aorta sinistra entsendet nicht weit von ihrem Ende, ohne vorher
irgend welchen Ast abgegeben zu haben, entweder einen einzigen dickeren
Ast aus, den man als A. coeliaca bezeichnen kann, oder statt dessen
zwei dünner Easte. Der erste Fall ist aber der gewöhnliche, der andere
nur eine individuelle Abweichung.

Die Aeste der A. coeliaca sind:
1) A. oesophagea für die Speiseröhre.
2) A. gastrica (A. gastrica superior) für den Magen.
3) A. gastro-hepaticae (A. gastrica inferior) ebenfalls für den Magen
bestimmt, dieselbe giebt ausserdem 2—4 Zweige ab, die sich theils in
dem linken Bauchfellmuskul verbreiten, theils und hauptsächlich für den
linken Leberlappen bestimmt sind.
4) A. duodeno-hepaticae, die sich in mehrere Aeste theilt. Einige von
ihnen verbreiten sich in dem vordersten Theil des Mitteldarmes. Ein an-
derer läuft an der linken Seite des nächstfolgenden Darmstückes nach
hinten. Zwei bis drei andere gehen zum Magen, noch ein anderer ver-
breitet sich in dem rechten Bauchmuskul und der Gallenblase und dringt
darauf mit 2—4 Nebenzweigen in den rechten Leberlappen.
5) A. jejunalis, welche sich mittelst vieler Aeste an den Mitteldarm
verzweigt und mit Aesten der A. mesenterica anastomosirt.
6) A. splenico-intestinalis; dieselbe dringt in das vordere Ende der
Milz hinein und aus dem hinteren Ende derselben wieder heraus und
theilt sich darauf in 3—5 Zweige, die sich zu dem hinteren Theil des
Mitteldarmes und zu dem vorderen Theil des Enddarmes begeben. Ihre
sich zu dem Darm begebenden Zweige bilden in dem Gekröse mehrere
grosse Maschen, die bis dicht an den Darm heranreichen und mit den
Maschen der A. mesenterica zusammenhängen. An dem Darm gehen also
die A. jejunalis, A. mesenterica und die A. splenico-intestinalis in einander
völlig über.

Der Stamm der Aorta setzt sich, ohne durch das Abgeben der Arte-
rien, welche für die Hinterbeine, das Becken und die darin enthaltenen
Körpertheile bestimmt sind, bedeutend geschwächt zu sein, sowie die A. caudalis fort, dass diese an ihrem Anfang sehr starke Arterie als seine
hintere Hälfte erscheint. Die Aeste, die aus ihm entspringen, sind:

A) eine A. mesenterica,
B) 3—4 Paar Art. lumbales nach der Zahl der Lendenwirbel,
C) Mehrere Art. renales, bei verschiedenen Exemplaren von Croco-
dilen verschieden in Zahl.
D) Art. iliacae. Dieselben entspringen aus dem Aortenstamm unter
dem ersten Præsaerialwirbel. Jede von ihnen giebt in einer ziemlich
grossen Entfernung von ihrem Ursprung und kurz vorher, ehe sie aus
der Leibeshöhle nach aussen hervorpringt, zwei ziemlich gleich dicke, anscheinliche Zweige ab:

\(\alpha \) der eine dringt in das hintere Ende des Bauchfellmuskels,

\(\beta \) der andere in das hintere Ende des M. rectus abdominis ein.

Die Art. iliaecae werden gleich näher besprochen werden.

Über die Verzweigungen der Art. iliaecae liegen dann bis jetzt noch keine ausführlicheren Angaben vor; im Allgemeinen scheinen dieselben denen der Vögel ganz zu entsprechen. Jede A. iliaea giebt zuerst einen ziemlich dicken Ast ab (artère fémorale profonde: Cuvier), welcher die Adductoren und Extensoren des Oberschenkels versorgt, und entsendet ausserdem einen Zweig, der der A. epigastrica entspricht. Der andere dicke Ast der A. iliaea bildet dann ihre direkte Fortsetzung und ist der A. femoralis s. cruralis der Saurier zu vergleichen.

Venae.

Für die Literatur ist noch hervorzuheben:

Das Venensystem der Saurier und Hydrosaurier ist am genauesten und ausführlichsten bei den letzteren untersucht, besonders haben sich zwei Autoren, Rathke (24) und Jacquart (199), eingehend mit denselben beschäftigt, ohne dass einer mit des andern Arbeiten bekannt war.

Das Venenblut sammelt sich bei den Crocodilen in drei einander entgegenkommenden Stämmen, nämlich einer unpaarigen Vena cava inferior und einer paarigen Vena cava superior, die vereinigt mit einander zu einem kurzen Stamm in die rechte Vorkammer einmünden. Der zwischen Leber und Herz gelegene Abschnitt der Vena cava inferior (posterior: Rathke) ist von sehr anscheinlicher Weite, ähnlich wie bei vielen tauchenden Wasservögeln.

Von den beiden Venae cavae superiores (anteriores: Rathke) ist die linke etwas länger als die rechte. Eine jede derselben entstehst aus dem Zusammentritt folgender Aeste, einer:
1) Vena vertebralis communis,
2) Vena mammaria interna,
3) Vena jugularis interna,
4) Vena subclavia,
5) Vena jugularis externa.

Die Vena jugularis interna verläuft zur Seite der Speiseröhre nach vorn, nimmt das aus der Luftröhre, dem Kehlkopf und Schlundkopf zurück-fließende Blut auf, empfängt mehrere Aeste aus den Kaumuskeln, nimmt weiter die Vena lingualis und einen Ramus anastomoticus der Vena facialis (einen Ast der V. jugularis externa) auf und nimmt ihren Ursprung als ein dünner Zweig, gebildet durch Venen aus der Schädelhöhle.

A) Der stärkste Endast — V. facialis — geht in Begleitung der A. facialis am Quadratum quer nach aussen und nimmt auf diesem Wege auf:
 α) Rami musculares aus den Kaumuskeln.
 β) V. dentalis inferior, die sich in ähnlicher Weise verbreitet wie die A. dentalis inferior.
 γ) V. dentalis superior, die sich in ähnlicher Weise verbreitet wie die A. dentalis superior; ausserdem nimmt sie noch einen aus der Augenhöhle kommenden Ast auf.

Die Vena vertebralis ist fast ebenso dick als die V. subclavia. Sie steigt mit der gleichnamigen Arterie an der Innenfläche der Seitenwand des Rumpfs nach aussen von der Lunge in die Höhe. In dem dritten Interstitium intercostale gabelt sie sich in ihre beiden Endäste:

 α) V. vertebralis profunda anterior, die die drei vordersten Vv. intercostales aufnimmt, sowie Aeste aus den Nacken- und Halsmuskeln und den Häuten des Rückenmarkes.
β) V. vertebrales posterior begleitet die gleichnamige Arterie, nimmt eine vierte V. intercostalis auf und dringt in den Canal des Rückenmarks, um sich mit den Venae spinales zu verbinden.

V. epigastrica interna. Zwischen dem zehnten und zwölften Dorsolumbalwirbel gehen durch die sich dort befindlichen Foramina intervertebrale zwei Venen aus dem Rückenmark hervor — Venae vertebrales postremae: Rathke, die an der äußeren Fläche des Bauchfellmuskels herunterlaufen und in einen Venenstamm — die erwähnte V. epigastrica interna — übergehen. Jederseits stehen die Vv. vertebrales postremae mit der elften und zwölften Intercostalvene in Zusammenhang. —

Die fünfte und die fünf folgenden Venae intercostales einer jeden Seitenhälfte sind durch eine einfache Reihe longitudinaler Anastomosen, sowohl unter einander selbst, als auch mit der V. vertebrales posterior und den Vv. vertebrales postremae derselben Seitenhälfte verbunden.

Bei den Crocodilen kommen auch Vv. lumbales transversae vor, die nahe der Wirbelsäule durch Anastomosen unter einander, als auch mit dem hintersten Paar Intercostalvenen zusammenhängen. Ausserdem steht die Mehrzahl mit den Asten der Vena cava inferior — und zwar mit den Vv. renales revehentes, das hinterste Paar aber mit den Vv. renales advehentes in Zusammenhang.

Am Rumpfe kommt eine Reihe von Hautvenen vor, die sich in aufsteigenden und absteigenden Asten sammeln; estere bilden dann eine V. thoracica, die sich in die V. axillaris ergiesst, letztere gehen in die Intercostal- und Lumbalvenen.

Die beiden Venae epigastricae internae (von Rathke) sind zwei sehr starke Gefässe, die nach vorn verlaufen und getrennt von einander

Von den beiden Venae renales advehentes Rathke — Veine de Jacobson: Jacquot — geht eine jede neben dem Harnleiter zur Niere ihrer Seite und nimmt nach Rathke die mit einander verbundenen V. ischiadica und V. cruralis, wie auch die V. obturatoria ihrer Seite auf. Wir haben gesehen, dass nach Jacquot die letztgenannten Venen sich etwas anders verhalten. An dem hinteren Rande der Niere thellt sich jede Vena renalis advehens in zwei ziemlich gleich starke Zweige, die sich in der Niere verästeln. Es kommt also in der Niere wie in der Leber ein Pförtaderkreislauf vor; Jacobson (201) hat ihn entdeckt und Nicolai (202) bestätigt und noch genauer untersucht.

Die Vena cava inferior (posterior) macht vom Herzen aus nur einen kurzen Verlauf bis sie zur Leber gelangt, besitzt aber, wie wir schon gesehen haben, eine so bedeutende Weite, dass sie als das weiteste Blutgefass des ganzen Körpers betrachtet werden kann. Die in Rede stehende Vene setzt sich zusammen aus:

a) Venen, die aus der Niere heraustrreten — Veines renales emul- gentes, Veenelevehentes: Jacquot — auf der linken Seite zwei, auf der rechten drei nach derselben Autor; zwei oder drei nach Rathke auf jeder Seite.

b) Venen aus den Nebennieren, Hoden resp. Ovarien.

Der so gebildete Stamm, welchen Rathke erst dann „Vena renalis revehens“ nennt, bezieht sich rechts von der Aorta abdominalis unter dem Rücken geradeswegs nach oben und streicht in seinem fernen Verlauf nicht, wie bei den Säugethieren, an der Leber vorbei, sondern geht
schräge durch den ganzen rechten Leberlappen so hindurch, dass er völlig in ihm verborgen liegt. Innerhalb des rechten Leberlappens nimmt er verschiedene dicke Zweige als Venae hepaticae auf und tritt als ein sehr dicker Stamm, nach Rathke also erst dann als eigentliche Vena cava inferior (posterior) aus der Leber heraus. Das Blut aus dem linken Leberlappen wird der Vena cava inferior durch einen eigenen Ast zugeführt (Rathke, Jacquart). Obgleich die hintere Hohlvene bei Crocodilien wie bei anderen Reptilien eine viel geringere Ausbreitung hat als bei Säugern, indem sich weder die Venen der unteren Extremität, noch die des Schwanzes an sie angeschlossen haben und als Aeste von ihr erscheinen, so führt sie dennoch dem Herzen eine sehr bedeutende Menge von Blut zu. Dies aber nimmt sie zum kleineren Theil aus den Nieren, Nebennieren, Geschlechtsdriisen und deren Ausführungsgängen, zum grössten Theil jedoch aus der Leber auf, welches letztere Organ bei den Croco-
dilen weit mehr Blut empfängt als bei den Säugern, indem in dasselbe nicht bloss die Leberarterie und die Pfortader, sondern auch die beiden ansehnlichen Venae epigastricae internae übergehen, die aus dem Schwanz, dem Becken und den hinteren Extremitäten Blut zuführen. In den Nieren stehen die Venae renales advehentes und die V. renalis revenhens unter einander in einem unmittelbaren Zusammenhang, der, wie Rathke an-
giebt, durch verschiedenartig dicke, meist aber nur zarte Anastomosen bewirkt ist, nach Jacquart dagegen stehen die beiden genannten Gefässe nur durch Capillaren mit einander in Verbindung.

Die V. portae der Leber wird gebildet durch Aeste, welche vom Enddarm herkommen und in einen grösseren Stamm, die V. haemorrhoidalis, zusammenfließen, welche durch einen Plexus venosus mit den Aesten der V. caudalis in Zusammenhang steht; ferner durch Venen, die vom Mitteldarm kommen und durch die V. mesenterica, welche die V. lienalis und pancreatica aufnimmt. Die so gebildete V. portae bildet einen kur-
en, weiten Stamm, der sich an der Leber in zwei ungleich lange Aeste theilt, von denen der eine in den grösseren rechten, der andere in den kleineren linken Leberlappen eindringt.

Schliesslich noch ein Wort über die Venen der Hirnhäute. In der harten Hirnhaut befindet sich unter dem Schädeldeck eine Sinus longitudi-
dinalis, der von in der Schädelhöhle aus der Vereinigung einiger Venae nasales hervorgeht, nach hinten beträchtlich sich erweitert, jederseits einen Sinus transversus und nach hinten einen Sinus occipitalis aufnimmt. Die Sinus transversi nehmen mehrere Venen aus dem Grosshirn auf. Der Sinus occipitalis ist weit kürzer und dünner als die Sinus transversi und geht in ein venöses Geflecht über, das Rathke als Sinus foraminis magni bezeichnet hat.

Durch den ganzen Canal der Wirbelsäule verlaufen der Länge nach drei einfache, nicht geflechtartige Venae spinales, die von mit dem Sinus foraminis magni zusammenhängen. Der eine ist ansehnlich weit, die be-
den andern sind viel dünner, in jedem Wirbel kommen sie einander etwas

Das Blut aus der Bauchwand sammelt sich in der unpaarigen V. abdominalis, welche sich in der Beckengegend in die V. abdominalis dextra und sinistra theilt. Jede derselben nimmt die V. Inteae ihrer Seite — die aus dem Fettkörper herauskommt — auf und vereinigt sich dann mit der V. hypogastrica s. iliea interna und der V. iliea externa — die sich nach unten in die V. erinalis fortsetzt. So entsteht auf jeder Seite ein ziemlich dicker Venenstamm — die V. iliea communis dextra et sinistra.

Das venöse Blut aus dem Schwanz ergiesst sich in eine die A. caudalis begleitende Vene, die V. caudalis, welche die Venae cloacae et haemorrhoidales aufnimmt und sich dann in zwei Aeste theilt, die V. sacralis dextra und sinistra. Jede derselben vereinigt sich mit der V. iliea communis ihrer Seite und der so gebildete Stamm stellt die V. renalis advehens dar, welcher sich nach der Niere begiebt. Hier theilt sie sich jederseits in 4—5 Zweige — Vasa advehentia — die sich weiter in der
Niere verästeln. Durch ebenso viele Vasa revehentia sammelt sich das Blut wieder auf und bildet so jederseits die V. renalis revehens, die sich nach oben begeht und die V. suprarenalis revehens aufnimmt. In der unmittelbaren Nähe des Leberrandes vereinigen sich die V. renalis revehens dextra und sinistra zu einem gemeinschaftlichen Stamm, die V. renalis revehens communis, welche die Leber durchsetzt und eine der drei Stammwurzeln der Vena cava inferior wird.

Das Pfortadersystem der Nebennieren entsteht aus einem Theil der Venae der Bauchwand, die sich jederseits zu einer Vena suprarenalis advehens sammeln, welche sich in den Nebennieren verästelt. Die aus den Nebennieren wieder heraustretende V. suprarenalis revehens ergiesst sich, wie wir gesehen haben, in die V. renalis revehens.

Die Venen der Verdauungsorgane, Milz und Pancreas vereinigen sich zu der V. portae, welche sich in der Leber verzweigt. Die aus der Leber heraustretenden Venae hepaticae bilden die zweite Stammwurzel für die V. cava inferior.

Die V. intervertebralis endlich sammelt das Blut aus der Wirbelsäule und ihrer Adnexa und bildet die dritte Stammwurzel für die V. cava inferior, zuweilen entleert sie sich aber in die V. renalis communis.

Ueber das Venensystem von Pseudopus Pallasii sei noch erwähnt, dass nach Hyrtl's Angaben die V. caudalis sich in die beiden Venae ischiadicae theilt. Jede dieser V. ischiadicae theilt sich wieder in zwei Äste; der eine ist die V. advehens Jacobsonii, der andere anastomosirt mit dem entsprechenden der anderen Seite und bildet mit diesem die V. umbilicalis.

Ueber die chemische Zusammensetzung des Blutes beim Alligator (A. mississippiensis) verdanken wir Jones folgende Angaben:

<table>
<thead>
<tr>
<th>Männchen</th>
<th>Weibchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifisches Gewicht von defibrinirtem Blut</td>
<td>1056</td>
</tr>
<tr>
<td>Feste Bestandtheile in 1000 Theilen Blut</td>
<td>196.57</td>
</tr>
<tr>
<td>Feste Bestandtheile in 1000 Theilen Serum</td>
<td>90.80</td>
</tr>
<tr>
<td>Feste Bestandtheile in Serum von 1000 Theilen Blut</td>
<td>80.24</td>
</tr>
<tr>
<td>Wasser in 1000 Theilen Blut</td>
<td>803.43</td>
</tr>
<tr>
<td>Wasser in 1000 Theilen Serum</td>
<td>909.20</td>
</tr>
</tbody>
</table>

1000 Theile Blut enthalten:

Wasser	803.43	823.86
Blutkörperchen (getrocknete organische Substanz)	106.80	86.39
Albumin, Fett, Extraktivstoffe	74.02	63.75
Fibrin	3.41	3.07
Fette Bestandtheile und alcoh. Extr.	2.00	5.02
Feste salzige Bestandtheile	10.34	8.65

64 *
1000 Theile Blut enthalten beim Männchen:

<table>
<thead>
<tr>
<th>Feuchte Blutkörperchen 451.68</th>
<th>Wasser</th>
<th>338.76</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquor sanguinis 548.32</td>
<td>Wasser</td>
<td>464.67</td>
</tr>
<tr>
<td></td>
<td>Feste Bestandtheile 112.92</td>
<td></td>
</tr>
</tbody>
</table>

Beim Weibchen:

<table>
<thead>
<tr>
<th>Feuchte Blutkörperchen 364.08</th>
<th>Wasser</th>
<th>273.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquor sanguinis 635.92</td>
<td>Wasser</td>
<td>550.80</td>
</tr>
<tr>
<td></td>
<td>Feste Bestandtheile 91.02</td>
<td></td>
</tr>
</tbody>
</table>

Blutkörperchen.

Die Blutkörperchen der Eidechsen (Lacerta agilis, Anguis fragilis) wurden zuerst von Wagner (202) gemessen. Er fand sie \(\frac{1}{200} \) engl. Zoll, im Max. \(\frac{1}{100} \) engl. Zoll in Min. \(\frac{1}{185} \) engl. Zoll, durchschnittlich \(\frac{1}{178} \) engl. Zoll beträgt. Der kurze Durchmesser beträgt nach ihm \(\frac{1}{2000} \) engl. Zoll im Min. \(\frac{1}{1000} \) engl. Zoll im Min. \(\frac{1}{1000} \) engl. Zoll im Min. \(\frac{1}{2015} \) engl. Zoll \(\frac{1}{0216} \) engl. Zoll beträgt. Der kurze Durchmesser beträgt nach ihm \(\frac{1}{2000} \) engl. Zoll \(\frac{1}{00127} \) engl. Zoll im Max. \(\frac{1}{1000} \) engl. Zoll im Min. \(\frac{1}{00067} \) engl. Zoll im Mittel \(\frac{1}{2666} \) engl. Zoll \(\frac{1}{0095} \) mm. Für die Lymphkörperchen giebt es für den Längendurchmesser an: \(\frac{1}{2400} \) engl. Zoll \(\frac{1}{10016} \) engl. Zoll im Max. \(\frac{1}{0016} \) mm., \(\frac{1}{2900} \) engl. Zoll \(\frac{1}{0087} \) mm. im Min., im Mittel \(\frac{1}{2666} \) engl. Zoll \(\frac{1}{0095} \) mm.

An mehreren Blindschleichen, welche einen Sommer und Winter in Gelängenschaft zugebracht hatten, fand Leydig die Zahl der farblosen Blutkörperchen ungenügend gross.

Über die Grösse der Blutkörperchen bei den Crocodilen verdanken wir Mandl (202) und Gulliver (202) einige Angaben. Mandl giebt für ihren Breitendurchmesser 0,010 -- 0,0105 mm., und für ihren Längendurchmesser 0,025 -- 0,029 mm. an.

Die Angaben von Mandl, dass bei den Crocodilen „le grand diamètre des globules de sang est 2 à 3 fois plus grand que le petit“, kommen Gulliver ungenau vor. Wir verdanken ihm folgende Maasse:
<table>
<thead>
<tr>
<th>Reptilien.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maass in Engl. Inch.</td>
<td>Maass in Millim.</td>
<td></td>
</tr>
<tr>
<td>Crocodilus acutus.</td>
<td>Gewöhnl.</td>
<td>1.1333</td>
</tr>
<tr>
<td></td>
<td>Grösse</td>
<td>1.1231</td>
</tr>
<tr>
<td></td>
<td>Extreme</td>
<td>1.1145</td>
</tr>
<tr>
<td>1.1600</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1231</td>
<td></td>
</tr>
<tr>
<td>Champsia fissipes, Natterer.</td>
<td>Gewöhnl.</td>
<td>1.1455</td>
</tr>
<tr>
<td></td>
<td>Grösse</td>
<td>1.1333</td>
</tr>
<tr>
<td></td>
<td>Extreme</td>
<td>1.1200</td>
</tr>
<tr>
<td>1.1143</td>
<td>1.2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1259</td>
<td></td>
</tr>
<tr>
<td>im Mittel.</td>
<td>1.2286</td>
<td>0.295</td>
</tr>
<tr>
<td></td>
<td>1.2666</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>1.2400</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>1.2286</td>
<td>0.0295</td>
</tr>
<tr>
<td></td>
<td>1.2286</td>
<td>0.0254</td>
</tr>
<tr>
<td></td>
<td>1.3000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1895</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2315</td>
<td></td>
</tr>
</tbody>
</table>

Nachtrag zu dem Blut-Gefässsystem.

Literatur.

ohne die geringste Deviation begleitet wird, und nachdem sie capillare Feinheit erreicht hat, sich in kein Capillarnetz auflöst, sondern dass jedes capillare Zweigjehen schlingen- oder schleifenförmig in das entsprechende venöse Stämchen umbiegt.

Auf diese Weise bildet jede Arterie mit ihrer entsprechenden Vene ein complicirtes, vielfach dichotomisch baumförmig verästeltes, sehr zierliches Schleifensystem, und das Stromgebiet einer jeden Arterie, ja eines jeden Arterienzweigjehens bildet mit der entsprechenden Vene oder dem entsprechenden Venenzweigjehen ein in sich abgeschlossenes, völlig isolirtes Ganzes, welches nirgends, weder durch ein Capillarnetz noch durch eine Anastomose, mit einem benachbarten Zweigjehen communicirt. Im Vorderhirm erreicht die baumförmige Verästelung der Blutgefäße ihre grösste Entwicklung.

Im Rückenmark ist der Verlauf der Blutgefäße ein etwas abweichender. In den obersten Partien desselben, nahe der Medulla oblongata, treten noch immer einzelne, wenn auch sehr schwache Stämmchen längs der ganzen Oberfläche centripetal verlaufend in dasselbe ein, während die meisten und stärksten Stämmchen im Sulcus longitudinalis inferior eindringen, centripetal gegen die ersterwähnten verlaufend und gleichfalls in Capillarschleifen endigend, ohne an irgend einer Stelle mit den erstgenannten, sei es durch Netze oder durch Anastomosen, zu communiciren. Im weiteren Verlaufe des Rückenmarks werden die von der Peripherie eindringenden Stämmchen stets seltener und seltener, bis endlich sämmtliche Blutgefässstämmke ausschliesslich nur durch den Sulcus longitudinalis inferior in dasselbe eindringen, centripetal und sich stets baumförmig verästelnd gegen die Peripherie verlaufen und mit den oft erwähnten Capillarschleifen enden, gleichfalls ohne an irgend einer Stelle, sei es durch Capillarnetze oder Anastomosen, zu communiciren. Nicht allein bei Lacerta, sondern auch bei Anguis fragilis und Pseudopis Pallasii fand Schöbl im Grossen und Ganzen genau dasselbe Verhalten der Blutgefäße.

Aus der Familie der Pachyglossus untersuchte er Stello cyanogaster, und aus der Familie der Acalabota, Platydactylus fasciolaris, und konnte hier ein ähnliches Verhalten der Blutgefäße nachweisen. Demnach scheint es gerechtfertigt den Schluss zu ziehen, dass alle Saurier sich durch diese eigenthümliche Anordnung der Blutgefäße im Gehirn und Rückenmark unterscheiden, mit Ausnahme der Chamaeleoniden, bei welchen (Chamaeleo vulgaris) keine Spur der beschriebenen Schleifenbildung vorkommt; Schöbl fand hier überall grossmaschige Capillarnetze wie bei den Schlangen.

Lymphgefässsystem.

Literatur.

Ausser den schon erwähnten Schriften sind noch hervorzubeheben:

Noch in mancher Beziehung ist unsere Kenntniss von dem Bau des Lymphgefässsystems lückenhaft zu nennen. Nach Panizza (204) sind

klaren. Bestimmt scheint ein unmittelbarer Zusammenhang der Venen mit den Lymphgefäßen in der Gegend der Lymphherzen vorzukommen; ob auch ein ähnlicher Zusammenhang am vorderen Körpertheil stattfindet, ist noch fraglich.

Die beiden Lymphherzen liegen nun zu beiden Seiten vollkommen symmetrisch auf der oberen Fläche des Sacrum in der eben erwähnten staffelartigen Vertiefung. Das in Rede stehende Herz ist im gefüllten Zustande vollkommen sphärisch, mit 1 1/2 Linien im Durchmesser. Eine fibröse Kapsel umgibt es locker. Die Kapsel scheint kein selbständiges Organ zu sein, sondern durch Spaltung jener Aponeurose zu entstehen, welche vom Rande des Staffels der Rippe zum oberen Ende des Becken rudimentes hingehet.

Es kommt ein zuführendes und ein abführendes Gefäss vor; das zuführende kommt aus dem mächtig grossen Sinus lymphaticus, welcher der Wirbelsäule entlang sich durch die ganze Bauchhöhle erstreckt, und nach Hyrtl nicht nur die Aorta, sondern auch die A. mesenterica und jenen ihrer Aeste bis zum Mesenterialrande des Darmes begleitet.

Die Grösse der Lymphzellen von \textit{Anguis fragilis} wurde schon oben angegeben (s. pag. 1012).

Mit dem Lymphgefäßssystem in engem Zusammenhang stehen die Blutgefässdrüsen:

- Milz, Nebennieren, Thyreoidea, Thymus.

Literatur.

Ausser den schon erwähnten Schriften sind noch hervorzuheben:

- **Milz.**
 - Vergleiche ausserdem Leydig (37) und (107).

- **Nebennieren.**
 - (228) Bergmann. Diss de glandulis suprarenalibus. Gött. 1839.

- **Thyroidea.**

Die Zellen, welche einen der Bestandtheile der Milzföllikel bilden, stimmen in ihren Eigenschaften mit jenen der Salamandermilz überein. Ihr Durchmesser beträgt frisch untersucht im Mittel 0.005, von 0.004—0.007 Mm. schwankend; dazwischen finden sich sparsame Körnchenzellen von 0.009 Mm., bisweilen mit goldgelbem Pigment gefüllt. Sie sind vor- wiegend rund, einzelne eckig oder elliptisch, zum Theil lebhaft roth, zum Theil blasser imbibirt, einzelne wie in Kerntheilung begriffen. Sie werden umgeben von einem dichten Netz zarter Fäden und einer blassen, äusserst feinkörnigen Grundsubstanz. Dieses Netz steht einerseits mit den zarten bindegewebigen Fortsätzen der inneren Kapsellage und der Scheidewände in continuirlichem Zusammenhang, andererseits inserirt es sich mit etwas verbreiternten, häufig kernhaltigen Fäden an die den Follikel durchziehen- den Gefässen.

Bei den Sauriern zeigen die Gefäss Eigenthümlichkeiten des Baues und der Anordnung. Die Arterien bestehen aus einer Intima spindelför- miger Zellen, mit stark in das Lumen prominentirenden Kernen, einer mus- culösen Media und einer bindegewebigen Adventitia. Sie verästeln sich unter spitzen Winkeln und geben in gewissen Abständen gestreckte Aeste von 0.011—0.014 Mm. ab, welche durch die verhältnissmässig dicke kernreiche Adventitia sich auszeichnen. Sie gehen unter vorwiegend dichotomischer Theilung in ein Anfangs weiteres, später dichteres Capillarenetz über von 0.014—0.030 Maschenweite. Das Caliber der Capillaren wechselt von 0.006—0.012 Mm., ihre Wandung ist äusserst dünn und bei der Mehrzahl von elliptischen und rundlichen Kernen dicht inulitrirt, so dass sie von dem anliegenden Parenchym nicht deutlich geschieden ist.
Die Capillaren gehen unter allmählicher Erweiterung in einen Plexus 0.012—0.030 Mm. weiter Venen über, welche theils dicht unter der Kapsel ein über das ganze Organ sich erstreckendes Netz bilden, theils etwas mehr centralwärts einen Venenkranz um die einzelnen Capillargruppen bilden, wodurch die Aneinander eines follikulären Baues auch bei diesen Milzen, obwohl ohne scharfe Sonderung der einzelnen Follikel, gegeben ist.

Neßenniere.

Über den Bau der Nebenniere verdanken wir besonders Braunn (229) sehr eingehende und auf entwickelungsgeschichtlichen Untersuchungen fassende Mittheilungen. Schon durch ältere Forscher sind die Nebennieren der Reptilien untersucht, so von Nagel (224), Cuvier (3), Retzius (225), besonders genau von Ecker (226), Leydig (227), Bergmann, Rathke u. A. Wenn auch die Ansichten der eben erwähnten Autoren über den Bau und die Bedeutung der Nebennieren in mancher Beziehung von einander abweichen, so stimmen sie wenigstens darin mit einander überein, dass die Nebennieren langgestreckte, goldgelbe Körper seien, bis Waldreyer (175) seine ganz entgegengesetzte Ansicht bekannt machte. Nach ihm haben die intensiv gelben Körper, die früher stets für Nebennieren erklärt worden sind, ganz die Structur des Parovarium, resp. der Parepididymis der Vögel und entsprechen also diesen. Später hat Leydig (37) sich Waldreyer vollkommen angeschlossen und behauptet, dass sowohl bei Anguis als Lacerta der Wolff'sche Körper in zwei gesonderten Resten übrig bleibt; der eine Theil wird beim Männchen zum Nebenhoden (Epididymis), beim Weibchen zum Nebencierstock (Epoophoron), der andere beim Männchen zur Parepididymis (Paradidymis), dem Giraldes'schen Organ, beim Weibchen zum Paroophoron (Parovarium); der letztenannte Theil ist dann der goldgelbe Körper. Dagegen ist Braunn wieder zu einem ganz anderen Resultate gelangt, das sich hauptsächlich auf entwickelungsgeschichtliche Untersuchungen, angestellt an Embryonen von Lacerta agilis, Anguis fragilis, Trapidonotus matric, Cornella lactis, Platydactylus fasciatus und Phyllodactylus europaeus, stützt und die frühere Ansicht von dem Vorhandensein echter Nebennieren bei den Reptilien wieder zur Geltung bringt.

Die Nebennieren liegen als goldgelbe, langgestreckte Organe in unmittelbarer Nachbarschaft der Geschlechtsdrüsen, mit denen sie auch die asymmetrische Lage gemein haben. Ihre Oberfläche ist körnig, mit leicht lappig eingekerbten Rändern, ihre Gestalt etwas abgeplattet (vgl. Taf. CI. Fig. 2 u. 4). Bei der Beschreibung des Venensystemes wurde schon erwähnt, dass, obgleich bei den Sauriern ein eigenes Nebennieren-Pfortader-system zuweilen vorkommen kann, dies doch Ausnahme ist, allgemein dagegen scheint es bei den Schlängen vorhanden zu sein (Gratiolet, Ecker, Braunn).

Eine genauere Untersuchung sowohl an Zupfpräparaten wie an Schnitten ergibt, dass an ihrer Zusammensetzung hauptsächlich drei
Arten von Zellen sich betheiligen, nämlich 1) gelbe Zellen, von denen das ganze Organ seine Farbe hat (die Farbe rührt von zahlreichen kleinen gelben Körnchen her); 2) Zellen mit bei durchfallendem Licht etwas grünlichem Protoplasma, grossem wasserklairen Kern und deutlichem Kernkörperehen; die Zellen sind scharf von einander abgegrenzt, polyedrisch und bilden Stränge; 3) Stränge, die fast ganz aus dunkel conturirten, grüsseren oder kleineren Fettröpfchen von ziemlich intensiv gelblicher Farbe bestehen; die kleinesten dieser Fettröpfchen sind mit den gelben Körnchen leicht zu verwechseln. Es scheint, als ob die fetthaltenden Stränge mit den blassen Zellsträngen in Verbindung stehen, also fertig umgewandelte Theile derselben sind. Ausserdem bemerkt man neben der Nebenniere einen sehr starken Nerv, in dessen Anschwellungen Ganglienzellen liegen, die mit derselben eng zusammenhängen. Drüsenschläuche zu erkennen war Braun nicht möglich, nirgends zeigte sich am frischen Präparat ein röhriger Bau, vielmehr fand er die drei Arten von Zellen immer in compacten Zellenhaufen oder Zellsträngen angeordnet. Nach Braun besteht nur ein kleiner Theil der gelben Körnchen, die mehrere Forscher alle als Fettkörnchen betrachten, aus dieser Substanz. Behandelt man frische Nebennieren mit Chromsäure, so bemerkt man, dass die gelben Zellen durch diese Säure brann gefärbt werden, wie dies zuerst von Henle bei der Säugtherinnebenniere nachgewiesen ist; hat man aber vorber die Nebenniere durch Spiritus getränkt, dann bleibt die eben erwähnte Wirkung der Chromsäure aus.

Weiters den besten Einblick in den Bau der Nebennieren erhält man durch Schnitte durch die gehärteten Organe, besonders wenn man dieselben vorher durch Chromsäure gehärtet hat.

Durch Bindegewebe vom Nebenhoden (beim Männchen) oder vom Nebeneierstocke (beim Weibchen) getrennt, liegt die Nebenniere, die auf den ersten Blick aus zwei Substanzen besteht; die eine (Taf. CVI. Fig. 2. br. z) besteht aus verschieden geformten Haufen von Zellen, die durch das Vorhandensein eines braunen Farbstoffes sich auszeichnen. Die Haufen dieser Zellen sind verschieden dick, manchmal nur aus einer Zellenreihe bestehend; die Gestalt der Zellen ist rundlich, oft durch Druck polyedrisch; sie liegen an der dorsalen Fläche des Organs und erstrecken sich nur wenig in die zweite Substanz hinein. Ihnen schliessen sich unregelmässige Haufen von Zellen an, deren Charakter Braun nicht klar geworden ist; die Gestalt ist rundlich, der Kern gross, ein Theil derselben ist leicht gelblich pigmentirt, andere sind es nicht und gleichen dann kleinen Ganglienzellen. Die ersteren kann man als Uebergänge zu den braunen Zellen auffassen. Noch erwähnt sei, dass die nicht allein in unmittelbarer Nachbarschaft der braunen Zellen liegen, sondern in kleinen Haufen von 3—6 Zellen zwischen den Strängen der zweiten Substanz der Nebenniere, welche die Hauptmasse derselben ausmacht. Die zweite Substanz, die man als Marksubstanz bezeichnen kann, besteht, auf Schnitten von in Spiritus gehärteten Präparaten, aus unregelmässigen, sich ver-
Zweigenden Röhren, deren Zellen völlig verfettet sind, jedoch bei geeigneter Behandlung (Färbung mit Carmin) den Kern noch erkennen lassen; das Fett ist oft in das Lumen der Röhre eingetreten. Die starke Verfettung ist der Grund, warum man sich bei der durch sie bedingten Un durchsichtigkeit der Röhren am frischen Präparat von deren Anwesenheit nicht überzeugen kann.

Die Einwirkung der Chromsäure auf die Marksubstanz ist fast eben so eigenthümlich als auf die braunen Zellen der dorsalen Hülle. Die Fetttröpfchen werden nämlich durch die Chromsäure ganz gelöst oder wenigstens derart verändert, dass sie nicht mehr zu erkennen sind, und mit Recht darf man also wohl fragen, ob man es hier mit einem echten Fett zu tun habe, indem, so weit bekannt ist, die Fettzellen durch Chromsäure gar nicht alterirt werden. Mit Recht hebt also Braun hervor, dass wir daher annehmen müssen, hier nur eine dem mikroskopischen Verhalten nach fettähnliche Substanz zu haben, die, wie schon Ecker angiebt, sich wie Fette in Aether löst.

Bei einem einjährigen Thier von Lacerta agilis (Männchen) fand Braun die rechte Nebenniere 2 mm. lang, die linke 1,2 mm.; bei einem etwas älteren Thiere die rechte 3 mm., die linke 2,3 mm., und bei einem ausgewachsenen Weibchen die rechte 7,2 mm., die linke 5,5 mm. lang; ganz entsprechende Zahlen erhielt er auch aus Messungen der Nebenniere verschiedener Altersstufen von Anguis fragilis und Tropidonotus matrix.

Schon diese leicht zu constatirende Vergrösserung der Nebenniere passt, wie Braun wohl mit Recht hervorhebt, wenig zu einem verfetteten Rest des Wolff'schen Körpers.

Die hier geschilderten Verhältnisse beziehen sich fast ausschliesslich auf die Nebennieren von Lacerta agilis oder muralis, bei anderen oben bereits genannten Reptilien fand er keine wesentlichen Abweichungen.

Ueber die Entwicklung der Nebennieren verdanken wir Braun folgendes. Dieselbe beginnt nicht eher, bevor nicht ventral von der Aorta ein venöses Gefäss aufgetreten ist, das dicht hinter dem Herzen einfach, in der Mitte des Körpers und nach hinten aber doppelt ist, es ist dies die Anlage der Vena cava inferior. Die Wand der Vene besteht urspring-
lich über dem Endothelrohr aus ovalen Kernen mit unbestimmter Zwischen-
substanz, die an den peripheren Theilen in die kleinen sternförmigen
Zellen des Bindegewebes um die Segmentalcanälen in der Geschlechts-
drüse, im Mesenterium etc. übergehen. Sehr bald erkennt man rechts
und links in der Wand der Vene eine Anhäufung dieser kleinen Kerne, und
Braun hebt ausdrücklich hervor, dass diese Kerne, die Anlage der
Nebenniere, weder von den Segmentalcanälen noch von anderen bereits
angelegten Theilen des Urogenitalsystems abstammen, sondern als indif-
ferente Mesodermzellen, die ursprünglich die Gefäßwand der Vene bilden
helfen, aufgefasst werden müssen.

Die Anlage der Nebenniere ist ursprünglich ununterbrochen, hat un-
gefähr die Ausdehnung der Ureiferalte und tritt als Ver dickung in der
lateralen Wand der Vena cava inferior, resp. ihrer hinten beiden Aeste auf.

Allmählich zeigt sich aber in dieser gleichmäßigen Anlage eine
gewisse Gliederung; es entstehen Querstreifen, die aber nicht genau senk-
recht auf die Körperaxe verlaufen, daher bei Querschnitten gewöhnlich
mehr als einer derselben getroffen wird (Taf. CVI. Fig. 3 und 4). Die
Streifen winden sich immer mehr, dehnen sich weiter aus und kommen
auch mehr dorsal in den Raum zwischen Aorta und Vena zu liegen.
Schon im embryonalen Leben ist der Reichthum an Blutfäßen auffal-
lend; erstens gehen die zahlreichen Venen aus den Glomeruli der Segmen-
talorgane durch die Substanz der Nebenniere, um in die Vene einzumün-
den; ferner kommen auch Aeste aus den Segmentalorganen selbst zur
Mündung in die Hohlvene, da lange nicht alle in die Cardinalvenen ein-
münden. Bald darauf beginnt wahrscheinlich dann schon die Verfettung
der Stränge, doch ist gerade unsere Kenntniss über diesen wichtigen
Punkt noch sehr dürftig.

Obgleich die Anlage der Nebennieren sehr in der Nähe der von der
äußeren Kapsel der Malpighischen Körperchen entstammenden Segmental-
stränge entsteht, so dass man mitunter an einen Zusammenhang zwischen
Nebenniere und Segmentalstrang glauben möchte, so muss ein solcher
Zusammenhang nach Braun bestimmt in Abrede gestellt werden, um so
mehr, als es ihm gelungen ist, den Nachweis zu bringen, dass der zweite
Theil der Nebenniere aus einem ganz anderen System seinen Ursprung
nimmt und zwar aus dem Nervus sympathicus, resp. dessen Grenzstrang.
Derselbe liegt nämlich erst zwischen Chorda und Aorta, rückt dann all-
mählich ventralwärts, rechts und links neben der Aorta, und fällt im Be-
reich der Nebenniere durch seinen Reichthum an Ganglienzellen auf, die
aufs deutlichste von dem umgebenden Bindegewebe unterschieden werden
können. Bei Embryonen von Gecko zeichnete sich der Sympathicus durch
eine bräunliche Färbung aus, bei jüngeren Embryonen fehlte dieselbe.
Vergleicht man jüngere und ältere Entwicklungsstadien mit einander, so
ergibt sich, dass wirklich ein Theil von den Zellen der Anlage des Ner-
vus sympathicus zu den sich in Chromsäure braun färбenden Zellen wird.
Indem wir nun von der Nebenniere der Reptilien wissen, dass die bräunen Zellen hauptsächlich und in grösster Masse an der dorsalen Fläche der Nebennieren sich finden, und da ferner von Braun gezeigt ist, dass die bräunen Zellen bereits im Embryonalleben mit derselben Reaction auftreten, und zwar aus Zellen hervorgehen, die in Nichts von den Zellen des Nervus sympathicius zu unterscheiden sind, so kann man die Nebenniere der Reptilien als aus zwei Anlagen hervorgehend bezeichnen. Die eine Anlage tritt als Verdickung eines Theiles der Wandung der Vena cava inferior auf, ist reine Mesodermbildung; die andere ist ein Theil des Grenzstranges des Sympathicius, also eine Ectodermbildung; zum ersteren sind im ausgebildeten Zustande alle in Chromsäure sich braun färbenden Zellen, so wie die in der Nebenniere liegenden Ganglienzellen zu rechnen, während den zweiten Theil die im Laufe der weiteren Entwicklung sich verfettenden Stränge bilden; dieselben sind ursprünglich solide, keine Rohren, und bilden sich erst im zweiten Lebensjahre aus, denn noch bei einjährigen Männchen von Lacerta muralis fand Braun die Nebenniere aus lauter Zellen bestehend, welche die ganze Masse der Stränge bilden und nicht epithelartig, wie in älteren Stadien, angeordnet sind.

Thymus.

Nach Handfield Jones (232) verhält sich die Thymus bei Lacertidae, Chamaeleonidae und Geckolidae wie bei den Schildkröten, bei erwachsenen Exemplaren von Istiurus und Scincus konnte er dagegen dieselbe nicht finden, nur fand er an der Stelle, wo sie sonst zu liegen pflegt, eine Fettmasse. Bei Crocodilen gibt Rathke an, dass die Thymus bei jungen Embryonen aus zwei dicht neben einander liegenden Stücke besteht, die dicht vor dem Herzbeutel unter der Luftröhre liegen. Bei älteren Embryonen war sie viel größer. Hier bestand sie aus zwei ziemlich dicken, streifenförmigen Stücken, die entweder durch einige Furchen

Respirations-Organe.

Kehlkopf. Luftröhre.

Literatur.

Ausser den schon erwähnten Schriften sind noch hervorzuheben:

Wie die Trachea vom Kehlkopf, so sind auch die Bronchi, ähnlich den Schilddrüsen, von den Lungen deutlich abgesetzt. Während durch die vollendetete Entwickelung der Luftröhre und ihrer Aeste der Respirationsapparat der Reptilien über dem der vollkommensten Amphibien steht, schliessen sich durch die Bildung derjenigen Knorpel, welche den Eingang in die Luftwege begrenzen, die schlagentähnlichen Sauorn, und besonders die Schlangen zunächst wieder den niederen Formen unter den Amphibien an.

Bei den Amphibien (s. Bronn's Amphibien pag. 516) haben wir gesehen, dass bei Proteus das Knorpelgerüst der Stimmlade aus zwei seitlichen Stücken besteht, da der Knorpel des Stimmladeneingangs — die Cartilago arytaenoidae mit dem übrigen Knorpel noch fest verbunden — nur als ein Fortsatz des letzteren erscheint. Dieselbe Bildung findet sich nun nach Henle wieder bei den niedrigsten unter den Reptilien; da aber hier die beiden Seitenknorpel durch quere Leisten vorn und hinten verbunden sind, so ist nur ein einziger Kehlkopfknorpel vorhanden, der auf mannigfache Weise durchbrochen, röhrenförmig oder halbröhrenförmig in der Wand des Kehlkopfes liegt. Diese Thiere haben also einen einfachen Kehlkopfknorpel, Cartilago laryngea, der in drei Haupttheile zerfällt. Der
eine ist die Basis, das eigentliche Rohr — Cartilag. thyreo-ericoidea, Schildringknorpel: (Henl.e). — Die beiden anderen sind die Processus arytaenoideli, die wie bei den Batrachiern, sobald sie sich abtrennen, zu Cartilagines arytaenoidaeae (Henl.e) werden.

Stellt man sich vor, dass der absteigende Theil der Cartilago lateralis bei Proteus nach beiden Seiten hin Queräste ausschickt und dass diese Queräste hinten und vorn sich verbinden, wie bei Menopoma unter den Amphibien, so entwickelt sich eine Form, die bei einzelnen Schlängen wiederkehrt. Unter den Sauriern sind bei Iguana die hinteren Queräste noch von einander getrennt (Taf. CVI. Fig. 5). Eine anderweitige Modification der Form des Kehlkopfes hängt davon ab, wie die vordere und hintere Spitze, die durch die Verschmelzung der obersten Queräste vorn und hinten entstanden sind, sich umgestalten, ob eine grössere oder geringere Zahl von Querästen durch den absteigenden Theil des Seitenknorpels zum Kehlkopf verbunden bleiben, oder ob sie sich bald zu Trachealringen ablösen, ferner ob die Lücken zwischen den Querästen mehr oder minder sich schliessen, wodurch dann der Kehlkopf entweder aus einer Reihe seither zusammenhängender Ringe oder aus soliden, dem Schildknorpel mehr sich nährenden Knorpelplatten gebildet erscheint.

Die Trennung der Cartilago arytaenoidae vom Ringschildknorpel erfolgt in der Reihe der Reptilien nur ganz allmählich. Es gibt vielleicht kaum eine Familie, wo beide constant verwachsen sind, ja mitunter weichen Individuen derselben Art von einander ab, so z.B. bei Amphiibiana.

Ausser der Zahl der Ringe beruht die Mannigfaltigkeit der Formen ferner — wie aus Henl.e’s Untersuchungen hervorgeht — auf der verschiedenartigen Entwicklung der queren Fortsätze, und demnach lassen sich die Kehlköpfe der Saurier in mehrere Abtheilungen ordnen, die, wie leicht begreiflich, durch mancherlei Uebergänge in einander fliessen.

a) Die vordere Wand besteht aus deutlich und gleichmassig gesonderten Ringen. Sie unterscheidet sich, wenn man von den seitlichen
Verbindungen absieht, kaum von der Luftröhre. Die obersten Querfortsätze treten in einem Winkel oder Bogen zusammen, hierdurch wird das Spatium zwischen den zwei obersten Knorpelstreifen entweder dreieckig oder zu einem Kreischnitt (Cepholopeltis, Amphibiaura, Anguis, Zygis und Euprepes und fast alle Schlangen).

b) Die Ringe der vorderen Wand verschmelzen, jedoch so, dass Spuren der Interstitien zurückbleiben; folgende Verschiedenheiten kann man hierbei unterscheiden: 1) Die hintere Wand ist wie die vordere aus unvollkommen verschmolzenen Ringen gebildet. Die Zahl derselben ist gleich bei Tropidurus torquatus (Taf. CVI. Fig. 6), bei Calotes dagegen ist die Spur der Trennung zwischen beiden oberen Ringen verschwunden (Taf. CVI. Fig. 7). 2) Die hinteren Fortsätze sind zu einer Knorpelplatte verbunden, welche nach oben solid ist, nach unten aber aus einander tritt, so dass die Mitte des unteren Theiles nur häufig ist, z. B. bei Phrynoscelphalus. 3) Die obere Wand ist oben und unten vollkommen geschlossen, in der Mitte aber bleibt eine Lücke in dem Knorpelrahmen, über welche die Haut gespannt ist (Cyclodus, Ophisaalurus, Ophryoësacca, vergl. Taf. CVI. Fig. 8. 9 u. 10). Ganz solid ist die hintere Wand in Kehlkopf bei Zo-ınurus (Taf. CVI. Fig. 11.), Draco und bei den Gekkonen.

c) Die Ringe des Kehlkopfes sind an der vorderen Wand theilweise zu einer einfachen Platte verschmolzen. Einer oder mehrere derselben aber, und zwar immer die untersten, werden noch durch Interstitien oder durch Reste von Interstitien getrennt. Zu dieser Abtheilung gehören die meisten Saurier. Nach der Bildung der hinteren Wand kann man die hierher gehörigen Saurier folgendermassen unterscheiden. 1) Die hintere Wand ist ganz offen — Iguana tuberculata — (Fig. 12). Dies Verhältniss findet sich allein bei dem genannten Saurier. 2) Dieselbe ist bei Pseudopus und Cyclura oben geschlossen, unten weit offen. 3) Oben und unten geschlossen, in der Mitte offen, findet man das Knorpelgerüst der hinteren Wand bei Secolopus, Tropidurus, Trapelus, Podinemma und Chamaleoës. 4) Die Cartilago thyreovicoida ist hinten wie vorn aus unvollkommen verschmolzenen Knorpelringen gebildet (Lacerta, Ameiva).

d) Jede Spur von häufigen Zwischenräumen in der vorderen Wand ist verschwunden. Nichts deutet mehr auf die Entstehung des Kehlkopfes aus einzelnen Querfortsätzen oder Ringen, zugleich nähert sich dadurch die vordere Fläche der Cartilago thyreovicoida in der Form mehr oder weniger der Cartilago thyreoida der höheren Thiere. Sie ist noch ganz glatt und mit geradem unteren Rande bei Phrynosoma und Anolis. Bei Polychrus und Rhampooëstoma ist dagegen die vordere Fläche der Cartilago thyreovicoida völlig zu der Gestalt entwickelt, die der Schildknorpel vieler Säugethiere und des Menschen hat (s. Taf. CVII. Fig. 1. u. 2). In diese Abtheilung gehört auch Chamaleoë, dessen Kehlkopf eine ganz eigenthümliche Bildung zeigt (Taf. CVII. Fig. 3—7). Der Respirations- canal öffnet sich nämlich hier zwischen dem Kehlkopf und dem ersten Luftröhrenring in einen kugligen häufigen Sack, der von der Trachea aus

Werfen wir jetzt einen Blick auf die Fortsätze an der vorderen oberen und an der hinteren Spitze, sowie an den Seiten der Cartilago thyreocricoida. Die vordere obere Spitze entsteht dadurch, dass die obersten vorderen Querfortsätze in einem Winkel zusammentreten, und dies geschicht deutlich überall, wo die einzelnen Kehlkopfringe in der vorderen Wand noch getrennt sind, so z. B. bei Amphibiasnake. Der obere Winkel, den die beiden obersten zusammenstoßenden Querfortsätze mit einander bilden, ist zuweilen abgerundet, meistens aber spitz, und kann sich in einen längeren oder kürzeren schmalen Fortsatz verlängern — Processus epiglotticuss: (Henle). Einem solchen Processus epiglotticus begegnen wir bei den Schlangen, die uns hier für den Augenblick nicht weiter interessiren. Wenn nunmehr die vordere Hälfte der Kehlkopfringe zu einer durchbrochenen oder soliden Knorpelmasse verschmelzen, so stellt der obere Rand derselben in seiner einfachen Form einen mehr oder minder stark gewölbten Bogen dar. Dieser Rand kann sich nun nach Henle nach zwei verschiedenen Richtungen ausbilden, indem in der Mitte desselben entweder eine Einbiegung erscheint (Anguis, Geckonen, Pseudopus, Lacerta, Anreiva), oder der mittlere Theil sich in eine Spitze erhebt (Polinemia). Schliesslich kommt auch eine Combination aus den beiden genannten Formen vor, indem der obere Rand eine mittlere Einbiegung hat, aus deren Tiefe sich wieder eine Spitze, selbst ein Processus epiglotticus erhebt, so z. B. bei Sceloporus, Sapidurus, Trapelus, Iguana, Chamæleo.
Lage und Gestalt des Processus epiglotticus sind sehr verschieden. So ist er kurz, breit und platt bei Tropidurus microlophus (Taf. CVII. Fig. 8.), bei Tropidurus torquatus stellt er einen einfachen cylindrischen Knorpelstreifen dar; zungen-, myrten-, lanzenförmig wird die Spitze desselben bei Trapelus, Polycehrs, Anolis und Calotes, bei Phrynocephalus, Iguana und Cyclura nähert sie sich ganz der Form der Epiglottis höherer Thiere. Auffallend kurz ist der Stiel, auf welchem die Epiglottis sitzt bei Sceloporus, und bei Opfryoessa ist er gänzlich verschwunden.

Auch aus der hinteren oberen Spitze der Cartilago thyroericoidea wächst zuweilen eine dem Kehldeckelfortsatz analoge Spitze hervor, so z. B. bei Sceloporos torquatus, Tropidurus microlophus, Anolis cölif er (vgl. Taf. CVII. Fig. 9. 10. u. 11. d.). Bei Cyclura ist sie schmal und durch einen tiefen Einschnitt von dem übrigen abgerundeten oberen Rand der Cartilago thyroericoidea getrennt (Taf. CVII. Fig. 12. d.). Schliesslich sei noch eine Eigentümlichkeit des Geckonenkehlkopfes erwähnt, die nach Henle sonst nirgends vorkommt. Es ist ein kurzer, cylindrischer, querer Fortsatz (Taf. CVII. Fig. 13—17. b.), welcher breit und gleichsam mit zwei Wurzeln von der Seitenwand der Cartilago thyroericoidea entspringt und dem Oeffner des Kehlkopfenganges zur Anheftung dient.

Betrachten wir jetzt die Cartilago arytaenoidea. So lange dieselbe noch unzertrennlich mit der Cartilago thyroericoidea zusammenhängt, ist sie entweder ganz schmal, oder doch an der Basis schmal, daher lanzen-, myrtenblattförmig u. s. w. So ist sie auch noch, wo schon eine Naht zwischen ihr und der Cartilago thyroericoidea gebildet ist, wie bei den schlangenähnlichen Sauriern. In allen Gattungen aber, in denen die Trennung von Cart. arytaenoidea und Cart. thyroericoidea eine vollständige ist, wird die Grundform der ersteren dreieckig. Mit der einen Seite oder Basis sitzt sie auf dem oberen Rande der Cart. thyroericoidea, die zweite Seite des Dreieckes sieht nach hinten, gegen die entsprechende Seite der Cart. arytaenoidea der anderen Seite und begrenzt den Kehlkopfeingang ganz oder teilweise. Die dritte Seite endlich ist die äussere, oft mit dem vorderen oberen Rande der Cart. thyroericoidea oder dem Seitenrande des Processus epiglotticius verbunden, oft auch durch einen ansehnlichen Zwischenraum von derselben getrennt, so dass zwischen beiden eine leere häufige Falte hinzieht, entsprechend dem Ligamentum aryepiglotticum der Säugethiere. Die Cart. arytaenoidea liegt bald ganz in der hinteren Fläche des Kehlkopfes, bald mehr zur Seite, mitunter reicht sie auch auf die vordere Wand herum und dann kann die innere Seite zur hinteren, die äussere zur vorderen werden, in welchen Fällen ein Processus epiglotticius fehlt.

Die Gestalt des Giessbeckenknorps zeigt mancherlei Variationen, so z. B. ist die obere Spitze in einem Winkel nach innen gebogen bei Phrynosoma und Cyclura. Bei den Geckonen bildet er eine bisquitförmige Platte (Taf. CVII. Fig. 15. a.), die mit dem inneren Ende durch eine Art Schuppennaht auf der inneren Seite der Cart. thyroericoidea befestigt,
mit dem anderen Ende nach vorn und dem entsprechenden Knorpel der anderen Seite entgegengedreht ist, dabei biegt er sich zugleich etwas nach innen über die Kehlkopffläche. Bei Platydaectylus (Fig. 17. a.) ist die Cart. arytaenoida etwas kürzer als bei den übrigen und steht mit der Basis auf einem Fortsatz der Cart. thyreocricoida.

Was die Art der Verbindung zwischen Giessbecken- und Schildringknorpel angeht, so geschieht sie bei den slangenähnlichen Sauriern durch färbiges Gewebe, so dass der Zwischenraum mitunter ziemlich bedeutend ist. Eine solche fließende Verbindung scheint auch noch bei den meisten anderen Sauern vorzukommen; eine wirkliche Articulation fand Henle bei den Sauern nirgends.

Epiglottis und Stimmhäupter. Die Spalte, welche zur Respirationshöhle führt, befindet sich dicht hinter der Zungenwurzel, bei *Phrynosoma* sogar in der Substanz der Zunge selbst (vergl. Taf. CVII. Fig. 18). Mit Unrecht wird die Spalte oft als „Glottis“ bezeichnet, auch entsprechen die Ränder dieser Spalte nach Henle nicht den Ligamenta glutidis der Säugethiere, sondern den Ligamenta aryepiglotticae. In dem Ursprunge dieser Ränder — Plica arytaenoidea, aryglotticae s. aryepiglotticae: Henle — kommen drei Formen vor.

1) Hinter der Zunge weichen die beiden Ränder des Kehlkopfeinganges sogleich auseinander und bilden eine einfache Längenspalte in der vorderen Wand des Schlundes (*Platydactylus, Lacerta, Ameiva, Hydrosaurus*).

2) Es erhebt sich an der Wurzel der Zunge eine mittlere umpaare Längsfalte, die sich dann erst in die beiden Falten theilt, welche den Eingang zum Kehlkopf begrenzen. Der Kehlkopf ist dann durch eine Art Freunlum an den Boden der Mundhöhle gehetet. Es gehören hierher nur die Crocodile.

Der Eingang zum Kehlkopf befindet sich bei den meisten Reptilien wie bei den Amphibien zwischen den hinteren Rändern der Cartilago arytaenoidea, indem die vorderen sich dicht an den Processus epiglotticus oder an die vordere Spitze des Kehlkopfs anlegen, und wo eine solche fehlt, durch den Compressor des Larynx mit einander verbunden werden; der Kehlkopfeingang scheint bei den Sauriern gewöhnlich geschlossen zu sein (bei den Schlangen steht er meistens offen). Die innere Wand des Kehlkopfs ist ganz glatt bei den schlangenähnlichen Sauriern, den Schinken und bei allen Agamen. Bei *Lacerta* findet sich jederseits, entsprechend dem unteren Rande der Cartilago arytaenoidea, eine sehr schmale und dünne Falte. Der Lage nach stellt sie nach Henle das Stimmband vor. Nach ihm lässt sich aber der hohe, kurze, zirpende Ton, den die Eidechsen
zuweilen von sich geben, noch eher aus einer Schwingung der Ränder des Kehlkopfeingangs erklären, als aus einer Schwingung dieser Falten, die weder gespannt noch einander genähert werden können. Ein ähnliches Stimmband fand Henle bei Cycleta; bei Ameiva, Podinima und Hydrosaurus sah er keine häutige Hervorragung am Kehlkopf, sondern nur einen durch den unteren Rand der Cartilago arytaenoidea veranlassten Vorsprung (vergl. Taf. CVII. Fig. 19. m).

Die vollkommensten Stimmbander haben nach Henle die Geckonen und Chamacleo. Bei den ersteren sind es ziemlich breite Hautfalten in der Gegend der Basis der Cartilago arytaenoidea, die vom vorderen zum hinteren Rande der Cart. thyroercioidea verlaufen. Bei Chamacleo bildet die Schleimhaut des Kehlkopfs eine sehr anschauliche Duplicatur mit freiem, scharfem Rande, die von der Articulation der Cart. arytaenoidea und thyroercioidea an der hinteren Kehlkopfwand zu der Spitze der knorpeligen Leiste verläuft, welche senkrecht an der Innenfläche der vorderen Wand herabsteigt (vergl. Taf. CVII. Fig. 20. b).

Crocodile. Bei den Crocodilien besteht das Gerüst des Kehlkopfes aus drei Knorpeln, von denen zwei die Cartilagines arytaenoidae, der dritte die Cartilago thyreoida nebst der Cartilago ericoidea der Sängethiere vertreten. Der letztere ist bedeutend grösser als die ersteren und stellt einen geschlossenen breiten Ring dar, verbüllt sich aber in seiner Form bei verschiedenen Crocodilien verschieden. Gewöhnlich lässt er in seiner unteren Wandung, die immer in der Richtung von vorn nach hinten breiter als die obere ist, keine Spur von häutigen Zwischenräumen bemerken, bei Alligator lucas aber besitzt seine untere Wandung vor ihrem

Stimmkänder fehlen den Crocodilen, dessen ungeachtet lassen diese Thiere nach den Angaben mehrerer Reisenden jezuweilen, wiewohl nur selten, eine Stimme erschallen. (Wir kommen darauf im biologischen Theil später zurück.)

Der zur Tonbildung geeignete Apparat entsteht nach Henle dadurch, dass die schmalen Cartilagines arytaenoidae mit ihrem unteren Rand in die Kehlkopfhöhle ragen und dass unter ihnen die Schleimhaut des Kehlkopfes eine tiefe Tasche bildet (Taf. CVII. Fig. 21 s). Es entsteht so eine dicke, aber ziemlich freie Falte, welche, wenn die Cartilagines arytaenoidae einander genähert werden und die Glottis verengt ist, wohl geeignet sein muss, den tiefen, rauen Ton anzugeben, wie ihn diese Reptilien hervorzubringen im Stande sind.

Ein Processus epiglotticus fehlt bei den Crocodilen. Von den Kehlkopfmuskeln fehlen wie bei den Sauriern die sogenannten Aufheber. Der M. compressor laryngis entspringt von dem Zungenbein und zugleich mit einigen Bündeln vom Schildringknorpel, er ist hier deutlich in zwei Portionen getheilt. Die grössere (Taf. CVII. Fig. 22, 23 k) enthält ihre Fasern von der Bandmasse, durch welche die Spitze des Larynx an's Zungenbein befestigt ist, und vom oberen Theil der vorderen Fläche der Cartilago thyreo-ericoidea. Die Fasern beider Seiten hängen vorn in einer Art Linea alba zusammen. Die kleinere Portion (Fig. 22 k') entspringt von dem seitlichen Theil des hinteren unteren Randes der Cartilago thyreo-ericoidea, tritt mit der grösseren zusammen und beide verbundene Portionen vereinigen sich endlich mit den gleichnamigen der anderen Seite in einer hinteren Linnea alba. Sie geben an den äusseren Rand der Cartilago arytaenoidae einige Fasern ab und nehmen andere auf, welche vom inneren Rande der genannten Knorpel zur hinteren Linea alba gehen.

Der M. dilatator aditus laryngis entspringt vom Kehlkopf, bei Crocodylus auch noch von dem ersten Lufröhrenring, bei Alligator nimmt er ausserdem noch ein paar Fasern vom Zungenbeinkörper auf. Dem M. dilatator dient die obere Spitze der Cartilago arytaenoidae zur Insertion (vergl. hierzu Taf. CVII. Fig. 24, 25 a).

Bei manchen Crocodilen macht die Lufröhre eine Schlinge, so z. B. bei Crocodylus vulgaris, acutus, yuleatus, die Bildung derselben beginnt, wie es scheint, bei der einen Art schon während des Eilebens, bei der anderen dagegen erst viel später, nachdem die Thiere schon lange ausgeschlüpft
Anatomie.

sind. Dagegen scheint bei sämtlichen Arten der Gattung Alligator die Luftröhre für immer einen geraden Verlauf zu behalten.

Schoon von Cuvier und Meekel wurde nachgewiesen und von Rathke bestätigt, dass bei den Crocodilen die meisten Ringe des Luftröhrenstammes geschlossen, die vordersten aber jedenfalls in einer verschiedenartig grossen, doch im Ganzen nur kleinen Zahl an ihrer oberen Seite offen sind, und die Lücke in je einem dieser Ringe um so grösser ist, je näher er sich dem Kehlkopf befindet.

Quere Muskelfasern, die bei älteren Crocodilen in den Lücken der am meisten offen stehenden vordersten Ringe der Luftröhre vorhanden sind, fand Rathke an diesen Ringen auch schon bei Embryonen, die über die Mitte des Eilebens hinausgelangt waren. Noch erwähnt sei, dass einzelne, wenn auch nur wenige Ringe des Luftröhrenstammes der Länge nach gespalten sind.

Die Knorpelringe der Bronchien sind wahrscheinlich ebenfalls nach ihrer Entstehung einige Zeit offen, schliessen sich aber schon früh. Nicht selten
findet man einzelne von ihnen sowohl bei Embryonen, als auch bei jungen Thieren gabelförmig gespalten und ihren einen Ast mit einem benachbarten oder beide Aeste mit zwei benachbarten verschmolzen.

Die Trachea besitzt keine auf der Rückenseite geschlossenen Knorpelringe, einzelne reichen nur bis in die Mittellinie (an der vorderen Seite); die Knorpelringe sind sehr unregelmässig angeordnet und weich und biegsam, als ob sie häufig wären.

Lungen.

Ausser den schon erwähnten Arbeiten sind noch hervorzuheben:

(236) Williams. _Art Respiration in Todd's Cyclopaedia of nat. and physiol._ Vol. V.

Vergleiche ausserdem besonders auch Leydig (37) und (167).

Unter den Sauriern und Hydrosauriern zeigt der Bau der Lungen bei den Crocodilen die höchste Entwicklung, während die Lungen bei den schlangenähnlichen Sauriern, besonders aber den Amphibien, schon sehr denen der Schlangen ähnlich sind. An der langgestreckten, schlauchförmigen Lunge der _Amphibiae_ zeichnet sich nach Schulze der vordere dickwandig Abschnitt durch Tiefe und complicierten Bau der Maschenräume aus. Die der Lungenwand senkrecht aufstehenden Hauptleisten sind wie bei den Amphibien nicht mehr glattwandig, sondern tragen auf ihren Seitenflächen sekundäre Leisten, durch welche also Alveolen umgrenzt werden, die mit ihrem Grunde nicht mehr der Lungenwand selbst, sondern der Leistenwandung anliegen und mit ihrer Öffnung nicht mehr gegen das allgemeine Binnenlumen des ganzen Lungensackes, sondern zunächst gegen den von den betreffenden Hauptleisten umschlossenen Maschenraum gekehrt sind. Gegen das hintere Ende der Amphibien-
Anatomie.

Lunge wird das ganze Leistennetz wieder einfacher, nimmt allmählich in Höhe ab und schwindet endlich häufig so vollständig, dass die Lunge mit einem glattwandigen, einfach membranösen Blindsacke endigt.

Bei manchen Sauriern (Anguis fragilis, Lacerta agilis, Scincus u. A.) unterscheiden sich die Lungen im Bau der Lufträume nicht wesentlich von der einfachen Amphibienlunge. Wie dort findet man hier, dass die Lunge auf der Innenwand ein Netzwerk leistenartiger Erhebungen zeigt, welche jedoch nicht alle gleich hoch sind, sondern mehr oder minder weit in das Binnenlumen des Lungensackes hervorspringen.

Bei anderen Sauriern, so z. B. bei den Chamaeleonen, wird durch Erhebung einer oder mehrerer von der Lungensackwandung gegen die Bronchusmündung vorragenden, grossen Scheidewände, welche ebenso wie die übrige Lungenwand selbst mit Alveolen umgrenzenden Leisten besetzt sind, das bisher gemeinsame Lumen jedes Lungensackes in zwei oder mehrere, wenn auch nicht vollständig geschiedene Hauptabtheilungen gebracht.

Durch reichlichere Entwicklung und noch weiter gehende Komplikuirung des Alveolenparenchyms in dem nämlichen Sinne werden endlich bei den Crocodilen die bisher beschriebenen, sackartigen Hauptlufträume zu rundlichen Gängen eingeengt, ohne dass es jedoch zur Bildung wirklicher solidwandiger Bronchen käme, wie sie den Säugethieren eigen sind (F. E. Schulze).

Die histologische Grundlage des ganzen Lungengewebes bildet bei Sauriern und Hydrosauriern, wie bei Schildkröten und Amphibien, ein von feinen elastischen Fasernetzen durchzogenes, faseriges Bindegewebe, in welchem sternförmige, mit schwarzer, körniger Masse erfüllte Pigmentzellen bei einigen (Chamaeleon, Scincus) spärlich vorkommen, bei anderen (Lacerta, Alligator) gänzlich fehlen.

In dem bindegewebigen Stroma des Lungenparenchyms kommen glatte Muskelfasern oft so reichlich abgelagert vor, dass sie die Hauptmasse des ganzen Gewebes ausmachen. Diese Muskelfasern sind für die Atmung von sehr grosser Bedeutung. Jullien (242), welcher dieselben auch in sehr reichlicher Masse bei Psammomodonantraf, giebt an, dass bei der Expiration die in Rede stehenden Fasern sich contrahiren und so die Lufträume verkleinern, ungefähr in ähnlicher Weise, als die Herzähnlichen sich bei der Contraction zusammenziehen. Contractionen der Brustmuskeln betheiligen sich nach ihm nicht an der Expiration, dieselbe geschieht allein durch die Contraction der Lungenmuskeln. Die Zeitdauer der Expiration ist demgemäss bei Psammomodon auch eine sehr lange, und dauert bedeutend länger als die Inspiration, welche nach ihm nur bewerkstelligt wird durch die Elastizität des Thorax, wobei auch die Mn. levatores costarum eine Rolle spielen.

Bei den Crocodilen kommen im Innern der Lungen an dem Canale, welcher sich als eine Verlängerung des Bronchus darstellt, Knorpel vor; im Allgemeinen bilden sie nach Rathke von vorn nach hinten auf einander

Aus den der Lunge das venöse Blut zuführenden Arterienzweigen entwickelt sich ein den Alveolenwandungen flach anliegendes Capillarnetz, welches sich über die niederer Alveolensepta continuirlich hinwegzieht, während es auf der Firste aller höheren Leisten, an der Innenfläche der röhrenartigen Bronchusfortsetzung, sowie in dem hintersten Abschnitt der Amphisbaenenlunge in ein weitmaschiges System von wahrscheinlich vorwiegend zur Ernährung dienenden Capillaren übergeht. Alle respiratorischen Capillaren sind der Alveolenwand nur mit einer Seite angewachsen, die frei in den Luftraum der Alveole vorspringende Seite ist von einem continuirlichen Plattenepithel vollständig gedeckt (F. E. Schulze). Der ganze hintere, nicht respirirende Abschnitt der Amphisbaenenlunge ist nach demselben Forscher mit einer einfachen, aber continuirlichen Lage kleiner, polygonaler, leicht körnig getrübter Plattenepithelzellen auskleidet.

Während nun die respirirenden Flächen von einem aus grossen polygonalen Zellen bestehenden Alveolenepithel bekleidet werden, sind die freien Ränder aller höheren Septa und Leisten, sowie die Innenfläche der Bronchusfortsetzung von einem niedrigen, aus Cylinderzellen bestehenden Wimperepithelium bedeckt.
B. Systematischer Theil.

Klassifikation und geographische Verbreitung.

Auf der äusseren Haut unterscheidet man sowohl Schuppen als Schilder, erstere werden vorzugsweise auf der Oberseite des Rumpfes und des Schwanzes, letztere mehr am Kopfe und auf der Bauchseite angetroffen. Bei den Sauriern zeigen die Schuppen bedeutende Verschiedenheiten, die für die Systematik meist sehr brauchbare Anhaltspunkte bieten. Sind die Schuppen bei geringer Grösse deutlich gewölbt und zeigen sie dabei einen im Allgemeinen ziemlich rundlichen Umriss, so nennt man sie Körnerschuppen — Squamae granulosa. Treten grössere Körner stark aus der Körperfläche hervor und wollen sie sich dabei mehr weniger stark in die Höhe, so werden sie als Dornschuppen — Squamae macromatae — bezeichnet. Geschindelt nennt man sie, wenn die Schuppen mit ihrem nach rückwärts gerichteten Theile mehr oder weniger frei sind, auf die benachbarten übergreifen und ihnen anfliegen — Squamae imbricatae. Sind die Schuppen in sehr regelmässiger Weise neben einander gestellt und bilden sie rund herumlaufende Quergürtel, so nennt man sie gewirtelt — Squamae verticillatae — wie sehr oft am Schwanz der Fall ist. Schliesslich können alle Schuppen glatt — laeves — oder gekielt sein — carinatae.

Die Unterseite des Körpers ist häufig ebenfalls mit Schuppen bedeckt, die bald mit denen der Oberseite übereinstimmen, öfters jedoch von ihnen verschieden sind, bei vielen hingegen ist die Bauchseite mit Schildern bedeckt. — Die Afterspalte ist an ihrem Vorderrande sehr häufig von einem
grösseren Schilden begrenzt, welches als Scutum analé unterscheiden wird; bei manchen Arten findet sich vor dem After eine Reihe kleiner Drüsenöffnungen, welche als Pori anales bezeichnet werden.

Die wichtigsten Verschiedenheiten zeigt aber der Kopf, welcher meistens mit grösseren Schildern bedeckt ist. Man unterscheidet paarige und unpaare Schilder, von letzteren sind nicht mehr als 4 vorhanden, während die ersteren in ihrer Anzahl veränderlich erscheinen. Betrachten wir zunächst die unpaaren Schilder, so findet man zuerst etwas hinter der Schnauzenspitze das Scutum internasale (vergl. Holzschnitt Fig. 7 A und B, a). Das nächste unpaare, gewöhnlich auch das zweitgrösste aller Kopfschilder, ist das Scutum frontale (b). Dann folgen zwei hintereinander liegende kleinere Schilder, von welchen das vordere, Scutum interparietale (c), das nach rückwärts gelegene, Scutum occipitale (d) heisst. Die ebengenannten Schilde sind durch andere, stets paarweise vorhandene von einander getrennt oder umgeben; ihre Anzahl ist grossen Schwankungen unterworfen. Sehr häufig findet man vor dem Internasale zwei, meist in der Mittellinie der Schnauzenspitze zusammenstossende Schilder — die Scuta supranasalia (c). Zwischen das Internasale und Frontale schieben sich gewöhnlich zwei grosse Schilder ein — die Scuta frontonasalia (f); das hinter dem Frontale liegende Paar besteht aus den Scuta frontoparietalia (h), denen sich an ihren hinteren Aussenrändern die zwei Scuta parietalia anschliessen (i), welche gewöhnlich die grössten aller Schilder sind und das Interparietale und Occipitale zwischen sich eingeschlossen. Seitlich an das Frontale und den vorderen Aussenrand der Frontoparietalia grenzend, trifft man vier etwa über den Augen liegende Schilder an — Scuta supraocularia (g), die an Grösse von einander sehr verschieden sind, die zwei mittleren bilden oft in ihrer Vereinigung eine etwa eiförmige oder elliptische Scheibe — Disens palpbralitis. — Gewöhnlich sind die oberen Augenschilder nach aussen von der Augenhöhle durch eine Reihe kleiner, länglicher Schildchen getrennt — Scutellum supraocularia (k).

An der äussersten Schnauzenspitze liegt ein grösseres unpaares Schildchen, welches nach unten an den Mundrand, nach oben an die Supranasalia, oder, wenn diese fehlen, an das Internasale stösst — das Scutum rostrale (a). An das Rostrale fügt sich dann zu beiden Seiten des Kopfes eine Reihe von Schildern, welche den Rand des Oberkiefers säumnend unter dem Auge weg bis zum Ende der Mundspalte ziehen — die Scuta
supralabialia (vergl. Holzschnitt Fig. 8 (b)). Endlich kann man zu beiden Seiten der Schnauze noch eine Reihe von nach hinten meist größeren werdenden Schildchen unterscheiden, die von Seitenrande des Rostrale ausgehend zwischen den Supralabialia und den Schildern des Pileus — wie man die Gesammttheit der Schilder auf der oberen Seite des Kopfes nennt — hinziehen. Das erste dieser Schilder, welches nach vorn an das Rostrale, nach oben an das Supranasale und unten an das erste Supralabiale stösst, nennt man Scutum nasale (c). Es fehlt häufig und ist überhaupt oft so klein, dass es durch das in ihm ausgehöhlte Nasenloch oft fast ganz eingenommen wird. Dies Schildchen ist aber von grosser systematischer Bedeutung, indem eben die Lage der Nasenlöcher für die Systematik einen grossen Werth hat. Unmittelbar hinter dem Nasale finden sich ein bis zwei, selten drei Nasofrenalia. Auf diese folgt ein bedeutend grösseres Schildchen, das Frenale (c), welchem nach hinten zu ein noch grösseres, Freno-oculare (f), folgt, das meist mit seiner hinteren Ecke bis gegen die Augenhöhlre reicht. An dieses schliessen sich nach unten zu noch ein oder mehrere kleine Schildchen an, welche zwischen den vorderen Augenwinkeln und die betreffenden Supralabialia eingeschoben sind — die Scuta pracoocularia (g). Nur selten wird der untere Augenrand von den entsprechenden Supralabialen durch ein oder mehrere Scuta subocularia getrennt, sowie endlich auch hinter den Augen mitunter einzelne grösse Schildchen — die Scuta postocularia — ange troffen werden. Die Schlafengegend kann theils mit Schildern — Scuta temporalia, theils mit Schuppen — Squamae temporales — bedeckt sein; es kommt häufig vor, dass zwischen den Schuppen ein einzelnes grösseres Schildchen entwickelt ist — Scutum massetericum (n), sowie anderseits am Oberrande der Ohröffnung meist ebenfalls ein grösseres, in der Regel länglichsch Schildchen vorhanden ist — Scutum tympanale. Auf der Unterseite des Kopfes findet man im Kiinnwinkel ein ziemlich grosses, unpaares Schildchen, dem Rostrale gegenüber — das Scutum mentalis. — Der Reihé der Oberlippenschilder entspricht dann am Rande des Unterkiefers eine analoge Reihe von fast immer sehr schmalen, länglichen Scuta sublabialia, deren vorderstes Paar das Mentale zwischen sich fasst. An das letztgenannte schliesset sich dann noch eine
Reihe grosser, hinter einander liegender Schilder — die *Scuta submaxillaria*. Die übrige Unterseite des Kopfes ist fast immer mit kleinen Schuppen bedeckt, die nach hinten gewöhnlich grösser werden und am Ende des Halses häufig eine Querreihe meist grösserer Schuppen bilden — das Halsband, *Collare*. In den meisten Fällen ist das Halsband vollkommen frei und gesondert. Aber es kann auch sein, dass die Halsbandschuppen nur wenig oder bloss am äussersten Rande frei sind, wodurch dann das Halsband theilweise undeutlicher wird (*obsoletum*). Letzteres ist dann häufig der Fall, wenn sich die Halsbandschuppen von den benachbarten an Form und Grösse nicht wesentlich unterscheiden. Der freie Rand des Halsbandes kann dann noch folgende Unterschiede zeigen: die denselben bildenden Schuppen sind an ihrem Hinterende entweder gerade abgestutzt oder erscheinen mehr weniger gerundet oder selbst winkelig vorgezogen; im ersteren Falle nennt man das Halsband „*integrum*“, im zweiten „*cre- nodum*“, im dritten „*serratum*“. Gewöhnlich setzt sich das Halsband auch nach auftärts in eine vor der Wurzel der Vorderbeine hinwegziehende Falte fort — die *Plica axillaris* — die oft den einzig sichtbaren Rest des Halsbandes bildet. Endlich kann noch die Beschuppung des Unterkopfes durch eine Querfalte unterbrochen sein — *Plica gularis*. (Schreiber, Herpetologia europaea.)

Linné (Systema naturae, 1788, letzte Ausgabe, herausgegeben von Gmelin) unterscheidet in der Klasse der Amphibien zwei Ordnungen, die der Reptilien und die der Schlangen; zur ersten rechnete er nur vier Gattungen: Schildkröte, Drache, Eidechse und Frosch, während er die Blindschleiche und die Amphibien zu den Schlangen stellt.

Lacépède (Histoire naturelle des Quadrupèdes ovipares et des Serpens, 1790) nimmt die vier folgenden Unterabtheilungen an: 1) vierfüssige eierlegende mit einem Schwanz; 2) vierfüssige eierlegende ohne Schwanz; 3) zweifüssige; 4) Schlangen. Zu der ersteren rechnet er die Schildkröten und die Crocodile, Tupinambis, Iguanen, Eidechsen, Chamaeleon, Gecko, Chaleis, Drachen, sowie die Salamander. Die Blindschleichen und die Amphibien stellte auch Lacépède unter die Schlangen.

A. Brongniart nimmt in den Reptilien vier Ordnungen an: die 1) der Schildkröten, 2) Eidechsen, 3) Schlangen und 4) Batrachier. Zu den
Eidechsen stellt er die Crocodile, Iguanen, Drachen, Stellio, Gecko, Chamaeleon, Lacerta, Chalcis und die Scinken.

Latreille (Histoire naturelle des Reptiles) gruppiert die Reptilien folgenderweise:

Reptilien (mit Einschluss der Coecilien).

I. Panzer-Reptilien.
 1) Fam. Crocodilini.
 (Mit den Gattungen Gavialis, Crocodylus, Caiman.)

II. Schuppen-Reptilien.

A. Eidechsenähnliche Saurier (Sauriens lacertiformes).
 2) Fam. Lacertilia.
 (Mit den Gattungen Monitor, Draco, Ameiva, Lacerta, Tachydromus.)
 3) Fam. Iguana.
 (Mit den Gattungen Corylus, Stellio, Cácerverba, Agama, Tupinuy, Tropelus, Galoetes, Lophyrus, Basiliscus, Draco, Iguana, Polychrus, Anolis.)
 4) Fam. Geckolidae.
 (Mit den Gattungen Phyllurus, Hemidactylus, Gecko, Uropalates, Thecadactylus, Platydactylus.)
 5) Fam. Chamaeleonidae.
 (Mit der Gattung Chamaeleon.)

B. Blindschleichenähnliche Saurier (Sauriens anguiformes).
 6) Fam. Tetrapoda.
 (Mit den Gattungen Scinio, Seps und Chalcis.)
 7) Fam. Dipoda.
 (Mit den Gattungen Bipes und Bimanus.)
 8) Fam. Apoda.
 (Mit den Gattungen Anguis, Ophisaurus und Acantias.)

Die Amphisbaenen werden zu den Schlangen gerechnet.

Cuvier (Règne animal, 2. Ed. 1829) hat die folgende Einteilungsweise vorgeschlagen:

I. Reptilien mit zwei Herzohren.

A. Mit Gliedmassen.
 a) Ohne Zähne Schildkröten.
 b) Mit Zähnen Saurier.
 2) Füsse gewöhnlich, Zehen 5, 5.
 a) Zunge gespalten, ausstreckbar Lacertilen.
 b) Zunge nicht ausstreckbar.
 γ) Körper gewöhnlich Iguanen.
 ††) Körper abgeplattet Geckotiden.
 γ) Zunge wurmförmig, sehr ausstreckbar . Chamaeleonidae.
 3) Füsse sehr kurz oder weniger als 4 Scincoiden.

B. Ohne Gliedmassen Ophidii (incl. Anguis).
II. Reptilien mit einem Herzohr Batrachier.

Oppel (Die Ordnungen, Familien und Gattungen der Reptilien, 1811) hat folgendes Schema einer Reptilien-Eintheilung aufgestellt:

Reptilia.
I. Testudinata.
II. Squamata.
A. Sauri.
1) Crocodilini, 2) Geckoidees, 3) Iguanoides, 4) Lacertini, 5) Scincoides, 6) Chalcidici.
B. Ophidii (zu welchen er auch Anguis rechnete).
III. Nuda.
B. Merrem (Tentamen systematis amphibiorum, 1820) hat die Reptilien (Pholidota Merrem) folgenderweise eingetheilt:
I. Testudinata. Cupis fornixe dorsi et sterno adglutinata.
II. Loricata. Aures valvula clausiles.
1) Alligatoris mit 4 Arten; 2) Champsac mit 11 Arten; 3) Gavialis mit 2 Arten.
A. Ascalabotae. Lingua integra aut emarginata, parum mobilis, non extensilis. Membrana tympani aut visibilis aut sub cute latens.
4) Gecko mit 20 Arten; 5) Anolis mit 11 Arten; 6) Basiliscus mit 2 Arten; 7) Draco mit 3 Arten; 8) Iguana mit 4 Arten; 9) Polycephalus mit 1 Art; 10) Teneus mit 1 Art; 11) Lyriscophalus mit 1 Art; 12) Gophus mit 1 Art; 13) Agama mit 33 Arten; 14) Urometis mit 7 Arten; 15) Zomurus mit 1 Art.
B. Saurae. Lingua bifurca, valde extensilis, Membrana tympani visibilis.
C. Chalcidici. Membrana tympani in meatus auditorio brevi.
Mit den Gattungen 20) Seincus mit 22 Arten; 21) Gymnodactylus mit 1 Art; 22) Scps mit 1 Art; 23) Ptyodactylus mit 1 Art; 24) Chalis mit 1 Art; 25) Colobus mit 1 Art; 26) Monodactylus mit 1 Art; 27) Bipes mit 1 Art; 28) Ptyodactylus mit 1 Art; 29) Pygopus mit 1 Art; 30) mit 1 Art.
 Mit den Gattungen 31) Hyalinus mit 1 Art; 32) Acouius mit 3 Arten.

3. Serpentia. Pedes nulli, palpebrae nullae,
 wozu M erre in ausser den Schlangen die Gattungen 33) Amphibacna mit 3 Arten bringt.

4. Incendentia. Pedes anteriores tantum, postici nulli.
 Mit der Gattung 34) Chirotes mit 1 Art.

 Mit der Gattung 35) Chamaeleon mit 6 Arten.

Merkem unterschied also — die Crocodile mitgerechnet — 35 Gattungen mit 194 Arten.

L. J. Fitzinger (Neue Classification der Reptilien, Wien 1826) rechnete zu den Reptilien, welche er Monopnoa nannte, ausser den Testudinata, Loricata und Squamata, auch noch die Coecilien (Nuda: Fitzinger).

Die Loricata vertheilt er in zwei Familien:
I. Die Ichthyosauroidae.
 Mit den Gattungen 1) Iguanodon (fossil), 2) Plesiosaurus (fossil), 3) Saurocephalus (fossil), 4) Ichthyosaurus (fossil).

II. Die Crocodiloidea.

Die Squamata theilt er folgenderweise ein:
I. Maxilla inferior conjuncta.
 A. Oculi palpebris muniti.
 1) Palpebra unica 1. Fam. Ascalabatoidea.
 2) Palpebris duabus.
 a) Gulla dilabitabilis.
 α) Tympanum latens.
 *) Lingua longa 2. Fam. Chamaeleonoidae.
 **) Lingua brevis 3. Fam. Pneustoidea.
 β) Tympanum apertum.
 *') Patagium 4. Fam. Draconoidae.
 **') Patagium nullum . . 5. Fam. Agamoidea.
 b) Gulla non dilabitabilis.
 α) Corpus verticillatum.
 *) Tympanum apertum.
 aa) Lingua incisa 6. Fam. Cordyloidea.
 bb) Lingua bifurca.
 †) longa 7. Fam. Tachydromoidea.
 ††) brevis 8. Fam. Ophiururoidea.
 β) Corpus non verticillatum.
 *) Tympanum apertum.
 aa) Lingua furcata.
 †) longa 10. Fam. Ameivoidea.
 ††) brevis 11. Fam. Lucertoidea.

Klassification und geograph. Verbreitung.
Reptilien.

**b) Tympanum latens 13. Fam. Anguinoidea.

B. Oculi palpebris destituti.
 a) Latentes.
 b) Corpus non verticillatum 15. Fam. Typhlopoida.
 b) Aperti 16. Fam. Gymnophthalmoida.

II. Maxilla inferior divisa Diese Abtheilung enthält die Familien der Schlangen.

Zu der Familie der Ascalabotoidea rechnet er die Genera 1) Sarvula mit ? Arten; 2) Uroplates mit 1 Art; 3) Ptyodactylus mit 2 Arten; 4) Hemidactylus mit 6 Arten; 5) Theo daactylus mit 1 Art; 6) Pachecoan mit 1 Art; 7) Phyl dactylus mit 3 Arten; 8) Ascalabotes mit 3 Arten; 9) Thecrodactylus mit 2 Arten.

Die Familie der Cordyloidæ umfasst die Gattungen 33) Cordylus mit 2 Arten; 34) Trachydaemus; 36) Lepidosa mit 37) Chamaeleon mit 1 Art; die der Tachydromoida die Gattung 38) Tachydromus mit 2 Arten. Zu den Ophisauroidae gehören die Gattungen 39) Saurophis mit 1 Art; 40) Pseudopus mit 1 Art; 41) Ophrysaurus mit 1 Art; zu den Chalcidoidea die Gattungen 42) Chalcides; 43) Heterodactylus; 44) Brachyurus mit 1 Art und 45) Ophius.

Die Gattungen 46) Megalosaurus (fossil); 47) Tupinambis mit 5 Arten; 48) Varanus mit 2 Arten; 49) Thamnosaurus mit 1 Art; 50) Mosasaurus (fossil); 51) Croco diderus; 52) Messor mit 1 Art; 53) Ameiva mit 6 Arten; 54) Tijus mit 1 Art und 55) Pseudexieva mit 2 Arten gehören zu der Familie der Ameiroidae.

Zu den Lacertoida rechnet er die Gattungen 56) Lacerta mit 17 Arten; 57) Psammodromus mit 1 Art und 58) Tropidosaura mit 1 Art. Die Familie der Scincoidae umfasst die Gattungen 59) Spondylurus (fossil); 60) Scincus mit 1 Art; 61) Tiliqua mit 3 Arten; 62) Mabuya mit 16 Arten; 63) Heterurus; 64) Seps mit 1 Art; 65) Zygnis mit 3 Arten; 66) Scelotes mit 1 Art; 67) Ptydogactylus mit 1 Art. Die Anguinoidea enthalten nur die Gattung 68) Anguis mit 2 Arten; die Amphisbaenoida die Gattung 69) Chirotis mit 1 Art; 70) Amphisbaena mit 2 Arten; 71) Lepostern mit 1 Art.

Zu der Familie der Typhlopoidae rechnet er die Gattungen 71) Typhlops mit 5 Arten und die Gattung 72) Rhinopsis und schliesslich zu der Familie der Gymnophthalmoida die Gattungen 73) Ablephorus mit 1 Art; 74) Gymnophthalmus; 75) Pseudopus mit 1 Art und die letzte Gattung 76) Stenosoma. Rechnet man nun dazu die Gattungen Crocodile-Gavialis mit 2 Arten, Crocodylus mit 3 Arten und Alligator mit 3 Arten, so ergiebt sich, dass Fitzinger schon 79 Gattungen mit 177 Arten unterschied.

Zu den Crocodilen bringt er drei Gattungen:

Zu der ersten Familie, der Platyglosses, bringt er folgende 13 Gattungen:

1) _Ptygozoon_ Kuhl; 2) _Croccus_ Wagler; 3) _Thecodactylus_ Cuvier; 4) _Platydactylus_ Cuvier; 5) _Anoplogus_ Wagler; 6) _Henidactylus_ Cuvier; 7) _Ptygactylus_ Cuvier; 8) _Sphaerothelydon_ Wagler; 9) _Asentelabes_ Lichtenstein; 10) _Enaliphis_ Gray; 11) _Gonyodactylus_ Kuhl; 12) _Cyrtodactylus_ Gray, und 13) _Gymnactylus_ Spix.

Die zweite Familie, die der Pachyglosses, zerfällt nach ihm in zwei Unterordnungen, die der 1) Platyformes und der 2) Stenocormes; jede derselben teilt er wieder in Acrodontes und Pleurodontes.

Zu den Pachyglosses platycormes acrodontes stellt er die folgenden 8 Gattungen:

Die folgenden 9 Gattungen bilden die Pachyglosses stenocormes acродontes:

37) _Lycocephalus_ Merr.; 38) _Gonoccephalus_ Kaup; 39) _Brachycephalus_ Cuv.; 40) _Physignathus_ Cuv.; 41) _Lophyrus_ Gray; 42) _Chlamydosaurus_ Gray; 43) _Calotes_ Cuv.; 44) _Semiophorus_ Wagl.; 45) _Draco_ L.

Von den Pachyglosses stenocormes pleurodontes werden keine Gattungen erwähnt.

Die Antarchoglosses vertheilt er ebenfalls in Antarchoglosses acrodontes und pleurodontes.

Zu den Acrodontes rechnet er die jetzt folgenden Gattungen: 46) _Thoriley_ Wagl.; 47) _Crocodileus_ Spix; 48) _Podocope_ Wagl. = _Monitor_ Fitz.; 49) _Clemolen_ Wagl.; 50) _Clemolophorus_ Wagl.; 51) _Acrasias_ Wagl. = _Tityus_ Fitz.; 52) _Tachygaster_ Wagl.

Die Antarchoglosses pleurodontes enthalten nach Wagler 30 Gattungen, und zwar:

53) _Lacerta_ L.; 54) _Zootoca_ Wagl.; 55) _Podarceis_ Wagl.; 56) _Aspisias_ Wagl.; 57) _Zonurus_ Merrem; 58) _Toamatia_ Wagl.; 59) _Ablephorus_ Fitzinger; 60) _Gymnophthalmus_ Merrem; 61) _Lepidosoma_ Spix; 62) _Chirocosma_ Wagl.; 63) _Chamaeleon_ Fitz.; 64) _Tachydromus_ Daud.; 65) _Cercopis_ Wagl.; 66)
Die Thecoglosses vertheilt Wagler ebenfalls in Th. acrodontes und Th. pleurodontes. Zur ersten Abtheilung gehört nur eine Gattung:

S1) Chamaeleon Laur.;

zu der zweiten 4 lebende Gattungen:

Acontias Cuv., Chirotas Dum., Chalicis Daud., Lepidoaestrom Wagl., Amphiabca L. und Blanus Wagl. werden zu den Schlangen gezählt.

J. E. Gray (Synopsis Reptilium, 1831) theilte die Reptilien folgenderweise ein: I. Cataphracta (Schildkröten und Crocodile; II. Squamata (Saurier, Ophidae und Ophidiidae).

Auf die neuere Arbeit von Gray komme ich gleich zurück.

Amphibia squamata.

Testudines, Crocodili, Lacertina, Ophidia.

Condylus occipitis simplex.
Costae verae.
Atrium cordis duplex.
Fenestra auris ovalis et rotunda.
Cochlea.
Penis simplex vel duplex.
Metamorphosis nulla.
Branchiae nullae, spiracula branchialia nulla.
Cutis squamata, scutata, loricata.

Amphibia nuda.

Cocciliae, Derotremata, Proteidea, Salamandrina, Batracia.
Condylus occipitis duplex.
Costae verae nullae aut abortivae.
Atrium cordis simplex.
Fenestra rotunda nulla.
Cochlea nulla.
Penis nultus.
Metamorphosis. ?
Branchiae aut spiracula branchialia aut evanida aut permanentia.
Cutis nuda.

Die Lacertina theilt er dann in folgende 8 Familien ein: 1) Monitoreus, 2) Lacertae, 3) Iguanae, 4) Chamaeleones, 5) Geckones, 6) Chalcidea, 7) Seincoidae (Sceines, Sepis), 8) Anguina (Bipes, Anguis, Acontius, Pygopus, Pseudopus). DieGattungen Chirotae, Lepidoternon, Amphiabca, Cephalo-
Klassifikation und geograph. Verbreitung.

peltis, Trogonophis und Blanus rechnete er dann zu den Schlangen und zwar zu den Ophidia microstomata.

Wie wir nämlich bei den Schlangen sehen werden, theilt Joh. Müller die Schlangen in zwei Hauptgruppen: Ophidia microstomata und macrostomata. Die erste Familie der Ophidia microstomata nennt er die Amphis-

bucketoidea, die er folgenderweise charakterisirt: dentibus maxillaribus, inter-

maxillaribus et mandibularibus, palatinis nullis; a) pedibus anticis: Chi-

rotus; b) pedibus nullis: die anderen genannten Gattungen.

A. F. A. Wiegm ann (Herpetologia mexicana 1834) vertheilt die

Sanrier in drei Abtheilungen: 1) Loricati; 2) Squamati; 3) Annulli.

Die Loricati, die Panzer-Eidechsen, enthalten nach ihm nur eine Fa-

milie, die der Crocodilini mit drei Gattungen:

Echamphostoma Wagler, Crocodilus Cuvier und Alligator Aut.

Die Squamati theilt er folgenderweise ein:

Series I. Leptoglossi. Lingua aliis elongata, angusta, apice fureata,

aliis brevior basi lata, apice attenuato bicuspis vel plus minusve excisa. Oecu

palpebris duabus conniventibus elanisiles, rarius palpebra superiori

paene, vel utraque prorsus destitut; pupilla rotunda; Truncus cylindricus. Membra

genuinis quatuor, anguiformibus vel posteriora tantum, vel omnino

nulla. Os parietale simplex ramos duos divergentes retrorssum emittens.

Sect. I. Tissillings. Lingua elongata, angusta, apicibus longissimis

filiformibus bifurca. Aures semper conspicucae. Membrana tympani super-

ficialis. Oecul palpebris nuncquam destitut. Laminae supraorbitales

latae. Habitus lacertinus, membra quatuor. Hierzu gehören 3 Familien:

1. Fam. Monitores. (Les Monitors proprement dits Cuvier — Lacerta

thecoglossae pleurodontes Wagler) mit den Gattungen:

1) Polychadolus Wagler, 2) Hydrosaurus Wagler und 3) Psammosaurus Fitzinger.

Zu der II. Familie, der der Tachydermi, gehört nur die Gattung Helo-

derma Wiegm ann, und zu der III. Familie, der der Ameivae, rechnt er

die folgenden Gattungen:

1) Thorictis Wagler; 2) Patinurca Wagler; 3) Aerantus Wagler; 4) Croco-

didurus Spix; 5) Clenodon Wagler; 6) Cnemidophorus Wagler und Centropyx

Spix.

Sect. II. Brevilingues. Lingua brevis, squamoso-papillosa, apice atte-

nuato obtuso, plus minusve excisa, rarius bicuspis. Aures internum la-

tentes. Oecul rarius palpebris destitut. Laminae supraorbitales plerumque

rigidae, osseae vel sousseae. Habitus plerisque lacertinus, nonnullis angui-

formis. Membra saepius quatuor, internum posteriorum rudimenta tantum,

internum nulla.

Hierzu rechnet Wiegm ann 5 Familien, und zwar I. Lacertae mit den

Gattungen:

1) Lacerta Cuvier; 2) Psammadromus Fitzinger; 3) Psammurus Wagler; 4)

Tropidosauros Boié; 5) Tachydromus Daudin; 6) Notopholis Wagler; 7) Cero-

saurus Wagler; 8) Chirocodos Wagler.

II. Familie Psychophleuri.

Mit den Gattungen: 1) Gerrhosaurus Wiegm ann; 2) Zonurus Merrem; 3) Gerrho-
Reptilien.

III. Familie Chamaesauri.
Mit den Gattungen: 1) Lepidosoma Spix; 2) Crieochaelis Wiegmann; 3) Chamaesaura Fitzinger.

IV. Familie Scincii.

V. Familie Gymnophthalmi.
Mit den Gattungen: 1) Ablepharus Fitzinger; 2) Gymnophthalmus Merrem; 3) Lerista Bell; 4) Pygopus Bell; 5) Typhline Wagler.

Die Kennzeichen dieser fünf Familien sind nach ihm:

I. Lingua longiuscula, bicuspis, squamulosa...

II. Lingua apice obtusae minusve excisa, rarius integra.

A. Squamae fasciatae carinatae.
Squamae per fascias transversas dispositae scutelliformes quadrangulae, dorsales plerumque carinatae. Plicatura lateralis intus squamulosa dorsum a ventre distinguens. Aures semper conspicuae...

Truncus teres, gracillis, squamis carinatis acutis in abdomen dorsoque aequalibus verticillatus; plicatura lateralis nulla. Aures semper conspicuae...

B. Squamae imbricatae plerumque laevigatae.
Squamae dorsi latiusculae, plerumque laevigato-nitidae, postice rotundatae subhexagonae. Plicatura lateralis nulla. Palpebrae conniventes, superior brevissima...

Pholidosis habituque Scincorum. Oculi palpebris conniventibus destituti...

Gymnophthalmi.

Series II. Rhiptoglossi.

Series III. Pachyglossi.
Lingua brevis, erassata, papillis brevibus filiformibus dense vestita, apice obtuso vix emarginata. Trunci forma varia. Membra omnibus quattuor.

a) Truncus plus minusve compressus, in dorsi fastigio carinatus vel eristatus.

Tribus II. *Prophyodontes (Pleurodontes).*

Tribus II. *Prophyontes (Pleurodontes).*

Sectio II. *Lautilingues.*

Oculi palpebris hand conniventibus, inter orbitae parietes absconditibus, altera anteriori absoluta, altera posteriori obsoleta; pupilla elliptica, verticalis.

Mit nur einer Familie: *Ascalabotae.*

Subordo III. *Annulati*. Mit nur einer Familie: *Amphisbaenae.*

Enthält die Gattungen: 1) *Chiroteca Curier*; 2) *Cephalopholis Müller*; 3) *Lepidodactylo Wiegler*; 4) *Amphibolurus Wagler*; 5) *Blanus Wagler*; 6) *Anops Bell* und 7) *Tregonophus Kaup*.

Duméril und Bibron haben in ihrer berühmten Arbeit „Erpétologie générale ou histoire naturelle complète des Reptiles, 1831—1845“ die Saurier folgenderweise eingeteilt:

1. Familie. *Crocodilini* (*Crocodilien ou Aspidotes*).

2. Familie. *Chamaeleonidae* (*Cameloniens ou Chélopodes*).

Mit nur einer Gattung: *Chamaeleon* Ant. mit 11 Arten.

3. Familie. *Ascalabotae* (*Geckotiens ou Ascalabotes*).

Mit den Gattungen: 1) *Platydactylus Curier* mit 17 Arten; 2) *Hemidactylus Curier* mit 15 Arten; 3) *Phrynocephalus Curier* mit 4 Arten; 4) *Phlyerodon Gray mit 8 Arten*; 5) *Sphaeriodactylus Curier mit 3 Arten*; 6) *Gymnodactylus Spix mit 12 Arten*; 7) *Strebodactylus Fitzinger mit 1 Art*.

4. Familie. *Varanoidea* (*Varanics ou Platynotes*).

Mit den Gattungen: 1) *Varanurus Merrem* mit 12 Arten, und 2) *Heloderma Wiegmann* mit 1 Art.

5. Familie. *Iguaniae* (*Iguanics ou Eumotes*).
A. Pleurodontes.

B. Acrodontes.

6. Familie. Lacertidae (Lacertiens ou Autosaurés).

A. Autosaurés plectodontes.
I. Compressicaudæ ou Cathétures.
Mit den Gattungen: 1) Crocodylurus Spix mit 1 Art; 2) Thorictes Wagler mit 1 Art.

II. Conicaudæ ou Strongylures.

B. Autosaurés coelodontes.
I. Leiodactyles mit den folgenden Gattungen:

II. Pristidactyles.

7. Familie. Chalcididae (Chalcidium ou Cyclosaurés).

A. Cyclosaurés ptychopoles.
Mit den Gattungen: 1) Zonurus Merrem mit 5 Arten; 2) Tribolonotus D. et B. mit 1 Art; 3) Gyrhosaurus Wiegmann mit 5 Arten; 4) Seraphis Fitzinger mit 1 Art; 5) Gephyrodactylus Wiegmann mit 8 Arten; 6) Scelophys Merrem mit 1 Art; 7) Ophiurus Daudin mit 1 Art; 8) Pantolophus D. et B. mit...
Klassifikation und geograph. Verbreitung.

1 Art; 9) Eryclopous D. et B. mit 1 Art; 10) Chamaeusaura Fitzinger mit 1 Art
11) Heterodactylus Spix mit 1 Art; 12) Chalcides Daudin mit 4 Arten.

B. Cyclosaures glyptodon.
I. Glyptoderae acrodontes.
13) Tropidophorus Kaup mit 1 Art.
II. Glyptoderae pleurodonte.

I. Saurorthalmaids.

II. Ophiorthalmaids.
Mit den Gattungen: 26) Ablephorus Fitzinger mit 1 Arten; 27) Gymnoorthalmaids Merrem mit 1 Art; 28) Levisni Bell mit 1 Art; 29) Heteropus Dumeril mit 1 Art; 30) Liopholus Gray mit 1 Art.

III. Typhlothalmaids.

J. E. Gray (Catalogue of the Specimens of Lizards in the Collections of the British Museum 1845) theilt die Saurier folgenderweise ein.

Synopsis der Familien der Sauria.

Suborder I. Leptoglossae. Zunge platt, verlängert, am Ende gespalten. (Lingua bifida.)

a) Kopf mit kleinen vielseitigen Schildern, Zunge mit einer Scheide an der Basis.

1) Monitoridaco. Kopfschilder plattförmig; Schuppen klein. Alte Welt und Australien. 7 Gattungen und 22 Arten.

b) Kopf mit grossen, regelmässigen Schildern, Zunge gewöhnlich an der Basis frei.

* Seiten abgeplattet, mit kleinen, oft Körnerschuppen bedeckt.

** Seiten mit einer deutlichen, longitudinalen Falte, mit kleinen Körnerschuppen bedeckt.

5) *Zonuridae*. Ohröffnungen deutlich; Gliedmassen deutlich oder selten vollständig verborgen. 18 Gattungen mit 31 Arten.

6) *Chalcidae*. Ohröffnungen unter der Haut; Gliedmassen sehr kurz, keine Femoralporen; Seitenfalte undeutlich.

*** Seiten abgerundet, mit Schuppen denen des Rückens ähnlich bedeckt. 4 Gattungen mit 4 Arten.

7) *Anadiadaceae*. Schuppen des Rückens und der Seiten dünn, glatt, in alternirenden queren Reihen, die des Schwanzes glatt, in longitudinalen Reihen; Ohröffnungen verborgen, Femoralporen deutlich. 1 Gattung mit 1 Art.

8) *Chirocolidae*. Schuppen des Rückens geschildert, sechseckig, gekielt, in alternirenden queren Reihen, die des Schwanzes in miteinander alternirenden Ringen; Ohröffnungen verborgen, Femoralporen deutlich. 1 Gattung mit 1 Art.

10) *Chamaesauridae*. Schuppen geschildert, verlängert, rhombisch, gekielt, in longitudinalen Reihen, die Kiele bilden longitudinal Leisten; Gliedmassen einfach, ungetheilt; Schläfen schuppig. 1 Gattung mit 1 Art.

Tribus II. *Geissosaura*. Schuppen des Bauches, Rücken und Seiten in Quincunx, rund, geschildelt; Seiten abgerundet; Zunge schmal, kurz, platt, am Ende schwach eingeschnitten; Kopf mit regelmässigen Schildern.

a) Augen deutlich, Augenlider rudimentär, Kopf conisch.

11) *Gymnophthalmidae*. Kopf normal beschildet, Nasenöffnungen lateral, in einem Nasenschild; Gliedmassen 4 oder 2, Körper spindelförmig. 7 Gattungen mit 9 Arten.

12) *Pygopidae*. Kopf normal beschildet, Nasenöffnungen über dem oberen Rande des ersten Labiale; Pupille rund oder oval; Abdominalschilder sechseckig, in 2 oder 3 Reihen; Schwanz mit einer centralen Reihe grösserer Schilder; nur hintere Gliedmassen. 2 Gattungen mit 3 Arten.
13) Aprasiidae. Kopf normal beschildet; Nasenöffnungen in einer Naht zwischen dem Nasale und erstem Labiale; Gliedmassen fehlen; Ventral- und Dorsalschuppen fast gleich. 1 Gattung mit 1 Art.

b) Augen deutlich, Augenlider deutlich, convinent, Kopf conisch.

16) Ophiomoridae. Rostrale massig, dreieckig; Nasenöffnungen in einer Furche am Rande der Nasal- und Supranasalschilder. 1 Gattung mit 1 Art.

17) Septidae. Rostrale ziemlich gross, viereckig; Nasenöffnungen in einer Furche am hinteren Rande des Rostrale. 7 Gattungen mit 7 Arten.

18) Acontiidae. Rostrale gross, schalenförmig; Nasenöffnungen in dem Rostrale, welches eine schmale Rinne an dessen Hinterrande zeigt. 3 Gattungen, 3 Arten.

c) Augen durch die Haut bedeckt.

19) Typhlinidae. Kopf conisch; Rostralschild schalenförmig; Nasenöffnungen in dem Rostralschilde, mit einer Furche an dessen Hinterrande, 3 Gattungen, 3 Arten.

20) Typhlopsidae. Kopf kurz, deprimirt; Rostralschild verlängert, sich bis zur Stirn ausstreckend; Nasenöffnungen in einem verlängerten Narbenbildende. 8 Gattungen, 28 Arten.

Suborder II. Tachyglossae. Zunge dick, convex, mit der Basis an dem Schlunde befestigt.

Tribus III. Nyctisaura. Schuppen des Bauches klein, rhombisch, geschindelt, die des Rückens und der Seiten Körnerschuppen; Zunge dick, kurz, convex, am Ende schwach eingeschnitten. Nachtaugen, Augenlider circulär, Pupille lineär; Gangfüsse; Zehen fast gleichförmig, verbreitet, unten schuppig.

21) Grecolidae. 41 Gattungen mit 104 Arten.

Tribus IV. Strobilosaura. Schuppen des Bauches klein, rhombisch, geschindelt, Zunge dick, kurz, convex, am Ende schwach eingeschnitten; Gangfüsse; Zehen ungleich, comprimit.

Tribus V. Dendrosaura. Auf den Seiten, dem Bauch und Rücken Körnerschuppen; Zunge verlängert, subcylinndrisch, vorschnellbar, wurm-förmig, Augen rund, sehr beweglich, mit einer kleinen, centralen, runden Öffnung; Zehen ungleich, zu zwei gegenüberstellbaren Gruppen verbunden.

Ausserdem rechnete Gray auch noch die Familie der Uropeltidae zu den Sauriern, in welcher er 3 Gattungen und 3 Arten aufzählt. Demnach unterscheidet Gray also unter den Sauriern, abgesehen noch von den Amphisbaenoiden, die er als eine besondere Abtheilung betrachtet, 279 Gattungen mit 669 Arten, und wir werden sehen, dass diese Zahl in den darauf folgenden 35 Jahren noch sehr bedeutend zugenommen hat.

Owen (On the Orders of Fossil and Recent Reptilia, and their Distribution in Time; in: Report of the british Association for the advancement of Science for 1859) theilt die Reptilien folgenderweise ein:

 Ordnungen.
 I. Ganocephala.
 II. Labyrinthodontia.
 III. Ichthyopterygia.
 IV. Sauropterygia.
 V. Anomodontia.
 Fam. Dicyonodontia.
 Fam. Cryptodontia.
 Fam. Gnathodontia.
 VI. Pterosauria.
 VII. Therodontia.
 VIII. Dinosauria.
 IX. Crocodilia.
 Subordn. Amphicoelia.
 Subordn. Ophiacoelia.
 Subordn. Prococelia.
 X. Lacertilia.
 XI. Ophidia.
 XII. Chelonia.
 XIII. Batrachia.

I. Acrodonta.
 a. Rhiptoglossa.
 1. Fam. Chamaeleonidae.
 b. Pachyglossa.
 2. Fam. Agamidae, 3. Fam. Hatteriidae,

II. Pleurodonta.
 a. Iguani.
 b. Diploglossa.
 c. Theaglossa.
 d. Leiptoglossa.
 e. Typhlophtalmi.
E. Haeckel (Generelle Morphologie der Organismen, 1866) theilt die Reptilien in 5 Subklassen.

II. Hydrosauria, Wasserdrachen mit den Ordnungen: a) Halisauria, Seeschlangen; b) Crocodilia (Loricata).

III. Dinosauria (Tachypoda) mit den Ordnungen: a) Harpagosauria, carnivore und b) Therosauria, herbivore Dinosaurier.

V. Bamphosanria, Schnabelsaurier mit den Ordnungen: a) Anomodonto, Schnabeleidechsen; b) Pterosauria, Flugeidechsen und c) Chelonia, Schildkröten.

Im Anschluss an seine höchst interessanten Beiträge über die Anatomie von Hatteria stellt der berühmte englische Zoologe Günther (Philos. Transact. of the royal Soc. Vol. 157, 1867) folgende Eintheilung der Reptilien auf:

c) Chamaeleonoidea. Wirbel procoel. Temporalbogen vollständig, keine Columella.

III. Cataphracta. — E. Chelonia.
Nach Strauch (Bull. Acad. impér. St. Petersbourg p. 315, 1868, T. XII) kann man die Pristidactyla von Duméril et Bibron folgenderweise in 7 Gattungen vertheilen (siehe S. 1052):

Das Nasenloch liegt

I. in einem einzigen Schild . . . Psammodromus Fitzinger
II. zwischen mehreren Schildern, und zwar A) zwischen 2, die beiden Nasorostralia sind, die Augenlider 1) fehlen Ophiops Ménetr.
2) sind vorhanden Cabrita Gray
b) ist vorhanden. Die das Nasenloch umgebenden Schilder sind
 c) ein Supralabiale, ein Nasofrenale und ein Nasorostrale . . . Acanthodactylus Fitzinger
 β) zwei Nasofrenalia und ein Nasorostrale Podarcis Wagler.

I. Ornithosauria.
II. Dinosauria.
 A. Symphypoda.
 (Compsognathus Huxl.; Ornithotarsidae Cope)
 B. Goniospora.
 (Megalosauridae Huxl. z. Th.; Teratosauridae Cope, Meyer)
 C. Orthopoda.
 (Scelidosauridae Cope; Iguanodontidae Cope.)

III. Crocodilia.
 A. Amphicoelia B. Procoelia.

IV. Sauropterygia
V. Anomodontia.
VI. Ichthyopterygia.
VII. Rhynchocephalia.
VIII. Testudinata.
IX. Lacertilia.
 1) Rhipidoglossa — Chamaeleonidae.
 2) Pachyglossa — Agamidae
3) *Nyctisaura* — *Geekonidae*,
4) *Phrynodonta*.
 a) *Iguania* — *Analidae*, *Iguanidae*,
 b) *Diploglossa* — *Anguidae*, *Gerrhonotidae*, *Nesosauridae*, *Helodermaidce*,
 c) *Theglossa* — *Varanidae*.
 d) *Leptoglossa* — *Teiidae*, *Lacertidae*, *Zonuridae*, *Chalicidae*, *Scincidae*, *Sepidae*.
5) *Ophisaurus*, *Amphisbaenidae*, *Trogonophidae*.

X. *Pythonomorpha* — *Clidastidae*, *Mosasauridae*.

Unsere weitere Kenntniss der Systematik von Sauriern und Hydro-
sauriern verdanken wir dann insbesondere den zahlreichen Mittheilungen
der englischen Forscher Gray und O'Shaugnessy und des berühmten
Zoologen Günther. In Deutschland ist es besonders Peters, welcher
durch seine zahlreichen Arbeiten auch als Herpetolog ersten Ranges zu
nennen ist; weiter der auch durch seine ausgezeichneten anatomischen
Arbeiten bekannte Fischer, ferner Böttger und der in jedem Zweig
der zoologischen Wissenschaft ruhmvolle bekannte Leydig. In Oester-
reich haben sich dann besonders Steinrückner und Schreiber, in
Russland Strauch, in Portugal Barboza du Bocage, in Frankreich
Duméril und Lataste, in Nordamerika Cope mit der Systematik der
Saurier und Hydrosauiern beschäftigt; ausserdem aber noch in fast allen
Ländern Europas und Nordamerika eine grosse Zahl Forscher, die hier
nicht alle zu nennen sind.

I. *Crocodilina*.

Maxillae sinuosae, labis liberis destitutae; dentes plerumque inaequales
maxillarum alveolis injuncti, aures et nares valvis elansiles, pupillla
oculorum verticalis. Lingua lata, crassa, mento toto affixa, immobiliis.
Cutis squamosa, scutellis dorsalius, interdum et ventralibus, osseis per
fascias transversas in loricam durissimam coalitis. Cauda compressa,
serrata, corporis longitudinalin superans. Artus quatuor, validi, breves,
palmae pentadactylaee, digitis fissis vel vix palmatis, plantae tetradactylaee,
digitis palmatis, vel semipalmatis; in utrisque membris digitit tantum
tres interni unguiculati. Orificium cloacae rimae longitudinalis formam
praebens; organa sexualia externa simplicia.

Die Repräsentanten dieser Familie, die sämtllich eine durchaus aqua-
tische Lebensweise führen und auf die heissen und gemässigten Gegenden
des Erdballs beschränkt sind, zerfallen nach Strauch (Synopsis der gegen-
nur in 3 Gattungen: *Crocodilus*, *Alligator* und *Carvialis*, die folgenderweise
sich unterscheiden.

Das Praemaxillare besitzt vorn
I. zwei tiefe Gruben zur Aufnahme der beiden vordersten
Zähne des Unterkiefers. Der Oberkiefer besitzt jeder-
seits
Reptilien.

a) eine tiefe Grube zur Aufnahme des jederseitigen Unterkieferzahnes
 4. Unterkieferzahnes

b) einen Ausschnitt zur Aufnahme des jederseitigen Unterkieferzahnes
 4. Unterkieferzahnes

II. Zwei Ausschnitte zur Aufnahme der beiden vordersten Zähne des Unterkiefers
 Gavialis.

Gray (Annals and Mag. Nat. Hist. 3. Serie. X. p. 265, 1862) zerlegt die Familie der Crocodilidae — die Cuvier'sche Gattung Crocodilus — in 7 Gattungen, die er folgenderweise definirt:

Auf der oberen Seite des Halses

I) eine rhombische, aus 6 Schildern bestehende Scheibe, die von der Dorsalpholidosis durch einen häutigen Zwischenraum getrennt ist. Die Nuchalschilder

A. fehlen. Die Dorsalschilder der jederseitigen äussersten Längsreihe sind von länglich ovaler Form.

B. sind in der Zahl vier, selten in der Zahl zwei oder fünf vorhanden und stehen in einer Querreihe. Die Intermaxillarknochen

1) hinten gestutzt, bilden mit den Oberkieferbeinen eine fast gerade Naht. Die Hinterseite der Unterschenkel

a) mit einem stark gesägten Kamme. Die Zehen mit Schwimmhauten

b) mit einem ungesägten, aus kurzen schmalen Schuppen bestehenden Kamm. Die Zehen fast frei

2) nach hinten verlängert und gestutzt, bilden mit den Oberkieferbeinen eine nach hinten geneigte, convergirende und alsdann quer oder wellenförmig verlaufende Naht. Die Schnauze

a) oblong, flachgedrückt

b) verlängert, die Stirn convex, wie geschwollen

II) ein breiter, jederseits stark gekelter Grat, der mit dem Dorsalanter fast verschmilzt und aus zwei oder drei aufeinander folgenden Paaren gekelter Schilder gebildet wird. Die Schnauze

a) breit, die Nasenscheidewand knöchern

b) sehr lang und schmal, die Nasenscheidewand knorpelig

J. E. Gray (Annals and Mag. Nat. Hist. 3. Serie T. X. p. 327, 1862) theilt die Alligatoren folgendermassen ein:

I. Bauchschilder hart, knochig, ein Schild bildend; Augenlider mit einer inneren Knochenplatte; Nacken-
schilder paarig, ein länkliches Schild bildend.
Nasenbeine kurz.
 a) Eine Knochenleiste zwischen den Augen,
 Augenlider zum Theil fleischig, gestreift
 oder runzlig
 b) Keine Knochenleiste zwischen den
 Augen, Augenlider ganz knochig,
 glatt

II. Bauchschilder dünn, Augenlider fleischig,
 glatt, Nackenschilder paarig, getrennt; Nasen-
 beine verlängert, die Nasenlöcher tren-
 nend

Gray (Proc. Zool. Soc. p. 177, 1874) zerlegt seine Gattung *Crocodilus*
dann wieder in zwei Subgenera, die er auf folgende Weise charakterisirt:

I. Kopf flach, ziemlich breit, vorn verschmäler,
 Stirn und Obertheil des Gesichts flach, an
 den Seiten abschüssig

II. Kopf verlängert, dünn, conisch; Stirn vor
 und zwischen den Augen flach, mit einer
 schwach convexen Leiste vorn bis zur Mitte
 des Schnabels. Gesicht seitlich von der Central-
 linie abgerundet, Nase subcylindrisch . . .

Philas.

Ich werde mich an die Eintheilungsweise von *Strauch* halten.

1. Gattung *Alligator* Cuvier.

(*Alligator* Cuvier, Ann. du Muséum X. p. 25, Ossem. fossil. 2. Ed. V.
p. 34. — Bory de St. Vincent, Dict. class. d'hist. nat. V. p. 99. —
Gray, Synopsis Rept. — Duméril et Bibron, Erpét. génér. III. p. 63. —
3. Serie, X. p. 328. — *Melanosuchus et Cynosuchus* Gray l. c. — *Palaeo-
suchus et Aromosuchus* Gray l. c. — *Alligator* Strauch, Synops. etc.)

Dentes mandibulae inaequales, utrinque saltem 18, quorum primus et
quartus in foveas maxillae internae recipiuntur.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 3. 4.</td>
<td>2. 3.</td>
<td>4.</td>
<td>1. 2. 3. 4.</td>
<td>1. 2. 3.</td>
<td>1. 2. 3.</td>
</tr>
</tbody>
</table>

Die Gattung *Alligator* ist durchaus auf die neue Welt beschränkt. Eine der grössten Arten ist *Alligator niger*, der gegen 20 Fuss lang wird; eine der kleinsten *A. trigonatus*, welcher nur eine Grösse von $4\frac{1}{2}$ Fuss erreicht. Sie sind auf die neotropische Region und auf den südlichen Theil der nearktischen Region beschränkt, vom unteren Mississippi und Texas durch das ganze tropische Amerika, dagegen scheinen sie auf den Antillen zu fehlen. Zu dem nordamerikanischen Faunengebiet gehört nur *A. mississippiensis*, alle anderen Arten dieser Gattung gehören zu dem südamerikanischen Faunengebiet. Die Nordgrenze des südamerikanischen Faunengebiets ist bis jetzt noch nicht mit Sicherheit ermittelt worden; die Südgrenze scheint durch klimatische Verhältnisse bedingt zu sein, da sie, eben wie die Nordgrenze des nordamerikanischen Faunengebiets, ungefähr mit der Isothermen-Curve von 15 °C. zusammenfällt; im Osten wird das Gebiet überall vom Meere begrenzt. Von der Gattung *Alligator* sind bis jetzt 8 Arten bekannt.

2. Gattung *Crocodilus* Cuvier.

Dentes mandibulæ inaequalis utrinque semper 15, quorum primus in foveam internam, quartus vero in incisuram externam maxillæe recipitur.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 3. 4.</td>
<td>2. 3.</td>
<td>4.</td>
<td>1. 2. 3. 4.</td>
<td>1. 2. 3.</td>
<td>1. 2. 3.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 18 Arten bekannt.
Eine der kleinsten Arten ist *Crocodilus frontatus*, der nur 5 Fuss lang wird; die größten Arten sind *Crocodilus vulgaris* und *Cr. biporatus*, welche eine Länge von über 30 Fuss erreichen können.

Dentes mandibulæe subaequales, utrinque 18 vel 26 quorum primus et quartus in incisuras maxillæ externas recipiuntur.

Diese Gattung enthält nur zwei Arten, welche sich durch folgende Kennzeichen unterscheiden:
Reptilien.

Jederseits in den oberen Kinnladen finden sich:

a) 20, im Unterkiefer 18 oder 19 Zähne G. Schlegelii V. 4.
b) 28 oder 29, im Unterkiefer 25 oder 26 Zähne G. gangeticus V. 1.

Die erste Art erreicht eine Länge von 15 Fuss, die andere von mehr als 20 Fuss.

Die geographische Verbreitung dieser 28 verschiedenen Crocodilinarten ist folgende:

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearkische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Allgemeine Verbreitung.
Zweifelhafte Gattung.

Gattung *Perosuchus* Cope.

(*Perosuchus* Cope, Proc. Acad. Phil. p. 203, 1868.)

Vorn 5, hinten 4 Zehen, mit vorn 2, hinten 3 Krallen; keine knöcherne Nasenscheidewand; kein knöchernes Augenlid; Bauch und Rücken mit Reihen von Knochenplatten bepanzert.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. fuscus* aus dem Magdalenenfluss in Neu-Granada. Gray betrachtet diese Species als eine individuelle Abweichung.

II. Sauria.

Wenn auch die Form und die Befestigung der Zähne für die systematische Eintheilung der Saurier wichtig ist, so erscheint doch die Gestalt der Zunge noch von grösserer Bedeutung und ist auch schon mehrfach für die Systematik verwendet, denn hiernach kann man die Eidechsen folgenderweise eintheilen:

II. *Pachyglossae*. Zunge dick, rund, mit der Basis am Schlunde befestigt.

1. *Leptoglossae*.

A. *Leptoglossae* *Cyclosaura*. (Siehe S. 1067.)

1) Kopf mit kleinen vielseitigen Schildern, Zunge mit einer Scheide an der Basis.

Kopfschilder abgeplattet, Schuppen klein, bewohnen die alte Welt und Australien.

Kopfschilder und Schuppen des Körpers convex, Zähne gefurcht, leben in der neuen Welt.

Beschilderung des Rückens jener gewisser Crocodile ähnlich, kein äusseres Ohr.

2) Kopf mit grossen, regelmässigen Schildern bedeckt, Zunge an der Basis gewöhnlich frei.

* Seiten abgeplattet, mit kleinen, oft Körnerschuppen bedeckt.
Supraorbitalplatte hornig, Zähne solide, Schuppen klein, körnig, oft mit grösseren Platten, leben in der neuen Welt ... Supraorbitalplatten knochig, Schuppen klein, körnig oder keilförmig, Zähne kegelförmig Rücken und oberer Theil des Nackens bedeckt mit gekielten Schuppen und mit zwei Reihen glatter, ovaler Schilder ... Schuppen am Rücken klein, granulaartig, die des Bauches gross, viereckig in Querreihen ** Seiten mit einer deutlichen longitudinalen Falte mit kleinen Körnerschuppen bedeckt. Ptychopleurae.

Ohröffnung deutlich, Gliedmassen deutlich, selten vollständig verborgen ... Ohröffnung unter der Haut verborgen, Gliedmassen sehr kurz, keine Femoralporen, Lateralfalte undeutlich ... *** Seiten abgerundet, bedeckt mit Schuppen, denen des Rückens ähnlich.

Zähne solide, Trommelfell deutlich, 4 Füsse, Schuppen des Rückens gekielt oder glatt, Kopf oben regelmaessig beschildert ... 10. Fam. Cercosauridae.

Schuppen geschindelt, gekielt; die Kiele bilden longitudinale Leisten, Gliedmassen einfach 11. Fam. Chamaesauridae.

Schuppen des Rückens und der Seiten dünn, glatt, Ohröffnung und Femoralporen deutlich ... 12. Fam. Anadiidae.

Schuppen des Rückens geschindelt, gekielt, Ohröffnung verborgen, Femoralporen deutlich ... 13. Fam. Chiroleidae.

1. Familie Rhynchocephalidae.

Quadratbein mit dem Schädel unbeweglich vereinigt, Zähne mit ihrer Basis auf dem Rande der Kieferknochen befestigt, Acete des Unterkiefers durch ein Band mit einander beweglich verbunden; Wirbel procoel; Copulationsorgane nicht vorhanden, Bauchrippen.

1. Gattung Hatteria Gray.

Klassification und geograph. Verbreitung.

Kopf viereckig, mit kleinen Schuppen bedeckt; Hals schlaff, hinten mit einer queren Falte; Nacken und Rücken mit einem Kamm von comprimirten Dornen; Körper mit kleinen und grossen Schuppen bedeckt; Bauch und untere Seite des Schwanzes mit grossen, viereckigen, nicht gekielten, platten Schuppen, und mit einer Leiste von grossen, comprimirnten Dornen, Gliedmassen stark; Zehen 5,5 kurz, stark, cylindrisch, an der Basis mit Spuren von Schwimmhauten, oben und unten mit kleinen Schuppen bedeckt. Klauen stumpf; keine Femoralporen; Praeanalgeschuppen klein.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt.

als eine aberrante Gattung der Familie der Agamidae. Die in Rede stehende Gattung unterscheidet sich so sehr von den übrigen Eidechsen und stimmt zum Theil in so mancher Beziehung mit den Crocodilen überein, dass es wahrscheinlich am besten ist, dieselbe unter einer eigenen Familie an die Spitze der Eidechsen zu stellen.

Die Zähne von Hatteria werden so stark abgenutzt, dass sie bei erwachsenen Thieren gar nicht mehr vorhanden sind, sondern das Thier mit den Kieferrändern selbst beisst. Von jenem Verschwinden machen indessen die vordersten Zähne eine Ausnahme, sie bleiben; aber während sie in der Jugend so eingeschnitten waren, dass man sie eher für oben jederseits zwei, unten jederseits drei nur an der Basis unter sich verbundene Zähne halten möchte, schwinden durch Abnutzung die Einschnitte völlig und die Vorderzähne erhalten dadurch eine äussere Formähnlichkeit mit den Schneidezähnen der Nager unter den Säugethieren. Ein ähnliches Schwinden der Zähne mit dem Alter kommt auch bei der Eidechsen-Gattung Uromastix vor, wie wir aus Günther's Mittheilungen erfahren, und ebenso glaubt dieser berühmte Zoologe auch die ganze oder partielle Zahnlosigkeit mancher fossilen Saurier (Cryptodontia und Dicynodontia Owen) ansehen zu dürfen. Höchst eigenthümlich ist auch die Gestalt der Wirbel, welche abnorm en Wirbelform, welche aber bei vielen fossilen Eidechsen aus der Trias- und Jurazeit, sowie bei den Ichthyosauriern, Megalosauriern und Teleosauriern ebenfalls angetroffen wird.

1. Leptoglossae Gray.

Zunge platt, verlängert, an der Spitze eingeschnitten.

A. Cyclosaura Gray.

Schuppen des Bauches viereckig, in queren Bändern, die des Rückens und des Schwanzes rhombisch und geschindelt, oder rund und körnig; Zunge lang, platt, frei, an der Spitze eingeschnitten, oder mit zwei verlängerten, cylindrischen, hornigen Zipfeln; Augen mit zwei klappenförmigen Augenlidern, Gehässe; Zehen ungleich, comprimirt.
1. Familie *Monitoridae.*

Kopf mit kleinen, polygonalen Schildern; Zähne auf der inneren Fläche der Kiefer angeheftet; Zunge verlängert, schlank, in eine Scheide an der Basis zurückziehbar; Schuppen klein, rund, in queren Reihen angeordnet, die der Seiten denen des Rückens ähnlich; 4 starke Gliedmassen, Zehen 5,5; comprimirt ungleich; keine Femoralporen; Supraorbitalplatte knochig; alte Welt, in der Nähe des Wassers.

Synopsis der Genera (nach Gray, Cat. Liz.).

A. Schwanz rund, oben ohne Kiel.
 Nasenöffnungen massig, longitudinal, in der Nähe der Schauzen spitze ... 2. Gatt. *Odatria.*

B. Schwanz comprimirt, oben mit einem Kiel durch zwei Reihen von Schuppen gebildet.
 Nasenöffnungen gross, in der Nähe der Augen,
 Nasenöffnungen oval, longitudinal, subcentral;

1. Gattung *Psammosaurus Fitzinger.*

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Ps. griseus* von Nord-Afrika.

2. Gattung *Odatria Gray.*

(*Odatria Gray, Cat. Liz. p. 7.*) Nasenöffnungen oval, longitudinal; Zähne comprimirt, scharf; Schwanz verlängert, rund, oben nicht gekielt; Schuppen breit, scharf gekielt; Rücken
mit verlängerten, schmalen, gekielten Schuppen; Ventralischild verlängert; Zehen etwas ungleich, verlängert.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung drei Arten bekannt, welche alle drei den australischen Subregionen angehören.

(*Regenia* Gray, Cat. Liz. p. 8.)

Nasenöffnungen gross, oval, in der Nähe der Augenhöhlen; Schwanz kurz, dick, oben doppelt gekielt; Schuppen oval, mit stumpfen Kielen; Zehen kurz, ungleich; Zähne rund; Schuppen gross, convex, von zahlreichen Granulationen umgeben; Kopf kurz.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

Nasenöffnungen gross, oval, im vorderen Umfang der Schnauze; Schwanz so lang, als Kopf und Körper zusammen, spitz zulaufend, mit einem doppelt gezähnelten Kamm auf der oberen Fläche; Schuppen scharf gekielt; Zehen etwas kurz, fast gleich; Zähne scharf; Schuppen oval, gekielt; Kopf kurz.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *E. flavescens* von Nepal.

Nasenöffnungen oval, in der Mitte zwischen der Spitze der Schnauze und den Augenhöhlen; Schwanz verlängert, comprimirt, oben mit einem doppelrandigen Kiel; Zehen verlängert, ungleich, stark; Kopf verlängert.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 10 Arten bekannt, von welchen 8 zu den orientalischen und 2 zu den australischen Subregionen gehören.

Nasenöffnungen klein, rund, in der Mitte zwischen der Spitze der Schnauze und dem vorderen Augenrande; Schwanz verlängert, comprimirt, oben mit einem doppelrandigen Kiel; Zehen verlängert, ungleich, stark; Zähne abgerundet.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 7 Arten bekannt, von welchen 5 zu den australischen, eine zu den orientalischen Subregionen gehört und eine Art (*M. niloticus*) einen sehr grossen Verbreitungsbezirk besitzt, in dem sie sowohl in den paläarktischen als in den aethiopischen Subregionen angetroffen wird.

Nasenöffnungen oval, longitudinal, in der Nähe der Schnauzenspitze; Schwanz verlängert, oben mit einem doppelrandigen Kiel; Zehen ungleich, verlängert; Zähne comprimirt, scharfrandig, gezähnelt; Schuppen glatt.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Nootropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 6 Arten bekannt; von einer ist das Vaterland unbekannt, 3 leben in den australischen, eine in den orientalischen Subregionen, während *H. saluator* in China, Celebes und Südafrika angetroffen werden soll.

2. Familie *Helodermidae* Wiegmann.

Kopf kurz und dick; Körper gedrungen; Gliedmassen und Zehen kurz, fast ungefähr von gleicher Länge; Schwanz rund, Bauch mit glatten Platten bedeckt, dieselben haben eine viereckige Form und bilden transversale Reihen; Augenlider; Ohröffnung deutlich; keine Femoralporen; Zähne gefurcht.

Die Charaktere der Familie.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *H. horridum* von Central-Amerika.

Duméril und Bocourt (Miss. scientif. au Mexique) vereinigen die Gattungen *Heloderma*, *Xenosaurus*, *Lepidophyllum*, *Xantusia* und *Cricosaura* in einer Familie, der der *Trachydermidae*, welche sie folgenderweise eintheilen.

I. *Trachydermidae glyphodontes*.

Oberer Theil des Körpers mit halbknochigen Hückern versehen, auf dem Rücken und dem Schwanz in transversalen Reihen angeordnet und einander sehr dicht genähert. Bauchplatten flach und viereckig. Kiefer-
zähne dem inneren Rande der Kiefer angewachsen und mit einer longitudinalen, ziemlich tiefen Furche versehen; Zunge nicht zurückziehbar.

1. Gattung Heloderma.

II. Trachydermi aglyphodontes.

3. Familie Lanthanotidae.

Der Familie der Helodermidae verwandt und von dieser durch den Mangel eines äusseren Ohres, sowie durch die eigenthümliche Beschilderung des Rückens, welche jener gewisser Crocodile ähnlich ist, sich wesentlich unterscheidend.

(Lanthanotus Steindachner, Wiener Denkschriften. Bd.38, p.93,1878.)

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: L. borneensis von Sarawah (Borneo).
4. Familie *Teidae* Gray.

Kopf pyramidal, mit regelmässig vielseitigen Schildern bedeckt; Supraorbitalplatte hornig; Zähne solide; Zunge verlängert, platt, selten an der Basis von einer Scheide umgeben; Schuppen des Rückens granulirt oder gekielt, rhombisch; Seiten flach, mit kleinen Kornerschuppen bedeckt; Hals schuppig, mit einem doppelten, selten undeutlichen Halsband; leben hauptsächlich in der neuen Welt.

Unter zu Grundelegung der Gray’schen Eintheilungsweise lassen sich die Gattungen der *Teidae* folgendermassen unterscheiden:

I. Hals mit zwei queren Falten, mit grossen 6-seitigen Schuppen dazwischen.

A. Bauchschilder flach, viereckig, bedeutend grösser als die Rückenschilder; keine Schenkelporen; Zunge nur mässig vorstreckbar 1. Gatt. *Tejovaranus*.

B. Bauchschilder klein, lang, glatt, Zunge zurückziehbar; Zehen 5,5; Femoralporen deutlich 2. Gatt. *Tejus*.

Zehen 5,5; keine Femoralporen 3. Gatt. *Callopistes*.

B. Ventral schilder breit, glatt.

* Zunge verlängert, an der Basis mit einer Scheide, Zähne comprimirt.

Zehen 5,5; Zähne 3-spitzig 4. Gatt. *Amica*.

Zehen 5,5; Zähne ? 5. Gatt. *Holcosus*.

** Zunge ohne Scheide, an der Basis frei.

Zähne in longitudinaler Richtung comprimirt,

3-spitzig; Zehen 5,5 6. Gatt. *Cnemidophorus*.

Zähne in transversaler Richtung comprimirt,

2-spitzig; Zehen 5,5 7. Gatt. *Dicrodon*.

Zähne in transversaler Richtung comprimirt,

2-spitzig; Zehen 5,4 8. Gatt. *Acrantus*.

II. Hals mit einem Halsband von grossen Schildern.

a. Halsband und Ventral schilder gekielt; Schwanz rund; Schuppen des Rückens gross, die der Seiten körnig 9. Gatt. *Acanthopyga*.

Schuppen des Rückens sehr klein, die der Seiten körnig 11. Gatt. *Monoplocus*.

b. Halsband und Ventral schilder glatt, verlängert; Schwanz comprimirt.

Schuppen des Rückens ungleichförmig; Hals mit einem
Schuppen des Rückens ungleich, Hals mit zwei

10. Gattung Tejovaranus Steindachner.

(Tejovaranus Steindachner, Wiener Denkschriften, Bd. 38, p. 93, 1878.)

Körpergestalt langgestreckt, Schwanz rundlich; Kopf pyramidelförmig, an der Oberseite mit unregelmässig gestalteten, schwach gewölbten Schil-
dern bedeckt. Mental- und Rostralschild gross. Zunge ohne Scheide an
der Basis, breit herzförmig, mit schuppenähnlichen, dachziegelförmig sich
deckenden Papillen dicht besetzt, durch eine elastische Hautfalte an den
Boden der Mundöhle gehetet, daher nur mässig vorstreckbar, an der
Spitze gablig gespalten.

Kieferzähne spitz, comprimirt, an der Innenseite der Kiefer angewachsen.
Gaumen mit kurzen, stumpfen Zähnen an den Pterygoïdknöchern. Nasen-
lücher oblong, nahe der Schneuzenspitze. Querfalten an der Kehle, Schenkel-
poren fehlend. Rückenschilder sehr klein, elliptisch, schwach gewölbt, in
unregelmässigen Querreihen. Bauchschilder flach, viereckig, bedeutend
grosser als die Rückenschilder und wie diese in Querreihen gelagert.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>1. — — — — — — — — — — — — —</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: T. Branickii
aus dem Urwald bei Tumbes (Peru). Diese Eidechse soll mit Behendig-
keit auf Bäume klettern und sich bei drohender Gefahr in die Flüsse herab-
stürzen.

(Tejus Merrem, Tent. syst. Amphib. — Monitor Fitzinger, Neue
Class. Reptil. — Salvador Duméril et Bibron, Erpét. génér. T. V. —
Tejus Gray, Cat. Liz. p. 16.)

Zehen 5,5; Schwanz rund; Zähne bei jungen Thieren auf dem inneren
Kieferrande, vorn gekammert, an den Seiten dreispitzig; beim Wachsthum
des Thieres werden die Basen der Zähne durch die Kieferknochen um-
wachsen und die vorderen Zähne verlieren ihre Spitzen und werden mehr
abgerundet; Abdominalschilder glatt; Schwanz rund; Nasenöffnungen
zwischen zwei grossen Nasenplatten.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 2. — — — — — — — — —

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

(Callopistes Gravenhorst. — Aporomera Duménil et Bibron, Erpét. gér. T. V. — Callopistes Gray, Cat. Liz.)

Zehen 5,5, schwach comprimirt, die hinteren an dem inneren Rande etwas höckerig; keine Femoralporen; Zähne getrennt; Zunge an der Basis nicht von einer Scheide umgeben; Gaumen ohne Zähne; Oberkieferzähne comprimirt, die hinteren höckerig; Nasenöffnungen zwischen zwei Platten; Bauchplatten klein, oval, vierseitig, glatt, etwas länger wie breit, Schwanz etwa vierseitig; Abdominalschilder glatt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 2. — — — — — — — — —

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

Zehen 5,5; Femoralporen deutlich; Praemaxillarzähne klein, conisch, einfach; Maxillarzähne comprimirt, dreispitzig; Gaumenzähne vorhanden oder fehlend, Zunge sehr lang, schmal, contractil, am Ende in zwei dünne Fäden getheilt. Nasenöffnungen oval, das einzige Nasorostrale durchbohrend, oder in dieser Platte und dem Nasofrenale gelegen. Augenlider, Ohröffnung deutlich. Bauchplatten vierseckig, glatt, in Quincunx; Schwanz cyclotetragonal.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 2. 3. 4. — — — — — — — — —

Von dieser Gattung sind bis jetzt 30 Arten bekannt, alle aus der neotropischen Region. Von diesen 30 Arten gehören 14 Arten zu den
Klassifikation und geograph. Verbreitung.

westindischen Inseln. *A. corvina* Cope ist ausser einer Scolopendra das einzige Landthier, welches auf der Insel Sombrero lebt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Neartische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt 3 Arten bekannt, eine Art von unbekanntem Fundort.

Zehen 5,5; Femoralporen deutlich; Oberkieferzähne comprimirt, die hinteren 3-spitzig; Zunge kurz, Basis einfach, etwas breiter und dicker und mit zwei ziemlich kurzen, deprimirten Zipfeln; Gaumen ohne Zähne; 6 Praemaxillarzähne; Nasenöffnungen in dem Rande der Nasenplatte.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Neartische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3.</td>
<td>1, 2, 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 43 Arten bekannt, von welchen 30 zu den neotropischen, 12 zu den neartischen Subregionen gehören; von einer Art ist das Vaterland nicht bekannt. Cope (l. c.) unterseheidet in der Gattung *Cnemidophorus* die Untergattung *Verticaria*.

Zunge massig gross, etwas verbreitet, an ihrer Basis nicht von einer Scheide umgeben, mit zwei deprimirten Zipfeln; Gaumen ohne Zähne;
Reptilien

Kieferzähne abgeplattet, an der Spitze mit zwei stumpfen Höckern; Nasenöffnungen auf dem Rande der Nasenplatte; Zehen 5,5, etwas comprimirt, unten nicht gekielt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

Zehen 5,4, die äussere Hinterzehe rudimentär und kurz; Schwanz rund, mit verlängerten, gekielten Schuppen; Oberkieferzähne abgeplattet und mit zwei stumpfen Höckern auf der Spitze; Gaumen ohne Zähne.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *A. viridis* von Paraguay.

18. Gattung *Acanthopyga* Gray.

Schuppen des Rückens gross, gekielt, in 17 oder 25 Reihen, Kiele continuirlich; auf den Seiten Körnerschuppen, Halsband gezähnelt. Nasenöffnungen zwischen zwei Nasenplatten; Zehen 5,5, unten nicht gekielt; Gaumen ohne Zähne; Zähne comprimirt, dreispitzig; Zunge hinten breit, an der Basis von einer Scheide umgeben.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>— 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *A. striata* von Surinam.

Schnuppen des Rückens mässig, oval, gekielt, in zahlreichen (40) Reihen; Seitenschuppen kleiner, Bauchschuppen sehr gross; Schnuppen des Halsbandes rhombisch, gekielt, geschindelt; Kiefer des Praemaxillare conisch, einfach; Kieferzähne comprimirt, die vorderen einfach, die folgenden dreispitzig; Zehen 5,5, comprimirt, unten nicht gekielt; Femoralporen; Schwanz cyclotetragonal.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 5 Arten bekannt.

20. Gattung Monoplocus Günther.

Zunge länglich, frei, ohne Scheide, in zwei sehr feine Spitzen endend; keine Gaumenzähne, die hinteren Kieferzähne zwei- oder dreispitzig; Paukenfell sichtbar; Kehle mit einer Falte; Schnuppen des Rückens sehr klein, an der Seite körnig; Kehl- und Bauchschilder gekielt; Schwanz rund, mit gekielten, wirtelförmigen Schuppen von mässiger Grösse; keine Schenkelporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>— 2.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: M. dorsalis von Ecuador.

Schnuppen des Rückens gleichförmig; Oberkieferzähne auf den Seiten adhaerirt, die hinteren dreispitzig; Zunge an der Basis nicht von einer Scheide umgeben, mit zwei deprimirten Zipfeln; Gaumen ohne Zähne;
Nasenöffnungen zwischen drei Schildern; Femoralporen deutlich; Zehen 5,5, etwas comprimirt, unten nicht gekielt, die äussere Hinterzehe an den Seiten gezähnelt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Neartische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Cr. lacertinus* von Brasilien und Guiana.

22. Gattung *Custa* Flemming.

Schuppen des Rückens ungleich; Schwanz mit einem gezähnelten Kamm jederseits; Hals mit einem Halsband von grossen Schuppen; Zunge an der Basis nicht von einer Scheide umgeben; Gaumen ohne Zähne; Oberkieferzähne comprimirt, dreispitzig; Nasenöffnungen lateral, klein, in der Mitte einer grossen ovalen Platte; Zehen 5,5, unten weder gekielt, noch an den Rändern gezähnelt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Neartische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

Schuppen des Rückens ungleich, oval; Schwanz oben mit einem gezähnelten Kamm jederseits; Hals mit einer doppelten Falte; Zähne auf dem Kieferrande, die hinteren dreispitzig; Gaumen ohne Zähne; Nasenöffnungen in der Mitte einer longitudinalen Naht zwischen den beiden Nasenschildern; Zehen 5,5, unten nicht gekielt; Schwanz comprimirt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Neartische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *A. guianensis* von Guiana.
5. Familie Lacertidace.

Körper walzig, gestreckt; Kopf wohl abgesetzt vom Halse; Schwanz sehr lang und dünn auslaufend; vier füinzehige Füße; Zehen an den Hinterfüßen sehr ungleich lang; Haut mit Ausnahme der Schenkel drüsenlos; Oberhaut zu Schuppen und Schildern verhornt; Lederhaut ohne Kalktafel; Zähne in einer Rinne der Ober- und Unterkinnlade und deren innerer Seite angewachsen; mit oder ohne Gaumenzähne; Form des Zahnes kegelförmig, gerade, am freien Ende etwas gebogen, ohne eigentliche Wurzel, zweispitzig, eine zweite Reihe kleinerer oder Ersatzzähne am Grunde der Hauptzähne; Oberer Rand der Augenhöhle mit Knochenplatten; freie Augenlider; Ohröffnung (Paukenfell) äußerlich sichtbar; Zunge lang, platt, vorn tief gespalten, sehr ausstreckbar, am Grunde ohne Scheide (Leydig).

Die zu der Familie der Lacertidace gehörenden Gattungen lassen sich folgenderweise eintheilen:

I. Nasenöffnungen hoch, in dem hinteren unteren Winkel des Nasenschildes, gerade oberhalb des Labialschildes, mit 1 oder 2 Schildern dahinter; Augenlider deutlich.

A. Zehen einfach, comprimirt, weder gekielt noch gefranst; Halsband deutlich.

a. Schuppen körnig oder sechsseitig, verlängert, 2 kleine hintere Nasenschilder, das eine oberhalb des anderen.
Unteres Augenlid opak; Kinnfalte deutlich;
Unteres Augenlid transparent 2. Gatt. Thelida.
Unteres Augenlid opak, Kinnfalte deutlich;
Abdominalschilder vierseitig 3. Gatt. Teira.
Unteres Augenlid opak; Kinnfalte undeutlich;
Abdominalschilder hinten schmal; Praeanal-

b. Schuppen rhombisch; gekielt, 2 kleine, hintere Nasalschilder, das eine über dem anderen.
Halsband und Halsfalte deutlich 5. Gatt. Notopholis.

c. Schuppen rhombisch; gekielt, hinteres Nasenschild einfach, Halsband undeutlich.
Ventralschilder rundlich, dünn 9. Gatt. Algira.
B. Zehen unten gekielt, zuweilen an den Seiten gefranst, Schuppen gekielt; hinteres Nasale einfach.

II. Nasenöffnungen mit drei hoch angeschwollenen Schuppen, einer zwischen der Nasenöffnung und dem Labiale; Zehen unten gekielt oder an den Rändern gezähnelt.

a. Augenlider deutlich.
Halsband deutlich, Kehlfurche wenig deutlich; Zehen auf der Unterseite gekielt; Schenkelporen in der Analgegend durch einen Zwischenraum getrennt ... 14. Gatt. Podarcis.

b. Augenlider rudimentär, Augen rund, gross.
Zehen etwas comprimirt, unten gekielt, an den Seiten nicht gezähnelt ... 17. Gatt. Ophiops.
c. Keine Augenlider.
Nasenöffnung zwischen zwei Schildern ... 18. Gatt. Chondrophiops.

24. Gattung Lacerta (Linn.) Cuvier.

Kopf und Bauch mit Schildern; Rücken schuppig; Schuppen um den Rumpf in Ringe gestellt, was am Schwänze zum rein Quirlförmigen wird; ein Halskragen von grösseren Schuppen; Krallen seitlich zusammengedrückt, sichelförmig, unten mit Rinne.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>— — — —</td>
<td>— — — —</td>
<td>1. 2. — —</td>
<td>1. 2. — —</td>
<td>— — — —</td>
<td>— — — —</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 20 Arten bekannt, von welchen 15 zu den palaearktischen und 4 zu den aethiopischen Subregionen gehören, eine Art L. (Zootoca) Derbiana soll in Australien leben, doch scheint dies
Klassification und geograph. Verbreitung.

sehr fraglich zu sein. — Zu den gemeinsamen europäischen Arten gehören: L. viridis, agilis, muralis und vivipara.

Die grosse oder grüne Eidechse: Lacerta viridis, kennzeichnet sich nach Leydig folgenderweise: Länge bis 15 Zoll. Kopf kräftig, dick; Schwanz, wenn vollständig, am längsten unter den einheimischen Arten, zweimal so lang als der übrige Körper; Gaumenzähne; von den vier Zügel- schildern die zwei vorderen gerade übereinander; Occipitalschild dreieckig und sehr klein; Schläfengegend mit unregelmässigen Schil dern und Schuppen; Unterschied zwischen den Schuppen des Rückens und der Seiten gering. Von den Schuppenringen des Rumpfes gehen zwei auf eine Reihe der Bauchschilder, letztere in acht Längsreihen, die am Rande jederseits sehr schmal sind; Krallen der Vorderfüsse bis viermal länger als breit; Krallen der Hinterfüsse bis dreimal länger als breit. Grundfarbe der Rückenseite grün oder braun, ohne oder mit Flecken und Streifenbildung; die hintere Hälfte des Schwanzes grau oder braun; Bauchseite immer gelblich (gelb- grün oder gelbweiss) und ohne Flecken; Schenkelporen 16—20.

Vorkommen. Lacerta viridis gehört den Ländern der Mittelmeer- küste an und erstreckt sich von da nordwärts ziemlich weit nach Mittel- und Osteuropa, sowie nach Westasien hinein. Was die Länder am südlichen Rande des Mittelmeeres betrifft, so ist es zweifelhaft, ob sie sich in Algier vorfindet. In Portugal wird ihr Vorkommen von Barboza du Bocage erwähnt; in Südfrankreich ziemlich allgemein verbreitet sie sich weit über das Land nordwärts, sie ist noch häufig bei Lyon, wird aber bei Paris selten. Im Gebirgsstock des Montblanc, an dessen südlichen Lagen sie ebenfalls sich findet, steigt sie selten über 600 Meter. Von Frankreich geht der Zug des Thieres in die Westschweiz (Wallis und Waadt). In der übrigen Schweiz fehlt sie nördlich vom Gotthard, ist dagegen an ganzen Süßabhang der Alpen vorhanden, sie erhebt sich hier bis zu einer Höhe von 4000 Fuss an den Bergen hinauf.

In Italien ist L. viridis sehr zahlreich und scheint sich durch dies ganze Land und seine Inseln zu erstrecken, dagegen fehlt sie auf der Insel Sardinien. Nordwärts steigt sie in die Thäler der südlichen Schweiz, des südlichen Tirols und der venetianischen Alpen, an einzelnen Orten ist sie hier selbst noch ziemlich häufig. Nach Schreiber (Herp. europ.) ist sie von der Schweiz aus längs des Oberrheines etwa bis zu den unteren Maingegenden vorgedrungen und geht auch von Ungarn aus die Donau hinauf nach Oesterreich über, wo sie namentlich in der Wiener Gegend nicht selten, einzeln aber bis an die bayerische Grenze noch zu finden ist.

Weiter lebt die grüne Eidechse in Dalmatien, in Griechenland und auf den griechischen Inseln, wo sie hin und wieder eine erstaunliche Grösse erreicht. In Ungarn scheint sie ebenfalls weit verbreitet zu sein und auch in Galizien und in der Bukowina ist sie nicht selten. Sie fehlt ebenfalls nicht in Siebenbürgen, in den östlichen Theilen Slavoniens, in der Nähe der Theissmündungen und nächst den Mündungen der Donau. Sie geht dann um das schwarze Meer herum, weiter östlich kommt sie vor in der

Dagegen kommt Lacerta viridis in Schweden, Dänemark und in den Niederländern bestimmt nicht vor und scheint auch in Belgien zu fehlen.

Lacerta agilis (Linn.) Wolf.

Die Kennzeichen von Lacerta agilis sind nach Leydig folgende: Länge bis 8 Zoll, gewöhnlich nur 5—6 Zoll; Kopf von besonders dicklichem, gedrungenem, stumpschnauzigem Wesen. Schwanz, wenn vollständig, ein und ein halb mal so lang als der übrige Körper. Gaumenzähne vorhanden. Von den vier Zügelschildern die drei vorderen im Dreieck stehend; Occipitalschild klein, trapezförmig; Schlätengegend mit unregelmässigen Schildern, mitunter ein grösseres in der Mitte; Unterschied zwischen den Schuppen des Rückens und der Seiten gross; von den Schuppengürteln des Rumpfes geben zwei auf eine Reihe der Bauchschilder; letztere in acht Längsreihen. Krallen der Vorderfüsse dreimal länger als breit an der Wurzel; Krallen der Hinterfüsse etwas über zweimal so lang als breit; Grundfarbe der Rückenseite graubraun oder grün; der Scheitel, ein Streifen mitten auf dem Rücken, der Schwanz immer braun; Bauchseite gelblich oder grünlich mit kleinen schwarzen Flecken oder Punkten; Schenkelporen 11 bis 14.

Vorkommen. Eine sorgfältige Prüfung zeigt nach Leydig, dass Lacerta agilis eine beschränktere Verbreitung hat, als L. viridis, vivipara und muralis. Allererst scheint sie im südlichen Europa ganz zu fehlen. In Frankreich scheint sie nur in der Umgebung von Paris vorzukommen, in Belgien soll sie selten sein. In Italien fehlt sie ganz, ebenfalls in Dalmatien. Was die Schweiz angeht, so soll sie nicht allein in dem nördlichen und mittleren, sondern selbst auch in dem südlichen Theil die Ebenen und das Hügelland bewohnen; es ist aber sehr fraglich, ob sie wirklich in dem südlichen Theil vorkommt, wie Tschudi angiebt. Lacerta agilis zieht ferner durch ganz Deutschland und hält sich am liebsten an sonnigen Hainen, an Berghalden u. s. w. auf. Sie mangelt auch nicht im Norden von Deutschland, ebensowenig in Dänemark. Sie lebt weiter in Norwegen, wo Mehwald sie noch in 63° gesehen hat, und in Finnland (in den Umgebungen von Svir). Sie bewohnt weiter die Niederlande, besonders in den sandigen Dünen; kommt weiter auch in Schweden vor, ferner in Russland, wo sie selbst über das ganze asiatische Russland sich verbreitet; auch wird sie im Gebiet des Kaukasus angetroffen. Aus alldem ergiebt sich also, dass Lacerta agilis besonders Mitteleuropa und Osteuropa bewohnt.
Was ihre verticale Verbreitung betrifft, so fand Leydig dieselbe im Hochgebirge immerhin bis etwa 2000 Fuss, was um so schärfer betont werden müsste, als sonst allgemein der Satz gilt, dass Lacerta agilis nur die Ebene und die Hügelregion bewohnt.

Lacerta vivipara Jac. Quen.

Vorkommen. *Lacerta vivipara* lebt im nördlichen Spanien, in Frankreich ist sie aus verschiedenen Gegenden bekannt, besonders erwähnenswerth ist ihr Vorkommen in ziemlicher Menge noch ganz nahe am Meere, so z. B. auf den Sanddünen bei Bologne. In Belgien ist sie zunächst Bewohnerin waldischer, bergiger Gegenden, besonders der Ardennen, aber das Thierehen findet sich auch auf den Sanddünen bei Ostende. Dagegen ist sie bis jetzt in den Sanddünen von Holland nicht angetroffen.

Lacerta vivipara steigt weiter hoch im Gebirge binauf. Leydig sammelte dieselbe an den Grünten, bis nahe zum Gipfel (5614'), Heer soll sie selbst in der Nähe des Umbrells in einer Höhe von 9134' angetroffen haben.

Lacerta muralis, die Mauereidechse, ist als eine südlche Art anzusprechen, welche ihre eigentliche Heimath in den Ländern um das Mittelmeerbecken hat und von da in grösserer Ausdehnung nordwärts vorgedrungen ist.

Von Nordafrika wissen wir, dass sie in Algerien sehr allgemein ist; in Portugal, Spanien, Frankreich und Italien kommt sie stellenweise in erstaunlicher Menge vor. Auf den Liparischen Inseln ist L. muralis das einzige lebende Reptil; sie fehlt auch auf Sardinien nicht. Ebenfalls sehr allgemein ist sie in Dalmatien, sowie in Griechenland. Noch sehr häufig auf dem warmen Boden Südtirols, geht sie zwar weit in die Thäler binauf und selbst auf die Berge, überschreitet aber die Alpen nicht, sie steigt aber bis zu einer Höhe von 5000 Fuss über das Meer die Berge hinauf. In Deutschland kommt die in Rede stehende Art nur in zwei Strichen vor, im Gebiete des Rheins und des Donauthales bei Wien. Sie erstreckt sich übrigens nicht gleichmassig durch das ganze Gebiet des Oberrheins, es giebt Stellen, wo sie fehlt, so z. B. an der Bergstrasse und auch in der Umgebung von Freiburg soll sie selten sein.

Sowohl von Lacerta agilis als von Lacerta vivipara, viridis und muralis werden sehr zahlreiche Varietäten unterschieden, die hier nicht alle zu verzeichnen sind.
Zu den europäischen Lacerta-Arten gehören weiter: *Lacerta oxycephala* Dumeril et Bibron, die Dalmatien und Spanien bewohnt und auch auf Corsica und in den Abruzzen vorzukommen scheint; *L. taurica* Pallas, die im südlichen Russland, in der Krim und in den Kaukasus-Gegenden häufig und auch in Griechenland nicht selten ist; *L. ocellata* Tschudi, die grösste und stärkste aller europäischen Lacertae, die von Nissa ab durch ganz Süd-Frankreich und die pyrenäische Halbinsel angetroffen wird, von wo sie auch auf das nördliche Afrika übergeht (Schreiber).

25. Gattung *Thetia* Gray.

(*Thetia* Gray, Cat. Liz. p. 32.)

Nasenöffnungen zwischen dem vorderen und den beiden hinteren Nasenplatten; unteres Augenlid durchscheinend; Hals mit einer wenig starken Falte unter den Ohröffnungen; Halsband schwach entwickelt, nicht gezähmt; Schläfen mit Schuppen bedeckt; Schuppen des Rückens rund, glatt, körnig; Præanalschild einfach, von kleineren Schildern umgeben.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *Th. perspicillata* von Algier.

(*Teira* Gray, Cat. Liz. p. 33.)

Nasenöffnungen hoch, in dem hinteren unteren Winkel der Nasenplatte; unteres Augenlid opak; Hals mit einer dünnen Falte unter den Ohröffnungen, mit kleinen Schuppen; Halsband deutlich; Abdominalplatten alle viereckig, mit parallelen Seiten; Schläfen-Schuppen gekielt, gleichförmig; Rückenschuppen rund, granulirt, glatt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt nur 2 Arten bekannt.

27. Gattung *Nucras* Gray.

(*Nucras* Gray; Cat. Liz. — *Eremias* Gray z. Th.)
Nasenöffnungen lateral, in dem hinteren unteren Rande des Nasenschildes, mit zwei hinteren Nasenschildern; unteres Augenlid opak; Hals ohne Falten unter den Ohröffnungen; Halsband deutlich; Abdominalplatten rhombisch; Schläfen mit gekielten Schuppen bedeckt; zwei dreieckige kleine Praeanalplatten, die eine hinter der anderen jederseits mit einem ovalen, vierseitigen Schilde.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt, von welchen 2 zu den palaearktischen und 2 zu den aethiopischen Subregionen gehören.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

Zwischen *Notopholis* und *Tropidosaura*; ein einzelnes Naso-frenale
wie bei *Tropidosaura*: Bauchplatten in 6 longitudinalen Reihen, die mittlere Reihe jederseits besonders in die Quere erweitert; Halsband verwischt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Z. Blanci* aus Algerien.

30. **Gattung Tropidosaura Boie.**

Nasenöffnungen lateral, in dem unteren hinteren Winkel der Nasenplatten, mit zwei Platten hinter denselben. Augenlid deutlich, unteres schuppig; Schläfen mit kleinen, gleichen Schuppen; Halsband undeutlich, aber jederseits eine Falte vor der Schulter; Schilder des Halses, der Brust und des Bauches dünn, klein, sechseitig, die Hinterränder abgerundet.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *T. montana*, Java.

31. **Gattung Ichnotropis Peters.**

Tropidosaurae similis, sed hypodactyla carinata, nares inter sentella tria posita.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt 2 Arten bekannt.

32. **Gattung Algira Cuvier.**

(*Algira* Cuvier, Gray, Cat. Liz. p. 35. — *Tropidosaura* Duméril et Bibron, Erpét. génér. T. V. p. 35.)

Nasenöffnungen lateral, hoch, im unteren hinteren Winkel der Nasenplatte, mit einem einfachen, hinteren Nasenschild. Schläfen mit gekielten
Schuppen; Zehen etwas comprimirt, glatt, unten mit einer einfachen Reihe Schindelschuppen; Schilder vom Halse und Bauch dünn, glatt, sechsseitig; kein Halsband, am Nacken jederseits eine Falte. Praeanalschilder zahlreich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt, von welchen 2 zu den aethiopischen und 2 zu den palaearktischen Subregionen gehören.

33. Gattung *Acanthodactylus* Fitzinger.

Nasenöffnungen lateral, abgerundet, im unteren hinteren Winkel des Nasenschildes; Gaumen ohne Zähne; Augenlid deutlich, schuppig; Halsband deutlich, schuppig; Schuppen des Rückens rhomboidal, geschindelt, glatt oder gekielt. Ventralscilde rhombisch; Zehen 5,5, etwas comprimiert, unten gekielt, an den Seiten gezähnelt; Praeanalschilder zahlreich, die centralen oft hinter einander angeordnet.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.</td>
<td></td>
<td>1.</td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 13 Arten bekannt, von welchen 8 zu den palaearktischen, 2 zu den aethiopischen, 2 zu den orientalischen Subregionen gehören, und von einer Art ist das Vaterland unbekannt.

Von den 8 palaearktischen Arten leben *A. vulgaris* Dum. et Bibr., *A. Savignyi* Aud. und *A. linconmaculatus* auch in Europa. Erstgenannte Art lebt in Spanien, vielleicht auch im südlichen Russland; *A. Savignyi* bewohnt die Krim und findet sich ausserdem im nördlichen Afrika; *A. vulgaris* bewohnt die pyrenäische Halbinsel. Von Spanien aus geht dann das Thier in das südliche Frankreich und in die benachbarten italienischen Küstenländer und bewohnt ausserdem Nordafrika (Schreiber).

34. Gattung *Pachyrhynceus* Barboza du Bocage.

B r o n n , Klassen des Thier-Reichs. VI. 3.

69

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: P. Anchietae von Mossamides.

35. Gattung Psammodromus Fitzinger.

Nasenöffnungen lateral, in dem unteren hinteren Winkel einer flachen Schuppe oberhalb des ersten Labiale, mit einem einfachen Schild dahinter; Augenlid deutlich, schuppig; Schuppen des Rückens rhombisch, gekielt, geschindelt. Hals mit einer deutlichen Falte, mit kleinen Schuppen bedeckt; kein Halsband, aber eine kleine Falte vor jedem Schultergürtel; Ventralschilder viereitig; glatt; Zehen 5,5, etwas comprimirt, unten gekielt, an den Seiten nicht gezähnelt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt; eine derselben, Ps. hispanicus Fitzinger, bewohnt die ganze pyrenäische Halbinsel, sowie Südfrankreich und die darangrenzenden italienischen Küstenländer.

Nasenlöcher seitlich; Augenlider feinschuppig; Zunge mit geschindelten, schuppenartigen Warzen bedeckt; Rostrale gross; Frontonasalia nach innen verengt; Frontoparietalia von der Grösse der Frontonasalia; Interparietale deltoidisch; Oecipitale nicht vorhanden. Von den Supraocularplatten sind nur die zwei mittleren vorhanden, welche zusammen einen eiförmigen Discus palpebralis bilden. Das Nasorostrale bildet mit den zwei Nasofrenalen einen ringförmigen Wulst, auf dessen Höhe die Nasenlöcher stehen; Schläfen mit feinen Körnerschuppen; Kehlfurche wenig deutlich; Halsband sehr deutlich; Rückenschuppen klein, in deutlichen Querreihen; Bauchschilder zahlreich, viereckig; Zehen auf der Unterseite gekielt; Schenkelporen in der Analregion durch einen Zwischenraum getrennt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Von der Gattung Podarcis sind bis jetzt 37 Arten bekannt, von diesen gehören 15 zu den paläarktischen, 18 zu den aethiopischen, 2 zu den orientalischen Subregionen, von einer Art ist das Vaterland unbekannt.

Wenn man die beidenGattungen Eremias und Scapteira aufrecht erhalten und nicht zu der einen Gattung Podarcis Wagler vereinigen will, dann kommen zu der Gattung Scapteira 5 Arten und alle übrigen zu der Gattung Eremias.

Die Kennzeichen der Gattung Scapteira sind folgende: Nasenöffnungen zwischen drei Naseplatten, die untere und vordere mässig, die hintere obere klein, dreieckig; Augenlider deutlich; Halsband mit sehr wenig kleinen Schuppen; Schuppen des Rückens rund, nicht geschindelt; Ventralnieder viereckig; Praeanalschilder klein, zahlreich, fast gleich; Zehen 5,5, abgeplattet, unten glatt, an den Seiten gezähnelt.

Die Kennzeichen der Gattung Eremias sind: Nasenöffnungen wie bei Scapteira. Augenlider deutlich, unteres schuppig, opak, oder mit zwei oder mehreren durchscheinenden Öffnungen. Halsband deutlich, frei; Hals mit einer schwachen Falte unter den Ohröffnungen, Ventralnieder viereckig, glatt; Zehen 5,5, etwas comprimirt, unten gekielt, an den Rändern nicht gezähnelt; Praeanalschilder zahlreich. — Peters, der die Gattung Eremias als eigene Gattung betrachtet, unterscheidet in derselben wieder eine Unter­gattung, Saurites, die von Eremias durch die gekielten grossen Schuppen der Extremitäten und der unteren Schwanzseite, sowie durch die sehr viel 69*
Klassifikation und geograph. Verbreitung.

kleineren Schuppen am hinteren Theile der Brust und am Anfange de Ventralgegend verschieden ist.

37. Gattung Mesalina Gray.

Kopf etwas deprimirt; Nasenöffnungen wie bei Eremias und Scapteira; Augenlider deutlich; Halsband undeutlich, in der Mitte angewachsen, an den Seiten frei; Hals ohne jede Spur von Falte; Ventral schilder glatt; Rückenschuppen rhombisch oder rund, nicht geschindelt; Zehen 5,5, etwas comprimirt, unten gekielt, an den Rändern nicht gezähnt; Praeanalschild einfach, gross, mit 1 oder 2 Reihen von kleineren, runden dahinter.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>2.</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 5 Arten bekannt; von diesen gehören vier zu den palaearktischen Subregionen und eine, M. Balfouri, zu den aethiopischen Subregionen; letztgennannte Art lebt auf der Insel Socotra.

38. Gattung Cabrita Gray.
(Cabrita Gray, Cat. Liz. p. 43. — Callosaura Duméril et Bibron, Erpét. génér. T. V.)

Nasenöffnungen auf dem keilförmigen Rande zwischen einer oberen und unteren Nasenplatte, mit einem kleinen hinteren Nasenschild; oberes Augenlid kurz, unteres gross, mit einer transparenten Scheibe; kein Halsband; eine kleine Falte vorn an jeder Schulte; Halsfalte undeutlich; Rückenschuppen rhombisch, gekielt, geschindelt; Ventral schilder vierseitig, glatt; Praeanalschild einfach, von kleineren umgeben; Femoralporen deutlich, schwach comprimirt, unten gekielt, an den Seiten nicht gezähnt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: C. Leschenaultii

(Ophiops Gray, Cat. Liz. p. 44. — Duméril et Bibron, Erpét. génér. T. V. p. 257. — Amystes Wiegmann, Herp. mexicana.)

Nasenöffnungen longitudinal, in dem keilförmigen Rande zwischen einem oberen und unteren Nasenschild, mit 3 kleinen Schildern dahinter; keine Augenlider; Zunge verlängert; Oberkieferzähne dreispitzig; Gaumen ohne Zähne; kein Halsband, jederseits eine kleine Falte vor jeder Schulter; Schuppen des Rückens gekielt, geschindelt, rhombisch; Ventralskörper vierseitig, rhombisch, glatt; Femoralporen deutlich; Zehen 5,5, etwas com-primirt, unten gekielt, an den Seiten nicht gezähnelt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt, von welchen auch eine Europa bewohnt, Ophiops elegans Menét; dieselbe findet sich in Südrußland gegen den Caspisee, sowie auch in der Türkei, von wo aus sie auf das benachbarte Asien übergelangt.

40. Gattung Chondrophyops Blanford.

Nares inter dua scuta inflata, uno superiori, alto inferiori posita, scuto tertio posteriori ad narem fere atingente, palpebrae nullae.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

41. Gattung Poriodogaster Peters.

Klassifikation und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>— 2.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. Grayi* von Panama.

Duméril et Bocourt (Mission scient. au Mexique) halten *Poriodactylus Peters* (*Poriodactylus Gray*) für synonym mit *Lepidophyma Duméril*, was mir jedoch sehr zweifelhaft erscheint.

42. Gattung *Trachelopylechus* Peters.

Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Afriopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: T. madagascariensis von St. Augustin Bay (Madagascar).

6. Familie Holaspidae.

Der Familie der Lacertinidae verwandt, von ihr durch die Form des Schwanzes und die Eigenthümlichkeit der Schuppen unterschieden.

43. Gattung Holaspis Smith.

Allgemeine Verbreitung.

Vaterland unbekannt.

Bis jetzt nur eine Art bekannt: H. Guenteri.
7. Familie Xantusidae.

44. Gattung Xantusia Spencer J. Baird.

Körperform der Lacerten; weder Kamm noch Dornen; Kopf mit sehr grossen, polygonalen Schildern; Schuppen am Rücken klein, granulartig; die des Bauches gross, viereckig, in Querreihen; Zunge breit, linear, nicht retractil, mit Ausnahme der nur schwach gekerbten Spitze fest angeheftet, am Grunde nicht ausgerandet; die Oberfläche der Zunge mit einer Reihe schiefer convergirender Streifen jederseits; Zähne einfach, pleurodont; Finger unterhalb mit einer Reihe querer glatter Lamellen. Körper schlank, cylindrisch. Schenkelporen vorhanden, drei Kehlfalten, verticale Pupille, keine Augenlider.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: X. vigilis aus Californien.

Kopf pyramidal, oder deprimirt, mit regelmässig vielseitigen Schildern bedeckt; Zunge platt, an der Spitze eingeschnitten; Schuppen des Rückens und Schwanzes gross, rhombisch; Seiten mit einer deutlichen longitudinalen Falte, mit kleinen Körnerschuppen bedeckt; Ohröffnungen deutlich; Augen mit zwei klappenförmigen Augenlidern; Gliedmassen 4, selten fehlend oder unter der Haut verborgen.

Unter zu Grundelegung der Gray'schen Eintheilung der Zonuridae lassen sich die zu dieser Familie gehörenden Gattungen folgenderweise unterscheiden:

A. Femoralporen deutlich; Nasenschilder ohne oder nur mit einem Paare Supranasalia; 4 Gliedmassen, Occipitalschilder gering an Zahl.

a. Schwanz dornig, Kopf deprimirt; Frontoparietal- und Parietalplatte ein grosses Viereck bildend; Zunge sammetähnlich; kein Halsband, eine schwache Falte jederseits des Nackens; Femoralporen zahlreich.

Schuppen des Rückens und der Seiten viereckig, in dichten queren Reihen; unteres Augenlid durchscheinend; Nasale klein; Supranasalia viereckig 1.Gatt. Cordylus.
Schuppen des Rückens und der Seiten viereckig, gekielt, in dichten queren Reihen, unteres Augenlid opak, Nasale dreieckig, kein Supranasale.

Schuppen des Rückens klein, viereckig, in queren Reihen, die der Seiten körnig; Nasale dreieckig, kein Supranasale.

b. Schwanz nicht gewaffnet; Kopf pyramidal, Zunge schuppig, kein Supranasale.

Zehen 5,5; Kopf deprimirt, 2 Frontonasalia, Frontoparietalia und Parietalia deutlich, Körper spindelförmig.

5. Gatt. Platysaurus.

Zehen 5,5; Kopf viereckig, 2 Frontonasalia; Frontoparietale und Parietale jederseits vereinigt, Körper spindelförmig.

Zehen 5,5; Kopf viereckig, 2 Frontonasalia, Frontoparietalia und Parietalia deutlich, Körper spindelförmig.

Zehen 5,5; Kopf zusammengedrückt, verlängert, Interparietalschild fehlend.

Zehen 5,5, Kopf viereckig, keine Frontonasalia, Frontoparietale und Parietale vereinigt; Körper und Schwanz verlängert.

Zehen 4,4; sehr kurz, Körper und Schwanz verlängert.

Füße ungetheilt, die vorderen sehr schlank, verlängert, die hinteren comprimirt, dick; Körper und Schwanz verlängert, 2 Femoralporen.

c. Schwanz ungewaffnet, Kopf pyramidal verlängert, Halsband deutlich, von gekielten Schuppen, 2 Inguinalporen.

Ventralsschilder gekielt; Hals mit gekielten Schuppen.

4. Gliedmassen; Körper spindelförmig, Zunge sammetartig.

Ventralsschilder glatt, Hals vorn körnig.

B. Keine Femoralporen; Nasenplatten mit 2 oder mehreren Paaren von Supranasalschildern oberhalb desselben, Occipitalplatten zahlreich, kein Halsband; Hals beschildert.

a. 4 Gliedmassen; Körper spindelförmig, Zunge sammetartig.

Kopf deprimirt; Internasalplatten klein, deutlich, Schuppen des Rückens glatt.

Kopf pyramidal; Internasale gross; Supernasale sehr schmal; Schuppen des Rückens gekielt; die der Seite glatt; Schwanz lang, schlank. 16. Gatt. Elgeria.

Kopf pyramidal; kein Internasale; Schuppen des Rückens gekielt. 17. Gatt. Barissia.

45. Gattung Cordylus Gray.

(Cordylus Gray, Cat. Liz. p. 47. — Zonurus Duméril et Bibron, Erpét. génér. T. V. p. 357.)

Kopf deprimirt; Frontoparietal- und Parietalplatten ein Viereck bildend; Schläfen schnupper gekielt; Nasale klein, oval, Supranasale gross; viereckig, Augenlider deutlich, unteres Augenlid mit einem durchscheinenden, centralen, glatten Fleck; Schuppen des Rückens massig, rhombisch, gekielt, gestreift, in dichten, starken Reihen; Zehen 5,5; massig, unten gekielt; Schwanz viereckig, am Ende spitz.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur zwei Arten bekannt.

46. Gattung Zonurus Gray.

Kopf deprimirt, Frontoparietal- und Parietalplatten gross, ein Viereck bildend; Interparietale viereckig; Schläfen-Schilder gekielt; Nasale dreieckig, mit dem der anderen Seite im Zusammenhang; kein Supranasale; Augenlider deutlich, unteres opak, schuppig, mit einer centralen longitudinalen Reihe von grossen, 6seitigen Schuppen; Schuppen des Rückens und der Seiten viereckig, gekielt, in dichten, starken Reihen; Zehen 5,5, comprimirt, unten gekielt, Schwanz rund.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt fünf Arten bekannt; alle aus den aethiopischen Subregionen.
47. Gattung *Hemicordylus* Smith.

Kopf deprimirt; Frontoparietal- und Parietalplatten gross; Schläfen- schuppen glatt; Kehle mit einer deutlichen Falte jederseits; Nacken granulirt; Gaumen ohne Zähne; Nasale dreieckig, kein Supranasale; Schuppen des Rückens klein; viereckig, gekielt, halb geschindelt, in geschlossenen queren Reihen, auf den Seiten Körnerschuppen, mit einer Reihe grösserer Schuppen. Zehen 5,5, comprimirt, unten gekielt; unteres Augenlid schuppig.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *H. capensis* von Süd-Afrika.

48. Gattung *Pseudocordylus* Smith.

(*Pseudocordylus* Smith, Illustr. of the Zoology of South-Afrika 1844 — Gray Cat. Liz. p. 48.)

Kopf deprimirt; Frontoparietal- und Parietalplatten gross; Schläfen- schuppen glatt; Nacken granulirt, mit einer Falte jederseits. Hals mit einem undeutlichen Halsband in der Mitte und einer deutlichen Falte jederseits; Gaumen ohne Zähne; Nasale dreieckig, kein Supranasale; Augenlider deutlich, unteres Augenlid opak; Schuppen des Rückens und der Seiten Körnerschuppen, mit transversalen Reihen von dreieckigen, convexen, schwach gekielten grösseren Schuppen, am grösssten auf den Seiten des Rückens; Zehen 5,5, comprimirt, unten gekielt; Schwanz comprimirt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt *P. microlepidotus* von Süd-Afrika.

49. Gattung *Platysaurus* Smith.

(*Platysaurus* Smith, Illustrations of the Zoology of South-Afrika 1844.) Zähne kurz, zahlreich, schmal, Nasenlöcher kreisförmig; am hinteren und unteren Rande des Nasen-Schnauzenschildes; Stirnplatte einfach,
Frontoparietalplatten vier wie bei Cordylus; Palpebralplatten wie bei Gerrhosaurus; Körper flach; Schuppen sehr klein; am Bauche viereckig und in Querreihen, Schenkelporen klein, aber deutlich; Kehlfalte rudimentär.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *P. capensis* von Namaqualand.

50. Gattung Cicigna Gray.

Kopf vierseitig; Frontonasale deutlich; Frontoparietale und Parietalia jederseits verbunden; Interparietale klein, central oder fehlend; Schläfen beschuppt; Gaumen ohne Zähne; Nasenöffnungen lateral zwischen dem oberen Labiale und einem vorderen und hinteren Schild; Augenlider deutlich; Schuppen des Rückens viereckig in queren Reihen; Körper spindelförmig; Zehen 5,5, ungleich comprimirt, unten glatt; Femoralporen deutlich; Schwanz etwas comprimirt, nicht bewaffnet.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt zwei Arten bekannt von Madagaskar.

51. Gattung Gerrhosaurus Wiegmann.

Kopf pyramidal; 2 Frontoparietalia; Frontonasal- und Parietalplatten getrennt, ungleich; Interparietale klein; Schläfen beschuppt; Gaumen ohne Zähne, Nasenöffnungen lateral, zwischen dem oberen Labiale und einem vorderen und hinteren Nasenschild; Augen deutlich; Schuppen des Rückens viereckig, in queren Reihen; Körper spindelförmig; Zehen 5,5, ungleich, comprimirt, unten glatt; Femoralporen deutlich; Schwanz etwas comprimirt, unbewaffnet.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 12 Arten bekannt.
Reptilien.

(Cordylosaurus Gray, Proc. zool. Soc. p. 641, 1865.)

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, C. trivirgatus vom Damaraland.

53. Gattung Pleurostichus Gray.

Kopf pyramidal; Internasale gross, Frontonasale fehlend oder mit dem Internasale verbunden; Frontoparietale und Parietale getrennt; Nasenöffnungen lateral; Augenlider deutlich; Ohröffnungen vorn mit einer langen, schmalen Schuppe; Körper verlängert, subeylindrisch; Zehen 5,5, ungleich; Schwanz verlängert.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

54. Gattung Saurophis Fitzinger.

Klassifikation und geograph. Verbreitung.

Kopf pyramidal, beschildet; Schläfen beschildet; Gaumen zahnlos; Nasenöffnungen lateral, in dem oberen Labiale; eine vordere und hintere Nasenplatte; Augenlider deutlich; Ohrauffnung vorn mit einem Anhang; Körper sehr lang, schmal; Seiten mit einer Furche; Schuppen des Rückens rhombisch, glatt; Gliedmassen sehr kurz; Zehen 4,4, kurz, comprimirt, oben glatt; Krallen verlängert; Femoralporen deutlich.

Bis jetzt nur eine Art bekannt, *S. tetradactylus*, Vaterland unbekannt.

55. Gattung *Caitia* Gray.

(*Caitia* Gray, Cat. Liz. p. 52.)

Kopf pyramidal, Körper sehr lang, subeylindrisch, Gliedmassen ungetheilt, rudimentär; vordere Gliedmassen sehr schlank, verlängert; Hinterfuss kurz, comprimirt, dick, ungetheilt, 2 grosse Femoralporen an jedem Schenkel; Schwanz sehr lang, spitzzulaufend, schlank.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>

Nur eine Art bekannt, *C. africana* vom Cap.

56. Gattung *Tachydromus* Daudin.

Nasenöffnungen in einer einzigen Platte; Augenlider deutlich; Halsband schuppig; Schuppen des Rückens gekielt, in queren Reihen; auf den Seiten Körnerschuppen; am Bauche und Halse Schindel- und Kiel- schuppen; 2 deutliche Inguinalporen; Zehen 5,5, schwach comprimirt, unten nicht gekielt, Schwanz sehr lang, mit rhombischen Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
<td>3. 4.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

57. Gattung *Tachysaurus* Gray.

(*Tachysaurus* Gray, Cat. Liz. p. 52. — *Tachydromus* z. Th. Duménil et Bibron, Erpt. génér. T. V.)

Hals mit Körnerschuppen, in den mittleren Partien mit gekielten Schuppen; Halsband mit gezähnelt rhombisch gekielten Schuppen; Bauschilder verlängert, die lateralen gekielt.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *T. japonicus* von Japan.

58. Gattung *Abronia* Gray.

(*Abronia* Gray, Cat. Liz. p. 53. — *Gerrhonotus* z. Th. Wiegmann, Herp. mexic.)

Kopf deprimirt; Internasale klein, 2 Supernasalia, mässig zusammenhängend; Frontonasale, Frontoparietale und Interparietale deutlich, einander fast gleich; Parietale etwas grösser; Occipitalschilder zahlreich; Augenlider deutlich; Schuppen des Rückens und Schwanzes glatt oder schwach gekielt; Körper spindelförmig, mit einer Furche jederseits; Zehen 5,5, unten glatt; keine Femoralporen; Schwanz rund, spitzzulaufend, eben so lang als der Körper.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt zwei Arten bekannt, beide von Mexico.

59. Gattung *Gerrhonotus* Wiegmann.

Kopf pyramidal; Internasale, Supernasale und der Rest der Schilder klein; Occipitalschilder zahlreich, klein; Augenlider deutlich; Schuppen von Rücken und Schwanz unbewaffnet, die Kiele bilden continuirliche Reihen; Körper spindelförmig, mit einer Furche jederseits; Zehen 5,5, unten glatt; keine Femoralporen; Schwanz rund, spitzzulaufend, so lang wie der Körper.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Kopf deprimirt, Occipital- und Temporalschilder mehr oder weniger angeschwollen, Schuppen an Rücken und Seiten schwach gekielt und glatt *Abronia*.

1103
II. Kopf nicht deprimirt, Occipital-Schilder nicht vor-

stehend. Schuppen des Rückens gekielt, die Kiele

bilden Längsleisten Gerrhonotus.

Cope (Proc. Amer. phil. Soc. T. XVII. p. 96, 1877) spaltet die

Gattung Gerrhonotus in vier Gattungen, die er folgender Weise unter-

scheidet.

Drei Paar Internasalschilder. Inter-

frontonasalia und Frontonasalia vor-

handen 1. Pterogasterus Peale & Green.

Zwei Paar Internasalia, Interfronto-

nasalia und Frontonasalia vorhanden

Zwei Paar Internasalia, Interfronto-

nasalia vorhanden, Frontonasalia

fehlend 3. Mesaspis Cope.

Zwei Paar Internasalia, Interfronto-

nasalia fehlend. Frontonasalia vor-

handen 4. Barissia Gray.

Zu der Gattung Gerrhonotus gehören 20 Arten, von welchen 17 zu

den neotropischen und 3 zu den nearktischen Subregionen gehören.

Gerrhonotus monticola Cope von Costa Rica, bewohnt die Gipfel des

Gray betrachtet Barissia als eine eigene Gattung.

60. Gattung Elgeria Gray.

(Elgeria Gray, Cat. Liz. p. 54.)

Kopf pyramidal, beschildet; Internasale gross, rhombisch; 2 Paare

sehr schmale, bandförmige Supranasalia; Frontonasale und Frontoparietale

6 seitig; gleich; die Occipitalplatten schuppenähnlich; Schuppen des

Rückens und Schwanzes schwach gekielt, unbewaffnet; Gliedmassen

schwach; Zehen 5,5; Schwanz lang, spitz zulaufend, viel länger als der

Körper.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Von dieser Gattung sind bis jetzt 7 Arten bekannt, 3 aus den

neotropischen und 4 aus den nearktischen Subregionen.

61. Gattung Barissia Gray.

(Barissia Gray, Cat. Liz. p. 54. — Gerrhonotus z. Th. Wiegmann,

Herp. mexicana.)
Kopf pyramidal; Schilder convex; 2 oder 3 Paare Supranasalia, viereckig, zusammenhängend; kein Internasale; Frontonasale und Frontoparietale viereckig; Occipitalschilder gekielt; Schuppen des Rückens rund, gekielt und unbewaffnet; Zehen 5,5; Schwanz rund, so lang wie der Körper.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3.</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt, alle aus Mexico.

62. Gattung Pseudopus Merrem.

Körper und Schwanz lang, schlangenähnlich, Gliedmassen entweder fehlend, oder nur ein Paar rudimentärer hinterer Gliedmassen, Schuppen viereckig, in queren Reihen angeordnet.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3.</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gray (l. c.) definiert seine Gattungen *Pseudopus*, *Ophisaurus* und *Dopasia* folgenderweise.

Pseudopus.
Kopf pyramidal, vierseitig; Supranasalia zahlreich, bandförmig; Gaumenzähne; Nasenöffnungen lateral, in einer Nasenplatte; Ohren sehr klein, Körper verlängert; Seitengrube doppelt; nur rudimentäre, hintere Extremitäten.

Ophisaurus.
Kopf pyramidal; Supranasalschilder zahlreich, bandförmig; Nasenöffnungen lateral, in einer Nasenplatte; Ohren sehr klein; Augenlider deutlich; Gaumen mit zahlreichen Reihen von Zähnen, keine Gliedmassen; Körper schlangenförmig, mit 2 tiefen Gruben auf den Seiten.

63. Gattung *Dopasia* Gray.

Kopf pyramidal, Obernasalschilder klein, zahlreich, drei Paare, das erste Paar mit einer kleinen, centralen Superrostralschuppe, die hinteren Paare breiter; eine kleine centrale Frontalschuppe, mit einer grösseren Schuppe jederseits am Vorderrande der grossen, hinteren Frontalplatte; Nasenöffnungen lateral, in einer kleinen Nasenplatte; Ohroffenungen sehr klein, offen; Schläfen mit kleinen Schuppen bedeckt; Vertebralschild verlängert, von einer Reihe kleiner Schilder umgeben; Occipitalschild dreieckig, mit einem ovalen Schildende jederseits und einem kleinen dreieckigen dahinter. Augenlider deutlich, mit dünnen, dachziegelförmigen Schuppen bedeckt; Körper cylindrisch, mit einer tiefen Furche jederseits; Schuppen schwach gekielt, keine Gliedmassen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt, *D. gracilis* von Khassia Hills.

Kopf mit regelmässig vielseitigen Schildern bedeckt; Ohröffnungen entweder unter der äusseren Haut verborgen, oder sichtbar, aber dann tief eingesunken; Augenlider deutlich; Zunge schuppig; Gaumen ohne Zähne, 4 sehr kurze rudimentäre Gliedmassen; Schläfen mit Schildern bedeckt. Wohl einer der wichtigsten Charactere ist der Besitz einer Columella cranii (nach den Untersuchungen von Peters). Es ist dies
von Interesse, da die Chalcisidae unlugbar eine grosse, äussere Ahn
lichkeit mit den Amphisbaenoidae haben, so dass Wagler und Wiegm an
sie in derselben Familie vereinigten.

Die zu der Familie der Chalcisidae gehörenden Gattungen lassen
sich folgenderweise unterscheiden.

Bauchschilder viereckig .
Zehen, Rückenschuppen sechseckig . . .
Rückens viereckig .
viereckig .
denen von Chalcis verschieden . . .
kleinen, höckerähnlichen Zehen . . .
cylindrischen Zehen .

64. Gattung Lepidophyema Duméril.

(Lepidophyema Duméril, Catal. méthod. de la Coll. des Reptiles etc.
p. 157, 1852. — Revue et Magas de Zoologie p. 409, 1852.)

Nasenlöcher zwischen zwei Platten. Schuppen auf der oberen Seite
und auf den Seitenflächen des Körpers sehr klein; dazwischen Querreihen
spitzer Höcker; Bauchschilder viereckig; Kopfschilder wenig deutlich,
Augenlider rudimentär, keine Zähne am Gaumen, keine Schenkelporen,
keine Seitenfurche.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung nur zwei Arten bekannt.

(Brachypus Fitzinger, Neue Class. Rept. — Wiegm an, Herpet.
mexicana — Duméril et Bibron, Erpét. génér. T. V. p. 453. — Gray,
Cat. Liz. p. 57.)

Kopf mit zwei Internasalschildern; das Interparietale ebenso gross
als das Parietale; 4 Paare Palpebralschilder; Schuppen des Rückens
6 seitig; schmal, dünn, platt; Zehen 4, 4; mit Krallen.
Klassifikation und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. – 3.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

66. Gattung Microdactylus Tschudi.

(Microdactylus Tschudi. Gray, Cat. Liz. p. 57.)

Kopf mit einem Internasale; drei Paaren von Palpebralplatten, einem oblongen, dreieckigen Interparietale, keinem Frontalschild; Schuppen des Rückens und der Seiten rechtwinklig, sehr schmal und glatt; Extremitäten sehr kurz, Zehen 3,3, stummelförmig.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, M. gracilis von Calcutta.

67. Gattung Chaleis Merrem.

Kopf ohne Internasal- Rostral- oder Interparietalschilder; mit zwei Paaren von Palpebralschildern; Schuppen des Rückens und der Seiten rechtwinklig; schmal, glatt; Zehen 3,1, stummelförmig.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

Peters (Berl. Monatsb. p. 399, 1871) unterscheidet in der Gattung Chaleides die Untergattung Hopalolepis, die er folgender Weise charakterisiert.

Die obere Kopfseite wird nur bedeckt von dem Ende des Rostrale, den aneinander stoßenden Nasalia (Nasofrontalia D. B.), dem Frontale und den beiden Parietalia. Es fehlt daher das Internasale (Internasofrenale D. B.), welches letztere ausnahmsweise durch ein kleines Schüppchen
repraesentirt wird, welches vor dem vorderen Ende des Frontale liegt, die Supraorbitalia und das Interparietale. Vordere und hintere Extremitäten nicht in Finger getheilt, die hinteren sehr kurz.

Zu dieser UnterGattung gehört nur eine Art H. Abendrothii, nach O'Shaugnessy soll dieselbe mit Ophiognomon trisanale Cope identisch sein. (Siehe Ophiognomon.)

68. Zweifelhafte Gattung Ophiognomon Cope.

(Ophiognomon Cope, Proc. Acad. Phil. p. 97, 1868.)

der Gattung Chæcis nahe verwandt, unterscheidet sich von dieser durch die Lage der Nasenlöcher und durch die Kopfschilder, die oben denen einiger mexikanischen Gattungen der Calamarien sehr ähnlich sind.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, O. trisanale am Napo. Nach O'Shaugnessy soll dieselbe identisch sein mit Chæcides (Hapalolepis) Abendrothii, Peters.

69. Gattung Propus Cope.

(Propus Cope, Proc. Acad. Philadelphia p. 70, 1874.)

Schuppen glatt, in Ringeln; eine seitliche Längsfalte, nur Vorderbeine, ohne Finger und Krallen; einige Poren neben dem After; zwei Internasalia, ein Frontale, ein kleines Superciliare, welches vor jedem Ange herabsteigt, und ein Paar Parietalia; Nasenlöcher an der Naht zwischen dem Internasale und dem ersten Labiale; ein Zügelschild; Schwanz lang. Verwandt mit Ophiognomon, aber ohne Hinterbeine.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: P. vermiformis von Nauta (peruanische Amazon).

70. Gattung Bachia Gray.

(Bachia Gray, Cat. Liz. p. 58.)

Kopf ohne Internasal- und Interparietalplatte und mit zwei sehr schmalen Palpebralschildern; Vorderfuss mit drei kleinen stummelförmigen
Zehen, Hinterfuss sehr schmal, ungetheilt; Schuppen des Rueckens und der Seiten 6seitig, schmal, glatt; 4 Praeanalplatten, die beiden mittleren hinter den andern.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt; *B. d'Orbignii* von Chili und Santa Cruz.

71. Gattung *Allodactylus Lataste et Rochebrune*.

(*Allodactylus Lataste et Rochebrune*, Journal de Zoologie Bd. V. p. 238, 1876.)

Schnauze vorstehend, platt, fast schneidend; Ohröfnnungen; vier Beine, die vorderen mit drei, die hinteren mit vier cylindrischen Zehen, ohne Zähnelung; Körper rund, unten etwas abgeplattet; Schwanz conisch, am Ende spitz. Schuppen glatt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *A. de f'Islei* aus Japan.

Nachtrag zu der Familie der *Chalcidae*.

71a. Gattung *Herpetochalcis Böttger*.

(*Herpetochalcis O. Böttger*, Bericht d. Offenbacher Vereins für Naturk. 1883. p. 150.)

Füsse sehr kurz; Vorderfüsse mit 3, Hinterfüsse mit 2 klauentragenden, sehr kurzen Zehen; ein einfaches, dreieckiges, vorn abgestutztes Inter- nasale; jederseits nur zwei Supraocularia; ein langes, dreieckiges Inter- parietale; kein Frontonasale; Schilder des Rueckens und der Seiten rechteckig, sehr schmal, glatt. Der Gattung *Microdactylus* nächst verwandt, aber mit 2 statt 3 Supraocularen, mit 3—2, statt 3—3 Zehen und mit Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *H heteropus* aus Centralamerika

Der gewöhnliche Aufenthaltsort der meisten Arten sind die hohen Gebirge Südamerikas.
Klassification und geograph. Verbreitung.

72. Gattung *Cercosaura* Wagler.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearkatische Subregionen</th>
<th>Palæarkatische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. - - - - - - - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 12 Arten bekannt, von einer ist das Vaterland unbekannt.

Die Subgenera beschreibt er folgenderweise:

I. Rückenschuppen gross, länglich vierseitig oder trapezoidal; gekielt.

Subg. *Cercosaura* Wal. 3 Arten.

Rückenschuppen gross, vierseitig, glatt, Schwanzschuppen länglich vierseitig, glatt, Bauchschuppen gross, vierseitig, in 6 Längsreihen, von denen die der äusseren Reihe kleiner sind. Kehlschildchen klein, am Rande der deutlichen queren Kehlfurche grosser, vierseitig; die seitlichen Körperschuppen convex, kleiner als die Rücken- und Bauchschuppen, sodass vier Querreihen derselben drei Querreihen der Bauchschilder entsprechen.

Subg. *Urosaura* mit 1 Art.

73. Gattung *Iphisa* Gray.

Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

Peters unterscheidet in der Gattung *Iphisa* zwei Subgenera:
I. Schuppen des Rückens breit, sechsseitig, glatt und wie die des Nackens in zwei Reihen. Daumen nagellos.

Subg. *Iphisa* Gray, mit 1 Art.

II. Schuppen des Rückens klein, lanzettförmig und gekielt wie die des Schwanzes. Daumen der vorderen Extremität ohne Nagel.

74. Zweifelhafte Gattung *Placosoma* Tschudi.

(*Placosoma* Tschudi. Archiv f. Naturg. XIII. p. 50.)

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt.

75. Gattung *Leposoma* Spix.

Sulcus gularis haud distinctus. Palmae plantaeque pentadactylae, squamae ovato-lanceolatae, carinatae, in abdomine dorsoque aequales verticillatae, colli laterales et axillares granulosae.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung vier Arten bekannt.

76. Gattung. Ecpleopus Dum. et Bibron.

Squamae corporis tennes, dorsi laeves, obsolete carinatae vel striatae, per fascias transversas dispositae, abdominales et subcaudales quadrangulares laeves. Palmae plantaeque pentadactylae, digitis omnibus unguiculatis.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 18 Arten bekannt; von einer das Vaterland unbekannt.

Peters (Abh. Berl. Akad.) unterscheidet in der Gattung Ecpleopus 8 Subgenera, die folgenderweise von einander sich unterscheiden:

Subg. Ecpleopus Dum. et Bibr. mit 1 Art.

III. Mit Pholidobolus übereinstimmend durch die Beschildung der Kehle, mit Ecpleopus durch die Anwesenheit von Nasofrontalschildern, von beiden verschieden durch die glatte Beschaffenheit und quadranguläre oder trapezoidale Gestalt der Rückenschuppen.

Subg. Aspidoleucus Peters, mit 1 Art.

IV. Keine Praefrontalia, Kehlschuppen viereckig, trapezoidal oder länglich, Schuppen des Rückens länglich viereckig, fein und merklich gestreift, die einzelnen Schuppenwirtel deutlich von einander geschieden. Praeanalschuppen gross, trapezoidal oder länglich.

Subg. Oreosaurus Peters, mit 3 Arten.

V. Von der Untergattung Euspondylus unterschieden durch den auffallend breiten Kopf und durch die Beschuppung, indem die Rückenschuppen, welche glänzend glatt und länglich viereckig erscheinen, länger als die Bauchschuppen, die seitlichen Hals- und Körperschuppen relativ noch immer gross und die Unterschenkel ringsum von grossen Schuppen umgeben sind. Subg. Argalia Gray, mit 3 Arten.

VI. Zwei Nasofrontalia; eine deutliche Postmentalfurche; Hals- und Körpersenden auffallend klein, Rückenschuppen länglich viereckig, so lang wie die Bauchschilder, ganz glatt oder mit glatten Längslinien; hintere Reihe der Praeanalschuppen länglich, in der Regel fünf an der Zahl, Extremitäten ziemlich lang, Hinterseite der Unterschenkel mit sehr kleinen Schuppen bedeckt. . . . Subg. Euspondylus Tschudi, mit 5 Arten.

77. Gattung Cricosaura Peters und Gundlach.

(Cricosaura Peters und Gundlach, Berl. Monatsb. p. 362, 1863.)
Habitus lacertinus; lingua lata, squamata, plana, integra., apice vix incisa; dentes compressi, lateri maxillarum interno adnati; oculi mediores, rudimento palpebrarum circulares; nares inter scutella bina apertae; mem-
Klassifikation und geograph. Verbreitung.

brauna tympani conspicua; caput scutatum; Corpus caudaque teretia, squamis laevissimis verticillatis; plica jugularis transversa distincta; pedes subbreves, palmae plantaeque pentadactyla, digitis omnibus unguculatis; plicatura lateralis nulla; pori femorales distincti.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Bis jetzt nur eine Art bekannt, *C. typica* von Cuba.

78. Gattung *Loxopholis* Cope.

Der Gattung *Cercosaura* verwandt und von dieser nur in der Beschuppung unterschieden. Schuppen dachziegelartig in schiefen Reihen, der freie Theil dreieckig, stark gekielt; Praefrontalia, Frontoparietalia, Parietalia und Interparietalia deutlich; seitliche und Kehlschuppen wie am Rücken, Bauchschuppen breit, glatt; keine Kehlfalte, keine Seitenfalte; Zehen 5,5, alle mit Krallen; Augenlid mit durchsichtiger Scheibe.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Bis jetzt nur eine Art bekannt: *L. rugiceps* aus Neu-Granada.

79. Gattung *Emphrassotis* O'Shongnessy.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Bis jetzt nur eine Art bekannt, *E. simolerus* von Ecuador.
Reptilien.

80. Gattung Chalcidoilepis Cope.

(Chalcidoilepis Cope, Journ. Acad. Phil. VIII. p. 116, 1876).

Dorsale Schuppen glatt, in ununterbrochenen Querringeln rund um den Körper, fast gleich gross an den verschiedenen Körpergegenden, auch am Nacken und an der Kehle. Zehen 5—5, alle mit Krallen; ein Interparietonasalschild, zwei Praefrontalia, ein Frontale, zwei Frontoparietalia, zwei Parietalia durch ein Interparietale getrennt; Trommelfell deutlich, Nasenloch in einer Nasalplatte, keine Schenkelporen; Zähne comprimirt mit einer Hauptspitze und einem Spitzen jederseits. Obgleich zu den Eopleopidae gehörend, ähnelt die in Rede stehende Gattung den Chalcididae in der Beschuppung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: Ch. metallicus von Costa Rica.

11. Familie Chamaesauridae Gray.

Kopf mit regelmässigen, polygonalen Schildern bedeckt; Zunge eingeschnitten; keine Gaumenzähne; Schläfenschuppen denen des Rückens ähnlich; Augenlider deutlich, unteres schuppig, Körper cylinderförmig, verlängert, den Kopf ausgenommen, mit Ringen von gekielten Schuppen bedeckt, welche longitudinalen Reihen bilden; Ohröffnung deutlich, klein; keine Seitenfurche, Seiten rund, mit Schuppen, denen des Rückens ähnlich bedeckt.

81. Gattung Chamaesaura Fitzinger.

(Chamaesaura Fitz., Neue Class. Rept. — Duméril et Bibron, Erpet. génér. T. V. — Gray, Cat. Liz. p. 61.)

Kopf bedeckt mit regelmässig vielseitigen Schildern; Zunge eingeschnitten; Gaumen ohne Zähne; Schläfen dem Rücken ähnlich; Augenlider deutlich, unteres schuppig; Körper cylindrisch, verlängert, überall, den Kopf ausgenommen, mit Ringen von verlängerten, gekielten Schuppen bedeckt, die longitudinalen Reihen bilden; Gliedmassen rudimentär; Seiten abgerundet, wie der Rücken mit Schuppen bedeckt; Füsse ungetheilt, in einer einzelnen Kralle endigend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: Ch. anguinea vom Cap.
82. Zweifelhafte Gattung Mancus Cope.

Die Charaktere sind dieselben wie die von Chamaesaura, mit Ausnahme, dass das vordere Extremitätenpaar fehlt. Zunge an der Spitze schwach ausgeschnitten.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaeartikische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: Chamaesaura macrolepis von Natal; dieselbe stimmt mit Chamaesaura anguina (Scelotes anguineus) so sehr überein, dass es zweifelhaft ist, ob die Trennung gerechtfertigt sei.

Kopf mit regelmässigen, vielseitigen Schildern bedeckt; Ohröffnung deutlich; Augenlider deutlich, unteres durchscheinend; Schuppen des Rückens und der Seiten sechsseitig, dünn, glatt; Seiten rund, mit Schuppen, denen des Rückens ähnlich; Schuppen des Halses vierseitig; Zehen 5,5, ungleich, mit Krallen, etwas deprimirt, unten mit einer Reihe von Stummeln; Nasenöffnung in der Naht zwischen den beiden Nasenplatten; Schläfen beschildert; Praeanalplatten zahlreich, in drei queren Reihen; Femoralporen zahlreich.

83. Gattung Anadis Gray.

(Anadis Gray, Cat. Liz. p. 59.)

Praeanalplatten zahlreich, in drei dichten Reihen; Femoralporen zahlreich; Nasenöffnungen in der Naht zwischen 2 Nasalschildern; Zehen 5,5, ungleich, mit Krallen, etwas deprimirt, mit einer Reihe von Höckern an der unteren Fläche; Seiten abgerundet, mit Schuppen, denen des Rückens ähnlich; Schuppen des Halses vierseitig; Schuppen des Rückens und der Seiten sechsseitig, dünn, glatt, die des Bauches vierseitig, glatt; unteres Angenlid durchscheinend.

Bis jetzt nur eine Art bekannt, A. ocellata, Vaterland nicht sicher bekannt.

Kopf mit regelmässigen, vielseitigen Schildern bedeckt; Zunge schuppig, Schuppen geschindelt; Gaumen ohne Zähne; Nasenöffnungen lateral, in einer einzelnen Platte; Augenlider deutlich, unteres durchscheinend; Halsband doppelt; Ohröffnung unter der Haut verborgen;
Körper und Schwanz verlängert; Schuppen des Rückens, der Seiten und des Schwanzes zart, sechsseitig, gekielt, geschindelt; die des Bauches glatt, geschindelt, in longitudinalen Reihen, 4 kurze Gliedmassen; Femoralporen zahlreich, jede derselben in der Mitte einer Schuppe.

84. Gattung *Heterodactylus* Spix.

Kopf bedeckt mit regelmässigen, vielseitigen Schildern; Zunge schuppig, dachziegelförmig. Gaumen ohne Zähne. Nasenöffnungen lateral, in einer einzigen Platte. Augenlider deutlich, das untere durchscheinend; Ohröffnungen nicht sichtbar; Körper und Schwanz verlängert, subcylinrisch; Schuppen des Rückens, der Seiten und des Schwanzes zart, sechsseitig, gekielt, dachziegelförmig, in regelmässigen Ringen, die des Bauches vierbeckig, glatt, dachziegelförmig, in longitudinalen Reihen; 4 kurze Gliedmassen, Femoralporen zahlreich, in der Mitte einer Schuppe; Halsband doppelt; Zehen 5,5, die hinteren verlängert, sehr ungleich; Daumen des Vorderfusses rudimentär.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur 2 Arten bekannt.

B. Geissosaura.

Schuppen fast aller Körperteile rund, im Quinceux, geschindelt, mehr oder weniger dicke, gefässreiche Knochenplatten bildend, die von der Epidermis bedeckt werden. Seiten rund, mit Schuppen bedeckt, die denen des Rückens ähnlich; Zunge sehmal, kurz, platt, an der Spitze schwach eingeschnitten; Kopf mit regelmässigen, vielseitigen Schildern bedeckt; Körper spindel- oder zylinderförmig, Praeanalporen gewöhnlich nicht vorhanden.

a. Augen deutlich; Augenlider rudimentär, Kopf conisch.

Kopfschilder normal; Nasenöffnungen lateral, in einem Nasenschild; Gliedmassen 4 oder 2; Körper spindelförmig . 14. Fam. Gymnophthalmidae.

Kopfschilder normal; Nasenöffnungen oberhalb des oberen Randes des ersten Labiale; Pupille rund oder
oval; Abdominalschilder sechsseitig, in 2 oder 3 Reihen; Schwanz mit einer centralen Reihe grösserer Schilder; 2 Gliedmassen
Kopfschilder normal; Nasenöffnungen in einer Naht zwischen dem Nasale und erstem Labiale, keine Gliedmassen; Bauch- und Rückenschuppen fast gleichförmig
Kopfschilder halbgeschindelt, schuppenähnlich, Wange schuppig; Nasenöffnungen in einer einfachen kleinen Nasenplatte
b. Augen deutlich; Augenlider deutlich, Kopf conisch.
Rostralschild mässig, dreieckig; Nasenöffnung in einer Platte zwischen dem Frontale und den Labialschildern
Rostralschild mässig, dreieckig; Nasenöffnungen in einer Furche auf dem Rande des Nasale und Supernasale
Rostrale ziemlich gross, viereckig; Nasenöffnungen in einer Furche in dem hinteren Rande der Rostrale Rostrale gross, kelchförmig; Nasenöffnungen in dem Rostrale, welches eine schmale Furche an dessen Hinterrande zeigt
c. Augen unter der Haut verborgen.
Kopf conisch; Rostralschild kelchförmig; Nasenöffnungen in dem Nasenschild, das eine Furche am hinteren Rande besitzt

Nasenöffnungen lateral, in einer einzelnen Nasenplatte; Zähne conisch, einfach; Gaumen ohne Zähne; Zunge schuppig, an der Spitze eingeschnitten; Augen nackt; Augenlider rudimentär, unbeweglich; Ohröffnungen deutlich; Körper spindelförmig, 4 schwache, ungleiche Gliedmassen; keine Femoralporen.
Unter Zugrundelegung der Gray'schen Eintheilung lassen sich die zu der Familie Gymnophthalmidae gehörenden Gattungen folgenderweise ordnen:

a. Kopf conisch, Rostrale rund.
* Schuppen gekielt.
Zehen 4,5 2. Gatt. Epaphelus.
** Schuppen glatt, nicht gekielt.
Zehen 5,5; keine Gaumenzähne . . 3. Gatt. Ablepharus.
Zehen 5,5; Gaumenzähne 4. Gatt. Blepharactisis.
Zehen 5,5; Gaumenzähne? 5. Gatt. Panaspis.
Zehen 4,5; Frontoparietale einfach,
Zehen 4,4; Frontoparietale doppelt,
b. Kopf keilförmig, Rostrale ziemlich verlängert.
Zehen 2,3; Schuppen glatt 8. Gatt. Lerista.

85. Gattung Gymnophthalmus Merrem.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Bis jetzt sind von der Gattung 5 Arten bekannt.

86. Gattung Epaphelus Cope.

(Epaphelus Cope, Journ. Acad. Phil. VIII. p. 115, 1876).
Die in Rede stehende Gattung gehört in die Nähe von Gymnophthalmus, ohne Augenlider; Zehen 4 – 5; Nasenlöcher in einer Platte; keine Supranasalia; ein Zügelschild; Frontonasalia deutlich; ein grosses Supraocular und ein grosses Supraorbital; Frontoparietalia und Interparietalia verschmolzen; Parietale deutlich; Schuppen gross, glatt, fast gleich; Gehörorgan offen.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *E. Sunichrasti* aus Tehuantepec.

87. Gattung *Ablepharus* Fitzinger.

Vorderfüsse 5,5; Hinterfüsse 5,5; Frontoparietalschild doppelt oder einfach. Interparietalschild vom Frontoparietalen getrennt oder mit dem Frontoparietalen zu einem einzigen grossen rhombischen Schilde verschmolzen. Supranasalschilder fehlend oder zu einem Paar vorhanden; Kopf pyramidal; Nasenlöcher lateral, in einer einfachen Nasenplatte; Gaumenzähne nicht vorhanden; Augenlider rudimentär.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 14 Arten bekannt, von denen 6 zu der palaearktischen Region, 2 zu der aethiopischen und 4 zu der australischen Region gehören; ausserdem ist eine Art sowohl der aethiopischen, orientalischen, australischen als neotropischen Region gemeinsam, diese Art ist *A. Bontoni* Desj, welche sich von der Ostküste Afrikas über die Inseln des Sunda-Moluckischen Archipels, Australien und die Inseln des stillen Oceans bis zur Westküste von Amerika erstreckt.

Gray (Cat. of Liz., p. 63) charakterisirt die Gattungen *Ablepharus*, *Cryptoblepharus* und *Morethia* folgenderweise:

Ablepharus. Kopf subquadranflär; Nasenlöcher lateral in der Mitte des dreieckigen Nasale; 2 Frontoparietalplatten; kein Supra-
Reptilien.

nasale; Internasale einfach; Augenlider rudimentär, rund, mehr oder weniger beweglich; Pupille rund; Zunge platt, schuppig, an der Spitze eingeschnitten; Zähne einfach, conisch; Gaumen ohne Zähne, mit einer dreieckigen Furche; Ohröffnungen deutlich; Körper spindelförmig; Schuppen glatt; 4 Gliedmassen; Zehen 5,5, ungleich, etwas comprimirt; 2 grosse Praeanalplatten.

Cryptoblepharus. Kopf pyramidal; Frontoparietalplatte einfach; Nasenlöcher lateral, in einer einzigen Nasenplatte; keine Supranasalia; Augenlider rudimentär, rund, Ohröffnungen massig, offen; Zunge platt, schuppig, an der Spitze eingeschnitten; Gaumen ohne Zähne; Körper spindelförmig; Schuppen glatt oder sehr fein und undeutlich gefurcht; 4 Gliedmassen; Zehen 5,5, ungleich, etwas comprimirt; Schwanz rund, spitz zulaufend; Praeanschuppen in drei Reihen.

Morethia. Kopf pyramidal; Frontoparietalschilder einfach; Nasenlöcher lateral, in einem kleinen Schild, oberhalb desselben ein kleines Supranasale und hinter denselben ein kleineres Nasolorealschild; Augenlider rudimentär, rund; Ohröffnungen massig, offen, vorn gezähmelt; Körper spindelförmig; Schuppen glatt; 4 schwache Gliedmassen; Zehen 5,5, ungleich, etwas comprimirt; Schwanz rundlich, oft spitz zulaufend; Praeanalshuppen ziemlich gross.

88. Gattung Blepharactisis Hallowell.

Keine Augenlider; Nasenlöcher seitwärts, in einer einzigen Schuppe sich öffnend; keine Supero-nasalia; Zähne conisch, einfach; Zunge zweispitzig, bedeckt mit Schuppen; keine Gaumenzähne, aber mit einer dreieckigen Aushöhlung; Ohröffnung sichtbar; zwei Paar Gliedmassen, jedes mit vier Zehen; Schuppen glatt; weder Femoral- noch Praeanalporen; Palpebralle rund, mehr oder weniger vollständig. Unterscheidet sich von Ablepharus Fitzinger durch die Zahl der Zehen, welche bei diesen 5—5 sind.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art: B. speciosa von Nicaragua.

89. Gattung Panaspis Cope.

Der Gattung Morethia verwandt; von ihr unterschieden durch die Trennung der Frontoparietalia von einander und von den Interparietalia; keine Augenlider; ein Supranasale, Rostrale nicht vorspringend; Beine kurz, Zehen 5—5; Schuppen glatt.
Klassification und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. aenetus* wahrscheinlich von Swan-River.

90. Gattung *Menetia* Gray.

(*Menetia* Gray, Cat. Liz. p. 65.)

Kopf subquadrangular; Schnauze abgerundet; Rostralplatten mässig, Nasenlöcher lateral, in einem ovalen Nasenschild; kein Supranasale; Frontoparietalschild einfach, rhombisch; Augen mässig, Pupille rund; Augenlid rudimentär, cireulär; Ohroeffnungen klein, mit Schuppen bedeckt; Körper verlängert, spindelförmig, subcylindrisch; an den Seiten abgerundet; Schuppen glatt; 4 schwache Gliedmassen; Zehen 4,5, schlank, etwas comprimirt, ungleich, mit Krallen; Schwanz subcylindrisch; spitz zulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *M. Greyii* von Australien.

91. Gattung *Miculia* Gray.

(*Miculia* Gray, Cat. Liz. p. 66.)

Kopf conisch; Schnauze abgerundet; Rostralplatte ziemlich gross, hinten mit einem geraden Rande; Nasenlöcher lateral; in der Mitte zweier transversalen Nasalschuppen am Rückenrande des Rostrale; kein Supranasale; Frontoparietalschild doppelt; Augen mässig, Pupille rund; Augenlid rudimentär, rund, granulirt; Ohroeffnungen nicht sichtbar; Körper subcylindrisch, an den Seiten abgerundet; Schuppen glatt; 4 schwache Gliedmassen; Zehen 4,4, schlank, etwas comprimirt, einfach, ungleich, mit Krallen, die dritte Hinterreihe sehr lang; Schwanz cylindrisch, spitz zulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *M. elegans* W. Australien.
Reptilien.

92. Gattung *Lerista* Bell.

Schnauze etwas keilförmig; Rostralplatte gross, über den oberen und unteren Theil der Schnauze hingebogen; Nasenlöcher lateral, in einer grossen Nasenplatte; kein Supranasale; Augenlid rudimentär, ciraulär, granulirt; Ohröffnungen deutlich, sehr klein; Gaumen hinten mit einer seichten dreieckigen Furche; Körper spindelförmig, oben rund, unten flach; Schuppen glatt; Schwanz conisch; 4 Gliedmassen; Zehen 2,3, ungleich, subcylindrisch, einfach, mit Krallen; 2 Praanalplatten.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *L. lineata* aus Neu-Holland.

15. Familie *Pygopidae* Gray.

Kopf pyramidal, beschildert, kurz, mit zwei oder drei Paaren von bandförmigen Supranasalschildern oberhalb des Nasenschildes, mit einem grossen Internasale und Frontale; Nasenlöcher oval, in dem unteren Winkel des Nasale; Kehle mit kleinen Schuppen bedeckt; Zähne conisch, einfach; Gaumen ohne Zähne, mit einer breiten, longitudinalen Furche; Zunge platt, vorn schlupig, hinten sammetartig, an der Spitze rund und eingeschnitten; Ohröffnung deutlich, Trommelfell tief; Augenlid rudimentär, rund, unbeweglich, schlupig; Körper cylindrisch, verlängert; Ventral-schilder breit, sechssichtig; in zwei oder vier Reihen; Schwanz mit drei Reihen breiter Schilder, die centralen die breitesten; 2 Gliedmassen und zwar nur die hinteren, welche rudimentär und ungeheilt sind.

Fischer unterscheidet die Gattungen dieser Familie folgenderweise (Archiv f. Naturg. Bd. 48, 1882):

I. Rückenschuppen gekielt.

1) mit einfachen Kielen; Praanalporen vorhanden 1. *Pygopus*.

2) mit doppelten Kielen; keine Praanalporen . 2. *Plitholax*.

II. Rückenschuppen ungekielt.

1) Praanalporen fehlen.

b. 4. *Nisara*.

c. Keine Internasalia, Schuppenreihen in ungerader Zahl 5. *Pseudodelma*.
2) Praeanalschuppen vorhanden.
Mehrere Parre von Internasalia 6. Cryptodelma.

93. Gattung Pygopus Fitzinger, Merrem.

Kopf kurz, abgestumpft, mit zwei Parietalia und einem Paar Occipitalplatten; Rostralplatte gross, Pupille rund; Schuppen des Rückens gekielt; Ohröffnung oval; Gaumen ohne Zähne, mit einer breiten, longitudinalen Furche; Zunge platt, vorn schuppig, hinten sammetartig, am Ende ausgeschnitten; Augenlid rund, rudimentär, unbeweglich, schuppig; Körper cylindrisch, verlängert; Ventralbänder breit, sechseckig, in 2 bis 4 Reihen; nur hintere Gliedmassen verlängert, comprimirt, schuppig; Schwanz cylindrisch, etwas spitz zulaufend. Am Vorderrande des Afters eine Reihe von Poren.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: P. lepidopodus von Australien.

94. Gattung Pletholax Cope.

Nur hintere Extremitäten; keine Praeanalporen; 2 Paare Supranasalia; Nasenlöcher zwischen dem vorderen und ersten oberen Labiale, Frontonasale quer; Rostrale oval, prominirend; Schuppen alle geschindelt, mit 2 Kielen und einer Grube dazwischen, keine grossen Abdominalreihen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: P. gracilis von Australien.

95. Gattung Delma Gray.

Kopf verlängert, beschildert, mit 2 Parietal- und einem Paar grosser Occipitalschilder; Rostralplatte transversal, mässig; Augen rund, Pupille elliptisch, Ohröffnungen oval; Körper subcylindrisch; Schwanz spitz zulaufend; Schuppen glatt; Hintergliedmassen kurz, schuppig; After ohne Poren.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *D. Fraseri* von Australien.

96. Gattung *Nisara* Gray.

(*Nisara* Gray, Lizards of Australia and New-Seeland, p. 3).
Der Gattung *Delma* verwandt, von dieser durch den Mangel der schmalen Rinde von Zügelschildern unter den oberen Lippenschildern unterschieden.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *N. (Delma) Grayi* Smith.

97. Gattung *Pseudodelma* Fischer.

Keine Supranasalia; Nasenloch in einem unteren Einschnitt des Nasale; Ohröffnung deutlich; Auge ohne Lider; mit Schuppen umgeben; Gaumen ohne Zähne, mit breitem Einschnitt; Schuppen glatt, in einer ungeraden Zahl von Längsreihen. Keine Vorderfüsse; Hinterfüsse sehr kurz, ungetheilt. Keine Praeanalporen.
Zunächst verwandt mit der Gattung *Delma Gray*, von welcher sie durch die ungerade Zahl der Schuppenreihen, die breite Gaumenfurche und den Mangel der Supranasalia verschieden ist.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *Ps. impar* von Melbourne.
98. Gattung Cryptodelma Fischer.

Mehrere Paare Supranasalia; Schuppen glatt, klein, in einer geraden Zahl von Längsreihen; eine Reihe Praeanalporen; Auge ohne Lider, von Schuppen umgeben; Gaumen ohne Zähne mit breitem Ausschnitt; keine Vorderfüße; Hinterfüße kurz, beschuppt, ohne Zehen.
Durch die Praeanalporen mit Pygopus, durch die glatten Schuppen mit Delma verwandt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: C. nigriceps von Nicolbay (West-Australien).

Nasenlöcher klein, in der Naht zwischen dem ersten oberen Labiale und dem viereckigen Supranasale; Kopf klein, beschildert: Schnauze etwas hervorragend; Frontonasale gross, die Wange deckend; Frontalschild gross, verlängert, sechseckig; 2 Paare kleine Superciliarschilder, Labialia gering in Zahl, gross; Augenlid rudimentär, rund; Pupille rund; Ohröffnung unter den Schuppen verborgen; Körper und Schwanz cylin- drisch, spitz zulaufend, mit hexagonalen Schuppen bedeckt; Ventral- schilder ziemlich breit; keine Gliedmassen, keine Praeanalporen.

Keine Gliedmassen; Schuppen glatt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: A. pulchella von Australien.

17. Familie Lialisidae Gray.

Kopf verlängert, deprimirt; Schnauze vorn abgeplattet; Nasenlöcher in dem hinteren Rande eines kleinen Nasenschildes; Augenlid
rudimentär, circulär, schuppig; Pupille elliptisch; Ohröffnungen deutlich; Körper verlängert, subcylindrisch, Schuppen oval, glatt, dachziegelförmig; Bauch mit zwei, Schwanz mit einer Reihe grosser Schilde; nur zwei hintere, rudimentäre Gliedmassen; Schwanz etwas spitz zulaufend, verlängert; Afteröffnung am vorderen Rande mit einer Reihe von Poren, jede am vorderen Rande einer Schuppe.

100. Gattung *Lialis* Gray.

(*Lialis* Gray, Cat. Liz. p. 60).
Mit dem Charakter der Familie.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

18. Familie *Scincidae* Gray.

Kopf mit Schildern bedeckt, welche symmetrisch gruppiert sind; Zunge schlank, frei, in zwei spitz zulaufende Zipfel endigend; Schuppen des Rückens rund, quincunzial, geschildert; keine Falte über die Kehle oder längs der Seiten, weder Femoral- noch Inguinalporen; Schwanz lang, rund und oft zerbrechlich; Nasenlöcher gewöhnlich in einer eigenen Platte, zwischen dem Frontal und den Labialschildern; gewöhnlich 4 Gliedmassen, massig entwickelt, zuweilen schwach, oder unter der Haut verborgen. Schuppen entweder glatt, oder gekielt, oder gestreift und enthalten ein Knochentäfelchen als Grundlage und dadurch ist die Beschuppung dieser Gruppe von allen anderen Eidechsen wesentlich verschieden.

Unter Zugrundelegung der Gray'schen Eintheilung lassen sich die äusserst zahlreichen Gattungen dieser Familie folgendermassen unterscheiden:

I. Schuppen dünn, glatt, weder gestreift noch gekielt; Nasenlöcher in einer einzelnen glatten Platte, ohne jede Spur einer Grube hinter denselben; Schwanz rund, spitz zulaufend, nicht bewaffnet.

A. Zehen deprimirt, an den Seiten gefranst; Kopf keilförmig; Rostrale deprimirt, vorn gekielt; Nasenlöcher in der Mitte des oberen Randes der Nasenplatte, mit einem dreieckigen Supranasale, oberhalb des Rostrale.
Classification und geograph. Verbreitung.

Scincina.
Zehen 5,5, mit Krallen, Übergangsgattung der Cercosauridae zu den Scincidae
Körper spindelförmig, oben abgeplattet; Zehen 5,5
B. Zehen comprimirt, einfach; Kopf subquadrangulär; Rostrale hoch dreieckig; Nasenöffnungen in der Mitte eines Schildes.
a. Keine Supranasalplatte.
* Körper spindelförmig; unteres Augenlid m. Schuppen bed.; 2 Frontoparietalia.
Kopf subquadrangulär Ferse von Körnchen umgeben
Kopf vorn deprimirt; Rostrale und Labialia niedrig; Ferse hinten mit einer flachen, ovalen Platte
Kopf conisch; Rostrale etwas verlängert; Ferse von Körnchen umgeben .
** Körper spindelförmig; unteres Augenlid mit einer transparenten Scheibe.
Rostrale hoch, dreieckig; Gaumen ohne Zähne; Trommelfell deutlich . .
Rostrale hoch, dreieckig; Gaumen ohne Zähne; Trommelfell entweder fehlend oder klein
Rostrale hoch, dreieckig; Gaumen ohne Zähne; Zehen 4,5
Rostrale hoch, dreieckig; Gaumenzähne, 2 grosse, viereckige Parietalplatten
Rostrale deprimirt, breit; Kopf abgeplattet; Nasale lateral, viereckig . . .
*** Körper und Schwanz cylindrisch, verlängert; 4 schwache Gliedmassen;
Rostrale hoch, rund; Frontonasalia deutlich.
† Zehen verlängert, ungleich.
Zehen 5,5, unteres Augenlid schuppig .
Zehen 5,5, unteres Augenlid undurchscheinend, Trommelfell verdickt;
Schwanz um die Hälfte länger als der Körper; Körperschuppen glatt .
Zehen 5,5; unteres Augenlid klein, schuppig; Trommelfell versteckt; Schuppengekielt.

5. Gatt. Elania.
Zehen 5,5; Schuppen hexagonal, auf dem Rücken mit drei Kielen; Schwanz länger als Kopf, Nacken und Körper zusammen
Zehen 5,5; unteres Augenlid mit einer durchscheinenden Scheibe; Schwanz mässig
Ohröffnung deutlich; unteres Augenlid mit einer durchscheinenden Scheibe; Schuppen glatt; Zehen 4,4; Schwanz verlängert
Zehen 4,4; Ohröffnungen sehr deutlich; Schwanzschuppen klein
Zehen 3,3, ungleich, die mittelste ist die längste; unteres Augenlid durchscheinend
Zehen 2,2, ungleich; unteres Augenlid durchscheinend
Vordere Gliedmassen ohne Finger, hintere mit einer rudimentären Zehe am inneren Rande; unteres Augenlid schuppig; Trommelfell sichtbar . .
++ Zehen kurz, dick, ungleich.
Zehen 5,5, etwas kurz, ungleich, unteres Augenlid schuppig; Frontoparietale einfach.
**** Körper und Schwanz cylindrisch, verlängert; Gliedmassen rudimentär oder fehlend; Rostrale etwas verlängert; Frontonasale sehr klein, lateral; Kopf halb conisch.
4 Gliedmassen; Zehen 3,3, sehr kurz, die mittelste, die längste
4 Gliedmassen, die vorderen rudimentär, ungetheilt, ohne Krallen; die hinteren mit 2 kurzen, ungleichen, mit Krallen versehenen Zehen
4 Gliedmassen; Zehen 1,1
2 Gliedmassen, die vorderen fehlen, die hinteren mässig entwickelt; Ohröffnung sehr klein
2 Gliedmassen, die vorderen fehlen, die hinteren rudimentär; Ohröffnung sehr klein
Keine Gliedmassen; Ohröffnung sehr klein

Keine Gliedmassen; Ohroffnung verborgen.
b. 2 Supranasalplatten, selten 4 oder 6.
Körper spindelförmig; Schwanz spitz zulaufend; Gliedmassen stark; 2 Supranasalia.

Unteres Augenlid schuppig; Schuppen gross; Körper spindelförmig; Gaumenzähne; Frontoparietale doppelt.
Unteres Augenlid schuppig; Schuppen gross; Körper und Schwanz verlängert; Gaumen ohne Zähne; Frontoparietale doppelt.
Unteres Augenlid mit einer durchsichtigen Scheibe; Körper und Schwanz verlängert; Schuppen glatt.
Keine Gaumenzähne; Schuppen gekielt.

Unteres Augenlid schuppig; keine Gaumenzähne; keine Frontonasalschilder.

Unteres Augenlid transparent; keine Gaumenzähne; Schuppen glatt.
Unteres Augenlid mit einer durchscheinenden Scheibe; keine Gaumenzähne; Schuppen glatt.

** Körper und Schwanz verlängert, subcylindrisch; 4 kurze Gliedmassen; Zehen comprimit, ungleich, 1 Paar Supernasalia.

Zehen 5,5, ungleich.
Zehen 5,4, ungleich.
Zehen 4,4, ungleich.
Zehen 5,5, schwach.

*** Körper und Schwanz verlängert, subcylindrisch; 4 sehr kurze Gliedmassen; Zehen sehr kurz, gleich oder rudimentär; 1 Paar Supernasalia.

Zehen 5,5, rund, dick, sehr kurz.
Vorderfüße sehr kurz, mit 2 sehr kurzen Zehen, Hinterfüße spitz zulaufend, ungetheilt.

**** Körper und Schwanz verlängert, subcylindrisch, 1 Paar Gliedmassen und zwar nur hintere; oder keine; 2 oder 3 Paare Supranasalia.
2 Gliedmassen, ungetheilt; Schuppen gestreift.

Reptilien.

2 Gliedmassen, ungetheilt; Schuppen nicht gestreift
Keine äusseren Gliedmassen
Keine äusseren Gliedmassen, Schuppen sehr glatt

II. Schuppen dick knochig, rauh, gestreift, mit 1 oder mehreren Kielen; Rostrale vorn abgerundet, Körper spindelförmig; 4 starke Gliedmassen; Zehen 5,5, comprimirt.

C. Schwanz comprimirt, oben gekielt; Schuppen des Schwanzes gekielt, des Körpers glatt; Kopfschilder rauh, den Schädelknochen dicht anliegend; Schläfen beschildert; unteres Augenlid schuppig; Praeanalplatten gering an Zahl, gross.

Schwanz oben mit 4 gedornten Kielen, an den Seiten gedornt; 2 grosse Praeanalplatten
Schwanz mit einer doppelten Reihe von Dornen, Kopf mit 6 Reihen von starken Dornen
Schwanz oben mit 4 Reihen von Dornen, an den Seiten glatt; 3 grosse Praeanalplatten, die mittlere dreieckig .
Schwanz oben mit zwei Reihen gekielter Schuppen, die Seiten glatt; Praeanalplatte einfach, viereckig, sehr gross

D. Schwanz rund, spitz zulaufend, selten gedornt, oben nicht gekielt, dick, knochig, rauh, oder mit 3 oder 5 Kielen, selten glatt.

* Keine Supranasalschilder.
† Unteres Augenlid schuppig; Zehen 5,5; hinter der Nasenöffnung eine Grube.
§ Zehen kurz, dick, fast gleich; Schuppen rauh, unbewaffnet, eine Reihe von Platten an dem unteren Rande der Augenhöhlen.

Schwanz kurz, dick, deprimirt, abgestumpft; Körper spindelförmig; Schuppen sehr dick, rauh; Ohröffnungen vorn gelappt

42.Gatt. Pygomeles.
44. Gatt. Ophioclinus.
45. Gatt. Tribolonotus.
47. Gatt. Tropidophorus.
Schwanz massig, rund, spitz zulaufend; Körper spindelförmig; Schuppen massig, fast gleichförmig; Ohröffnungen vorn gelappt

Schwanz massig; Körper verlängert, keine Gaumenzähne; unteres Augenlid schüppig

Keine Gaumenzähne; Ohröffnungen wie bei Tropidolepisma

52. Gatt. Lissolepis.

§ Zehen verlängert, comprimirt, ungleich; Schuppen mit 1—5 Kielen; Orbita einfach.

Schwanz kurz, comprimirt, dornig; Schuppen mit einem Kiel

Schwanz verlängert, rund, spitz zulaufend, gedornt; Schuppen mit einem Kiel

Schuppen mit 3 oder 5 Kielen; hinten schwach gezähnelt; Frontale kurz; Schwanz verlängert, rund, spitz zulaufend, bewaffnet

55. Gatt. Tropidolepisma.

Schuppen gekielt; Ohröffnung gross, dreieckig; vorn mit kleinen rundlichen Läppchen

Schuppen glatt; Ohröffnung rund, am vorderen Rande keine Läppchen .

57. Gatt. Lioscinus.

†† Unteres Augenlid schüppig; Zehen 5,5; Nasenplatte flach, ohne eine Spur von Grube hinter derselben; Schuppen mit zwei starken, getrennten Kielen; Unterseite des Schwanzes mit kleinen, glatten Schuppen . .

Schuppen glatt

††† Unteres Augenlid durchscheinend;

Zehen 4,5.

60. Gatt. Heteropus.

Schwanz und Körper verlängert, subcylindrisch; Schuppen mit drei Kielen; Gliedmassen schwach

Femoralporen deutlich, Schwanz cylindrisch

** 1 Paar Supransasalia; Schuppen massig, mit 3 oder 5 Kielen; Gaumenzähne.

Unteres Augenlid schüppig; Zehen an der Basis verbreitert

63. Gatt. Tiliqua.

Unteres Augenlid schüppig; Zehen über ihre ganze Länge comprimirt
Unteres Augenlid durchscheinend; Ohröffnung oval, vorn gelappt, oder durch die Schuppen des Schlafensbeins bedeckt; Zehen über ihre ganze Länge comprimirt.
Keine Gaumenzähne.
Nasenlöcher zwischen drei Schildern, Gaumenzähne.
Keine Gaumenzähne; Ohröffnung äußerlich nicht sichtbar.
E. Schwanz rund, spitz zulaufend, oben nicht bewaffnet; Schuppen schwach gestreift, zuweilen mit einem Kiel; 2 Paare Supranasalia.
Körper spindelförmig; Kopf deprimirt; Schwanl verlängert; comprimirt.
Körper spindelförmig; Schwanz spitz zulaufend; Kopf deprimirt; Internasale und Frontonasale zu einem Schild vereinigt; Krallen kurz.
Körper spindelförmig; Schwanz spitz zulaufend; Kopf viereckig; Internasale und Frontonasale getrennt; Krallen breit, stumpf.
Körper und Schwanz cylindrisch, verlängert.
Außerdem noch die und wohin dieselben zu stellen sind, wird weiter nicht angegeben.

64. Gatt. *Euprepis*.
68. Gatt. *Microlepis*.
69. Gatt. *Celestus*.
70. Gatt. *Camilia*.
73. Gatt. *Anisoterma*.

Palmis et plantis pentadactylyis, digitis unguculatis, police palmarum tamen mutico, ventre infra colloque supra seutellis magnis obtectis a genero Eepleopodis, quocum ceterum convenire fere videtur.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *P. modestus* aus Brasilien.
102. Gattung *Scincus* Laur., Fitzinger.

Schnauze keilförmig; Rostrale deprimirt, scharfkantig, vorn abgestumpft; 2 Frontoparietalplatten; Nasenöffnungen lateral, in dem vorderen Rande des Nasale, unmittelbar unter dem dreieckigen Supranasale. Unteres Augenlid schuppig; Zunge schuppig, eingeschnitten; Gaumen mit Zähnen und mit einer longitudinalen Furche; Ohröffnungen klein, vorn gezähnelt; 4 kurze Gliedmassen; Zehen 5,5, fast gleich, an den Rändern gezähnelt; Schuppen glatt, Schwanz conisch, zugespitzt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaeaartische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 6 Arten bekannt, von denen 4 zu den palaeaartischen, 1 zu den aethiopischen und 1 zu den orientalischen Subregionen gehört.

In der Gattung *Scincus* unterscheidet Peters (Monatsb. Berl. Akad. p. 44. 1864) folgende Subgenera:

II. Subg. *Pedorychus* Wiegmann (Archiv f. Naturg. III. 1837). Kopf nicht pyramidal, sondern oval, subpyramidal; Canthus rostralis fehlt, die Seiten der Schnauze nicht senkrecht, sondern sehr schräge abwärts geneigt, die Zügelgegend nicht vertieft, sondern abgerundet, das Trommelfell nicht sichtbar, die Nasenlöcher nicht flächen, eng und nach oben, sondern oval und nach aussen gerichtet, Körperschuppen fein gestreift, Schwanzspitze kaum zusammengedrückt; mit 1 Art.

III. Subg. *Scincopus* Peters (Berl. Monatsb. p. 45, 1864). Kopf oval, pyramidal, mit breiter, abgestumpfter Schnauze; Nasenlöcher zwischen zwei Nasenschildern; Augen gross, äussere Ohröffnung sehr weit; von zwei grossen, nach hinten zugespitzten oder versehmierten Schuppen grösstentheils bedeckt; Körper robust, an den Bauchseiten abgerundet. Schuppen langgestreift, auf der Mitte des Rückens am grössten, die grossen Bauchschuppen beträchtlich an Grösse übertreffend; Vorder-
und Hintergliedmassen fünfzehig, von derselben Bildung, wie bei *Scincus*; Kopfschilder: 1 Rostrale, 2 Supranasalia, 1 Internasale, 2 Praefrontalia, 1 Interparietale, 2 Parietalia, 4 Paar Occipitalia, 2 Nasalia, 2 Frenalia; mit 1 Art.

103. Gattung *Himalia* Gray.

Frontalplatte oval, Rostrale hoch, dreieckig; Gaumen ohne Zähne, vorn mit einer tiefen, dreieckigen Furchen. Körper spindelförmig; Schuppen glatt, dünn; die zwei centralen Praeanalschuppen grösser als die übrigen; Schwanz ründlich, spitzzulaufend; Gliedmassen mässig, Zehen 5—5, schlank, comprimirt; Ferse der Hinterfüsse mit Körnern bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. 4</td>
<td>1. 2. 3. 4</td>
</tr>
</tbody>
</table>

104. Gattung *Keneuxia* Gray.

(*Keneuxia* Gray, Cat. of Liz. p. 79. — *Lygosoma* z. Th. Duménil et Bibron, Erpét. génér. T. V.)

Kopf vorn deprimirt; Nasenöffnungen lateral, in einer kleinen, ovalen, longitudinalen Nasenplatte; Rostrate oben etwas abgestumpft, Internasale gross, subtrigonal; zwei ovale Lorealschilder, Frontoparietale getrennt, Interparietale klein; Labialplatten niedrig, verlängert, Kinnschilder gross, hinter denselben ein kleines, dreieckiges Schild; Ohröffnungen klein; Körper spindelförmig; Schuppen glatt; Schwanz abgerundet, spitzzulaufend, unten mit einer Reihe breiter Platten; 4 starke Gliedmassen; Zehen 5,5, comprimirt, verlängert, ungleich; Sohle granulirt; Praeanalschilder ziemlich gross, in gebogenen Reihen; Schuppen hinter dem After klein, zahlreich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *K. smaragdina* von den Molukken und Philippinen.

Bronn, Klassen des Thier-Reiche. VI. 3. 72
105. Gattung *Elania* Gray.

(*Elania* Gray, Cat. of Liz. p. 80. — *Lygosoma* z. Th. Duméril et Bibron, Erpét. génér. T. V.)

Kopf klein, schlank, conisch; Frontalplatte sehr gross; rhombisch, breiter als lang, vorn mit dem Internasale verbunden; Nasale gross, das der einen Seite fast mit dem der anderen Seite zusammenhängend; kein Supranasale; Frontonasale getrennt, seitwärts; Rostralplatte über die Schnauze gebogen, Augenbrauen mit 5 Platten; 2 Frontoparietalia; Ohröffnungen sehr klein, Körper spindelförmig, in der Mitte breit; Schuppen mässig, glatt; Gliedmassen stark; Schwanz sehr lang und allmählich spitzzulaufend; die beiden medialen Praeanalschilder die grössten.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt ist von dieser Gattung nur eine Art bekannt: *E. Müller* von Neu-Guinea.

106. Gattung *Mocoa* Gray.

Kopf subquadrangulär; Rostrale hoch, dreieckig, convex; Nasale lateral; kein Supranasale; Frontoparietalia getrennt oder mit einander verbunden; Gaumen ohne Zähne, hinten eingeschnitten; Ohröffnungen oval, vorn schwach gezähnelt, Tympanum tief; unteres Augenlid mit einer centralen transparenten Scheibe; Haut mit zahlreichen Paaren grosser Schilder; Körper spindelförmig; Schuppen glatt, mit 3—4 schwarzen Streifen; 4 starke Gliedmassen; Zehen 5,5, comprimirt, ungleich; Schwanz rund, spitzzulaufend, nicht bewaffnet; centrale Praeanalschuppen etwas grösser als die übrigen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td>3.</td>
<td>3. 4.</td>
<td>2. 3. 4.</td>
</tr>
</tbody>
</table>

107. Gattung Blepharosteres Stoliczka.

(Blepharosteres Stoliczka, Proc. Asiat. Soc. of Bengal p. 74. 1860.)

Körper dünn, mit glatten Schuppen; Kopfschilder regelmässig wie bei Mocoa; Nasloch in einem Schilde, seitlich; ohne Spur von Augenlid; äussere Ohröffnung entweder fehlend oder klein; keine Gaumenzähne, ein Gaumeneinschnitt hinter den Augen; Füsse kurz, fünfzehig, unten gezähnelt, Krallen klein.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aus dieser Gattung sind bis jetzt 2 Arten bekannt.

108. Gattung Carla Gray.

(Carlia Gray, Cat. of Liz. p. 271.)

Kopf subquadrangulär; Rostrale hoch, dreieckig, convex; Nasalia lateral, einander fast berührend; keine Supranasalia; keine Gaumenzähne; Ohröffnungen oval, vorn gezähnelt; unteres Augenlid mit einer durchsichtigen Scheibe; Körper spindelförmig; Schuppen glatt; 4 Gliedmassen von mässiger Stärke; Zehen 4,5, comprimirt, die beiden mittleren verlängert; Schwanz rund, spitz zulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung drei Arten bekannt.

109. Gattung Liolopisma Duménil et Bibron.

(Liolopisma Duménil et Bibron, Erpét. génér. T. V. p. 742. — Gray, Cat. of Liz. p. 84.)

Kopf kurz, viereckig; Rostrale hoch, dreieckig; Nasenöffnungen lateral; Nasale subtrigonal, das der einen Seite das der anderen Seite fast berührend; kein Supranasale; Frontoparietale getrennt; Interparietale gross, viereckig; Gaumen mit Zähnen und hinten mit einer seichten Furche; unteres Augenlid mit einer transparenten Scheibe; Ohröffnungen oval, Trommelfell tief; Kinn vorn mit einem grossen Mentalschilde, hinten mit einem Paar etwas grösseren Schildern und mit zwei Reihen von kleinen Schuppen unter den oberen Labialia; Körper spindelförmig; Schwanz rund, spitz zulaufend; Schuppen glatt, in zahlreichen Reihen; Praeanalschuppen ziemlich gross, die mittleren die grössten; 4 starke Gliedmassen; Zehen 5,5, comprimirt, ungleich; Sohle granulirt; Krallen kurz, comprimirt.
Klassifikation und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *L. Bellii* von Madagaskar.

(*Lipinia* Gray, Cat. of Liz. p. 84.)

Kopf etwas deprimirt; Schnauze deprimirt; Rostrale etwas deprimirt, hinten abgestumpft, vorn rund; Kein Supranasale; Zwei Interparietalia; Nasenöffnungen lateral, in der Mitte einer verlängerten, vierseitigen Nasenplatte; Zunge deprimirt, eingeschnitten; Augen mässig, Pupille rund; Augenlider kurz, das untere mit einer transparenten Scheibe; Ränder mit Körnern; Ohren rund, gross, Trommelfell etwas eingesunken; Körper spindelförmig; Schuppen glatt; 4 mässig starke Gliedmassen; Zehen 5,5, schlank, einfach, ungleich, mit Krallen; Schwanz verlängert, spitz zulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt fünf Arten bekannt, darunter drei von den Philippinen.

111. Gattung *Lygosoma* Gray.

Kopf subquadrangulär, Nasale lateral; kein Supranasale; Rostrale abgerundet, dreieckig, hoch, Frontoparietale doppelt oder einfach. Gaumen ohne Zähne hinten eingeschnitten, Ohröffnungen oval, Tympanum eingesunken. Unteres Augenlid schuppig, mit einer transversalen Reihe grösserer Schuppen; Haut mit mehreren Paaren grosser Schilder; Körper und Schwanz verlängert, subeylindrisch; Schuppen glatt; 4 Gliedmassen, schwach, Zehen 5,5, comprimirt ungleich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 24 Arten bekannt, von welchen 21 zu den australischen und nur eine Art zu den orientalischen Subregionen gehört, von zwei Arten ist das Vaterland unbekannt.
112. Gattung *Cophoscincus* Peters.

(*Cophoscincus* Peters, Berl. Monatsb. 1866.)
Mit *Lygosoma* verwandt. Nasalia rhomboidal, mit vorderem und hinterem zugespitzten Winkel, in der Mitte vom Nasenloch durchbohrt und von einander durch das auffallend grose Internasale getrennt; Frontale ziemlich klein, mit langem, spitzen, hinterem Winkel. Frontoparietale einfach, Interparietale gleichseitig-dreieckig; 4 Supraorbitalia, Praefrontalia trapezoideal, wenig grösser als das Nasale; zwei fast gleich grosse Frenalia; 6 Supralabialia, darunter das fünfte das grösste, von dem hinteren Theil des unteren Augenlides durch zwei Schuppen getrennt; 6 Infraorbitalia. Unteres Augenlid undurchsichtig und Trommelfell vollständig von dachziegelförmigen Schuppen versteckt. Der Schwanz ist um die Hälfte länger als der Körper.
Körperschuppen glatt, in 18 Längsreihen, die des Rückens, namentlich der vier mittleren Reihen viel breiter, zwei grosse Praeanalschuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

113. Gattung *Nannoscincus* Günther.

Der Gattung *Cophoscincus* Peters verwandt, von dieser durch gekielte Schuppen unterschieden; Beine schwach, fünfzehig, Augenlid schmal, schuppig; Keine Supranasale. Ohröffnung äusserlich nicht sichtbar, ganz von Schuppen bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aus dieser Gattung sind bis jetzt nur 2 Arten bekannt: *N. fuscus* von den Fidschi-Inseln und *N. (Anotes) marieri* von Neu-Caledonien.

114. Gattung *Lygosaurus* Hallowell.

Nasenöffnung in einer einfachen Platte; weder Superonasal-, noch Nasofrenalschild; zwei Frontonasalia; ein Interparieto-fronto-parietale; zwei Parietalia; ein erstes und zweites Frenalschild; zwei Freno-orbitalia, sechs Supero-labialia; Körper mit hexagonalen Schuppen bedeckt; auf dem
Klassifikation und geograph. Verbreitung.

Rücken dreikielig, Finger und Zehen 5,5; die beiden inneren und äusseren ziemlich kurz; Schwanz an der Basis cyclo-tetragonal; länger als Kopf, Nacken und Körper. — Der Gattung *Lygosaurus* verwandt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *L. pellopleurus* von Ousima (Japan) und Loo-Choo-Inseln.

115. Gattung *Lygosomella* Girard.

Körper deprimirt, verlängert, bedeckt mit massig grossen und gestreiften Schuppen; Kopf subquadrangulo-pyramidal, deprimirt; Nasenöffnungen lateral; keine Supranasalplatten; Parietalia getrennt; keine Gaumenzähne; unteres Augenlid mit einer durchscheinenden Scheibe; Gliedmassen klein, Finger 5,5, ungleich; Schwanz massig, subconisch und spitz zulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *L. aestuosa* von Neu-Seeland.

Kopf subquadrangular, Nasenplatten gross, fast in Zusammenhang mit einander, keine Supranasalia; Zunge platt, schuppig, an dem Ende eingeschnitten; Zähne conisch, einfach; Gaumen ohne Zähne, hinten mit einer tiefen Furch; Ohröffnungen deutlich, vorn zum Theil durch Schuppen bedeckt; keine Occipitalplatten; unteres Augenlid mit einer transparenten Scheibe; Körper verlängert, cylindrisch, Seiten abgerundet; Schuppen glatt, vier schwache Gliedmassen; Zehen 4,4, subcilindrisch, einfach, ungleich, mit Krallen; Schwanz verlängert, conisch, spitzzulaufend, mit einer centralen Reihe von etwas breiteren Schuppen an der Unterfläche; die beiden centralen Praeanalschuppen die grössten.

Diese Gattung unterscheidet sich von *Chiamelo* durch das Fehlen eines Supranasale und den Besitz eines daumenähnlichen Fingerstumpfchens am Hinterfuss.
Reptilien.

1143

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *T. decresiensis* von der Kangura-Insel.

117. Gattung *Sauresia* Gray.

Die in Rede stehende Gattung ist *Tetradsactylus* verwandt.

Kopf conisch; Nasenplatten lateral, gross, rhombisch, fast zusammen- fließend; keine Supranasalia; 2 Frontoparietalia und ein Interparietale von gleicher Grösse; unteres Augenlid mit einer transparenten Scheibe; Züge schuppig; eingeschnitten; Zähne einfach, conisch; Gaumen ohne Zähne, hinten schwach gekerbt; Körper verlängert, cylindrisch, Seiten abgerundet; Schuppen glatt, 2 Paar schwache Gliedmassen, Zehen 3,3, einfach, subcylindrisch, mit Krallen, die mittelste die längste, die innere die kürzeste; Schwanz conisch, zugespitzt, unten mit einer centralen Reihe von sehr breiten Schuppen; die zwei centralen Praecanalenschuppen etwas grösser, Ohröffnungen deutlich.
Klassifikation und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 2 Arten bekannt.

119. Gattung *Chelomeles* Duméril et Bibron.

(*Chelomeles* Duméril et Bibron, Erpét. génér. V. p. 774. — Gray, Cat. of Liz. p. 87.)

Schnauze conisch; Nasenlöcher lateral, in der Mitte eines Nasalschildes; keine Supranasalia, zwei Frontoparietalia und ein Interparietale von gleicher Grösse; Zunge flach, schuppig; am Ende ausgeschnitten; Gaumen ohne Zähne und ohne centrale Grube; Zähne conisch, einfach; Ohröffnungen sehr klein, durch Schuppen bedeckt; unteres Augenlid mit einer transparenten Scheibe; Körper cylindrisch, verlängert; Schuppen glatt, an der Unterseite grösser; 4 Gliedmassen; Zehen 2,2, subcylindrisch, ungleich, mit Krallen; Schwanz verlängert, conisch.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt, von welchen zwei zu den australischen, eine zu den orientalischen Subregionen gehört, und von einer ist das Vaterland unbekannt.

120. Gattung *Panolopus* Cope.

Form verlängert, Körper spindelförmig, tetragonal; Vordere Gliedmassen ohne Finger; die hinteren mit einer rudimentären Zehe am inneren Rande; Schuppen sehr schwach gekielt; unteres Augenlid schuppig; Interparietal- und Frontoparietalschild deutlich; Frontale und Internasale zusammenfließend; Supranasalia, Nasalia, erstes Labiale und Rostrale zusammenfließend; Nasenlöcher longitudinal, mit einer unvollständigen Lippennaht zusammenhängend; Bezahnung pleurodont. Ohröffnungen sichtbar.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. costatus* von St. Domingo.
121. Gattung *Podophis* Wiegmann.

Kopf subquadrangulär; Nasale lateral, dreieckig, kein Supranasale; Frontoparietale einfach; Interparietale dreieckig, 2 grosse Parietalia; Ohröffnungen sehr klein, fast vollkommen durch die Haut bedeckt; unteres Augenlid schuppig; mit einer dicken Reihe grösserer Schuppen; Körper und Schwanz verlängert, subeylindrisch; Schuppen glatt, die an der unteren Seite etwas grösser; vier kurze schwache Gliedmassen; Zehen 5,5, kurz, dick, fast gleich, cyclindrisch, mit Klauen; Schwanz cyclindrisch; Schuppen an der unteren Seite des Schwanzes den des Bauches ähnlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. Chalcides* von Java.

122. Gattung *Siaphos* Gray.

Kopf etwas deprimirt; halb conisch; kein Supranasale, Rostrale etwas verlängert, aber vorn abgerundet; Nasale dreieckig, lateral; internasale hinten abgestumpft; kein Frontonasale, Frontale gross, vorn abgestumpft; 2 Frontoparietalia und ein Interparietale von gleicher Größe wie diese; Körper verlängert, subeylindrisch; Schuppen glatt; 4 kurze, schwache Gliedmassen; Zehen 3,3, sehr klein, ungleich, die mittlere die längste, die mediale die kürzeste; Schwanz verlängert, subeylindrisch, spitzzulaufend, unten mit einer centralen Reihe breiter Schuppen; die beiden centralen Praeanalschuppen grösser.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *S. acqualis* von Australien.

123. Gattung *Rhodona* Gray.

Schnauze etwas keilförmig, Rostrale deprimirt, vorn rund, 2 Frontoparietalplatten; Nasenlöcher in der Mitte einer grossen dreieckigen Nasenplatte, die vorn convergiren; kein Supranasale; Zunge flach, bedeckt mit körnigen Papillen, an der Spitze eingeschnitten, Zähne stumpf; Gaumen ohne Zähne, mit einer kurzen, hinteren Grube; Ohren sehr klein; Augen klein; unteres Augenlid durchscheinend; Körper cylindrisch, etwas verlängert; Schuppen glatt; 2 Paare Extremitäten, das vordere Paar einfach, ungetheilt, spitzzulaufend; das hintere Paar in zwei ungleiche, subcylindrische einfache, mit Krallen versehene Finger getheilt; Schwanz conisch, spitz zulaufend, unten mit drei oder fünf Reihen grosser Schilder.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

(\textit{Coloscincus Peters, Berl. Monatsb. p. 532. 1876.})
Pedes omnes monodactyli, reliqua \textit{Anomalopus}.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: \textit{C. truncatus} aus dem südlichen Australien, Moreton-Bai.

125. Gattung Dumerilia Barboza du Bocage.

\textit{Dumerilia Barboza du Bocage, Jornal de Sciencias mathematicas physicas e naturae de Lisboa 1866. p. 631.)}
Nasenlöcher lateral, sich in einer Nasenplatte öffnend; Zunge platt, schuppig, an der Spitze schwach eingeschnitten; Gaumen ohne Zähne, mit einer longitudinalen Furche; Öffnungen sehr klein, dreieckig; keine Vordergliedmassen; Hintergliedmassen massig, deprimirt, Schwanz conisch, Spitze stumpf.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: \textit{D. Bayonii} von Loando (Angola).
126. Gattung *Soridia* Gray.

Kopf keilförmig; Schnauze halb konisch; Rostrale oben convex, vorn scharf gekielt; Frontoparietalia und Interparietale zu einer einzigen dreieckigen Platte vereinigt; Internasale und Frontale breit, durch eine breite, gerade Naht getrennt; Nasenlöcher lateral, in der Mitte eines dreieckigen Nasale; kein Supranasale; Zunge schuppig, Ohröffnung unter der Haut verborgen; Körper cylindrisch; Schuppen glatt; nur hintere Extremitäten, einfach, ungeheilt; Schwanz cylindrisch, mit Schuppen, den der unteren Fläche des Bauches ähnlich; 2 grosse Praeanalschilder.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *S. lincata* von Australien.

127. Gattung *Anniella* Gray.

Mit der Gattung *Soridia* verwandt; keine Gliedmassen, Nasenschädel gross, am Rande so gebogen, dass es einen Theil des Lippenrandes bildet, sonst ganz wie *Soridia*.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *A. pulchra* von Californien.

128. Gattung *Herpetosaura* Peters.

Artus nulli; lingua squamulata, depressa, triangulare, sagittata, apice inciso; palatum edentatum postice fissum; dentes maxillarum numerosi, conici, paulum curvati, margini interno adnati; palpebra superior angusta, inferior lata squamata; pupilla rotunda; auris occulta, rostrum cuneiforme rotundatum, squama vaginali obductum; nares laterales inter scutellum nasale minimum et excisuram scutelli rostrali posticam positam; caput squamis majoribus obductum; apex mandibulae squama vaginali obductus, porus analis paullo post corporis medium positus; Cauda longa, apice conico; squamae laeves; cranium columella instructum.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2 3</td>
<td>2</td>
<td>1 2</td>
<td>1 2</td>
<td>1 2</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt drei Arten bekannt.

129. Gattung *Plestiodon* Duméril et Bibron.

Kopf subquadrangulär; 1 Paar Supranasalia, die mit einander verbunden sind; Nasenlöcher in der Mitte einer ovalen Schuppe; 2 Frontoparietalia, zusammenhängend; unteres Augenlid schappig, mit einer Reihe grösserer Schuppen; Körper spindelförmig; Schuppen glatt, gross; Zehen 5,5, comprimirt, gekielt, unten schwach gezähnelt, zuweilen mit zwei oder drei runden Warzen an der Basis; Schwanz etwas comprimirt, spitz zulaufend; die beiden centralen Praeanalplatten grösser; Palm und Sohle warzig; Gaumen mit einer centralen Furche, welche nach vorn sich erweitert und nach hinten gezähnlt ist.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2 3</td>
<td>2</td>
<td>1 2</td>
<td>1 2</td>
<td>1 2</td>
</tr>
</tbody>
</table>

130. Gattung *Eumeces* Gray.

Kopf kurz, subquadrangulär; Schnauze conisch, abgerundet; 2 Frontoparietalia, einander fast berührend; Nasenlocher lateral, in der Mitte des oberen Randes der ovalen Nasenplatte; 2 Supranasalia; unteres Augenlid schappig, mit einem dicken Rande grösserer Schuppen; Gaumen hinten mit einer sehr seichten dreieckigen Furchen, ohne Zähne; Ohröffnungen gross, rund, vorn mit 2 oder 3 kleinen Lappen; Körper ziemlich verlängert, subcylindrisch; Gliedmassen stark; Zehen 5,5, unten warzig; Schwanz verlängert, comprimirt, rund; Schuppen glatt, von mässiger Grösse, Praeanalschuppen gleich, gross.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Von dieser Art sind bis jetzt 19 Arten bekannt, von welchen 1 zu den nearktischen, 1 zu den neotropischen, 5 zu den palaearktischen, 4 zu den aethiopischen, 4 zu den orientalischen und 4 zu den australischen Subregionen gehören.

131. Gattung *Apterigodon* Edeling.

Nasenlöcher fast in der Mitte der Nasalplatte sich öffnend, zwei Supero-nasalia; Gaumenzähne nicht vorhanden, ganz hinten mit einem dreieckigen Ausschnitt; Schuppen gekielt. Diese Gattung steht zwischen *Eumeces* und *Euprepes* und unterscheidet sich von der ersten durch die gekielten Schuppen, und von der anderen durch den Mangel an Gaumenzähnen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *A. vittatum* von Borneo.

132. Gattung *Eumecia* Barboza du Bocage.

Körper verlängert, oben schwach abgeplattet, lateralwärts comprimirt; Schwanz lang, an beiden Seiten gleichmässig comprimirt; zwei Paar sehr kurze Gliedmassen, die vorderen halb so kurz als die hinteren, mit zwei fast gleichen Fingern, die hinteren mit drei Fingern, der innere sehr kurz, die beiden andern von gleicher Länge. Nasenlöcher in einer einzigen Nasenplatte, welche dort gelegen ist, wo Supero-nasale und Noso-frenale an einander stossen; unteres Augenlid mit einer durchscheinenden Scheibe; Zunge schuppig, platt, an ihrem vorderen Ende schwach ausgeschnitten; Schuppen glatt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *E. anchictae* von Mossamides.
133. Gattung Otosaurus Gray.

Kopf kurz, dick; Schnauze conisch, abgerundet; Frontoparietale einfach oder doppelt, und dann getrennt; Nasenlöcher lateral; Nasale oval, vierseitig; 2 Supranasalia, verbunden; unteres Augenlid schuppig mit einer dicken Reihe grosser Schuppen; keine Occipitalplatten; Gaumen ohne Zähne, hinten mit einer dreieckigen Furche; Ohren gross, rund; Körper spindelförmig; Gliedmassen stark; Zehen 5,5, comprimirt; Schwanz conisch, comprimirt; Schuppen glatt, sehr klein, sehr zahlreich und einander zum Theil dachziegelförmig deckend, die Praeanalschuppen ziemlich gross.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

134. Gattung Siderolamprus Cope.

Die Gattung Siderolamprus ist am nächsten Eumeces und Otosaurus verwandt, unterscheidet sich aber von dieser durch zwei Paare Supranasalschilde und die Abwesenheit der Frontonasalschilder.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt ist von dieser Gattung nur eine Art bekannt: S. cuneagrammus von Mexico.

135. Gattung Mabouya Fitzinger.

Kopf subquadrangular; Schnauze conisch; Frontoparietalia doppelt, oder 2 zu einem vereinigt: Nasenlöcher lateral in der Nähe des hinteren
Randes des Nasenschildes; zwei Supranasalia; unteres Augenlid mit einer transparenten Scheibe; Gaumen ohne Zähne, hinten mit einer dreieckigen Furche, Ohröffnungen mässig, offen; Körper spindelförmig; 4 mässig entwickelte Gliedmassen; Zehen 5,5, verlängert; Schuppen glatt; Schwanz conisch, spitzzulaufend, Praeanalschuppen nahezu gleichförmig.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 3. 4.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3. 4.</td>
<td>1. 2. 3.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 27 Arten bekannt, von welchen 11 zu den neotropischen, 9 zu den australischen, 4 zu den orientalischen Subregionen gehören, und von drei Arten ist das Vaterland unbekannt.

136. Gattung Emoa Girard.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *E. nigra* von den Schiffer-Inseln.

137. Gattung Rioa Gray.

(Rioa Gray, Cat. of Liz. p. 96. — Eumeeces, z. Th. Wiegmann, Erpet. mexicana. — Duméril et Bibron, Erpét. général. T. V.)

Kopf pyramidal; Schnauze vorn rund; Rostrale hoch; Frontoparietschilder doppelt; Interparietale deutlich; Nasenlöcher lateral, in der Nähe des hinteren Randes der Nasalplatte; Supranasalia 2, verbunden; unteres Augenlid mit einer durchscheinenden Scheibe; Gaumen ohne Zähne, hinten mit einer dreieckigen Furche; Ohren klein, rund, Tympanum tief; Körper verlängert, cylindrisch; Schuppen glatt; Glieder sehr kurz, schwach; Zehen 5,5, kurz, ungleich, unten mit einer Reihe comprimirter Warzen, Palme und Sohle gleichmässig körnig; Schwanz verlängert, cylindrisch.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 6 Arten bekannt.

138. Gattung Hagria Gray.

(Hagria Gray, Cat. of Liz. p. 97. — Campsodactylus, Dumeril et Bibron, T. V. p. 762.)

Schnauze conisch; Nasenlöcher lateral; Nasalschilder getrennt; 2 Supranasalia, zusammenhängend, Frontonasale klein, lateral, nicht zusammenhängend; Frontale gross; Augenbraunschädel 4,4; Frontoparietale einfach, dreieckig, hinten eingeschnitten; Zähne conisch, einfach; Gaumen ohne Zähne, hinten schwach eingeschnitten; unteres Augenlid mit einer centralen transparenten Scheibe; Ohröffnungen klein, oval; Körper verlängert; Seiten abgerundet; Schuppen glatt; 4 kurze, schwache Gliedmassen; Zehen 5,4, subeylindrisch, ungleich, einfach, mit Krallen; Schwanz conisch, zugespitzt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *H. Vosmaerii* aus Bengalen.

139. Gattung Chiamella Gray.

(Chiamella Gray, Cat. of Liz. p. 97.)

Kopf subquadrangular; Nasale lateral, vierseitig, getrennt; zwei Supranasalia, bandförmig, zusammenhängend; Frontonasale lateral; Frontoparietale einfach; Interparietale gross, dreieckig; Parietale quer; unteres Augenlid mit einer centralen, transparenten Scheibe; Ohröffnungen klein, oval, fast vollständig durch Schuppen bedeckt; Körper und Schwanz verlängert, subeylindrisch; 4 schwache Gliedmassen; Zehen 4,4, subeylindrisch, verlängert, mit Krallen; die erste am Hinterfuss sehr kurz, die zweite etwas länger und die dritte und vierte die längsten und von gleicher Länge. Die Gattung Chiamella unterscheidet sich von Tetradactylus durch das Fehlen der grossen, Daumen-ähnlichen äusseren Zehe.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *Ch. lineata* aus Indien.
140. Gattung *Mocclus* Günther.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt von dieser Gattung nur eine Art bekannt, *M. punctulatus* von Zambesi.

141. Gattung *Senira* Gray.

(*Senira* Gray, Cat. of Liz. p. 98.)

Kopf deprimirt; Rostrale dreieckig; Nasenlöcher gross, lateral, fast die ganze Oberfläche der kleinen, ovalen Nasenplatte einnehmend; Supranasale gross, das der einen Seite mit dem der anderen Seite verbunden; Frontonasale massig; 2 Frontoparietalia, massig; Interparietale dreieckig; Augen klein, unteres Augenlid mit einer transparenten Scheibe; Zunge?: Körper cylindrisch, verlängert; Schuppen glatt; vier kurze, starke Gliedmassen; Zehen 5,5, dick, rund, mit Krallen, die vorderen sehr kurz, ungleich, die hinteren kurz, ungleich, die dritte und vierte Zehe am längsten, fast gleich; Schwanz rund, verlängert, spitzzulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 2 Arten bekannt.

142. Gattung *Brachymelis* Duméril et Bibron.

Nasenlöcher seitwärts. Nasale sehr klein, getrennt. Supranasale dreieckig; Frontoparietale doppelt; Interparietale dreieckig. Zunge platt, schwach eingeschnitten, bedeckt mit runden, convexen Papillen; keine Gaumenzähne, Gaumen mit einem grossen, dreieckigen Einschnitt. Ohröffnung nicht sichtbar. Unteres Augenlid durchscheinend; Körper cylindrisch, etwas verlängert, Seiten abgerundet, 2 Paar Gliedmassen, rudimentär, kurz, die vorderen mit zwei kurzen Krallen, die hinteren etwas spitz-
zulaufend, ungetheilt; Schwanz conisch; Schuppen glatt; Zähne einfach, conisch. Erwähnt sei noch, dass jedes Nasenloch sich in eine kleine Nasenplatte öffnet.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

143. Gattung *Ophiodes* Wagler.

Nasenlöcher lateral, in der Mitte eines kleinen Nasenschildes, 4 zusammenhängende Supranasalia; Zunge vorn gekrümmt, hinten sammelartig, an dem Ende eingeschnitten; unteres Angenlid schuppig; Gaumen ohne Zähne, mit einer longitudinalen Furche; Zähne conisch, einfach; Öffnungen sehr klein, mit Schuppen bedeckt; Körper cylindrisch, Seiten abgerundet; Schuppen gestreift; nur hintere Gliedmassen, kurz; ungetheilt; Schwanz conisch, spitzzulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

144. Gattung *Pygomeles* Grandidier.

(Pygomeles Grandidier, Revue de Zoologie p. 234, 1867.)

Præpedito (Soridus Gray) similis, sed auribus minimis; corpore anguliforme; extremitatis anterioribus nullis, posterioribus parvissimis, compressis individuisque; capite cucato, dentibus conicis, palato edentato, lingua tota squamea, non transversim sulcata nec antice emarginata; squamis non striatis.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt; *P. Braconnieri* von Madagascar.
145. Gattung Anguis L.

Kopf conisch, vierseitig, abgestumpft; Nasenlöcher lateral, in der Mitte einer kleinen ringförmigen Nasalplatte; 4 Supranasalia, zusammenhängend; Fronto- und Interparietale zu einem Schilde vereinigt; Zunge theilweise körnig und theilweise sammetähnlich, am Ende ausgeschnitten; Zähne lang, scharf; Gaumen ohne Zähne, mit einer longitudinalen Furche; Ohröffnungen sehr klein, vollkommen verborgen, dicht beim Mundwinkel; unteres Augenlid schuppig, opak; Körper cylindrisch, verlängert; keine sichtbaren Gliedmassen, die rudimentären Knochen unter der Haut verborgen; Schwanz verlängert; Schuppen glatt, die des Rückens wirbelförmig, die des Bauches und Schwanzes öseitig, die an den Seitenflächen des Körpers oval, vierseitig, dachziegelförmig. Lebendgebärend, zuweilen ovovivipar.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zu dieser Gattung gehören zwei Arten: *A fragilis* L. und *Anguis orientalis* Anderson.

Anguis fragilis — die Blindschleiche — gehört zu den Reptilien, welche eine sehr weite horizontale Verbreitung haben. Sie kommt vor in Algier und der Sahara nach Gervais und Straneh; in Europa lebt sie in Portugal, Italien (Piemont), dagegen soll sie auf Sardinien fehlen, ähnliches scheint für die griechischen Inseln zu gelten. Sie lebt weiter in Frankreich, der Schweiz, in England, Scandinavien, in den Niederlanden und ist an vielen Orten in Deutschland sehr häufig. Ebenfalls ist sie in Osteuropa und Westasien zu Hause. In der ungarischen

Anguis orientalis Anderson lebt bei Rehst am caspischen Meere.

146. Gattung *Ophioscincus* Peters.

(*Ophioscincus* Peters, Berl. Monatsb. p. 746. 1873.)

Corpus anguiforme, squamis laevissimis vestitum, pedibus esternis nullis; oculi palpebris muniti, apertura auricularis nulla; rostrale mentalaque majuscula, caput scutellis internasali, frontali, praefrontalisub, subrascularibus, frontoparietalibus, parietalibus, interparietalis, utrique in parte scutellii simplicis anteriore apertae. — Der Gattung *Rhodona* Gray verwandt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt von Port Bowen, *O. australis*.

147. Gattung *Tribolonotus* Duménil et Bibron.

Kopf deprimirt, mit Schäldern bedeckt, welche mit den Schädelknochen fest verbunden sind; Frontal- und Augenbrauenschild deutlich; Gaumen ohne Zähne; Zunge schuppig; Nasenlöcher lateral, in einer einfachen Platte; Augenlider deutlich, unteres schuppig; Schuppen des Rückens knochig, stark gedornit, die des Bauches rhombisch, gekielt; Zehen 5,5; etwas comprimirt, unten nicht gekielt; keine Femoralporen; 2 sehr grosse Praeanalplatten; Schwanz comprimirt, oben mit vier gedornit Kielen und die Seiten gedornit.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *T. Norae Guineae* von Neu-Guinea.

148. Gattung *Enoplosaurus* Saugage.

Der Gattung Tribolonotus verwandt; Kopf mit 6 Reihen von starken Dornen, eine doppelte Reihe von Dornen über die ganze Länge des Schwanzes; Kopf oben bedeckt mit deutlichen Schildern, sonst wie bei Tribolonotus.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palnearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: E. insignis von Manilla.

149. Gattung Tropidophorus Duméril et Bibron.

(Tropidophorus Duméril et Bibron, Erpét. génér. T. V. p. 554 — Gray, Cat. of Liz. p. 101.)

Kopf viereckig mit gekielten rauhen Schuppen; Rostrale hoch, dreieckig; Nasale lateral, Supranasale gross, dem Frontonasale ähnlich; Frontale und Interparietale gross; Frontoparietalia getrennt, klein; Internasale sehr klein, dreieckig; Zunge schuppig, Zähne comprimirt; Gaumen ohne Zähne, hinten mit einer tiefen, dreieckigen Furche; Unteres Augenlid mit einem Bande grösserer Schuppen; Trommelfell fast oberflächlich, Körper spindelförmig, comprimirt; Schuppen des Rückens und des oberen Theiles des Schwanzes rhombisch gekielt; die am Halse und an den Seiten keilförmig, gekielt; die des Bauches 6-seitig, glatt; 3 grosse Praeanalschilder, das centrale dreieckig; Schwanz comprimirt, oben mit vier Kielen, an den Seiten mit keilförmigen gekielten Schuppen und unten mit einer Reihe breiter, gekielter Schuppen; 4 starke Gliedmassen; Zehen 5,5; ungleich, comprimirt; mit Krallen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palnearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

150. Gattung Norbea Gray.

(Norbea Gray, Cat. of Liz. p. 101.)

Kopf etwas deprimirt, Schilder dick, granulirt; Rostrale viereckig, hoch; Nasale viereckig, lateral; kein Supranasale, Internasale viereckig, gross, hinten eingeschnitten; Frontonasale lateral, deutlich; Frontale verlängert, hinten spitzzulaufend; Augenbrauenschilder 4,4, gross; 2 Fronto-
klassifikation und geograph. verbreitung.

parietalia, klein, zusammenhängend; Interparietale und Parietalia gross, etwas verlängert; Schläfen bedeckt mit Schuppen; unteres Augenlid mit einer zentralen Reihe grüsserer Schuppen; Trommelfell rund, oberflächlich; Körper spindelförmig, etwas deprimirt; Schuppen des Rückens rundlich, die der Seiten glatt; Praeanalschilder einfach, gross, vierseitig; Schwanz verlängert, spitzzulaufend, comprimirt, mit zwei Reihen gekielter Schuppen, mit glatten Schuppen auf den Seiten und mit einer einfachen Reihe etwas grosser Schuppen an der Unterfläche; 4 kurze starke Gliedmassen; Zehen 5,5, comprimirt, ungleich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.</td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: N. Brookei von Borneo.

151. Gattung Trachydosaurus Gray.

Kopf pyramidal, Kopfschilder dick, convex; Nasale lateral; mit einer Grube hinter dem Nasenloch; Nasoloreale klein; kein Supranasale; Inter- nasale rhombisch; Frontonasale gross, Frontale und Interparietale ziemlich kurz; 2 Frontoparietalia mässig; Parietalia mässig; Hinterkopf und Schläfen mit Schildern; Orbitae von einer Reihe kleiner Schilder umgeben; unteres Augenlid schüppig; Zähne kurz, conisch, Gaumen ohne Zähne; Ohröffnungen oval; Körper dick, spindelförmig; Rücken an den Seiten etwas abgeplattet; Schuppen dick, convex, rauh, dachziegelförmig; 4 sehr kurze Gliedmassen; Zehen 5,5, kurz, ungleich; Palme und Sohle granulirt; Schwanz kurz, convex, bedeckt mit grossen, convexen Schuppen, am Ende sehr spitz zulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: T. rugosus von West-Australien.

152. Gattung Cyclodus Wagler.

Zähne nicht conisch und zugespitzt, sondern stumpf-keulenförmig oder, wie die im Kiefer weiter nach unten stehenden; fast kugelförmig; Kopf stark verdickt, von dem leicht eingeschnürten Halse sehr deutlich abgesetzt; Schwanz verhältnismäßig kurz, fast kugelförmig; Rumpf spindelförmig, dick, leicht flachgedrückt, mit dicken, knöchernen Schuppen bekleidet; kurze, weit von einander stehende, fünfzehige Extremitäten mit kurzen untereinander an Länge wenig verschiedenen Zehen; eine halbkreisförmige Reihe von Suborbitalschildern, Hinterkopf und Schlafen mit polygonalen Schildern; unteres Augenlid schuppig; Ohröffnung oval; zum Theil durch Schuppen bedeckt; Schuppen des Rückens 6 seitig etwas convex und raub; Internasale rhombisch; 2 grosse oder 4 kleine Frontoparietalia; Interparietale deutlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>1.</td>
<td>2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 11 Arten bekannt, von welchen 7 zu der Australischen Region, 1 zu der Australischen und Orientalischen Region gehören und von drei das Vaterland unbekannt ist.

Nach Strauch zerfällt die Gattung Cycloides in drei Subgenera.

A. Cycloides Gray. Nares postice sulco semicirculari cinctae, aures conspicuae, margine anterioi lobulato; mit 7 Arten.

B. Omolepida Gray. Nares simplices, sulco semicirculari postnasali nullo, aures apertae, margine anterioi integro vel lobulata; mit 3 Arten.

C. Otolepis Strauch. Nares simplices, sulco semicirculari postnasali nullo, aures duabus squamis magnis triangularibus tectae, sentella supernasalia; mit 1 Art.

153. Gattung Cycloidina Girard.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>1.</td>
<td>2.</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: C. aenea von Neu-Seeland.

(*Lissolepis* Peters, Berl. Monatsb. 1872, p. 776.)

Der Gattung *Cyclodus* verwandt; schliesst sich aber durch die Beschaffenheit der Ohröffnung und die Proportion der Zehen, sowie die zwar abgerundeten, aber mit kurzen Spitzen versehenen Zähne mehr an *Tropidolepis* an, während der Mangel der Zähne am Gaumen sie wieder den Cycloden nähert. Die Gattung ist auf *Cyclodus* (*Omolepia*) *luctuosus* gegründet.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

Die Art stammt von King George (S. W. Australien).

155. Gattung *Silubosaurus* Gray.

(*Silubosaurus* Gray, Cat. of Liz. p. 104.)

Kopf subquadrangulär, vorn abgerundet; Kopfschilder flach, dünn, etwas rauh; Nasale oval, dreieckig, mit einer Grube hinter dem Nasenloche; Rostrale dreieckig, hoch; kein Supranasale, Internasale breit, Frontonasale gross; Frontale und Interparietale klein; Frontoparietale und Parietale mässig; Augenbrauenschilder 4,4; Schläfen schuppig, kein Schild zwischen dem Augenrande und den Labialplatten; Augen klein, unteres Augenlid schuppig; Ohröffnung oval, vorn mit zwei grossen Schuppen; Körper spindelförmig, dick; Schuppen des Rückens breit, gekielt, der Kiel endigt pfriemförmig; besonders die des Bauches und des Halses; 4 starke Gliedmassen; Zehen comprimirt, verlängert, ungleich, mit Krallen; Schwanz kurz, spitzzulaufend, deprimirt, mit Ringen von grossen, breiten, mit Stacheln versehenen Schuppen, unten mit einer centralen Reihe 6seitiger, breiter, glatter Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt nur zwei Arten bekannt.

156. Gattung *Egernia* Gray.

(*Egernia* Gray, Cat. of Liz. p. 105.)

Kopf quadrangulär, vorn etwas zugespitzt; Kopfschilder convex; Nasale oval, dreieckig; kein Supranasale; Rostrale dreieckig, hoch; Internasale rautenförmig, so lang als breit; Frontonasale rhombisch; Frontale und Interparietale mässig; zwei Frontoparietalia, etwas divergirend, von
zusammenhängend; Parietale mässig, halboval; Schläfen beschuppt; keine Schuppen zwischen Orbitae und den Lippenschildern; Ohröffnungen oval, vorn von vier kleinen Schuppen begrenzt; Körper spindelförmig; Schuppen des Rückens, der Seiten und der oberen Fläche der Gliedmassen breit, 6-seitig, mit einem grossen centralen Kiel, der in einen Dorn sich verlängert, die des Bauches dünn, breit, oval, 6-seitig; 4 Gliedmassen stark, Zehen verlängert, ungleich, comprimirt, mit Krallen; Schwanz so lang als der Körper, rund, spitz zulaufend, mit 6 Reihen breiter, sechsseitiger, gekielter Schuppen und mit einer Reihe breiter, sechsseitiger, glatter Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt nur zwei Arten bekannt.

157. Gattung Tropidolepisma Duméril et Bibron.

(Tropidolepisma Duméril et Bibron, Erpét. génér. T. V. p. 744. — Gray Cat. of Liz. p. 105.)

Kopf subquadrangulär, vorn rund; Kopfschilder etwas roh, Nasalplatte oval, dreieckig; Nasenlöcher central; hinter denselben eine Grube; keine Supranasalia, Rostrale dreieckig, Internasale rhombisch, so breit als lang, Frontonasale mässig, das der einen Seite das der anderen Seite fast berührend; Frontale und Interparietale verlängert, das ersteren das grössste; Frontoparietalia vorn verbunden, hinten divergirend, Parietale mässig; unteres Augenlid bedeckt mit körnigen Schuppen und eine Reihe grösserer Schuppen auf dessen oberem Rande; Schläfen bedeckt mit Schildern. Gaumen ohne Zähne, hinten tief eingeschnitten; Ohröffnungen oval, vorn mit einer Reihe grösserer Schuppen; Körper kräftig; Schuppen mässig, 6-seitig; Praeanalsschilder ziemlich gross; 4 starke Gliedmassen; Zehen verlängert, comprimirt, ungleich; Schwanz verlängert, subcylindrisch, mit etwas grösseren, dreikieligen Schuppen bedeckt und unten mit einer centralen Reihe von breiten, glatten Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. 3.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 7 Arten bekannt.

158. Gattung Tropidoscincus Barboza du Boeage.

(Tropidoscincus Barboza du Boeage, Journal de Zoologie II, p. 288, 1873.)
Schuppen gekielt, Zunge platt, schuppiig, am Ende leicht gespalten, Zähne conisch, stumpf, Ohröffnungen gross, dreieckig, vorn mit kleinen, rundlichen Läppchen, untere Augenlider mit durchsichtiger Scheibe; ein Fronto-parietale, fünf ungleiche Zehen an jedem Fuss; Nasenlöcher zwischen zwei Nasalplatten, keine Superonasalia.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *T. aubrianus* von Neu-Caledonien.

159. Gattung *Lioscincus Barboza du Bocage.*

(*Lioscincus Barboza du Bocage, Journal de Zool. II. p. 285, 1873.*)

Schuppen glatt und gestreift; Zähne conisch, einfach, stumpf; Zwei Supero-nasalia jederseits, Naslöcher seitlich zwischen dem Nasale und vorderen Supero-nasale; Ohröffnungen rund, am Vorderrande keine Läppchen; unteres Augenlid mit durchsichtiger Scheibe, ein Fronto-parietale, fünf lange Finger an jedem Fuss, etwas comprimirt und stufig.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nur eine Art bekannt: *L. Steinbachneri* aus Neu-Caledonien.

160. Gattung *Atelochosaurus Gray.*

(*Atelochosaurus Gray, Cat. of Liz. p. 107.*)

Nasale subtriangular, mit der Nasenöffnung in der Mitte; kein Supranasale; Rostrale dreieckig; Internasale breit, kurz; Frontonasale klein, lateral; Frontale sehr lang und breit; 2 Frontoparietalia, rhombisch an den Ecken zusammenhängend; Interparietale dreieckig; unteres Augenlid mit einer Reihe von grossen Schuppen; Ohröffnungen rund; Körper spindelförmig; Schuppen 6seitig, mit 2 starken, getrennten Kielen; Kinn- schuppen dünner und glatt; 4 mässig starke Gliedmassen. Zehen 5,5, subcylindrisch, mässig, ungleich; Schwanz ungefähr so lang wie der Körper, rund, spitzzulaufend; oben mit zweikieligen Schuppen und unten mit kleinen, glatten Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *A. chinensis* von China.
161. Gattung Corucia Gray.

Kopf breit; Nasenlöcher oval, einfach, nach hinten nicht verlängert, in der Mitte des unteren Theiles des Nasalschildes; keine Supranasalschilder; Rostrale viereckig; ein grosses, acht-seitiges Internasale, hinten breiter; zwei Frontonasalia; ein kleines, subtrigonales Laterofrontale; zwei Frontoparietalia; ein Interparietale; Augenbrauen bedeckt mit bandförmigen Schildern; unteres Augenlid mit einer Reihe grosser, opaker Schuppen, Schläfen mit grossen Schildern bedeckt.

Körper spindelförmig, comprimirt; Schuppen 6seitig, glatt, mit 3,5 oder 7 Gruben; Extremitäten stark, Zehen 5,5, cylindrisch, verlängert, ungleich; Krallen stark; Schwanz verlängert, spitz zulaufend, etwas comprimirt; die Schuppen der oberen Fläche den des Rückens ähnlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: C. zebra von Neu-Guinea.

Diese Gattung gehört in dieselbe Section wie Ateuchoglossus, von der sie sich durch die glatten Schuppen, die beschildete Unterseite des Schwanzes unterscheidet.

162. Gattung Heteropus Fitzinger.

(Heteropus Fitzinger, Neue Classification der Reptilien. — Duméril et Bibron, Erpét. génér. T. V. p. 757. — Gray, Cat. of Liz. p. 107.)

Schnanze conisch; Nasenlöcher lateral, in der Mitte einer Nasalplatte, kein Supranasale, Nasofrontale einfach; Zunge schuppig, eingeschnitten; Zähne conisch, einfach; Gaumen ohne Zähne, hinten mit einer dreieckigen, tiefen Furche; Ohröffnungen deutlich; unteres Augenlid durchscheinend; Körper verlängert, cylindrisch; Seiten abgerundet; Schuppen gekielt; 2 Paare Gliedmassen; Zehen 4,5 verlängert, etwas comprimirt, einfach, mit Krallen, die hinteren ungleich; Schwanz conisch, spitz zulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 10 Arten bekannt, von welchen 7 zu den australischen, zwei zu den orientalischen Subregionen gehören und eine, H. Peronii auf Isle de France vorkommt.
163. Gattung *Tretioscincus* Cope.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Die Gattung *Tretioscincus* Cope ist *Heteropus* von Fitzinger verwandt, unterscheidet sich von dieser besonders durch die Femoralporen. Bis jetzt zwei Arten bekannt.

164. Gattung *Dasia* Gray.

Kopf vierseitig; Nasale klein, lateral, hinten rund, vorn viereckig; Supranasale verlagert, schmal, nicht verbunden; Internasale rhombisch; Frontonasale 5seitig, verbunden; Frontale 6seitig, oval; 2 Frontoparietalia, verbunden; Interparietale deutlich; unteres Augenlid mit Schuppen bedeckt; Ohröffnungen klein, zum Theil durch die Enden der Schläfenschuppen bedeckt; Körper spindelförmig; Schuppen schwach gekielt; 4 starke Gliedmassen; Zehen 5,5, an der Basis verbreitert, unten flach, an den Enden comprimirt, erste und zweite Zehe die längste und gleich lang; Krallen comprimirt, Schwanz rund, spitzzulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *D. olivacea* von Prince of Wales Island und von Java.

165. Gattung *Tiliqua* Gray.

(*Tiliqua* Gray, Cat. of Liz. p. 108. — *Euprepes* z. Th. Wagler, Duméril et Bibron.)

Kopf fast viereckig; Nasale klein, oval, lateral, Nasenlöcher subcentral, ziemlich gross; Frontonasale deutlich, dreieckig, vorne zusammenhängend; 2 Frontoparietalschilder, mit einander in Verbindung;
Interparietale dreieckig; unteres Augenlid mit einem centralen, longitudinalen Band von vier oder fünf viereckigen Schuppen; Ohrlöcher mässig, vorn gelappt; Körper spindelförmig, kräftig; Schuppen mit 3—5 Kielen; 4 kräftige Gliedmassen; Zehen 5,5, Palme schwach granulirt; Schuppen unter den Zehen glatt; Schwanz rund, spitz zulaufend, unten mit 3—5 Reihen etwas breiterer Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. 2.</td>
<td>2. 3. 4.</td>
<td>1. 3.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 21 Arten bekannt, von diesen gehören 5 zu den aethiopischen, 11 zu den orientalischen und 5 zu den australischen Subregionen.

166. Gattung *Euprepis* Gray.

(*Euprepis* Gray, Cat. of Liz. p. 110. — *Euprepes* z. Th. Duménil et Bibron, Erpét. génér. T. V.)

Nasenlöcher im hinteren Rande des Nasale, Frontoparietalschilder 2 oder verbunden, 2 Supranasalplatten; unteres Augenlid mit einer transparenten Scheibe, Gaumen mit Zähnen und hinten mit einer dreieckigen Furche; Körper spindelförmig; Gliedmassen stark, Zehen 5,5; Schuppen mit 2—7 Kielen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. 3.</td>
<td>2. 3. 4.</td>
<td>2. 3.</td>
</tr>
</tbody>
</table>

Die Gattung *Euprepes* ist äusserst zahlreich, bis jetzt sind schon mehr als 80 Arten bekannt, von welchen 6 zu den neotropischen, 7 zu den palaearktischen, 33 zu den aethiopischen (darunter 6 auf Madagaskar), 23 zu den orientalischen und 9 zu den australischen Subregionen gehören, von zwei Arten Vaterland unbekannt.

Klassification und geograph. Verbreitung.

Nares in scutello nasali margini posteriori propriores, curvati; scutella supero-nasalia duo, dentes palatini nulli; dentes maxillares compressi crenati; spuamae dorsales parvae bi-carinatae.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

168. Gattung *Sauroscincus* Peters.

Nasenlöcher zwischen drei Schildchen, dem Nasale, Nasofrenale und erstem Supralabiale, sonst wie *Euprepes* mit gekielten Rückenschuppen und durchsichtigem unteren Augenlid.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *S. Braconnieri* von Neu-Caledonien.

169. Gattung *Hemipodion* Steindachner.

(*Hemipodion* Steindachner, Wiener Sitzb. Bd. 55, 1867, p. 265.)

Körperform verlängert, walzenförmig; Schwanz lang, Extremitäten schwach entwickelt, die vorderen dreizehig, die hinteren zweizehig, jede Zehe mit einem Nagelgliede; Nasenlöcher seitlich zwischen zwei Nasenschildchen gelegen, keine Supranasalia, Rostrale von mässiger Grösse, wie bei *Euprepes* gestaltet, Ohrlöcher ausserlich nicht sichtbar, unteres Augenlid mit einer durchsichtigen Scheibe; Gaumen zahnlos, Schuppen glatt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *H. persicum* aus Persien.
170. Gattung *Microlepis* Gray.

(*Microlepis* Gray, Cat. of Liz. p. 116.)

Kopf deprimirt, hinten breit, Kopfschilder sehr dünn; Nasenlöcher lateral, in dem hinteren Ende eines kleinen, dreieckigen Nasale; 2 Paar Supranasalplatten; Internasale sehr klein, dreieckig, Frontonasale zu einer breiten Platte vereinigt, Frontale verlängert, Frontoparietale klein, Interparietale verlängert, 2 Parietalia; Ohröffnungen gross; Papille rund; unteres Augenlid sehr kurz, rudimentär, durchscheinend; Zunge platt, schuppig, am Ende ausgeschnitten; Hals bedeckt mit Schuppen; Augen gross; Zehen 5,5, verlängert, schlank, comprimirt, ungleich, mit Krallen; 4 schlanke, verlängerte Gliedmassen; Palme und Sohle warzig; Körper spindelförmig, vierseitig; Schuppen klein, scharf gekielt, gestreift; Schwanz verlängert, comprimirt.

Bis jetzt nur eine Art bekannt: *M. undulata* von unbekanntem Fundorte.

171. Gattung *Celestus* Gray.

Kopf deprimirt; Nasenlöcher lateral; 2 Paare Nasalia und Supranasalia, zusammenhängend, Internasale und Frontonasalia zu einem grossen Schild vereinigt, Frontoparietale klein, Interparietale dreieckig, verlängert; Augenbrallen-Schilder 5–5; Zunge vorn mit schuppenähnlichen, hinten mit fadenförmigen Papillen besetzt, eingeschnitten; Zähne conisch; Gaumen ohne Zähne, mit einer longitudinalen Furche; Ohröffnung rund; unteres Augenlid schuppig; Körper spindelförmig; Seiten abgerundet; Schuppen gestreift, in der Mitte schwach gekielt; 4 Gliedmassen stark; Zehen 5,5, ungleich verlängert, comprimirt, mit Krallen, Krallen klein, comprimirt, scharf; Schwanz comprimirt, spitz zulaufend; Praeanalschuppen in 4 Reihen, sechseitig, flach.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 12 Arten bekannt, von welchen 10 zu der westindischen Inselgruppe gehören; von einer Art ist das Vaterland unbekannt.

172. Gattung *Camilia* Gray.

(*Camilia* Gray, Cat. of Liz. p. 118.)

Kopf vierseitig; Schnauze rund; Nasenlöcher lateral; Nasale rhombisch, 2 Paare Supranasalia, verbunden; Internasale breit; 2 Frontonasalia, deutlich, rhombisch, an den Ecken zusammenhängend; Frontale gross, Frontoparietale deutlich; Interparietale dreieckig; Zunge vorn schuppig,
hinten papillös, am Ende ausgeschnitten; Gaumen ohne Zähne, mit einer longitudinalen Furche; Ohröffnungen oval, offen; unteres Augenlid schuppig; Körper spindelförmig; Seiten abgerundet; Schuppen gestreift, in der Mitte schwach gekielt; 4 starke Gliedmassen; Zehen 5,5, kurz, cylindrisch, ungleich; Krallen gross, breit, schwach comprimirt; Schwanz rund, comprimirt, spitz zulaufend; Praeanal schuppen gross, sechsseitig, in einer einfachen Reihe.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: C. jamaiicensis von Jamaica.

173. Gattung Diploglossus Wiegmann.

Schauze abgerundet, stumpf; Nasenlöcher lateral, in der sehr kleinen Nasalplatte gelegen; 4 Supranasalia, zusammenhängend; 2 Frontoparietalia, klein; Interparietalia deutlich; Frontonasalia zwei oder keine; Zunge vorn mit schuppigen, hinten mit fadenförmigen Papillen; Zähne conisch, Gaumen ohne Zähne, mit einer longitudinalen Furche; Ohröffnungen sichtbar, rund; unteres Augenlid schuppig; Körper und Schwanz subcylindrisch, verlängert, Seiten abgerundet; Schuppen gestreift, zuweilen mit einem centralen Kiel; 4 starke Gliedmassen; Zehen 5,5 ungleich, kurz, cylindrisch; Schwanz lang, subcylindrisch, spitz zulaufend; Praeanal schuppen hexagonal.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 8 Arten bekannt.

174. Gattung Hombronnia Girard.

Körper subtetragonal, deprimirt, bedeckt durch mässig grosse und gestreifte Schuppen; die beiden praeanalen Schuppen grösser als die übrigen; Kopf deprimirt, subtriangulär, zwei Parietalplatten, ein Occipitale und zwei Latero-occipitale; Nasenlöcher in einer Platte, keine Supranasalia; Kieferzähne conisch, keine Gaumenzähne; unteres Augenlid mit einer transparenten Scheibe, 2 Paare Gliedmassen, Finger und Zehen ungleich, 5,5; Schwanz lang, cylindrisch, mit fast gleichen Schuppen bedeckt.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt 2 Arten, beide von Neu-Seeland.
Wohin die Gattung zu stellen ist, wird von dem Autor durchaus nicht angegeben.

175. Gattung *Anisotermia* Duménil.

(*Anisotermia* Duménil, Revue et Magasin de Zoologie p. 421. 1856.)
Vier Füsse, die vorderen kurz und schlank, mit zwei Zehen, die hinteren mit vier Zehen. Schlanze abgerundet, mit dünnem und schneidendem Rande; Seiten unten winklig.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *A. sphenopsiforme* vom Senegal.
Wohin die Gattung zu stellen ist, wird von dem Autor nicht angegeben.

Duménil et Bocourt (Mission scientifique an Mexique) vereinigen die Familien der *Gynnocephalidae*, *Pygopodidae*, *Aprasiidae*, *Lialisidae*, *Scincidae*, *Ophiomoridae*, *Sepsidae*, *Acontiidae* und *Tymphlinidae* alle zu einer Familie, die *Scincidae*, und theilen dieselbe folgenderweise ein.

1. Peau pourvue des plaques osteodermiques. *Aspidoscinus*.
1. Plaques osteodermiques regulieres, parcourues par des canaux longitudinaux, qui a leur region moyenne, s'anastomosent avec un canal transversal; ceux de la partie anterieures

a. au nombre de trois.
 α. Supéro-nasales 1 Paire: *Euprepisidae*.

β. Supéro-nasales 2 Paires: *Eumorphisidae*.

b. au nombre de quatre.
 α. Supéro-nasales 1 Paire: *Scincidae*.

 | *Euprepis* Wagleri. |
 | *Mabuya* Fitz. |
 | *Alocosaurus* Gray. |
 | *Rhiopa Gray. |
 | *Hauroia Gray. |
 | *Tropidolepisma* D. B. |
 | *Leiolepisma* D. B. |
 | *Scincus L. |
 | *Gongylus* Wagl. |
 | *Ennecces Wiegn. |
 | *Amphiglossus* D. B. |
 | *Morethia Gray. |
 | *Seps Daudin. |
 | *Seelotes Fitz. |

Brown, Klassen des Thier-Reichs. VI. 3.
Klassifikation und geograph. Verbreitung.

ß. Supéro-nasales 2 Paires: *Somadrosidae.*
 { *Kenexia Cocteau.*

2. Plaques ostéodermiques irregulières;
 a. un Canal transversal s’anastomosant avec des canaux longitudinaux;
 pas de Supéro-nasale;

 α. Rostrale normal: *Lyglosomidae.*

 β. Rostrale grand et en forme d’étui: *Acontiidae.*

 β. Rostrale grand et en forme d’étui: *Acontias Gray.*

b. Pas de canal transversal. Les canaux principaux partent d’un point central et leur ramification ne se prolongent pas à leur partie périphérique;

 Diploglossus Wiegm.

Diploglossidae.

1. Peau depourvue de plaques ostéodermiques: *Anaspidoscincus.*

1. Tronc de forme normal et garni de grandes écailles; Ecussons sous-maxillaires très développés: *Trettioscincus Cope.*

2. Tronc très allongé et garni de petites écailles
 a. carencées. Pas de membres antérieurs, les postérieurs aplatis et non devisés en doigts; des Supéro-nasales et des ouvertures auriculaires: *Pygopidae.*

b. lisses. Pas de membres.
 a. Ouverture auriculaire

** nulle. Rostrale
† un peu renversée en dessus: *Anniellidae.* *Anniella Gray.*

+++ grande et emboitant le museau: *Typhlinidae.* *Typhline Cuv.)*

19. Famille *Ophiomoridae Gray.*

Kopf regelmässig beschildert; Schnauze etwas hervorragend; Rostrale dreieckig, hoch; Nasenlöcher lateral, in einer Furche in dem Nasale und
Reptilien.

Supranasale; Zähne conisch, stumpf; Gaumen ohne Zähne; Zunge platt, schuppig, an der Spitze schwach eingeschnitten; Ohröffnungen unter der Haut verborgen; Augen deutlich, mit klappenförmigen Augenlidern; Körper cylindrisch, verlängert, ohne eine Spur von äussernen Gliedmassen oder wenn vorhanden nur äusserst schwach entwickelt; Schuppen glatt, sechseitig; Schwanz verlängert, cylindrisch.

4 rudimentäre Gliedmassen 2. Gatt. Zygnopsis.

176. Gattung Ophiomorus Duménil et Bibron.

(Ophiomorus Duménil et Bibron, Erpét. génér. T. V. p. 799. — Gray, Cat. of Liz. p. 121.)

Rostrale dreieckig, gross, hoch; Supranasale gross, verbunden, Internasale quer, Frontonasale sehr klein; Frontale sehr breit, Frontoparietale und Interparietale zu einem grossen subtrigonalen Schild vereinigt; Parietale lateral, unteres Augenlid durchscheinend; Schuppen sechseitig, glatt; 2 grosse subtrianguläre, centrale Praeanalschuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: O. miliaris, dieselbe lebt in Algier und von Griechenland nach Osten bis ins südliche Russland, woselbst sie namentlich in den Caspigegenden häufiger auftritt. (Schreiber).

177. Gattung Zygnopsis Blanford.

Genus affine Ophiomori, naribus inter duo senta, aliud supra, alii supra, supranasalibus contiguis, sed membrii quatuor debilibus praeditum.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: Z. brevipes aus dem südlichen Persien.

20. Familie Sepidae Gray.

Rostralplatte gross, viereckig; Nasenlöcher im vorderen Rande eines kleinen Schildes, welches an der hinteren Seite der Rostralplatte in einer Grube liegt; Supranasale deutlich; Frontonasale fehlend oder klein, Frontoparietale oft fehlend, zuweilen vereinigt, Interparietale dreieckig; Zunge platt, schuppig, an der Spitze ausgeschnitten; Zähne conisch,
1172 Klassification und geograph. Verbreitung.
einfach; Gaumen zahnlos, hinten mit einer centralen longitudinalen Furchen; Augen deutlich; unteres Augenlid schuppig oder mit einer durchscheinen-den Scheibe; Körper spindelförmig oder subcylindrisch, verlängert; Schuppen glatt; Zehen einfach, ungleich, mit Krallen; Schwanz conisch, zugeschmolzen.

Nach Günther (Rept. British India) unterscheidet sich die Familie der Scpidae von der der Scincidac und Acontiaäae einfach durch die Lage der Nasenlöcher.

Unter Zugrundelegung der Gray'schen Eintheilung lassen sich die Gattungen folgenderweise unterscheiden.

a. Rostrale etwas verlängert, scharfrandig, mit einer grossen Nasenfurche; Kopf keilförmig.
2 (nur hintere) Gliedmassen; Augenlider beschuppt; Ohröffnungen sehr klein 5. Gatt. Scincodipus.

b. Rostrale rund, hoch; Kopf pyramidal.
4 Gliedmassen; Zehen 5,5; Körper spindelförmig; unteres Augenlid durchscheinend; Frontoparietalschild deutlich 8. Gatt. Thyrus.
4 Gliedmassen; Zehen 0—5, 0—5; Ohröff- nungen, keine Gaumenzähne; Superno-nasalia vorhanden 9. Gatt. Sepis.

178. Gattung Typhlacantias Barboza du Bocage.

(Typhlacantias Barboza du Bocage, Jornal de sc. math., phys. et nat. T. XV. 1873.)

Augen nackt, ohne jede Spur eines Augenlides; keine Gliedmassen; Nasenlöcher lateral, in dem Rostrale gelegen, mit einer schwach gebogenen hinteren Grube; Gaumen ohne Zähne; Zunge schuppig, an der Spitze
schwach eingeschnitten; Zähne conisch, klein, zahlreich; keine äussere Ohröffnung, keine Praeanalporen; Schuppen glatt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *T. punctatissimus* von Mossamedes.

179. **Gattung Sphenops Wagler.**

Nasenlöcher lateral, jede sich öffnend zwischen zwei Platten, dem Nasale und dem Rostrale; Zunge schuppig, ausgeschnitten; Zähne conisch, spitz, gerade, einfach; keine Gaumenzähne, Gaumen mit einer longitudinalen Furche; Ohröffnungen; Schnauze keilförmig abgerundet; zwei Paare Gliedmassen, vordere und hintere mit 5 Zehen; Zehen ungleich subcylindrisch, mit Krallen, ohne laterale Zähnelungen; Schwanz conisch, spitz zulaufend; Rostrale gross, vorn gekielt; Inter-nasalia und Frontalia gross, breit; Interparietalia klein, dreieckig; Frontonasalia und Frontoparietalia Gray (Supero-nasalia D. et B.) nicht vorhanden.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.</td>
<td>2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur 2 Arten bekannt.

180. **Gattung Sphenoseincus Peters.**

Vier rudimentäre Gliedmassen; jede mit 3 Zehen; Zunge breit, dreieckig, vorn schwach eingeschnitten; Gaumen ohne Zähne, mit einer seichten Furche; Augen sehr klein, unteres Augenlid mit einer transparenten Scheibe; Ohröffnungen nicht sichtbar; Nasenlöcher terminal, im vorderen Rande des Nasale; Rostrale dreieckig; Supranasale breit, Frontonasale subtriangulär; Schwanz kürzer als der Körper; der Gattung *Sphenops* verwandt.
Klassifikation und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Bis jetzt nur eine Art bekannt: S. tridactylus von Afghanistan.

181.Gattung Scelotes Fitzinger.

Nasenlöcher seitlich, jedes sich in zwei Platten öffnend, dem Nasale und Rostrale. Ein einziges Supero-nasale, quer über der Schnauze und hinter dem Rostrale gelegen; Zähne conisch, einfach; Zunge platt, schuppig, an der Spitze ausgeschnitten; Gaumen zahnlos, mit einer longitudinalen Furche; sehr kleine Ohröffnungen. Unteres Augenlid schuppig, opak; keine Vorderextremitäten; Hinterextremitäten mit zwei ungleichen, mit Krallen versehenen, subcylindrischen Fingern, ohne Zähnelung. Schnauze mehr oder weniger keilförmig, Seiten abgerundet; Schwanz conisch, spitz zulaufend; Schuppen glatt; Internasale und Frontale gross; Frontoparietale und Interparietale zu einer grossen, dreieckigen Platte vereinigt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Bis jetzt zwei Arten bekannt: Sc. anguinens Fitz. (Sc. Linnæi Dum. et Bibr.) vom Cap der guten Hoffnung und Sc. firemensis von Madagascar.

182. Genus Scincodipus Peters.

(Scincodipus Peters, Berl. Monatsb. p. 551. 1875.)

Schnauze keilförmig; Nasenlöcher zwischen vier Schildern, dem Rostrale, Supralabiale primum, Supranasale und dem kleinen Postnasale, hinter den Supranasalia ein Internasale, ein Frontale medium, zwei Parietalia und ein mässig grosses Interparietale; Augen klein, Augenlider beschuppt; Ohröffnung sehr klein; Zunge platt, mit schuppenförmigen Papillen bedeckt; Gaumen zahnlos, hinten mit einer mittleren Spalte, welche nicht bis zur Querlinie der Mundspalte vordringt; Bauchseite abgerundet, nur zwei hintere einzehige Gliedmassen; Schuppen glänzend glatt. Im Habitus ähnlich mit Scelotes, in der Beschreibung mehr mit Sphenops.
Keptilen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nur eine Art bekannt: S. congicus von Chinnono.

183. Gattung Amphiglossus Duméril et Bibron.

Gaumen ohne Zähne, weder mit einer Furche, noch mit einem Ausschnitt; Kieferzähne gerade, kurz, ein wenig comprimirt, an der Spitze stumpf; Ohröffnungen vorhanden; Schnauze stumpf; Nasenlöcher lateral, zwischen dem Nasale und Rostrale; Supernasalia zusammenhängend; Internasale gross, dreieckig, Frontonasale nicht vorhanden, Frontale gross, Frontoparietale und Interparietale vereinigt, dreieckig. Zunge schuppig an der Basis, glatt an der Spitze; unteres Augenlid schuppig; Körper länglich, cylindrisch, Seiten abgerundet; 2 Paare Extremitäten, jede mit 5 ungleichen, mit Nägeln versehenen, etwas comprimirten Zehen, ohne Zähnelung; Schwanz conisch, zugespitzt; Schuppen glatt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: A. Astrolabi von Madagascar.

184. Gattung Sepsiwa Barboza du Bocage.

Nasenlöcher lateral, sich in der Mitte von vier Platten öffnend, in dem Rostrale, dem Supero-nasale, dem Nasale und dem ersten Labiale; keine Frenonasalplatte; Zunge platt, schuppig, an der Spitze eingeschnitten; Gaumen ohne Zähne, mit einer longitudinalen Furche; Zähne conisch; äussere Ohröffnungen klein, elliptisch; 2 Paare Extremitäten, die vorderen kürzer als die hinteren, Zehen 3,3, sehr kurz, mit Krallen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 4 Arten bekannt.

185. Gattung *Thyrsus* Gray.

(*Thyrsus* Gray, Cat. of Liz. p. 124.)

Kopf conisch; Schnauze abgerundet; Rostrale viereckig, mit einer untiefen runden Furche hinten für die Nasenlöcher; Nasenlöcher lateral; 2 Supranasalia, zusammenhängend, kein Frontonasale (oder vereinigt mit dem Frontale), Internasale breit, Frontale gross, Interparietalia rhombisch; Gaumen zahnlos, ohne jede Furche; Ohröffnung vorn gezähnelt; Körper spindelförmig. 2 Paare Extremitäten von mässiger Stärke. Zehen 5,5, länglich, comprimirt, ungleich. Schuppen glatt. Schwanz rund, spitz zulaufend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaeartikische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Th. Bogerii* von Isle de France.

186. Gattung *Seps* Günther.

Nasenlöcher lateral, sich öffnend zwischen Rostrale und Nasale; Supero-nasalia vorhanden; Zunge platt, schuppig, vorn ausgeschnitten; Zähne conisch, einfach; Gaumen ohne Zähne, gewöhnlich mit einer longitudinalen Furche in seinem hinteren Drittel; Ohröffnungen; Schnauze conisch; Schwanz conisch, zugespitzt; Schuppen glatt, abgerundet; 2 Paare Extremitäten; Finger mit Krallen, ungleichförmig, subcylindrisch, ohne Zähnelung; Zahl der Finger wechselnd zwischen 0–5.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaeartikische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 13 Arten bekannt, von welchen 5 zu den palaeartikischen und 8 zu den aethiopischen Subregionen gehören, darunter 7 auf Madagascar und den Maskarenen.

in eine Gattung *Seps* Günther. Nach ihm kennen wir bis jetzt folgende Modifikationen zwischen dem zehenlosen *Seps monodactylus* und dem fünfzehigen *Gongylus ocellatus*.

Gongylus ocellatus 5 Zehen a./d. vord. Ext. 5 a./d. hint. Ext. gut entw.

Gongylus capensis 5 " " " " 5 " " " schwach entw.

Gongylus viridanus 4 " " " " 4 " " "

Seps tridactylus 3 " " " " 3 " " "

Heteroelmes mauritanicus 2 " " " " 3 " " "

Seps monodactylus 0 " " " " 0 " " "

DieGattungen *Heteroelmes* Dum. et Bibr., *Gongylus* Wagl. und *Seps* Daud. betrachtet er also als Untergattungen seiner Gattung *Seps*.

Gray (Cat. of Liz.) definiert die drei in Rede stehenden Gattungen folgenderweise:

Heteroelmes. Schnauze conisch, Nasenlöcher lateral, im hinteren Rande des grossen Rostrale; Supranasalplatte gross, in Zusammenhang mit der der anderen Seite; Internasale gross; 2 Frontonasalia; kein Frontoparietale; Frontale gross; Interparietale klein, dreieckig; Zunge platt, schupfig, am Ende ausgeschnitten; Zähne einfach, conisch; Gaumen ohne Zähne, hinten mit einer breiten, longitudinalen Furche; Ohröffnungen klein, durch Schuppen bedeckt; unteres Augenlid mit einer transparenten Scheibe; Körper cylindrisch, verlängert, Seiten abgerundet; Schuppen glatt, vier schwache Gliedmassen; Zehen 2,3, subcylindrisch, einfach, mit Krallen; Schwanz conisch, zugespiitzt.

Seps. Schnauze conisch, einfach; Rostrale vierreckig; Nasenlöcher lateral, im hinteren Rande des Rostrale; Supranasale in Zusammenhang; Internasale und Frontale gross; 2 Frontonasalia, keine Frontoparietalia; Interparietale sehr klein; 2 grosse Parietalia; Zunge platt, schupfig, am Ende ausgeschnitten; Zähne conisch, einfach; Gaumen ohne Zähne, mit einer longitudinalen Grube; Ohröffnungen oval, unteres Augenlid mit einer transparenten Scheibe; Körper cylindrisch, verlängert, Seiten abgerundet; 4 schwache Gliedmassen; Zehen 3,3, subcylindrisch, einfach, ungleich, mit Krallen; Schwanz conisch, spitz.

Gongylus. Kopf conisch; Schnauze abgerundet; Rostrale vierreckig, mit einer tiefen, nasalen Furche; Nasenlöcher lateral, im hinteren Rande des Rostrale; 2 Supranasalia in Zusammenhang; weder Frontonasale noch Parietale; Internasale breit; Frontale gross; Interparietale sehr klein, dreieckig; Gaumen ohne Zähne, mit einer longitudinalen Furche; unteres Augenlid mit einer transparenten Scheibe; Körper spindelförmig, subcylindrisch, verlängert, Seiten abgerundet; 4 kurze Gliedmassen; Zehen 5,5, ungleich, comprimiert; Schuppen glatt; Schwanz rund, spitz zulaufend.

Seps chalcedii Bonap. ist, mit Ausnahme des nördlichsten Theiles, in ganz Italien und dessen Inseln verbreitet und geht von hier aus über Genna durch Südfrankreich in die pyrenäische Halbinsel über, daselbst aller Orten ziemlich häufig vorkommend. Ausser Europa kommt die Art noch im nördlichen Afrika vor. (Schreiber.)
Klassifikation und geographische Verbreitung.

Gongylus ocellatus Gené ist in den meisten Mittelmeerländern ziemlich häufig.

187. Gattung *Sepomorphus* Peters.

(*Sepomorphus* Peters, Berl. Monatsb. p. 422, 1861.)

Trommelfell unsichtbar, vier dreizehige Extremitäten, die innere Zehe an allen sehr kurz, weiter nach oben gerückt. Nasenlöcher, Augenlider und Beschildung im Allgemeinen wie bei SepSs.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethioptische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *S. caffer* aus dem Kafferlande.

188. Gattung *Ophioseps* Barboza du Bocage.

Keine Augenlider, Zunge platt, schuppig, an der Spitze leicht gespalten; nur am Unterkiefer sehr kleine Zähne; keine Ohröffnungen; Körper sehr lang, cylindrisch, Schwanz \(\frac{1}{4} \) der ganzen Länge, am Ende mit einer halbkreisförmigen Schuppe; keine Gliedmassen; keine Analporen; Schuppen gross; Kopf kurz, oben platt mit vorgestreckter angeschwollener Schnauze, schlangenähnlich beschuppt; Nasalia sehr gross, oben vereinigt, unten bis zu dem Kieferrande reichend; 2 Fronto-nasalia, die sich an das erste Labiale fügen; ein sehr entwickeltes Frontale; ein Praecocular; keine Supero-nasalia; kein Frenal; oben 4, unten 3 Labialia.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethioptische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kopf klein, beschildet; Schnauze conisch; Rostrale ziemlich gross; Internasale kurz; Frontale gross; kein Frontoparietale; Interparietale dreieckig, massig; Augen deutlich; Augenlider, unteres gut entwickelt, oberes klein oder fehlend; Nasenlöcher mitten in der Seite des Rostrale, welches eine Furche an dessen hinterem Rande zeigt; Zunge schuppig, an der Spitze eingeschnitten; Ohröffnungen sehr klein oder nicht sichtbar, keine Femoralporen; Körper cylindrisch, 4 sehr kurze Gliedmassen oder keine; Schuppen glatt.
Die zu dieser Familie gehörenden Gattungen lassen sich folgender-weise unterscheiden:

a. 4 kurze Gliedmassen; Ohröffnung klein; oberes Augenlid deutlich.
Füsse ungetheilt, kurz 2. Gatt. Evesia.

b. Keine Gliedmassen; oberes Augenlid rudimentär.
Gliedmassen schwach entwickelt . . . 5. Gatt. Sepacontias.

189. Gattung Nessia Gray.

Schnauze conisch; Ohröffnungen sehr klein; Körper cylindrisch, verlängert, Seiten abgerundet; Schuppen glatt; 4 sehr kurze Gliedmassen; Zehen 3,3, ungleich, mit Krallen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 2 Arten bekannt, beide von Ceylon. Günther, (The Reptiles of British India) vereinigt die beiden Gattungen Nessia und Evesia in der einen Gattung Nessia.

190. Gattung Evesia Gray.

(Evesia Gray, Duménil et Bibron, Erpét. génér. T. V. p. 783. — Gray, Cat. of Liz. p. 127.)
Schnauze conisch; Nasenlöcher lateral; Rostrale gross; Internasale halb rund; Frontale viereckig; Interparietale dreieckig; weder Supranasale, noch Frontonasale noch Frontoparietale; Zunge platt, schuppig, an der Spitze eingeschnitten; Zähne conisch, einfach, Gaumen ohne Zähne, hinten eingeschnitten, ohne centrale Grube; Ohröffnungen sehr klein, unter Schuppen bedeckt; Körper cylindrisch, verlängert, Seiten abgerundet; Schuppen glatt, 4 sehr schwache, kurze, ungetheilte Gliedmassen; Schwanz rund.

Nur eine Art bekannt, E. monodactyla aus Ost-Indien.

191. Gattung Acontias Cuvier.

Kopf conisch; Nasenlöcher lateral; Internasale breit, 6seitig; Frontale gross, 6seitig; weder Frontonasalia noch Frontoparietalia; Interparietale klein, dreieckig; Parietale massig; Zunge platt, schuppig, am Ende aus-
geschnitten; Zähne conisch, stumpf; Gaumen ohne Zähne, mit einer longitudinalen Furche; Augen sehr klein, oberes Augenlid fehlend, unteres kurz, schuppig, opak; Ohröffnung unter der Haut bedeckt, Körper cylindrisch, verlängert; Schuppen glatt; keine Spur von Gliedmassen; Schwanz cylindrisch, kurz, am Ende abgerundet.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt fünf Arten bekannt.

192. Gattung *Anelytrops* A. Duméril.

Keine Spur von Augenlidern, keine Gliedmassen, Nasenlöcher seitlich in dem Schnauzenschild mit gekrümmter Furche, deren Concavität nach unten und vorn gewendet ist, Gaumen nicht gezähnt, Zähne conisch, Zunge pfeilförmig, schuppig, an der Spitze schwach ausgeschnitten; Schuppen glatt, keine Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beddome hat im Madras Montly. Journal of Medical Sc. 1870 noch die neue Sepidae-Gattung *Seposophis* beschrieben; die in Rede stehende Zeitschrift war mir aber nicht zugänglich. Die Gattung enthält nur eine Art: *S. punctatus* von Vizagapatam (Britisch Indien).

193. Gattung *Sepacontias* Günther.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *S. modestus* von Mpwapwa (Ost-Afrika).

22. Familie *Typhlinidae* Gray.

Rostrale ziemlich gross; Nasenlöcher in einer Furche in dem Rostrale; Kinn mit einem becherförmigen Schilde; nur hintere, ungetheilte Gliedmassen, oder keine; Körper cylindrisch; Schwanz cylindrisch; Schuppen glatt, gleichförmig, 6-seitig; Ohröffnungen und Augen unter der Haut verborgen.

Die zu dieser Familie gehörenden Gattungen unterscheiden sich folgender Weise.

a. Kopf beschildert; Praeanalschild einfach, gross.

b. Kopfschilder klein, schuppenähnlich; Praeanalschuppen zahlreich.
Keine Gliedmassen; Rostrale massig, deprimirt 2. Gatt. *Teylinia.*

2 Gliedmassen (hintere); Rostrale gross . . 3. Gatt. *Dibamus.*

194. Gattung *Typhline* Wiegmann.

Schnauze abgerundet; Rostrale den halben Kopf bedeckend; an den Rändern gekielt, unten flach; Internasale sehr breit, bandförmig; Frontale breit; Interparietale dreieckig; 2 Parietalia; keine Gliedmassen; Nasenlöcher an dem vorderen Rande des Rostrale, am hinteren Rande des Rostrale eine lange Grube; Praeanalschild einfach, halbrand; keine sichtbaren Augen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung nur zwei Arten bekannt.

195. Gattung *Teylinia* Gray.

(*Teylinia* Gray, Cat. of Liz. p. 129).

Kopf etwas deprimirt, mit 6-seitigen Schuppen bedeckt, vorn schmal; Rostrale massig, deprimirt; Nasenlöcher in dem Rostrale; keine Augen,
Klassifikation und geograph. Verbreitung.

Körper cylindrisch, etwas deprimirt, bedeckt mit 6seitigen, glatten Schuppen, die am vorderen Rande der Afteröffnung denen des Bauches ähnlich, Schwanz rund, spitzzulaufend.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *F. Currori* von Angola.

196. Gattung *Dibamus* Duméry et Bibron.

Schnauze conisch; Nasenlöcher lateral, abgerundet; Zunge platt, schuppig; Zähne conisch, einfach, gleich; keine Gaumenzähne; Ohröffnungen nicht sichtbar; nur kurze rudimentäre Hinterextremitäten; Schwanz kurz, Schuppen glatt; Praecanalschuppen denen des übrigen Körpers ähnlich.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *D. Novaë Guineæ* von Neu-Guinea.

197. Gattung *Typhloscincus* Peters.

In der Kopfbeschilderung und Beschaffenheit der Körperschuppen mit *Dibamus* übereinstimmend, aber ohne Extremitäten.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Bis jetzt nur 2 Arten bekannt: *T. Martensii* von Ternate und *T. nicobariens* von den Nicobaren.

II. Subordo *Pachyglosae*.

Tribus III. *Nyctisaura*.

Schuppen des Bauches klein, rhombisch, geschindelt; die des Kopfes, des Rückens und der Seiten granulirt; Zunge kurz, dick, convex, an dem Ende schwach ausgeschnitten; Nachtunge; Augenlider rund; Pupille senkrecht, selten rund; Körper deprimirt, zuweilen an den Seiten ge-
franst; Gehüsse, Zehen fast gleich, unten mit Lamellen und gewöhnlich verbreitert.

Nur eine Familie:

23. Familie Geckotidae.

Unter Zugrundelegung der Gray'schen Eintheilung lassen sich die sehr zahlreichen Gattungen dieser Familie folgenderweise gruppieren:

Kopf wie bei den Geckonidae, Zehen an den Rändern stark gekämmt; Zwischen-gattung zwischen Geckonidae und Scincidae

I. Zehen verbreitert, unten mit 2 Reihen von membranösen Platten unter dem verbreiterten Theil.

A. Endglied der Zehen kurz, in der Furchen zwischen dem Vorderende der beiden Reihen von Platten verborgen, Krallen 5,5.

Krallen retractil; Schwanz lang, am Grunde breit, Schuppen am Schwanz viereckig

Zehen halb verbunden, keine Femoral-poren, Schwanz gleichförmig granulirt

b. Zehen abgestumpft, die Mitte der Zehe unten mit 2 Reihen von viereckigen Platten, die beiden terminalen Platten sind die grössten.

Zehen frei, Schwanz cylinndrisch, spitz zulaufend

Schwanz subcyllndrisch, mit viereckigen Schuppen, nicht bewaffnet; Unter-fläche der Zehen mit 2 Reihen kleiner Platten

Schwanz cylindrisch, oben mit 2 Reihen von Dornen; die mittlere Zehe mit 2, die übrigen unten nur mit 1 Reihe von Platten

Jede Zehe mit einer doppelten Reihe von Platten über die ganze Länge der Unterfläche; Schwanz cylindrisch mit transversalen Reihen grosser Höcker

5. Gatt. Oedura.

Alle Zehen comprimirt, nicht erweitert, mit schwachen Krallen
e. Zehen abgestumpft, die Mitte der Zehe unten mit 2 Reihen von viereckigen Platten, die Endplatten sind die grössten.
Endpaar der Zehenplatten convex, Rücken und Schwanz körnig, gleichförmig .
Endpaar der Zehenplatten dünn; Rücken und Schwanz hockerig
Zehen frei; Körper einfach; Schwanz rund
Krallen 5,5, Zehenspitzen verbreitert, deprimirt
Zehen verbunden; Schwanz und Seiten des Kopfes und des Körpers gefranst
Zehen verbunden; Schwanz und Rücken mit einem häutigen Kamm . . .
a. Daumen wie die Zehen mit einem comprimirten, mit einer Kralle versehenen Endglied.
Schwanz etwas deprimirt; Zehen frei .
Daumen verkümmert, 4. Zehe auffallend lang
Zehen nicht erweitert, ein grosser Drüsensaum am Grunde der Schenkel .
Schwanz ziemlich deprimirt; Zehen halb verbunden, Haut der Seiten und der Glieder schlaff
Schwanz ziemlich deprimirt; Zehen fast frei, Seiten einfach
Schwanz deprimirt, gleichförmig granulirt, am Rande gezähnelt; Zehen frei; Seiten und Glieder einfach . . .
Schwanz deprimirt, gleichförmig granulirt, am Rande gezähnelt; Zehen halb verbunden; Seiten und Glieder mit einer dünnen, häufigen Ausbreitung .

Reptilien.

Schwanz cylindrisch, gleichförmig granulirt, spitz zulaufend; Zehen schwach verbunden.

b. Daumen mit einem comprimirten Endgliede, ohne Kralle.

Zehen fre.

e. Daumen ohne jede Spur eines comprimirten Endgliedes, ohne Kralle.

Zehen alle fre.

Die beiden mittleren Zehen an der Basis verbunden.

II. Zehen mehr oder weniger verbreitert, unten mit einer einzelnen Reihe transversaler Platten.

C. Zehen verbreitert, allein das Endglied comprimirirt und ziemlich verlängert, oder fehlend; die Platten unter den Zehen, häufig, glatt.

a. Krallen 5,5; Daumen mit einem comprimirten, freien mit einer Kralle versehenen Endglied.

Zehen frei, Basis schlank, Seiten einfach Krallen 5,5 oder 4,4, Daumen rudimentär oder ohne Endglied; Zehen frei, Endglied kurz.

Zehen 5,5, Zehen frei, Schwanz rund, Kopf mit knöchernen Höckern bedeckt.

Schuppen den Scincoiden ähnlicher.

Zehen nicht verbreitert, Schwanz sehr kurz und klein, Kralle nicht zurückziehbar.

Zehen 5,5, frei, verbreitert, Seiten einfach Zehen frei, unten mit einer einzigen Reihe von transversalen Platten, Endglied comprimirirt.

Zehen und Finger verschmälerl, mit Krallen versehen, Sohle gekielt.

Zehen halb verbunden; Rücken granulirt; Gliedmassen und Körper einfach.

Zehen frei, Endglied etwas verlängert, sehr comprimirirt, Schuppen körnig.

34. Gatt. Tropiocolebus.
Erster Finger und erste Zehe ebenfalls mit einer Kralle versehen, sonst wie *Gephyra*.
Kral len 5,5, letzte Phalangen frei, Zehen erweitert mit einer Doppelscheibe runder Lamellen.
Zehen halb verbunden; Rücken granulirt.
Zehen verbunden, Endglied kurz, comprimirt, Gliedmassen und Schwanz mit breiten, schuppig en, membranösen Anhängen.
e. Kral len 2,2, die dritte und vierte Zehe mit einem comprimirten, mit einer Kralle versehenen Endgliede.
Unteres Rostralschild sehr lang.
d. Kral len 3,3.
Keine Augenlider.
e. Keine Kral len, Zehen ohne comprimirtes Endglied.
Zehen verbreitert; Rücken mit Körnerschuppen.
Daumen am Ende erweitert wie die Zehen, Rücken hockrig.
Zehen schlank, kurz, Spitze etwas verbreitert.
Finger und Zehen kurz, *Pachydactylus* ähnlich.
Zehen schlank, mit terminaler Scheibe.
Kral len 5,5; Basis der Zehen mit einer Scheibe.
D. Zehen und Daumen mit einer Kralle versehen, oberhalb der Basis schwach erweitert, die 2 oder 3 letzten Glieder comprimirt, die membranösen Platten unter den Zehen glatt.
a. Zehen etwas dick, spitz zulaufend; Schwanz rund, cylindrisch, spitz zulaufend, granulirt; Praeanalporen in 3 oder mehreren queren Reihen, Rücken granulirt.
Zehen an der Basis dicker, nicht verbunden, Praeanalporen in mehreren Reihen, einzelne Schenkelporen.
42. Gatt. *Spathodactylus*.
44. Gatt. *Homodactylus*.
47. Gatt. *Sphaerodactylus*.

42. Gatt. *Spathodactylus*.
44. Gatt. *Homodactylus*.
47. Gatt. *Sphaerodactylus*.

Rücken granulirt.

b. Zehen verlängert, schlank, comprimirt.
Schwanz rund, spitz zulaufend, granulirt; Schuppen granulirt, keine Praeanalporen.
Schwanz rund, spitz zulaufend, Rücken mit Reihen von Höckern; Praeanalporen in 2 parallelen Reihen.
Schwanz rund, spitz zulaufend, Praeanalporen in einer gebogenen Reihe.
Schwanz rund, spitz zulaufend, Rücken mit Reihen von Höckern; weder Femoral- noch Praeanalporen.
Schwanz etwas deprimirt, spitz zulaufend; Rücken höckerig; Praeanalporen in einer gebogenen Reihe.
Gliedmassen verlängert, Schwanz subcylindrisch.
Augenlider verschliessbar, Zehen sehr kurz.
Gliedmassen und Zehen verlängert, Schwanz schlank, deprimirt, nicht so lang als der Körper.
Zehen verlängert, keine Seitenfalte.
Schwanz deprimirt, Ende rund, spitz zulaufend.

D. Zehen und Daumen mit einer Kralle versehen, cylindrisch, spitz zulaufend, an den Rändern gezähnelt; die Platten unter den Zehen vielmals gekielt, gezähnelt.
Schwanz rund, an der Basis geschwollen, an dem Ende sehr schlank.

Schwanz dick, spindelförmig 68.Gatt. Stenodactylopus.
Kein unteres Augenlid 70. Gatt. Ceramodactylus.

198. Gattung *Teratoscincus* Strauch.

(*Teratoscincus* Strauch, Bull. Acad. St. Pétersbourg. VI. p. 480, 1865.)
Kopf kurz, dick, granulirt wie bei den Gecko'niden; Rumpf und Extremitäten, mit Ausnahme der fein granulirten Flexorenseite des Vorderarmes und Oberschenkels, mit gleichartigen Spindelschuppen bedeckt; Zehen an den Rändern sehr stark gekämmt; Schwanz mit Spindelschuppen gedeckt, zeigt aber auf der Oberseite der zwei letzten Drittel dachziegelartig über einander gelagerte, breite, von rechts nach links convexe Schülder, die nach der Schwanzspitze zu allmählich an Grösse abnehmen und deren jedes etwa die Form einer breiten, mit der Convexität nach hinten gerichteten, Sichel oder eines menschlichen Nagels besitzt; nur ein sehr kleines, oberes, kein unteres Augenlid; Zunge kurz, an der Spitze gespalten, mit Schuppen bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt ist von dieser Gattung nur eine Art bekannt: *T. Keyserlingii* aus Persien.

199. Gattung *Ceratolophus* Barboza du Boeage.

(*Ceratolophus* Barboza du Boeage, Journal de Zoologie. II. p. 241, 1873.)
Kopf länglich, deprimirt; Gegend zwischen den Augen stark vertieft; hinten am Kopfe jederseits drei Knochenvorsprünge durch Leisten verbunden, von Haut bedeckt; oberes Augenlid mit conischen Schuppen garnirt; 5 Zehen an jedem Fuss mit retraetilen Krallen, nassig erweitert und unten mit ganzen Lamellen besetzt; Schwanz lang, am Grunde breit, jederseits beim Männchen mit einem zusammengedrückten Höcker, weiterhin dünn und conisch; oberhalb kleine, glatte, gewölbte und rundliche Schuppen, unterhalb flache, sechseckige Schuppen, am Unterkiefer Körner wie auf dem Rücken; Schuppen am Schwanz viereckig in regelmässigen Wirteln, keine Seitenfalten.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

— 3. —

Nur eine Art bekannt aus Neu-Caledonien: *C. hexaceros*.

200. Gattung *Thecadactylus* Cuvier.

Zehen halb verbunden, mit Krallen versehen, verbreitert, oval, unten mit einer regelmässigen Reihe dicht aneinander geschlossener Schuppen, durch eine tiefe centrale Furche, welche die Krallen umschliesst, getrennt; Daumen wie die übrigen Zehen mit einer Kralle versehen; Schuppen des Rückens sehr klein, gleichförmig; Körper jederseits mit einer sehr schwachen Falte; weder Femoral- noch Praanalporen; Schwanz rund, spitz zulaufend, zuweilen an der Basis aufgeschwollen, mit viereckigen Schuppen bedeckt, die an der unteren Seite ziemlich gross sind.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

— 2. —

Von dieser Gattung sind bis jetzt 2 Arten bekannt, eine aus den australischen und eine aus den neotropischen Subregionen.

201. Gattung *Lygodactylus* Gray.

Labialshilder breit, vorn gleichförmig, hinten kleiner mit einem grossen Schild vorn auf dem Kinn.

Unterscheidet sich von *Thecadactylus* durch freiere Zehen und dünnere, subcyllindrische Basen der Zehen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

— 2. —

Bis jetzt nur eine Art bekannt: *L. strigatus* von Südwestafrika.

(*Oedura* Gray, Cat. of Liz. p. 147.)

Zehen etwas deprimirt, schwach verbreitert, an den Enden abgestumpft, unten mit zwei Reihen von sehr kleinen, viereckigen, transversalen, membranösen Platten, von diesen ist das letzte Paar, zwischen welchem die Krallen sich befinden, das grösste. Krallen 5,5; Rücken und Bauch mit ovalen, convexen, gleichförmigen Schuppen bedeckt, die der Seiten etwas kleiner; Schwanz cylindrical, oder etwas deprimirt, oben und unten mit geschlossenen Ringen von viereckigen glatten Schuppen bedeckt, jede derselben mit 2 oder 3 eonischen Stacheln an ihrer Basis, Praeanalporen beim Männchen vorhanden, beim Weibchen fehlend, erstes unteres Labiale ziemlich gross, unten ohne jede Spur von Kimmschildern.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 3 Arten bekannt.

203. Gattung *Strophura* Gray.

Zehen alle mit Krallen, an der Spitze abgestumpft, die untere Partie der Mitte einer jeden Zehe mit 2 Reihen kleiner viereckiger Platten, der laterale Theil mit einer Reihe von transversalen, unten etwas gebogenen Platten, alle mit 2 ovalen, ziemlich dicken Schildern an der Spitze; Rücken ungleich granulirt, jederseits mit einer Reihe von Höckern; Schwanz rund, spitz zulaufend, oben mit 2 Reihen von fast cylindrischen Höckern; Praeanalporen in einer doppelten transversalen Reihe, die hintere Reihe die kürzeste.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *St. spinigera* von Australien.

204. Gattung *Paroedura* Günther.

Der Gattung *Oedura* und *Discodactylus* verwandt. Zehen etwas schlanker als bei *Phylloleucops*, jede mit einem Paar verbreiterter Endlамellen, zwischen welchen die Krallen gelegen sind, jede Zehe mit einer
Reptilien.

1191

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. sancti Johannis* (Comoro-Inseln).

205. Gattung *Rhynchoedura* Günther.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Rh. ornata* von Nicol-Bay.

206. Gattung *Diplodactylus* Gray.

Zehen alle mit Krallen, an der Spitze abgestumpft, die Mitte der unteren Seite der Zehen mit einer geringen Zahl von breiten transversalen Platten, endigend mit zwei ovalen, convexen etwas dickeren Platten, zuweilen einige kleinere zwischen diesen beiden Arten von Platten; Rücken granulirt, viereckig; Schwanz rund oder spindelförmig, mit Ringen von kleinen, viereckigen Schuppen, oben und unten von gleicher Form.
Klassifikation und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1. — 3. 4.</td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 10 Arten bekannt, von welchen 7 in den australischen und 3 in den aethiopischen Subregionen angetroffen werden.

207. Gattung *Phyllodactylus* Gray.

(*Phyllodactylus* Gray, Cat. of Liz. p. 150. — Duménil et Bibron, Erpét. génér. T. III. p. 397.)

Zehen alle mit Krallen, untere Seite der Zehen in der Mitte mit transversalen viereckigen Platten, in zwei dünne viereckige Platten endigend; Rücken granulirt, mit Reihen von Höckern; Schwanz etwas depri- mirt, unten mit einer Reihe von etwas grösseren Schildern; weder Femoralnoch Praeanalporen; unteres Rostralschild sehr gross, fünfeckig mit einem Paar von grossen Kinnschildern.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

208. Gattung *Ptyodactylus* Cuvier.

Nasenlöcher an der Ecke der Rostralplatte; Kinn mit einigen verbreiterten Schuppen; Finger und Zehen frei, schlank und an der Basis abgerundet, unten mit kleinen queren Platten, an dem Ende verbreitert, die terminale Scheibe vorn mit einer Furche, unten mit 2 Reihen divergirender Platten; Krallen 5,5, jede derselben in der Furche der Scheibe steckend; Rücken granulirt, mit Reihen von grösseren Höckern; weder
Reptilien.

Praeanal- noch Femoralporen; Schwanz rund, spitz zulaufend, mit queren Reihen von kleinen Höckern.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

209. Gattung Rhoptropus Peters.

Palmae plantaeque pentadactylae, digit longiores, unguiculati, apice dilatati, depressi, subtus squamis transversis muniti; digitus posterius secundus tertio a basi ultra medium coadnatus; unguis minimi, nares tubuliformes, inter scutella 3 vel 4 erecta apertae. Notaeum granulatum. Habitus Ptyodactyli.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: Rh. afer aus Süd-Afrika.

210. Gattung Uroplates Fitzinger.

(Uroplates Fitzinger, Neue Class. Rept. — Gray, Cat. of Liz. p. 151.)

Zehen verbunden, unten mit kleinen, viereckigen Schuppen, am Ende verbreitert, die terminale Scheibe hat vorn eine Furche für die Kralle und unten zwei Reihen divergierender Schuppen; Schwanz deprimirt, von einer dünnen Membran umsäunt; weder Praeanal- noch Femoralporen; Rücken granulirt, mit grösseren zerstreuten Höckern.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

211. Gattung Caudiverbera Laur.

(Caudiverbera Laur. — Gray, Cat. of Liz. p. 152. — Ptyodactylus Duméril et Bibron z. Th.)

Zehen halb verbunden, unten granulirt, etwas schmal an der Basis, an dem Ende verbreitert, die terminale Scheibe vorn mit einer Furche
für die Kralle, unten mit 2 Reihen divergirender Schuppen; Schwanz jederseits mit einer stark gezackten Membran; Seiten einfach, rund; Rücken und Schwanz mit einem häutigen Kamm; weder Praanal- noch Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *C. peruviana* von Chili.

212. Gattung *Hemidactylus* Cuvier.

Zehen frei, nach den Enden zu verbreitert, unten mit zwei Reihen divergirender Schuppen, das letzte Zehenglied comprimirt, frei, mit einer Kralle versehen; Daumen verlängert, den Zehen ähnlich, ebenfalls mit einer Kralle; Rücken granulirt, gewöhnlich mit cylinderförmigen Reihen von grossen Höckern; Körper mit einer sehr schwachen Leiste in dem unteren Theil der Seitenfläche; Schwanz etwas deprimirt, oben sechseitig, mit queren Ringen von Dornen, unten etwas convex, an den Seiten etwas rund; Kinnschuppen sehr wechseld bei derselben Art.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Gattung *Hemidactylus* mit ihren 45 Arten hat eine sehr grosse geographische Verbreitung, von den zahlreichen Arten leben 3 in den neotropischen Regionen, darunter eine in der westindischen Subregion (auf der Insel Jamaica); fünf in den paläarktischen Subregionen, darunter eine auf der Insel Socotra; dreizehn in den aethiopischen Subregionen, darunter vier auf der Insel Madagaskar; ein und zwanzig in den orientalischen Subregionen und drei in den australischen Subregionen. *H. corruculatus* Cuv. lebt von Südfrankreich an, durch ganz Italien, Dalmatien und Griechenland, sowie im nördlichen Afrika.

213. Gattung *Scalabotes* Peters.

Der Gattung *Hemidactylus* verwandt, von dieser dadurch verschieden, dass die drei letzten Zehen sowohl an der vorderen als an der hinteren Extremität schmal und nur am drittletzten Gliede durch eine doppelte Reihe von plantaren Querlamellen verbreitert sind. Die erste Zehe ist verkümmert, schmal und mit einer äusserst kleinen Kralle versehen, die
zweite ist kurz und, mit Ausnahme der beiden letzten Glieder, durch zwei Reihen von Querlamellen fast bis zur Basis verbreitert, wie bei *Hemidactylus*; die vierte Zehe ist auffallend verlängert. Der Körper ist oben und an den Seiten mit kleinen, körnerförmigen Schuppen bedeckt, während die des Schwanzes ein wenig grösser erscheinen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palarctische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

214. Gattung Puellula Blyth.

Gleicht *Hemidactylus*, hat aber keine Erweiterung an den Zehen; keine Femoral- oder Praeanalporen, aber einen grossen Drüsensaum am Grunde der Schenkel, in der vorderen Hälfte durch eine schwache, mittlere Grube getheilt, welche eine grosse Drüsenhöhle an der hinteren Hälfte bildet, deren Lippen mit grösseren Schuppen bedeckt sind; dieses Organ ist im weiblichen Geschlechte viel weniger entwickelt. Auf dem Rücken ein deutlicher, rudimentärer Kamm, auch eine seitliche Hautfalte zwischen den Vorder- und Hinterbeinen, und eine solche am Vorderrande der Schenkel.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palarctische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. rubida* von den Andamanen-Inseln.

215. Gattung Velemesia Gray.

(*Velemesia* Gray, Cat. of Liz. p. 156.)

Zehen an der Basis durch eine Haut verbunden, nach den Enden zu etwas verbreitert, unten mit 2 Reihen von divergirenden Platten; Daumen frei, an der Basis verbreitert, mit einem deutlichen comprimirten Endglied, mit einer Kralle; Haut an den Seiten und an dem hinteren Theil der Schenkel sehr schlaff; Schwanz etwas deprimirt, unten flach, mit einer geschlossenen Reihe von deprimirten Dornen auf jeder Seite, oberer Theil vierseitig, mit deutlichen Ringen von conischen Höckern; Femoral- und Praeanalporen.

Bis jetzt nur eine Art bekannt: *V. Richardsonii*. Vaterland?
216. Gattung *Nubilia* Gray.

(*Nubilia* Gray, Cat. of Liz. p. 273.)

Zehen an der Basis durch schwache Häute verbunden, etwas verbreitert, Endglied comprimirt, mit einer Krallen; Seiten und hinterer Theil der Schenkel einfach; Schwanz etwas deprimirt, unten flach, mit einer Reihe von Dornen an dem Rande und unten mit einer Reihe von breiten Schildern; Seiten des Körpers und Gliedmassen abgerundet, einfach; Rücken mit einer Reihe von grossen, dreieckigen Höckern; Femoral- und Pracanal-poren?

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *N. Argentii* von Singapore.

217. Gattung *Doryura* Gray.

(*Doryura* Gray, Cat. of Liz. p. 156.)

Zehen frei oder mit sehr schwachen Häuten an der Basis, nach den Enden zu verbreitert, unten mit 2 divergirenden Reihen von Platten, Endglied comprimirt, etwas verlängert, mit einer Krallen; Daumen den Zehen ähnlich; Rücken mit sehr kleinen, gleichförmigen, granulirten Schuppen; Schwanz deprimirt, oben rund, unten abgeplattet, mit einem scharf gezähnelten Rande nach der oberen Seite hin und unten mit einer centralen Reihe grösserer Schuppen; Seiten des Körpers und der Gliedmassen einfach.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 5 Arten bekannt, von welchen 2 auf den Sandwichs-Inseln vorkommen.

218. Gattung *Nycteridium* Günther.

Reptilien.

Bis jetzt nur 2 Arten bekannt.

(*Leiurus* Gray, Cat. of Liz. p. 157.)

Zehen an der Basis durch Häute verbunden, nach den Enden zu etwas verbreitert, unten mit zwei Reihen von geschlossenen, etwas divergirenden Platten, das letzte Glied etwas verlängert, comprimirt, frei, mit einer Kralle; Schwanz cylindrisch, spitzzulaufend, mit kleinen Granulationen bedeckt und unten mit einer Reihe von grossen, sechsseitigen Schildern; Seiten und Gliedmassen abgerundet; Rücken mit kleinen, gleichförmigen, granulirten Schuppen; Praeanal- und Femoralporen vorhanden.

Bis jetzt nur eine Art bekannt: *L. ornatus* aus West-Afrika.

220. Gattung *Crossurus* Gray.

(*Crossurus* Gray, Cat. of Liz. p. 158.)

Finger durch ganze Häute verbunden, Zehen durch halbe Häute verbunden, beide an der Basis verbreitert, an den Enden comprimirt, unten mit 2 Reihen von divergirenden Platten; Krallen 5,5; Seiten und Gliedmassen abgerundet; Schwanz verlängert, jederseits mit einer gezähnelten Leiste; Praeanal- und Femoralporen?

Bis jetzt nur eine Art bekannt: *Cr. caudiverbera*. Vaterland unbekannt.

221. Gattung *Boltalia* Gray.

(*Boltalia* Gray, Cat. of Liz. p. 158.)

Zehen frei, oval, nach den Enden zu verbreitert, unten mit 2 Reihen von schmalen, dicht aneinander geschlossenen Platten, durch eine tiefe, schmale Furche von einander getrennt, Endglied comprimirt, frei, mit einer Kralle; Daumen verbreitert, Endglied comprimirt, dem der Zehen ähnlich, aber ohne Kralle; Rücken mit granulirten Schuppen und mit einigen wenigen weit aus einander stehenden grossen Körnern; Seiten einfach; Schwanz etwas deprimirt, spitzzulaufend, unten mit einer centralen Reihe von breiten Schuppen.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: B. sublaevis von Bengal.

222. Gattung *Peripia* Gray.

(*Peripia* Gray, Cat. of Liz. p. 158.)
Zehen frei, über ihre ganze Länge verbreitert, unten mit 2 Reihen von divergirenden Platten, Endglied comprimirt, mit einer Kralle; Daumen kurz, abgestumpft, verbreitert, unten mit Platten, ohne Spur eines comprimirtten Endgliedes, ohne Kralle; Männchen mit, Weibchen ohne Femoralporen; Schwanz rund; Rücken mit gleichförmigen granulirten Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 7 Arten bekannt, von welchen 2 den orientalischen, 5 den australischen Subregionen angehören.

223. Gattung *Peropus* Wiegmann.

(*Peropus* Wiegmann, Herp. mexicana. — Gray, Cat. of Liz. p. 159.)
Zehen an der Basis verbreitert, unten mit 2 Reihen von divergirenden Platten, Endglied comprimirt, mit einer Kralle, die beiden mittleren Hinterzehen an ihrer Basis vereinigt; Daumen über ihre ganze Länge verbreitert, ohne Kralle; Schuppen granulirt, ohne Femoralporen; Schwanz deprimirt, spitzzulaufend, oben rund, unten flach, an den Rändern gezähnelt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt, von welchen 2 den orientalischen und 2 den australischen Subregionen angehören.

224. Gattung *Pentadactylus* Gray.

(*Pentadactylus* Gray, Cat. of Liz. p. 160.)
Zehen frei, mit Krallen versehen, an der Basis schmal, nach dem Ende zu etwas verbreitert, unten mit einer Reihe transversaler Platten, Endglied comprimirt, kurz, gebogen; Daumen den Zehen ähnlich, mit einer Kralle; Femoralporen deutlich, in 2 Reihen; Praeanalporen beim Männchen in
zahlreichen Reihen; Haut sehr fein granulirt, Seiten des Körpers einfach; unteres Augenlid gut entwickelt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. – 3. 4.</td>
<td>2. – 4.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 8 Arten bekannt, von welchen 4 den australischen Subregionen und 4 den orientalischen Subregionen angehören.

225. Gattung Platydactylus Fitzinger.

Zehen frei, ungleich, nach den Enden zu verbreitert, unten mit einer Reihe von breiten, transversalen, häufigen Platten, Endglied kurz, comprimirt, gebogen, mit einer Krallen, Daumen verbreitert, ohne das comprimirte Endglied, ohne Krallen; Augenlid hängig; Rücken granulirt, mit weit aus einander stehenden grossen Höckern; Femoral- und Praeanalporen beim Männchen deutlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. 2. 3. 4.</td>
<td>2. 3. 4.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 26 Arten bekannt, von welchen 1 zu den palaearktischen, 5 zu den aethiopischen, 8 zu den orientalischen und 12 zu den australischen Subregionen gehören. — *Pl. fuscatus* Strauch findet sich von Spanien und Portugal über Südfrankreich und Genua durch fast ganz Italien und dessen Inseln, sowie auch in Griechenland.

226. Gattung Chamaeleonurus Boulenger.

(Chamaeleonurus Boulenger, Bull. Soc. zool. de France 1878, p. 68.)

Der Gattung *Platydactylus* verwandt. Schwanz rund, Kopf mit knöchernen Höckern bedeckt, Zehen frei, Krallen 5,5; weder Hautfalten auf den Seiten, noch ein Kamm auf der oberen Fläche des Körpers.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. 3. 4.</td>
<td>3.</td>
</tr>
</tbody>
</table>

Nur eine Art bekannt: *Ch. chahona* von Neu-Caledonien.
227. Gattung Geckolepis Grandidier.

(Geckolepis Grandidier, Revue de Zool. 1867, p. 233.)

Gecko supra infraque squamis Seineidecorum modo tectus; capite obtuso, pedibus brevissimis, digitis Platydactylorum modo striatis.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt zwei Arten bekannt, beide von Madagascar.

228. Gattung Nephrurus Günther.

(Nephrurus Günther, Journal des Museum Godefroy, XII. p. 46, 1877.)

Oberseite fein gekörnt mit runden Gruppen conischer Tuberkeln, deren mittelst die grösste; Zehen nicht verbreitert; cylindrisch, von massiger Länge, jede mit einer nicht zurückziehbaren Kralle, an der Unterfläche gekörnt. Pupille vertical; oberes Augenlid durch eine Falte von der Kopfhaut getrennt, mit vorspringendem Rande; unteres Augenlid durch eine deutliche Falte angezeigt. Schwanz sehr kurz und klein, vorn angenschwollen, hinten dünn und verschmälernt, mit kugeligem, nierenförmigem Knopf endigend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur 1 Art bekannt: *N. asper* von Poak Downs.

229. Gattung Theconyx Gray.

(Theconyx Gray, Cat. of Liz. p. 159. – Platydactylus z. Th. Duméril et Bibron, Erpet. génér. T. III. p. 318.)

Zehen frei, mit Krallen, über ihre ganze Länge verbreitert, unten mit vollständigen transversalen Platten, Endglied comprimirt, kurz, mit einer gebogenen Kralle; Daumen den Zehen ähnlich, ebenfalls mit einer Kralle; Kopf dreieckig; Rücken mit einer Furche, Haut mit sehr dicht aneinander gereichten kegelförmigen Körnern; Praeanalporen deutlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Th. Seychellensis* von den Seybellen.
230. Gattung *Aristelliger* Cope.

Die Gattung *Aristelliger* Cope ist der Gattung *Theconyx* Gray und *Pentadactylus* Gray verwandt.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

231. Gattung *Tropiocolotes* Peters.

(*Tropiocolotes* Peters, Monatsh. Acad. Berlin p. 305. 1880.)

Körper und Gliedmassen allenthalben mit dachziegelförmig sich deckenden, stark gekielten Spuppen bekleidet, welche am conisch abgerundeten Schwanz grösser sind als am Körper. Sämtliche Finger und Zehen sind verschmiert, mit wohl entwickelten Krallen versehen und an der Sohle gekielt. Das obere Augenlid ist deutlich vorhanden wie bei *Gecko* und die Pupille senkrecht.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Zu dieser Gattung gehört 1 Art *T. tripolitanus* von Uadi M'bellem.

232. Gattung *Amydosaurus* Gray.

Zehen frei, sehr ungleich, an der Basis schmal, nach dem Ende zu verbreitert, unten mit 5—6 rektigen Platten, Endglied kurz, comprimirt, ohne Kralle, Endglied des Daumens comprimirt, ebenfalls ohne Kralle; Schuppen fein granulirt, gleichförmig; Seiten einfach, Schwanz cylindrisch, mit viereckigen Schuppen bedeckt, keine Femoralporen.

B r o n n : Klassen des Thier-Reichs. VI. 3.
Klassification und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Bis jetzt nur zwei Art bekannt: *A. lugubris* von Otahiti und *A. (Lepidodactylus) neocaldonicus* von Neu-Caledonien.

233. Gattung *Gephyra* Gray.

(*Gephyra* Gray, Cat. jo Liz. p. 162.)
Zehen frei, deprimirt, oval, nach den Enden zu stark verbreitert; unten mit transversalen Schuppen, Endglied comprimirt, verlängert; Daumen verbreitert, ohne das verlängerte comprimirte Endglied, ohne Kralle; Rücken mit kleinen granulirten Schuppen; Männchen mit, Weibchen ohne Praeanalporen; Schwanz rund, spitzzulaufend, schwach geringelt, mit gleichförmigen, granulirten Schuppen bedeckt, unten mit einer Reihe sechsseitiger Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

234. Gattung *Phyllopecus* Peters.

Unter der Basis der Finger und Zehen eine einfache Reihe Querlamellen, die letzten beiden Glieder aller fünf Finger und Zehen verschmißt und mit einer Kralle versehen.
Von *Gephyra* verschieden dadurch, dass auch der erste Finger und die erste Zehe mit verschmißten Endgliedern und einer Kralle versehen sind.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *Ph. goyazensis* von Goyaz (Brasilien).

235. Gattung *Teratolepis* Günther.

Kopfform geckoartig, bedeckt mit kleineren nicht dachziegelartigen Schuppen; kein äusseres Ohr; Rumpf etwas deprimirt, mit dachziegelartigen
Schuppen, die des Rückens gekielt, von mässiger Grösse und etwa doppelt so lang wie die des Bauches; Beine wohl entwickelt, fünf Krallen vorn und hinten, jede Zehe erweitert mit einer Doppelreihe runder Lamellen, die letzten Phalangen frei, Schwanz von der Länge des Rumpfes, dick und flach am Grunde, hinten verschmälernt, er ist mit dachziegelartigen unregelmässigen Schuppen bedeckt, die der Oberseite sehr gross, viel grösser als die unteren.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *T. (Homonola) fasciata* Blyth von Sindh.

236. Gattung Luperosaurus Gray.

(*Luperosaurus Gray*, Cat. of Liz. p. 163.)

Zehen an der Basis durch Häute verbunden, nach den Enden zu verbreitet, unten mit ziemlich gebogenen, vollständigen, transversalen Falten, Endglied kurz, comprimirt, mit einer scharfen Kralle; weder Endglied noch Kralle am Daumen, sondern oben mit einer platten Schuppe an deren Stelle; Seiten des Kinnis mit einer sehr undeutlichen Falte; Gliedmassen etwas deprimirt, der untere Theil der Seite mit einer schwachen Hautfalze versehen; die beiden unteren Rostralia klein, Schwanz schlank, spitzzulaufend, etwas deprimirt; Praeanal- und Femoralpore in einer continuirlichen Reihe.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *L. Cumingii* von den Philippinen.

237. Gattung Ptychozoon Kühl.

Zehen an den Enden verbunden, Endglied kurz, comprimirt, mit einer Kralle versehen; Daumen verbreitet, ohne das comprimirte Endglied, ohne Kralle; Seiten vom Kopfe, Körper, Gliedmassen und Schwanz mit breiten, schuppigen, membranösen Ausbreitungen; Männchen mit, Weibchen ohne Femoralporen; Schuppen des Rückens glatt, flach, die eine unmittelbar neben der anderen, auf den Seiten durch grosse Höcker von einander getrennt.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt, *Pt. homalocepha* von Java.

238. Gattung *Tarentola* Gray.

Zehen frei, ungleich, die dritte und vierte mit einem comprimierten, mit Krallen versehenen Endgliede, die übrigen ohne comprimirtes Endglied und ohne Kralle; Daumen ebenfalls ohne Kralle; Augenlid mit einer knochigen oder knorpeligen Platte; Rücken mit Körnern und zerstreuten grossen Schuppen; Seiten des Körpers abgerundet; weder Femoral- noch Praeanalporen; Schwanz etwas deprimirt, oben abgestumpft, mit queren Reihen von Dornen; Kinnschilder verlängert.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 10 Arten bekannt, von welchen 1 den nearktischen, 4 den palaearktischen, 3 den aethiopischen und 2 den orientalischen Subregionen angehören.

239. Gattung *Spathodactylus* Günther.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *Sp. mutillatus* Günth. vom indischen Archipel.
240. Gattung *Phelsuma* Gray.

Zehen frei, etwas verlängert, mit schlanker Basis und ovaler, verbreiteter Spitze, ohne Spur eines comprimirten Endgliedes, und ohne Krallen, Daumen sehr klein, schlank, rudimentär, unten mit Platten; Rücken mit Körnerschuppen, Praeanalporen in einer winkligen Reihe, sich mehr oder weniger über die Schenkel hin ausbreitend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 5 Arten bekannt, eine von diesen, *Ph. andamanensis* lebt auf den Andamanen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *H. Turneri* von Südostafrika.

Zehen frei, an der Basis comprimirt, schlank, der mittlere Theil unten mit zuweilen 4 doppelten Reihen von Schuppen, Spitze verbreitert, unten mit einigen transversalen Platten ohne Spur eines comprimirten Endgliedes und ohne Krallen; Daumen in Form und Grösse den Zehen ähnlich; Rücken mit kleinen Körnerschuppen.
Klassifikation und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. – 3. 4.

Von dieser Gattung sind bis jetzt 8 Arten bekannt.

Palmae plantaeque pentadaetylae; digiti breviores imungues, antici apice vix dilatati, subtus granulati, apice subtus squamis transversis, supra squama lamnaeformi munito. Reliqua ut in Pachydaetylo.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *C. Wahlbergii* aus Südafrika.

244. Gattung Sphaerodactylus Cuvier.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 19 Arten bekannt, von welchen 18 den neotropischen Subregionen angehören und darunter 12, welche auf den westindischen Inseln leben, während eine Art sowohl den neotropischen als nearktischen Subregionen angehört.
245. Gattung *Idiodactylus* Dumeril et Bocourt.

(*Idiodactylus* Dumeril et Bocourt, Mission scientifique au Mexique.)

Krallen 5,5, die Zehenbasis ist zu einer Scheibe verbreitert, von deren Mitte die beiden Endglieder sich erheben, die untere Fläche dieser Scheibe durch vollständige Lamellen bedeckt; Daumen mit einer End scheibe versehen, der von *Sphaerodactylus* ähnlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt.

246. Gattung *Naultinus* Gray.

(*Naultinus* Gray, Cat. of Liz. p. 169.)

Zehen frei, mit etwas verbreiterter, dicker, etwas comprimirter Basis Endglied dünner, ziemlich comprimirt, gebogen, mit einer Kralle versehen, Daumen den Zehen gleich, ebenfalls mit einer Kralle versehen, die Basis aber kürzer; Schwanz cylindrisch, spitz zulaufend, mit Körnerschuppen bedeckt; Körper mit einer schwachen Falte längs dem unteren Theil der Seite; Männchen (?) mit 2 oder 3 Dornen an jeder Seite der Basis des Schwanzes und 3 oder mehr transversalen Reihen von Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 10 Arten bekannt, darunter 8 von Neu-Seeland und 2 von den Andamanen.

(*Heteropholis* Fischer, Abh. Vereins Bremen p. 229, Bd. VII. 1881.)

Mit der Gattung *Naultinus* nahe verwandt. Zehen an der Basis dicker, nicht verbunden, mit Krallen, letztes Glied verjüngt; Unterseite derselben ganz bis zur Spitze mit Querlamellen; Praeanalporen in mehreren Reihen; einzelne Schenkelporen; an der Oberseite zahlreiche grössere Tuberkelschuppen mit Körnerschuppen gemischt. Längsfalten an der Körperseite.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *H. rudis* von Neuseeland.
248. Gattung *Euulcepharis* Gray.

(*Euulcepharis* Gray, Cat. of Liz. p. 170.)

Zehen subcylindrisch, etwas spitz zulaufend, mit verdickter Basis, mit deutlichen queren Platten, Endglied ziemlich comprimirt, schwach gebogen, unten abgerundet, mit schmalen transversalen Platten; Daumen den Zehen ähnlich, aber kürzer, mit einer Kralle versehen; Schwanz cylindrisch, mit vierzähligen platten Schuppen bedeckt, ziemlich spitz zulaufend; Praeanalporen, jede derselben in der Mitte einer Schuppe; Kopf deprimirt, Labialschilder breit, niedrig; Gularschuppen sechseitig, vorn breit; Rücken mit grossen, convexen Höckern, Bauch mit sechseitigen Schuppen bedeckt.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt, darunter 3 aus den orientalischen Subregionen.

249. Gattung *Geckoella* Gray.

<table>
<thead>
<tr>
<th>Allgemeine Verbreitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropische Subregionen</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *G. puculata* von Ceylon.

250. Gattung *Psilodactylus* Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. caudicinctus* von Westafrika.

251. Gattung *Homonota* Gray.

Zehen, subcylinndrisch, ziemlich spitz zulaufend, unten mit einfachen, queren Bändern, Basis unten sehr schwach angeschwollen; Palme und Sohle granulirt; Dammen den Zehen ähnlich, aber etwas kürzer; Schwanz verlängert, rund, spitz zulaufend, mit ziemlich verlängerten Schuppen bedeckt, unten mit einer centralen Reihe grösserer Schuppen. Schuppen des Rückens sechsseitig, glatt, schwach geschindelt, die des Bauches sechsseitig; untere Labialschilder gross, gering an Zahl; Kinnchuppen granulirt, vorn mit einigen ziemlich grossen sechsseitigen Platten; weder Femoral- noch Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *H. Guidichaudi* von Chili.

252. Gattung *Pristurus* Rüppel.

(*Pristurus* Rüppel. Gray, Cat. of Liz. p. 171.)

Zehen schlank, etwas abgerundet, unten an der Basis schwach angeschwollen, mit deutlichen queren Platten; Rücken und Schwanz mit einem kleinen gezähnelten Kamm; Schuppen klein, granulirt; weder Femoral- noch Praeanalporen; Schwanz comprimirt, oben gezähnelt; Pupille rund.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt, darunter *P. insignis* von der Insel Socotra.
253. Gattung *Correlophus* Guichenot.

(*Correlophus* Guichenot, Mémoires de Cherbourg. T. XII. p. 248. 1867.)

Kopf gross, kurz, dreieckig, niedrig; jederseits mit einer gefransten Hautfalte vom Auge bis zur Schulter; an den Hinterbeinen eine grosse Hautfalte; Zehen frei, unten mit Lamellen ohne mittlere Furchen, alle fünf mit Krallen; Schwanz conisch, lang, dünn, am Ende von einer Hautfalte umgeben.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *C. ciliatus* von Neucaledonien.

254. Gattung *Goniodactylus* Kuhl.

(*Goniodactylus* Kuhl. Gray, Cat. of Liz. p. 171.)

Zehen sehr schlank, comprimirt, verlängert, untere Fläche der Basis ziemlich verdickt, mit deutlichen queren Platten; Schuppen des Rückens granulirt, gleichförmig, Seiten abgerundet; weder Praeanal- noch Femoralporen; Schwanz rund, spitz zulaufend, unbewaffnet, unten mit einer Reihe grösserer Schuppen; Pupille rund; Augenlid vollständig, circulär.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 4</td>
<td></td>
<td>2. 4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 10 Arten bekannt, von welchen 6 in den neotropischen, eine in den palaearktischen, 2 in den orientalischen und eine in den australischen Subregionen leben.

255. Gattung *Cyrtodactylus* Gray.

(*Cyrtodactylus* Gray, Cat. of Liz. p. 173. — *Gymnodactylus* Duméry et Bibron, Erpet. génér. T. III.)

Zehen ziemlich schlank, stark comprimirt, verlängert, untere Fläche der Basis ziemlich verdickt, mit deutlichen queren Platten; Daumen den Zehen ähnlich; Rücken granulirt mit Reihen von Höckern; Bauch mit kleinen, sechseckigen Schuppen; Schwanz cylindrisch, spitz zulaufend, mit queren Reihen von Höckern; Seiten schwach gezähnt; Männchen mit 2 longitudinalen, parallelen Reihen von Praeanalporen; Kinn granulirt, mit 2 rhombischen Kinnschildern; untere Labialplatten zahlreich.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

256. Gattung *Heteronota* Gray.

(*Heteronota* Gray, Cat of Liz. p. 174.)

Zehen sehr schlank, stark comprimirt, verlängert, untere Seite der Basis ziemlich verdickt, mit deutlichen queren Falten; Daumen den Zehen ähnlich; Rücken granulirt; Bauch mit kleinen, gekielten ovalen Schuppen; Schwanz cylindrisch, spitz zulaufend, mit queren Reihen von Höckern, Unterteil des Schwanzes granulirt, mit einer centralen Reihe von ovalen, convexen Tuberkelschuppen; Männchen mit kleinen Praeanalporen in einer gebogenen Reihe; unteres Rostralschild sehr gross, hinten mit 2 Kinnschildern.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt, darunter 2 aus den australischen Subregionen.

257. Gattung *Cubina* Gray.

Zehen schlank, comprimirt, verlängert, untere Fläche der Basis ziemlich verdickt, unten mit deutlichen transversalen Platten; Daumen den Zehen ähnlich; Rücken granulirt mit Reihen von Höckern; Bauch mit sechsseitigen, glatten Schuppen; Schwanz rund; Männchen und Weibchen ohne Femoral- noch Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

258 Gattung *Gymnodactylus* Spix.

(*Gymnodactylus* Duméril et Bibron, Erpét. génér. T. III. — Gray, Cat of Liz. p. 175.)
Zehen sehr schlank, stark comprimirt, verlängert, untere Seite der Basis ziemlich verdickt und mit deutlichen queren Platten; Daumen den Zehen ähnlich; Rücken granulirt mit Reihen von Höckern; Bauch mit sechseitigen glatten Schuppen; Schwanz verlängert, etwas deprimirt, mit Ringen von scharfen Dornen, unten mit einer centralen Reihe breiter Platten; unteres Rostrale ziemlich gross, mit einem Paar grosser Kinn­schilder.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 4.</td>
<td>2. 1.</td>
<td>1.</td>
<td>1. 2. 3. 4.</td>
<td>1. 2. 3. 4.</td>
<td></td>
</tr>
</tbody>
</table>

Die in Rede stehende Gattung ist sehr artenreich; bis jetzt sind 35 bekannt, von welchen 7 den neotropischen, 8 den palaearktischen, 2 den aethiopischen, 16 den orientalischen und 4 den australischen Subregionen gehören. G. jeyporensis lebt auf den Yeypore Hills, 4000 Fuss über dem Meere; G. Kotschyi Steindachner in Süditalien; G. geccoides Spix in Griechenland und der europäischen Türkei.

259. Gattung Agamura Blanford.

Accedens ad Genus Gymnodactylum propter squamas digitosque, dorso tuberculato, palpebris inferioribus nullis, pupilla verticali, dentibus numero­rosis aequalibusque, lingua antice brevissime fissa, sed membris elongatis, cauda subcylindrica, valde flexibili, nunquam regenita.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. 1.</td>
<td>1.</td>
<td>1. 2. 3. 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: A cruralis aus Baluchistan.

(Brachydaetlylus Peters, Berl. Monatsb. p. 41. 1853.)

Mit Gymnodactylum übereinstimmend durch den Mangel der Zehen­scheiben und die Bekleidung derselben unterhalb mit einer einfachen Reihe queren Schuppen, verschieden von dieser Gattung durch die Ent­wicklung schliessbarer Augenlider und die ausserordentlich kurzen Zehen. Trommelfell deutlich.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *B. nutratus* von Costa Rica.

261. Gattung *Spatulura* Gray.

Kopf kurz, hoch; Nasenlöcher oval, auf der oberen Fläche der Nase, gerade oberhalb der Labialschilder; Augen gross, oben mit einem wenig hervorragenden schuppigen Kamm; Ohröffnungen tief, offen; Labialschilder deutlich, gering an Zahl, ungefähr 8 auf jeder Seite, das Rostrale von einem Paar Schilder gebildet; Kinnbild einfach, dem Rostrale ähnlich; Kopf, Körper und Gliedmassen bedeckt mit gleichförmigen, kleinen, granulirten Schuppen; weder Praecanal- noch Femoralporen; Gliedmassen zart, verlängert; Füsse verlängert; Zehen verlängert, comprimirt, sehr schlank, die obere Fläche bedeckt mit deutlichen, dicken Platten, die Sohle mit granulirten Schuppen; Schwanz schlank, deprimirt, nicht so lang als der Körper, oben und unten bedeckt mit Schuppen, welche denen des Körpers ähnlich, nur etwas grösser und stärker gekielt sind und mit einem Saum jederseits von verlängerten, zarten, auf einander gedrängten Schuppen, mit einigen dazwischen stehenden kleineren an der Basis.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *S. Carteri* von der Insel Massera (Ostküste Arabiens).

262. Gattung *Ebenania* Böttger.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *E. imanguis* von Madagascar.
263. Gattung *Phyllurus Cuvier*.

Zehen verlängert, comprimirt, die Basis unten etwas verdickt, mit deutlichen, queren Platten; Seiten mit einer schwachen Hautfalte; Schuppen körnig, mit zerstreuten Höckern; weder Praeanal- noch Femoralporen; Gliedmassen lang, schlank; Schwanz breit, deprimirt; Haut lose mit den Schädelknochen verbanden.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt

264. Gattung *Stenodactylus Cuvier*.

(*Stenodactylus Cuvier, Règne anim. — Duméril et Bibron, Erpét. génr. T. III. — Gray, Cat. of Liz. p. 177.*)

Zehen alle mit Krallen, cylindrisch, an den Enden spitz, an den Rändern gezähnelt, unten mit gezähnelten queren Platten; weder Femoral- noch Praeanalporen; Schuppen körnig, gleichförmig; unteres Augenlid sehr kurz, Pupille lineär; Schwanz rund, an der Basis geschwollen, an dem Ende sehr schlank.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 5 Arten bekannt, von welchen eine den nearktischen, 2 den palaearktischen, eine den aethiopischen und eine den orientalischen Regionen angehören.

264. Gattung *Stenodactylopsis Steindachner*.

(*Stenodactylopsis Steindachner, Wiener Sitzber. p. 343. Bd. LXII. 1871.*)

Vereinigt in der Zehenbildung Eigentümlichkeiten der Gattung *Stenodactylus* und *Phyllodactylus*. Die Unterseite der schwach deprimirten Zehen ist mit körnigen, conisch zugespitzten Schüpchen besetzt, auf welche 2 ovale Plättchen folgen, zwischen denen zuletzt ganz hinten der kleine kautenförmig umgebogene Nagel bemerkbar ist; Schwanz dick, spindelförmig mit vierckigen platten Schuppen.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung nur 2 Arten bekannt.

266. Gattung Bunopus Blanford.

Genus inter *Gymnodaactylum* et *Stenodaactylum* fere medium, cum illo digitis ad latera hand denticulato fimbriatis, cum hoe scutellis infradigitalibus verrucosis concordat.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *Bunopus tuberculatus* aus Persien.

267. Gattung Ceramodactylus Blanford.

Digitii ad latera fimbriati, subtus squamis parvis imbricatis in series obliquas ordinatis obiecti, caput corpusque squamis parvulis undique inducta, crura longinsula, palpebra inferior nulla.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *C. Doriae* von der Küste des persischen Meerbusens.

268. Gattung Chondrodactylus Peters.

(*Chondrodactylus* Peters, Berl. Monatsb. p. 110, 1870.)

Diese Gattung wird von Peters folgenderweise beschrieben. Differt a *Stenodaactylus* unguium defectu, pholidosi notaei heterogenea.
1216 Klassification und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Ch. angulifer* aus dem Calvinia-district (Südafrika).

269a. Gattung *Dactychilikion Thominot*.

IV. Strobilosauro.

Schuppen des Bauches glatt, rhombisch, geschindelt, die des Rückens und der Seiten geschindelt; Zunge dick, kurz, convex, an der Spitze schwach eingeschmiert; Augen mit klappenförmigen Augenlidern; Pupille rund; Gehfütte, Zehen ungleich, comprimirt; Schwanz mit mehr oder weniger deutlichen Quirlen von Schuppen.

24. Fam. *Xenosauridae*

mit nur einer

270. Gattung *Xenosaurus Peters*.

(*Xenosaurus Peters*, Berl. Monatsb. p. 453. 1861.)

Diese merkwürdige Gattung stimmt durch die Bildung der Zunge, wenn sie auch merklich flach ist, am meisten mit den Iguanen, namentlich mit Cyclura überein, während die Form der Zähne und die obere Körperbekleidung mehr an die Geckoеn, die Bekleidung des Bauches und des Schwanzes an die Varanen erinnert. Die Zunge und die Körperbekleidung erinnert auch sehr an die von Heloderma. Wenn man für diese neue Gattung nicht eine neue Familie bilden will, so scheint es nach Peter's am richtigsten, sie den Iguanoiden anzuschliessen, mit denen auch Heloderma noch die meiste Übereinstimmung zeigt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, X. fasciatus von Huanusco (Mexico.)

25. Fam. *Iguanidae*.

Zähne an der Basis rund, an der Spitze verbreitet und comprimirt, an den Rändern gezähnelt, der innern Flächen der Kiefer angewachsen; leben in der neuen Welt.

I. Körper comprimirt, mit Ringen von viereckigen, kleinen oft gekielten Schuppen bedeckt.

A. Nasenlöcher lateral, unter dem Augenrande; Zehen schlank, einfach; Rücken ohne Kamm, Interparietalplatte klein.

a. Hals comprimirt, vorn gezähnelt, 3. und 4. Zehe fast gleich; Augen hervorragend. Femoralporen deutlich; Schuppen des Rückens und der Seiten gleichförmig. Keine Femoralporen; Schuppen der Seiten grösser

b. Hals rund, hinten mit einer queren Falte; die 4. Zehe die längste; keine Femoralporen Schuppen rund, glatt.

Bronn, Klassen des Thier-Reichs. VI. 3.
Klassifikation und geograph. Verbreitung.

Schuppen rhombisch, gekielt; Kopf vierseitig.

Schuppen rhombisch, gekielt; Kopf breit, hinten rund.

B. Nasenlöcher lateral; Zehen einfach oder gefranst; Rücken mit einem Kamm; Interparietalplatte klein.

a. Femoralporen deutlich.

Kehlsack gross, comprimirt; Schwanz comprimirt

Schuppen des Rückens mässig; Kehlsack vorn gezähnelt.

Schuppen des Rückens sehr klein, Kehlsack vorn einfach.

** Hals etwas ausdehnbar, hinten mit einer queren Falte; die mittlere Hinterzehe an der Aussenseite gezähnelt.

† Schwanz comprimirt, mit gleichförmigen gekieltten Schuppen.

Kopfschilder flach, Femoralporen in einer Reihe.

Kopfschilder flach, das Frontale mit einem Horn; Femoralporen in 2 Reihen.

Kopfschilder convex; hintere Aussenzehe kurz.

Kopfschilder kegelförmig, sehr rauh; die äussere Hinterzehe verlängert.

‡‡ Schwanz mit Ringen von gedornten Schuppen. Kopfschilder klein, mit 2 Reihen von grösseren Schildern auf der Schnauze; Schwanz comprimirt.

Schilder von Kopf und Schnauze klein, gleichförmig; Schwanz rund, mit einem Kamm.

Schilder von Kopf und Schnauze klein, gleichförmig; Schwanz deprimirt, mit fünf longitudinalen gedornten Leisten.

b. Keine Femoralporen.

* Hinterzehen an den Seiten gefranst, die äusseren durch eine Haut an der Basis verbunden; Hals hinten mit einer queren Falte.

Hinterkopf geschwollen, an jeder Seite mit einem hohen comprimirten Hautkamm vom Hinterrande der Augen.

5. Gatt. Laemaneus.

Hinterkopf geschwollen, mit convexen Schuppen bedeckt, der hintere Theil (weit hinter den Augen) in einen hohen, comprimirten Hautkamm erhoben

Kopf verlängert, hinten mit einem hohen Kamm; Rücken und Schwanz mit einem Finnen-ähnlichen Kamm

Rücken und Schwanz mit einem hohen, durch Knochenstrahlengestützten Kamm. Nackenkamm klein

Rücken mit einem hohen, durch Knochenstrahlen gestützten Kamm; Nackenkamm gross

Kopf lang, hinten mit einem niedrigen Kamm; Rücken und Schwanz mit einem niedrigen gezähnten Kamm

Hinterkopf flach, mit einem sehr kleinen Kamm auf der Mitte des Hinterrandes

** Alle Zehen schlank, einfach oder an den Seiten schwach gezähnelt; äussere Hinterzehe vollständig frei; Kopf kurz

† Hinterkopf comprimirt und verlängert; Kehlsack comprimirt.

Nacken mit einem Kamm, Kehlsack vorn gezähnelt

Nacken ohne Kamm; Kehlsack einfach . .

†† Hinterkopf convex; Hals hinten mit einer queren Falte. Schwanz rund, ohne Kamm; alle Zehen einfach . .

Körper deprimirt, sonst wie Enyalius . .

Schwanz comprimirt; Hinterzehe an der Aussenseite schwach gezähnelt . .

Schwanz am Grunde ein wenig deprimirt, weiterhin rund

C. Nasenlöcher hoch; Zehen sehr ungleich und mit einander an der Basis verbunden; Kehlsack deutlich, sehr ausdehnbar, keine Femoralporen; Interparietale deutlich.

77*
Zehen verbreitert; Rücken und Schwanz mit einem Kamm von comprimirten Schuppen .

Zehen verbreitert; Rücken mit einer schwachen Falte, durch 2 Reihen kleiner Schuppen gebildet; Rostralplatte horizontal; Nase verlängert .

Zehen verbreitert; Rücken einfach oder mit einem schwachen Kamm von 2 Reihen kleiner Schuppen gebildet; Rostrale hoch; Nase abgerundet .

Rostrale in einen biegsamen Anhang vorgestreckt, sonst wie Anolis .

Zehen verbreitert; Rücken einfach, mit zerstreuten Tuberkeln .

Zehen kaum verbreitert, Rücken einfach; Schwanz rund .

Zehen schlank, nicht verbreitert; Rücken einfach; Schwanz rund .

II. Körper subtrigonal oder deprimirt.

D. Körper mit grossen, gewöhnlich gekielten Schuppen bedeckt; Kopf gewöhnlich beschildert; Superciliar- und Interparietalschilder deutlich; Hals glatt oder hinten mit einer queren Falte; Zehen einfach.

a. Schwanz- und Rückenschuppen einander gleich.

* Femoralporen deutlich; Interparietalplatte gross. Rücken ohne Kamm; Hals mit einer Falte jederseits; Nasenlöcher nach oben .

Rücken und Schwanz mit einem rudimentären Kamm, keine Femoralporen.

** Keine Femoralporen; Analporen deutlich oder fehlend; Rücken und Schwanz ohne Kamm; Interparietalplatte klein; Nasenlöcher lateral; Schuppen des Nackens, Rückens und der Seiten gross, rhombisch; Seiten einfach .

Bauch mit gekielten Schuppen, keine Analporen .

Nasenlöcher lateral, Schuppen der Seitenflächen des Nackens granulirt, des Rückens rhombisch; Seiten einfach .

34. Gatt. Draconura.

Reptilien.

Nasenlöcher lateral; Schuppen des Nackens granulirt, des Rückens rhombisch; Seiten mit einem Kamm von gekielten Schuppen.

Nasenlöcher nach oben; Schuppen des Nackens granulirt, die des Rückens rhombisch, klein; Seiten einfach.

*** weder Femoral- noch Praeanalporen ⦅ Interparietalplatte sehr klein; Kopfschilder ziemlich regelmässig.

Rücken und Schwanz mit einem Kamm; Schuppen des Halses, Rückens und Schwanzes massig.

Rücken und Schwanz mit einem schwachen Kamm; Schuppen des Rückens rhombisch, des Schwanzes gross, gedornnt.

Rücken und Schwanz ohne Kamm; Schuppen des Rückens rhombisch, des Schwanzes gross, gedornnt.

Schuppen des Rückens, der Seiten und des Bauches geschindelt.

Schuppen überall gekielt. ⦅ Interparietalplatte gross; Rücken oder Schwanz mit einem Kamm versehen.

Ohröffnungen; Gaumenzähne, nur eine kleine Occipitalplatte, kein Kamm.

Keine Gaumenzähne, Ohröffnungen nicht sichtbar, kein Kamm.

Ohröffnungen; Occipitalschild deutlich, kein Kamm.

Ein niedriger Kamm; Schuppen des Rückens viereckig.

Occipitalschild gross; kein Kamm.

Ohröffnungen; Schenkelporen, aber keine Analporen (Zweifelhafte).

Ohröffnungen; keine Gaumenzähne; Infraorbitalplatte sehr lang.

Kein Kamm; Occipitalschild klein, keine Analporen, eine Querfalte unter dem Halse.

Schwanz mit einem Kamm, keine Schenkelporen, Bauchschuppen dachziegelartig.

Occipitalplatte gross, Nacken mit einem kleinen Kamm, Ohröffnung sichtbar.

42. Gatt. Proctotrepus.

43. Gatt. Leiocephalus.

44. Gatt. Stenocercus.

47. Gatt. Scartiscus.

52. Gatt. Phymalolepis.

55. Gatt. Uma.

Nacken mit einem kleinen Kamm, Schuppen des Rückens gross, die der Seiten klein; Schwanz rund
Keine Occipitalplatte, Hals und Rücken ohne Kamm
Nacken, Rücken und Schwanz mit einem niedrigen Kamm; Schuppen des Rückens massig; Schwanz mit Ringen von grossen gedornten Schuppen . . .
Rücken und Schwanz mit einem schwachen Kamm, Schuppen des Rückens gross, rhombisch; Seiten des Körpers und des Halses einfach
Rücken und Schwanz mit einem schwachen Kamm, Schuppen des Rückens klein, Seiten mit 2 Falten
Ein sehr niedriger Kamm längs dem Rücken des Rumpfes und Schwanzes, eine Falte an jeder Seite der Kehle . .
E. Körper deprimirt, mit kleinen Schuppen; Rücken selten mit einem Kamm versehen, Schwanz conisch
a. Seiten abgerundet; weder Femoral- noch Praeanalporen; Augenbrauen sehr klein.
Schwanz mit granulirten Schuppen; Schuppen unter den Augen alle sehr klein
Schwanz mit granulirten Schuppen und mit einer verlängerten Schuppe unter dem Auge
Schwanz rund, mit Ringen von grossen Schuppen, Nacken mit einem niedrigen Kamm
Schwanz deprimirt, mit Ringen von grossen Schuppen; Nacken ohne Kamm, Interparietale klein
68. Gatt. Uranocentron.
70. Gatt. Callisaurus.

271. Gattung Polychrus Cuvier.

(Polychrus Cuvier, Regne animal. — Duméril et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz. p. 182.)

Kopf vierseitig, kurz, mit zahlreichen, fast regelmässig vielseitigen Schildern bedeckt; Hals mit einer queren Reihe viereckiger Schuppen, ein kleines Halsband, vorn gezähnelt; Gauemzähne vorhanden; Nasenlöcher lateral, in einem Schilde etwas hinter der Nase; Femoralporen deutlich; Zehen schlank, die dritte und vierte fast von gleicher Länge, convex, und unten mit sehr kurzen, queren Schieldern bedeckt, an den Seiten weder gefranst, noch gezähnelt; Körper comprimirt; Schuppen klein, etwas geschindelt und gekielt, auf den Seiten kleiner, glatt und oval. Rücken und Schwanz ohne Kamm; Schwanz verlängert, schlank, spitzzulaufend, mit regelmässigen keilförmig gekielten Schuppen bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt drei Arten bekannt.

272. Gattung Sphaerops Gray.

Kopf vierseitig, kurz, mit zahlreichen, fast regelmässig vielseitigen Schildern bedeckt, die des Gesichtes sind die grössten; Augen sehr hervorragend; Augenlid schuppig, mit einer sehr kleinen, queren Öffnung. Hals mit einem kleinen Halsband, mit queren Reihen viereckiger Schuppen bedeckt, vorn gezähnelt. Nasenlöcher lateral; Körper comprimirt; Schuppen des Rückens klein, gekielt, die der Seiten grösster, oval, in queren Reihen,
Klassifikation und geograph. Verbreitung.

glatt; Rücken und Schwanz ohne Kamm; Gliedmassen schlank; Zehen schlank, massig, die dritte und vierte fast gleich, convex und unten mit einer Reihe dicker Platten bedeckt, an den Seiten nicht gefranst; keine Femoralporen; Schwanz schlank, verlängert, mit etwas rhombischen, gekielten Schuppen bedeckt. Das Auge von *Sphaerops* soll dem von *Chamaeleon* sehr ähnlich sein.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *Sph. anomalus* aus Brasilien.

273. Gattung *Urotrophus* Duméril et Bibron.

(*Urotrophus* Duméril et Bibron, Erpét. génér. T. IV. p. 78. — Gray, Cat. of Liz. p. 184.)

Kopf vierseitig, vorn gewölbt, mit zahlreichen, kleinen, fast regelmässig 6seitigen Schildern bedeckt, die des Vorderkopfes sind die grössten; Interparietale klein; oberer Theil der Augenhöhle durch eine Reihe von Schildern umgeben; Augen etwas convex; Naseulöcher lateral, klein; Hals etwas geschwollen; Gaumen mit Zähnen; keine Femoralporen; Zehen schlank, die vierie länger als die andern, unten mit flachen Schuppen, an den Seiten weder gefranst noch gezähnelt; Kralle scharf, Schuppen rund, glatt, geschwollen, Seite an Seite, die des Bauches flach, viereckig, halbgeschrundelt; Schwanz subeylindrisch, lang, schlank, spitzzulaufend, oben und unten mit viereckigen, gekielten Schuppen bedeckt; Nacken mit einer kleinen queren Falte.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *U. Vantieri* aus Brasilien.

274. Gattung *Ecphymotes* Fitzinger.

(*Ecphymotes* Fitzinger, Class. Rept. — Gray, Cat. of Liz. p. 184.)

Kopf vierseitig, mit kleinen Schildern bedeckt; Nacken mit einer queren Falte, kein Halsband; Gaumenzähne; Rücken und Schwanz ohne Kamm; Körper comprimirt; Schuppen klein, convex, etwas unregelmässig, die auf der Mitte des Rückens polygonal, gekielt, grösser; Gliedmassen ziemlich lang; Zehen verlängert, schlank, die vierte länger als die dritte, unten mit einer Reihe convexer Schilder; keine Femoralporen; Schwanz verlängert, spitzzulaufend, mit gekielten Schuppen bedeckt.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 2. 3.

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

Kopf vierseitig mit Schuppen bedeckt; Vertex breit, hinten abgerundet; Nasenlöcher lateral, ziemlich weit von dem Ende der Nase entfernt; Nacken mit einer queren Falte; Gaumen ohne Zähne; Körper comprimirt; Schuppen rhombisch, geschindelt, gekielt, an den Seiten in queren Reihen angeordnet; Zehen schlank, verlängert, die vierte länger als die dritte, unten mit einer Reihe von Knötchen; keine Femoralporen; Hintergliedmassen und Füsse sehr lang; Schwanz rund, verlängert, spitzzulaufend, mit keilförmigen, gekielten Schuppen bedeckt; Rücken und Schwanz ohne Kamm.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 2. 3.

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

Kopf kurz, vierseitig, mit ungleichen, flachen oder gekielten vielseitigen Schildern bedeckt; Unterkiefer mit grossen Schildern bedeckt; Gaumen mit zwei Reihen kleiner Zähne; Zähne fein gezähnt; Kehle mit einer grossen, comprimirten Tasche, vorn gezähnelt; Rücken und Schwanz mit einem Kamm; Zehen ungleich, einfach, unten mit queren Schildern, jedes Schild mit drei Kielen. Schenkel mit einer einfachen Reihe von Poren; Schwanz sehr lang, schlank, comprimirt, mit kleinen, gleichförmigen, gekielten Schuppen bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 2. 4.

Von dieser Gattung sind bis jetzt drei Arten bekannt.
277. Gattung Alopodonotus Duméril et Bibron.

(Alopodonotus Duméril et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz. p. 187.)

Kopf mit kleinen, gleichförmigen, flachen, vielseitigen Schildern bedeckt; Unterkiefer mit kleinen Schuppen auf den Seiten; Gaumenzähne; Kehle mit einem kleinen Sack; Zähne dreispitzig; Rücken und Schwanz mit einem niedrigen Kamm; Haut des Rückens ohne Schuppen, aber mit sehr kleinen, dichtzusammenstehenden Körnern bedeckt; Schwanz comprimirt, unten mit grossen, gleichförmigen, gekielten Schuppen; Femoralporen in zwei Reihen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, A. Ricardi von St. Domingo.

278. Gattung Brachylophus Cuvier.

(Brachylophus Cuvier, Règne animal. — Duméril et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz. p. 187.)

Kopschilder sehr klein, polygonal, platt; Seiten des Unterkiefers mit kleinen, gleichförmigen Schuppen bedeckt; Haut des Halses schlaff, etwas abhängend; Schuppen des Rückens klein, viereckig, gekielt, die des Bauches und der unteren Fläche von Hand und Fuss grösser, gekielt; dorsaler Kamm niedrig; Zähne an den Seiten gekerbt; Gammenzähne; Schwanz sehr lang, sehr schlank, ohne Kamm, spitzzulaufend, rund, an der Basis comprimirt, mit kleinen, gleichen, gekieltten Schindelschuppen; Femoralporen in einer einfachen Reihe, eine jede in dem hinteren Rande je einer Schuppe; Zehen unten mit eckigen, glatten Platten, die beiden mittleren Hinterzehen mit dreieckigen körnigen Anhängen an der medialen Fläche.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: B. fasciatus von Südamerika.

279. Gattung Metapoceros Wagler.

Kopf kurz, vorn convex, mit Schildern bedeckt; Schnauze mit einigen höckerigen Platten; Kehle schlaff, ohne deutlichen Sack, hinten mit einer
Reptilien.

queren Falte; Gaumenzähne; Zähne dreispitzig; Nacken, Rücken und Schwanz mit einem Kamm; Schwanz comprimirt, lang, mit gleichförmigen Schindelschuppen bedeckt; Femoralporen in zwei Reihen; jede derselben durch einen Ring von kleinen Schuppen umgeben.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *M. cornutus* von St. Domingo.

280. Gattung *Trachyccephalus* Gray.

(*Trachyccephalus* Gray, Cat. of Liz. p. 188. — *Amblyrhynchus* z. Th. Duméril et Bibron, Erpét. génér. T. IV.)

Kopf mit zahlreichen, convexen, ziemlich kleinen, vielseitigen Schildern bedeckt; Unterkiefer mit regelmässigen Schildern; Körper mit kleinen, viereckigen Schuppen bedeckt, welche in queren Reihen gruppiert sind; Rücken und Schwanz mit einem niedrigen Kamm, von conischen Schuppen gebildet. Schwanz rund, spitzzulaufend, etwas comprimirt an dem Ende, mit kleinen, viereckigen, gekielten Schuppen, in queren Reihen bedeckt; Femoralporen deutlich, jede derselben von einer Reihe querer Schuppen umgeben; Zehen verlängert, ungleich, unten mit einer Reihe dreikieliger Schilder, mit 2 bis 3 Reihen kleiner Schuppen jederseits und oben mit einer Reihe kleiner Schilder. Die beiden mittleren Hinterzehen mit dreieckigen, körnigen Anhängen an der inneren Seite, die erste Hinterzehe die längste, die äussere die kürzeste.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *T. suberistatus* von den Galapagos-Inseln.

281. Gattung *Oreoccephalus* Gray.

Kopf beim jungen Thier mit ziemlich gleichmässigen, etwas convexen Schildern bedeckt; beim ausgewachsenen Thier mit ungleichförmigen, conischen, hohen, höckerigen Schildern, die der Schnauze grösser und rauh; Haut der Kehle sehr delnubar, aber ohne deutlichen Saek; Körper mit conischen Körnerschuppen bedeckt, die des ausgewachsenen Thieres spitz, rauh; Gaumenzähne (?) ; Zähne dreispitzig; Nacken und Rücken mit einem hohen Kamm; Schwanz comprimirt, mit Quirlen von kleinen,
viereckigen, gekielten Schuppen bedeckt und mit einem Kamm von rhombischen, comprimierten Schuppen gebildet; Schenkel mit 1 oder 2 Reihen von Poren, jede derselben in der Mitte einer Schuppe; Zehen stark, unten mit glatten, bandförmigen Schildern, die mittleren durch eine Haut an der Basis verbunden, die mittlere Hinterzehe mit einer Reihe dreieckiger horniger Anhänge an der inneren Seite, die äußere Hinterzehe verlängert, fast ebenso lang als die übrigen und mit einer grossen comprimierten Kralle.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Nootropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: O. cristatus von den Galapagos-Inseln.

282. Gattung Cyclura Harlan.

(Cyclura Harlan. — Iguana z. Th. Cuvier, Règne animal. — Clenosaura Wiegmann, Herp. mexicana. — Cyclura Gray, Cat. of Liz. p. 190.)

Kopf mit Platten oder etwas convexen eckigen Schildern bedeckt, die der Schwanze grösser, in Paaren angeordnet; Unterkiefer mit verlängerten, gekielten Schuppen auf den Seiten; Hals mit einer schlaffen Haut, aber ohne wahren Sack; Gaumenzähne, Zähne dreispitzig; Femoralporen in einer einzelen Reihe, zahlreich, jede derselben von zahlreichen Schuppen umgeben; Rücken und Schwanz mit einem Kamm; Schwanz comprimirt, mit Wirteln von Schuppen und Ringen von grösseren Dornschuppen, von einander durch 3 oder 4 Ringe von kleinen Schuppen getrennt; Unterfläche der Zehen mit 3 oder 5 gekielten Platten, die beiden mittleren Hinterzehen gefranst, mit einer Reihe von 3 oder 4 hornigen, dreieckigen Fortsätzen auf der inneren Fläche, eine Art lateraler Kralle bildend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Nootropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 5 Arten bekannt.

283. Gattung Clenosaura Gray.

(Clenosaura Gray, Cat. of Liz. p. 191. — Uromastyx Merrem, Tent. syst. amphib. — Duméril et Bibron, Erpét. génér. T. IV.)

Kopf mit zahlreichen kleinen, fast gleichförmigen, platten, vielseitigen Schildern bedeckt, die auf dem oberen Theil der Nase den übrigen gleich; Seitenflächen des Unterkiefers mit gleichförmigen, etwas verlängerten Schuppen bedeckt; Hals mit einer schlaffen Haut, aber ohne wahren Sack,
Reptilien.

Gaumenzähne, Zähne dreispitzig; Unterfläche der Zehen mit 3 oder 5 gekielten Platten; Femoralporen in einer einzelnen Reihe, gering an Zahl, jederseits nur 5—6; Rücken mit einem Kamm, welcher sich oft über die Schultern hin fortsetzt; Schwanz rund, oben mit einem Kamm und be deckt mit Ringen von Dornen, durch 2 oder 3 Reihen von kleinen Schuppen getrennt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt, von welchen 3 zu den neotropischen und eine zu den nearktischen Subregionen gehören.

284. Gattung *Engaliosaurus* Gray.

(*Engaliosaurus* Gray, Cat. of. Liz. p. 192.)

Kopf mit zahlreichen kleinen, fast gleichförmigen, polygonalen Schildern bedeckt, die auf dem oberen Theil der Nase und die Interparietalplatte sehr klein, Hals mit einer schlaffen Haut, aber ohne wahren Sack; Gaumenzähne (?), Zähne mit Spitzen; Rücken mit einem Kamm von comprimirten Schuppen; Unterfläche der Zehen mit dreikieligen Platten; Schwanz mit alternirenden Ringen von kleinen und grossen Dornschempufen, an der Basis deprimirt, die centrale und die 2 lateralen Reihen von Schuppen jederseits — getrennt durch 2 Reihen von kleineren Schuppen — grösser, Kiele bildend; das Ende abgerundet, spitz zulaufend, die Unterfläche der Basis mit Ringen von sehr kleinen Schuppen.

Bis jetzt nur eine Art bekannt: *E. quinquecarinatus* von zweifelhaftem Fundort (Demerara?).

Rücken und Schwanz mit einer Reihe grosser, comprimirter Schuppen, die einen schwachen Kamm bilden; Hinterkopf und sein Kamm mit grossen, dünnen, glatten Schuppen bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Pt. Seemannii* von Quibo.

286. Gattung *Basiliscus* Laurenti.

Klassifikation und geograph. Verbreitung.

Kopf bedeckt mit kleinen, schwach gekielten, gleichförmigen Schuppen, die des Hinterkopfes noch kleiner; Hinterkopf verlängert, hinten schmal, mit einem comprimirten, verticalen, dreieckigen Hautkamm; keine Gaumenzähne; Rücken und Schwanz mit einem hohen, comprimirten Kamm durch hornige Strahlen gestützt; Schuppen des Rückens klein, rhombisch, glatt, die des Bauches grüsser, vierckig, glatt; keine Femoralporen; Zehen verlängert, comprimirt, ungleich, oben mit einer Reihe breiter Schuppen, auf den Seiten mit rhombischen, gekielten Schuppen, unten mit einer Reihe von convexen, vierckigen Platten. Hinterzehen mit Reihen von dicken, subtuberenlärren Platten an der unteren Seite und mit einem breiten, gebransten Rande an der äusseren Seite; die äusseren Hinterzehen mit Schwimmhäuten; Hals mit einer schwach entwickelten Tasche und einer deutlichen dicken Falte.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 5 Arten bekannt, alle aus dem tropischen Amerika.

287. Gattung Lophosaura Gray.

Rücken und Schwanz mit einem hohen, durch Knochenstrahlen gestützten Kamm; Nackenkamm klein, eckig mit grossen, gekielten Schuppen bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: L. Goodridgii von Quibo.

288. Gattung Cristasaura Gray.

Rücken mit einem hohen, durch Knochenstrahlen gestützten Kamm, Schwanz etwas zusammengedrückt, schwach geringelt, scharfrandig, und mit einer Reihe grosser, comprimirter Schuppen an seinem oberen Rande; Nackenkamm gross, abgerundet, dünn, mit dünnen, kleinen, sechsseitigen Schuppen bedeckt.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

289. Gattung *Corythacolus* Kaup.

Kopf verlängert, bedeckt mit kleinen, gleichförmigen, gekielten Schuppen; Augenbrauen und Rücken des Kopfes mit etwas größeren Schuppen; Occiput hinten mit einem dreieckigen, comprimirten, verticalen Hautkamm; Gaumenzähne; Hals mit einer dicken Falte und einer kleinen Tasche; Rücken und Schwanz mit einem niedrigen Kamm von comprimirten Schuppen; Schuppen des Rückens klein, gekielt, die der Gliedmassen und des Bauches grösser, rhombisch, gekielt; keine Femoralporen; Zehen verlängert, ungleich comprimirt; oben und an den Seiten mit 2—3 gekielten, rhombischen Schuppen, unten mit einer Reihe comprimirter Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *C. rittatus* von Honduras.

290. Gattung *Thysanodactylus* Gray.

(*Thysanodactylus* Gray, Cat. of Liz. p. 193.)

Kopf kurz, vierseitig, mit kleinen, ungleichen, gekielten Schuppen bedeckt; Interparietale klein; Augenbrauen, Hinterkopf und Schläfe mit kleinen, gekielten Schuppen bedeckt; Haut mit einer Reihe von Schildern jederseits unter den Labialschildern; Nasenlöcher lateral; Körper comprimirt; Rücken mit kleinen, viereckigen oder schwach gekielten Schuppen, am Bauche grössere, viereckige, glatte Schuppen; ein niedriger Kamm auf Rücken und Schwanz; Schwanz verlängert, schwach comprimirt, mit kleinen viereckigen, gekielten Schuppen bedeckt; Keine Femoralporen; Zehen schlank, sehr ungleich, comprimirt, unten mit einer Reihe comprimirter, gekielter Schuppen, die äussere Hinterzehe mit einer Schwimmhaut an der Basis.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Bis jetzt nur eine Art bekannt: *Th. bilineatus* von Südamerika.

291. Gattung *Corytophanes* Boie.

Kopf kurz, mit kleinen Schuppen bedeckt; Vorderkopf rhombisch, der hintere Theil in eine Art Kamm verlängert; Nacken und Rücken mit einem deutlichen, ununterbrochenen Kamm; Gaumenzähne; Ohröffnung oben nicht bewaffnet: Kehle mit einer queren Falte und mit einem kleinen gezähnelten Sack; Schuppen gleichförmig; Zehen schlank, einfach — weder gefranst, noch dilatirt —: Schwanz lang, rund, ohne Kamm; keine Femoralporen; Schenkel ohne jede Spur von Falten.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Von dieser Gattung sind bis jetzt 2 Arten bekannt, beide von Mexico.

292. Gattung *Chamaeleopsis* Wiegmann.

Kopf mit kleinen Schuppen bedeckt, der hintere Theil in eine Art von Kamm verlängert; Nacken ohne Kamm, Rücken mit Kamm; Gaumenzähne; Ohröffnung oben mit zwei Dornen; Kehle mit einer queren Falte und mit einem sehr kleinen, einfachen Sack; Schuppen ungleich, glatt mit queren Bändern von gekielten Schuppen; Zehen schlank, einfach; Schwanz lang, rund, ohne Kamm, keine Femoralporen; Schenkel unten mit einer longitudinalen Falte; Krallen der Vorderfüsse sehr lang.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Ch. Hernandesii* aus Mexico.
293. Gattung *Enyalius* Wagler.

Kopf kurz, mit gleichförmigen, convexen, kleinen, polygonalen Platten bedeckt; Augenbrauen und Schläfen mit kleinen Körnerschuppen; Haut des Halses in geringem Grade ausdehnbar und mit einer Falte; Rücken mit einem Kamm und mit kleinen, convexen, runden Schuppen; Bauch mit viereckigen, gekielten Schuppen; Gliedmassen und Schwanz mit keilförmig abgestumpften, gekielten Schuppen; Schwanz rund, verlängert, schlank, ohne Kamm; Gaumenzähne; Zähne dreispitzig; keine Femoralporen; Zehen schlank, einfach, verlängert, ungleich, oben und an den Seiten mit rhombischen, gekielten Schuppen bedeckt und unten mit einer Reihe von schmalen, hexagonalen Schuppen mit 2 Kielen; die hintere äussere Zehe an der Basis vollständig frei.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 10 Arten bekannt.

294. Gattung *Chalarodon* Peters.

Enyalius dentibus habituque similis, sed corpore subdepresso, scutellis capitis majoribus, in rostro longitudinalibus, carinatis, collo profunde transversim plicato, squamis hypodactyliis carinatis.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Ch. madagascariensis* von St. Augustins-Bay (Madagascar).

295. Gattung *Ophryoessa* Boie.

Kopf kurz, mit kleinen, fast gleichförmigen, gekielten, polygonalen Platten bedeckt, ebenso die Augenbrauen; Interparietalplatte klein, von etwas mehr convexen ungehen; Nasenlöcher lateral; die Haut des Halses mit einer schwachen longitudinalen Falte; Gaumenzähne; Körper comprimirt; Schuppen gekielt, die des Rückens klein, die des Bauches grösser;
Rücken und Schwanz mit einem gezähnelten Kamm von comprimirten Schuppen, von rhombischen gekielten Schuppen bedeekt; keine Femoralporen; Zehen schlank, unten mit gekielten Schildern, oben mit rhombischen, gekielten Schuppen, die äussere Hinterzehe an der Basis vollständig frei; Schwanz comprimirt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *O. superciliosa* von Südamerika (Brasilien, Cayenne).

296. Gattung *Ophryessoides* Duméris.

Kopf klein, vierseitig, pyramidenförmig, mit ziemlich gleichen Schuppen bedeekt, jederseits über dem Auge mit einer Leiste; Nasenlöcher seitlich; Occipitalplatte klein; Gaumenzähne vorhanden; keine Schenkelporen; alle Schuppen gekielt und dachziegelartig; Schwanz am Grade ein wenig deprimirt, weiterhin rund, am Ende spitz; der niedrige Rückenkamm reicht bis auf das erste Drittel des Schwanzes; keine Falte unter der Kehle.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Bis jetzt zwei Arten bekannt, beide aus Brasilien.

297. Gattung *Chamaeleolis* Coecke.

Zehen verlängert; Schuppen des Rückens und der Seiten flach und glatt, rund und ungleich von Grösse, die des Bauches sehr klein und granulirt; Schwanz comprimirt; oben schwach gezähnet; Rücken und Nacken mit einem Kamm, durch eine Hautfalte gebildet, und mit einer Reihe kurzer, comprimirter Schuppen bedeekt; Kinn und Bauch mit einem Kamm von zwei Reihen kleiner Schuppen, die am Kinn sind die grössten; Kopf breit, Hinterkopf verlängert; hinten abgerundet; Kieler gleich; Hals mit einem ausdehnbaren Sack, an den Rändern gezähnelt.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt, beide von Cuba.

298. Gattung *Xiphosurus* Fitzinger.

Vorletztes Glied der Zehen verlängert; Schwanz mit einem finnähnlichen Kamm; Nasenlöcher oberhalb des Kieles der Schnauze; Ventralschilder geschindelt; Krallen gleich; Schnauze abgerundet; Rostralplatte hoch.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 6 Arten bekannt, darunter eine von unbekanntem Fundort.

299. Gattung *Dactyloa* Gray.

(*Dactyloa* Gray, Cat. of Liz. p. 198. — *Anolis* z. Th. Duméril et Bibron, Erpét. génér. T. IV.)

Vorletzte Glied der Zehen verbreitert; Rücken und Schwanz mit einem Kamm, durch eine Reihe comprimirter Schuppen gebildet; Ventralschuppen flach, geschindelt; Kiefer gleich, Schnauze vorn abgerundet, Rostralplatte hoch.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

300. Gattung *Rhinosaurs* Gray.

Vorletzte Glied der Zehen verbreitert; Rücken und Hals mit einem niedrigen Kamm, durch zwei divergirende Reihen kurzer, dreieckiger Schuppen gebildet; Ventralschuppen flach, geschindelt; Kopf verlängert, Oberkiefer über dem Unterkiefer hervorragend, vorn scharf; Rostralplatte dreieckig, horizontal.

78*
Klassification und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt, *Rh. gracilis* von Bahia.

301. Gattung *Anolis* Cuvier.

Das vorletzte Glied der Zehen verbreitert, Rücken und Hals einfach oder mit einem niedrigen Kamm durch zwei divergirende Reihen kurzer, dreieckiger Schuppen gebildet; VentralSchuppen flach, geschindelt; Kopf mässig; Oberkiefer nicht über dem Unterkiefer hervorragend, an den Enden abgerundet; Rostralplatte hoch; die Arten dieser Gattung leben auf Bäumen, von Ast zu Ast springend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die in Rede stehende Gattung ist sehr reich an Arten, die Zahl der selben beträgt jetzt etwa 120, die alle in Südamerika und tropisch Nordamerika angetroffen werden. Allein auf den Westindischen Inseln beträgt die Zahl der Arten ungefähr 38. Eine kritische Revision dieser zahlreichen und nicht leicht bestimmmbaren Arten wäre aber sehr wünschenswerth.

302. Gattung *Scytomycterus* Cope.

(*Scytomycterus* Cope, Journ. Acad. Philad. VIII. p. 165. 1876.)

Der Gattung *Anolis* verwandt, unterscheidet sich von dieser dadurch, dass die hinteren Zähne dreispitzig sind, mit grösserer, mittlerer Spitze, das Rostrale ist in einen biegsamen Anhang vorgestreckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *Sc. laevis* aus dem östlichen Peru.

303. Gattung *Acantholis* Cocteau.

Acantholis Cocteau, Duméril et Bibron, Erpét. génér. T. IV. p. 100. — Gray, Cat. of Liz. p. 206.)
Reptilien.

Kopf groß, subquadrangular; Kopfschilder groß, eckig; Kehle mit einem ausdehnbaren Sack; Rücken und Schwanz ohne Kamm, Schuppen des Rückens und der Seiten flach, glatt, die eine neben der anderen, geschindelt und mit Körnern gemischt, die des Bauches glatt, geschindelt; Schwanz conisch, verlängert, spitzulaufend; weder Femoral- noch Praeanalporen; Zehen ungleich, unten mit Schindelschuppen bedeckt; Krallen 5,5.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

304. Gattung Draconura Wagler.

Kopf viereckig; Kopfschilder klein, einander fast gleich, gekielt; Kehle mit einem ausdehnbaren Sack; Schnauze kurz; Gaumen mit Zähnen; keine Femoralporen; Zehen verlängert; die Endglieder nur schwach verbreitert; Schuppen auf der Mitte des Rückens grösser als die auf den Seiten, die des Bauches geschindelt, gekielt; Schwanz rund, sehr lang, schlank; Nacken und Rücken ohne Kamm.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Von dieser Gattung sind bis jetzt 12 Arten bekannt.

305. Gattung Norops Wagler.

Kehle mit einem kleinen mit einem Kamm versehenen Sack. Gaumenzähne; keine Femoralporen, Zehen schlank, die vierte länger als die dritte, nicht verbreitert, jederseits mit einer Reihe gekielter rhombischer Schuppen und unten mit glatten, geschindelten Platten; Schuppen des Rückens gekielt, geschindelt, die der Seiten viel kleiner, die des Bauches gekielt, geschindelt; Rücken und Schwanz ohne Kamm; Schwanz mässig.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt.
306. Gattung *Sceloporus* Wiegmann.

Kopf kurz, abgeplattet, vorn rund, mit kleinen Kopfschildern, einem grossen Interparietale und grossen Superorbitalschildern; Nasenlöcher subapical; Kehle glatt, jederseits mit einer queren Falte; Gaumenzähne; Wange mit zwei Reihen von Schuppen; Körper deprimirt, subtriangulär; Schuppen geschindelt, auf dem Rücken gekielt, auf dem Bauche glatt; Rücken und Schwanz ohne Kamm; Schwanz dick, kurz, an der Basis deprimirt, rund, und an dem Ende spitzzulaufend; Femoralporen deutlich; weder Praeanal- noch Cloakalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 3.</td>
<td>1. 2. 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 46 Arten bekannt, von welchen 30 zu den neotropischen und 16 zu den nearktischen Subregionen gehören.

(*Aneuporus* Duméril et Bocourt, Mission scientifique au Mexique.)

Kopf kurz, quadrangulär; Occipitalplatte sehr breit; eine schmale und verlängerte schuppige Platte unterhalb der Augenhöhlen, Nasenlöcher nach oben und seitwärts, eine Reihe deutlich entwickelter Schuppen unterhalb jedes Astes des Unterkiefers; Ohröffnung gezähnelt; Gaumenzähne vorhanden; Kieferzähne vorn 1-, hinten 3-spitzig; unterhalb der Schulter eine Falte; Körper kurz; Rückenschilder geschindelt oder gekielt; Bauchschuppen glatt; eine Reihe Schuppen, grösser als die anderen, sich ausstreckend vom Nacken bis zu der Schwanzspitze, Gliedmassen mässig; Unterfläche der Zehen mit gekielten Schuppen; keine Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *A. occipitalis* von Centralamerika.

308. Gattung *Leiodera* Duméril et Bibron.

Kopf pyramidal, mit vielseitigen, mässig grossen, glatten, nicht geschindelten Kopfschildern und einem ziemlich deutlichen Interparietale;
Nasenlöcher lateral, Seiten des Nackens glatt, ohne jede Falte; mit rhombischen, geschindelt-gekielten Platten; Gaumenzähne. Ohröffnung etwas eingesunken; Wange mit einer einzelnen Reihe von Schuppen; Infraorbitalschuppen verlängert; Körper rund oder etwas deprimirt; Schuppen gross, rhombisch, geschindelt, die des Rückens gekielt, des Bauches glatt, der der Lenden in 8—9 longitudinalen Reihen; Rücken und Schwanz ohne Kamm; Zehen einfach, ungleich, unten mit zwei Reihen von Schil dern; Schwanz lang, kegelförmig, mit rhombischen Schindelschuppen; weder Femoral- noch Praeanalporen; Männchen mit Poren auf dem vorderen Rande der Cloake.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

309. Zweifelhafte Gattung.
Gattung Tropidocephalus F. Müller.

(Tropidocephalus F. Müller, Erster Nachtrag zum Katalog der herpetologischen Sammlung des Basler Museums, p. 45. 1880.)

Der Gattung Leiodera verwandt, von dieser durch den mit Kielschuppen bekleideten Kopf, durch gekielte Schuppen am Bauche, durch Mangel an Analporen und durch Mangel (?) von Gaumenzähnen unterschieden.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *T. azureus* von Uruguay.

310. Gattung Leiolema Wiegmann.

(Leiolema Wiegmann, Herp. mexicana. — Gray, Cat. of Lz. p. 212. — Proctotreus Duméril et Bibron, Erpét. génér. T. IV.)

Kopf pyramidal, mehr oder weniger deprimirt, mit mässigen, glatten, nicht geschindelten, polygonalen Schildern, mit einem ziemlich deutlichen Interparietalschild; Seiten des Nackens mit kleinen, dicken oder Körnerschuppen, mit einer longitudinalen Leiste und einer queren Falte auf dem vorderen Theil der Schulter; Nasenlöcher lateral; Gaumenzähne, Wangen mit 1, selten 2 Reihen von Schuppen; Infraorbitalschild verlängert; Ohröffnung eingesunken; Augenbrauen schuppig, mit 3 oder 4 grösseren Schildern; Körper rund, Schuppen geschindelt, auf dem Rücken gekielt, auf dem Bauche glatt; Rücken und Schwanz ohne Kamm; Schwanz lang,
Klassifikation und geograph. Verbreitung.

rund; Zehen einfach; weder Femoral- noch Praeanalporen; Männchen mit Poren auf dem vorderen Rande der Cloake.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palnearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 14 Arten bekannt.

311. Gattung *Proctotrepus* Duméril et Bibron.

Kopf deprimirt, breit, mit zahlreichen, sehr kleinen, glatten, polygonalen Kopfschildern bedeckt; Interparietalplatte sehr klein, von sehr kleinen Platten umgeben; Nasenlöcher oben; Hals körnig und mit einer Falte jederseits; Ohrlöcher tief; Wangen mit 3 oder 5 Reihen von kleinen Schuppen zwischen den Lippenschildern und dem verlängerten Luftraorbitalschild; Körper deprimirt, Schuppen rhombisch, gekielt, die des Bauches glatt; Rücken und Schwanz ohne Kamm; Zehen einfach, Schwanz verlängert; weder Femoral- noch Praeanalporen; Männchen mit kleinen Poren auf dem vorderen Rande der Cloake.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palnearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. - 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

312. Gattung *Ptydogerus* Gray.

(*Ptydogerus* Gray, Cat. of Liz. p. 216. — *Proctotretus* z. Th. Duméril et Bibron, Erpét. gér. T. IV.)

Kopf etwas deprimirt, mit gleichmässigen, rhombischen, gekielten Platten bedeckt; Hals jederseits mit einer Falte; Gaumenzähne; Nasenlöcher lateral, Ohrlöcher eingezogen, vorn gezähnelt; Wangenschuppen in einer Reihe; Körper mit einem Kamm von comprimirten Schuppen jederseits, Schuppen des Rückens gekielt, die des Bauches glatt; Rücken und Schwanz ohne Kamm, Schwanz rund, spitzzulaufend; Zehen einfach, keine Femoralporen; beim Männchen Poren auf dem vorderen Rande der Cloake.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Pl. pectinatus* von Chile.

313. Gattung *Leiocephalus* Gray.

Kopf pyramidal, viereckig; Nasenlöcher lateral; Kopfschilder massig, oval, fast gleichförmig mit einem kleinen Interparietale und queren Supraocularschildern sowie 4 Frontalschildern zwischen den Augen; Gaumenzähne; Ohröffnungen vorn gezähnelt; Hals unten glatt, mit unregelmässigen Falten an den Seiten und mit einer queren Falte vor an jeder Schulter; Körper und Schwanz dreiseitig; mit geschiedelten, gekielten, scharfzugespitzten Schuppen, in schieben Reihen gruppiert, zum Theil den dorsalen Kamm bildend, zum Theil denselben deckend; der äussere Rand der zweiten oder dritten Hinterzehe gezähnelt; Weder Femoral- noch Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. 3. 4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 18 Arten bekannt, von welchen 11 der westindischen Subregion angehören und eine Art (*L. Grayi*) die Galapagos-Inseln bewohnt.

314. Gattung *Stenocercus* Duméril et Bibron.

(*Stenocercus* Duméril et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz. p. 219.)

Kopf deprimirt, dreieckig; verlängert, mit kleinen, gleichförmigen Schuppen bedeckt; eine deutliche Interparietalplatte und zahlreiche longitudinalen Reihen von Supraocularschildern; Gaumenzähne; Nasenlöcher etwas lateral, rückwärts gekehrt; Kehle ohne Falte; Nacken jederseits mit einer longitudinalen Falte; Körper ziemlich verlängert, mehr weniger dreiseitig, mit einem sehr kleinen gezähnelten Kamm; Schuppen geschindelt, auf dem Rücken gekielt, in queren Reihen, die des Bauches glatt; Schwanz lang, comprimirt, mit Quirlen von grossen gedornten Schuppen; keine Femoralporen.
Bis jetzt nur eine Art bekannt, *St. roseiventris* von Bolivia.

315. Gattung *Trachyecllus* Duméril et Bibron.

(*Trachyecllus* Duméril et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz. p. 219.)

Kopf pyramidenförmig, viereckig, abgeflacht, mit fast gleichförmigen Platten bedeckt; Interparietale sehr klein; Nasenlöcher ziemlich lateral; Gaumen ohne Zähne; Kehle mit einer Falte jederseits und einer Falte vorn an jeder Schulter; Körper fast rund; Schuppen des Rückens mäßig, geschindelt, gekielt, die des Bauches glatt; Nacken, Rücken und Schwanz ohne Kamm; Schwanz mäßig lang, an der Basis schwach deprimirt, mit Quirl von Dornen umgeben; Zehen an den Seiten gezähnt; keine Femoralporen.

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

316. Gattung *Brachysaurus* Hallswell.

Kopf kurz, oben bedeckt mit polygonalen, flachen Platten von ungleicher Grösse; Nasenlöcher in einer einzelnen Platte in der Nähe ihres hinteren Randes; keine deutlicheOccipitalplatte; eine Reihe von breiten hexagonalen Schuppen über jede Augenöhle, eine Reihe von grossen und glatten Platten auf der Seite des Kopfes; keine transversale Falte an dem Nacken; Schuppen des Rückens, der Seiten und des Bauches geschindelt, die dorsale und mittlere Reihe grösser als die anderen, weder Femoral- noch Praeanalporen.

Bis jetzt nur eine Art bekannt: *B. erythrogaster* von Neu-Granada.
317. Gattung *Scarlis cus* Cope.

(*Scarlis cus* Cope, Proc. Acad. Phil. p. 182. 1862.)
Körper deprimirt; ein medianer, dorsaler Kiel, welcher auf dem Nacken einen niedrigen Kamm bildet; Schwanz schlank, comprimirt, mit schwach gekielten Schuppen bedeckt; Zehen 5,5; Tympanum verborgen; Nasenlöcher in einer einzig Platte, lateral und unter dem Canthus rostral is gelegen; Kopfplatten zahlreich, klein, gekielt; Interparietalschild, Parietalschilder (mit einander in Zusammenhang) und Postparietalschild allein unterscheidbar; keine Gaumenzähne, Kieferzähne dreispitzig; Schuppen des Körpers gross, platt, überall gekielt, hinten auf dem Rücken in convergirenden Reihen; weder Femoral- noch Analporen; 2 Paar Bauchrippen.

Die Gattung *Scarlis cus* unterscheidet sich von *Brachysaurus*, mit dem sie im Allgemeinen übereinstimmt, dadurch, dass bei *Brachysaurus* die Zahl der Bauchrippen eine viel grössere ist.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *S. caducus* von Paraguay.

318. Gattung *Crotaphy tus* Holbrook.

(*Crotaphy tus* Holbrook, North-Amer. Herp. 1842. — Duménil et Bocourt, Mission scientifique au Mexique, 1874.)
Kopf subtriangular, etwas deprimirt; Gaumenzähne; Schwanz lang, an der Spitze schlank und abgerundet; beim Männchen eine Reihe von ziemlich grossen Platten hinter dem After; Zehen an der Unterfläche von kleinen, gedornten Warzen versehen; Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 8 Arten bekannt.

319. Gattung *Hol brookia* Girard.

Kopf elliptisch, niedergedrückt, ohne flach zu sein; Kopfschilder klein, unregelmässig und polygonal, Occipitalschilder noch kleiner, keine Zähne am Gaumen, Kieferzähne schlank, oben und unten einreihig; eine Hautfalte an der Brust bildet einen Nackenring und hat einen durch grössere
Schuppen gesägten Rand; Körper niedrig mit dachziegelartigen Schuppen bedeckt, die unteren glatt, die oberen schwach gekielt; kein Kamm; Zehen einfach; Schwanz conisch und kurz; Schenkelporen vorhanden, in einer Reihe; keine Analporen; Ohröffnung nicht sichtbar.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 5 Arten bekannt.

320. Gattung *Homalosaurus* Hallowell.

Mit *Crotaphytus* und *Holbrookia* nahe verwandt. Kopf niedrig, oben mit polygonalen Schildern bedeckt, Nasenlöcher oberhalb; Occipitalschild deutlich; Schlaffe nicht angeschwollen, Seitenschider des Oberkiefers dachziegelartig; Oberseite des Nackens, Rückens und Schwanzes mit Granulationen bedeckt, Bauch und Unterseite des Schwanzes mit glatten, viereckigen Schuppen; äussere Ohröffnungen vorhanden; Kehle gefaltet; Schenkelporen; Schwanz nur wenig länger als der Körper; Körper und Gliedmassen schlank.

Die in Rede stehende Gattung ist auch nahe verwandt mit der Gattung *Uta*, unterscheidet sich aber von dieser durch die Beschuppung des Schwanzes. Es ist also wohl sehr fraglich, ob diese Gattung aufrecht zu halten ist.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *H. ventralis* von Neu-Mexico.

321. Gattung *Dipsosaurus* Hallowell.

(*Dipsosaurus* Hallowell, Reports of explications and Surveys to ascertain the most practicable route for a railroad from the Mississippi etc. Vol. X. 1859.)

Der Gattung *Crotaphytus* verwandt, von dieser verschieden durch die viereckigen Schuppen des Rückens und eine grössere Reihe gekielter Schuppen, die einen niedrigen Kamm bilden.
Bis jetzt nur eine Art bekannt: *D. dorsalis*. Baird & Gir. — begründet auf *Crotaphytus dorsalis* Baird & Gir.

322. Gattung *Phymalolepis* Duméril.

(*Phymalolepis* Duméril, Archives du Muséum. T. VIII. 1856.)

Rumpf ohne Kamm, mit feiner Granulation bedeckt, dazwischen mit grossen, gekielten Schuppen; Kopf kurz; Occipital- und obere Augenschilder gross; keine Gaumenzähne; eine doppelte Falte unter dem Halse, welcher seitlich gefaltet ist; Schenkelporen, keine Analporen.

Bis jetzt nur 2 Arten bekannt von Mexico.

323. Gattung *Utia* Baird et Girard.

Oberer Theil des Körpers mit kleinen Schuppen bedeckt, eine Brustfalte; Ohröffnungen sichtbar; Schenkelporen, aber keine Analporen. Die Gattung *Utia* ist den Gattungen *Crotaphyes*, *Holbrookia* und *Sceloporus* verwandt.

Von dieser Gattung sind bis jetzt 7 Arten bekannt.

324. Gattung *Urosaurus* Hallowell.

(*Urosaurus* Hallowell, Reports of Explor. and Surveys etc. T. X. 1859.)

Verwandt mit *Tachydromus*, von diesem durch die eigenthümliche Gestalt der Kopfplatten sehr verschieden.
Bis jetzt nur eine Art bekannt: *U. ornatus* Baird et Gir. (gegründet auf *Uta ornata* Baird et Gir.)

325. Gattung *Uma* Baird.

Ohröffnung deutlich, Infraorbitalplatte sehr lang; keine Gaumenzähne, Schuppen des Körpers oben gleichförmig, viel kleiner als die ventralen; Infraorbitalraum mit 2 Reihen von Platten, Klauen sehr lang; schlank und recht, äußere Fläche der oberen Labialia flach, die Labialia selbst gekielt; Seitenflächen mit einem runden, schwarzem Flecken.

Bis jetzt nur eine Art bekannt: *U. mohavensis* aus der Mohava-Wüste.

326. Gattung *Sauromalus* Duméry.

(Sauromalus Duméry, Archives du Museum. T. VIII. 1856.)

Körper stark deprimirt, ohne Kamm, an den Seiten mit einer Hautfalte; Schuppen klein, viereckig, nicht dachziegelartig und in regelmäßigen Querreihen geordnet; Kopf platt, mit kleinem Occipitalschilde; eine Querfalte unter dem Halse, welcher jederseits eine andere halbkreisförmige mit Stachelschuppen besetzte trägt, keine Gaumenzähne; vorderer Ohrrand gezähnt; Schenkelporen; keine Analporen; Gliedmassen kräftig mit kurzen Zehen; Schwanz lang und kräftig, am Grunde deprimirt, weiterhin rund.

Bis jetzt nur eine Art bekannt: *S. aler*. Von dem Colorado-Fluss.

327. Gattung *Placopsis* Goss.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. ocellata* von Jamaica.

328. Gattung *Oreodeira* Girard.

Kopf deprimirt, breit und kurz, bedeckt mit kleinen, schwach gekielten Schuppen; Oecipitalplatte gross, Nasenlöcher lateral; Supralabial- und Temporalplatten gekielt; Zunge fleischig, vorn eingeschnitten. Zähne comprimirirt, auf den Seiten der Kiefer; Ohröffnung sichtbar; eine Gular- und Pectoralfalte; Schuppen auf dem Rücken massig, gekielt, in queren Reihen gestellt, die des Bauches fast gleich, ebenfalls gekielt, die des Hinterkopfes und des Nackens sehr klein, granulirt. Nacken mit einem kleinen Kamin, welcher auf dem Rücken verschwindet. Gliedmassen schlank, verlängert; Zehen 5,5, ungleich, alle mit Klauen. Schwanz schlank, spitz zulaufend; weder Femoral- noch Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *O. gracilipes* von Neu-Süd-Wales.

329. Gattung *Oplurus* Cuvier.

(*Oplurus* Cuvier, Règne animal. — Gray, Cat. of Liz. p. 22.)

Kopf dreieckig, etwas verlängert, mit massig grossen, polygonalen Schildern bedeckt; eine massig grosse Interparietalplatte und viele kleine Supraoeonaria, in mehreren Reihen gelagert; Nasenlöcher etwas lateral; Gannenzähne, Ohröffnung tief, vorn gezähnelt; Nacken mit einer queren Falte, die sich über den Schultern hin fortsetzt, zuweilen von 2 andern gefolgt; Körper kurz, breit; Schuppen gross, rhombisch, gekielt; Schwanz massig, conisch, mit Quirlen von grossen, stark gedornten Schuppen, keine Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieserGattung sind bis jetzt 4 Arten bekannt, alle von Madagascar.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

331. Gattung *Strobilurus* Wiegmann.

(*Strobilurus* Wiegmann, Herp. mexic. — Gray, Cat. of Liz. p. 222.)

Kopf deprimirt, mit zahlreichen platten Schildern, mit einer grossen Interparietalplatte, von zahlreichen kleinen Schildern umgeben; Nasenlöcher rund, in der Mitte eines ovalen Nasenschildes; Augenbrauen mit kleinen, platten Schildern bedeckt; keine Gaumenzähne; Ohröffnung fast oberflächlich mit vorderem gezähneltem Rande; Kehle mit einer Falte; Körper fast dreiseitig; Schuppen mässig, geschindelt, die des Rückens gekielt, die des Bauches glatt; Schwanz mässig, mit grossen Dornschuppen bedeckt, an der Basis deprimirt, und mit 7 Reihen von Dornen oben und grossen Dornen unten; an dem Ende etwas comprimirt; keine Femoralporen; Zehen schlank, ungleich, unten mit einer Reihe von gezähnelten, gekielten Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die einzig bekannte Art ist *St. torquatus* von Brasilien.

332. Gattung *Uraniscodon* Gray.

Kopf kurz, vorn rund, mit ungleichförmigen Platten bedeckt; Occipitalplatte gross; Supraocularschilder gross, Nasenlöcher lateral; Gaumenzähne; Kehle mit einer schwachen longitudinalen Falte und einer deut-
lichen queren Falte, Körper mehr weniger dreieckig, an den Seiten nicht abgeplattet; Rücken mit rhombischen Schindelschuppen bedeckt; Rückenkamm schwach; Schwanz mässig lang, rund, ohne Kamm; keine Femoralporen; Zehen gefranst, mit kleinen Schuppen an der äusseren Seite.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

332. Gattung *Plica* Gray.

Kopf deprimirt, vorn rund, mit ungleichen Schuppen bedeckt, ein grosses Interparietale und Superoctularia; Ohröffnungen mit Bündeln von dornähnlichen Schuppen; Gaumenzähne; Hals mit einer longitudinalen und einer mehr deutlichen, hinteren transversalen Falte; Nasenlöcher lateral; Körper etwas deprimirt, jederseits mit zwei longitudinalen Falten; Rücken mit einem niedrigen Kamm, mit gekielten Schindelschuppen bedeckt; Schwanz rund oder comprimirt, keine Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

333. Gattung *Microphractus* Günther.

Finger und Zehen dünn, nicht erweitert; Kopf oben mit kleinen unregelmässigen Schildern bedeckt, zwischen denen keine grössere; Körper oben mit sehr kleinen körnigen Schuppen, längs dem Rücken mit einem deutlichen Kiel; Schuppen des Bauches dachziegelartig, glatt; Schwanz rund, mässig lang; zugespitzt mit Ringen von länglichen Schuppen, deren jede einen stark diagonalen Kiel hat; ein sehr niedriger Kamm längs dem Rücken des Rumpfes und Schwanzes; keine Sehenkel- und Analporen; Paukenfell sichtbar; eine Falte an jeder Seite der Kehle, keine Gaumenzähne.

B r o n n. Klassen des Thier-Reichs. VI. 3. 79
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. — — — — — —

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *M. humeralis* von Ecuador.

334. Gattung *Leiosaurus Duméril et Bibron.*

Kopf kurz, deprimirt, mit sehr kleinen platten oder convexen Schuppen bedeckt; Interparietalschild klein, undeutlich; unterer Augenrand mit kleinen Schuppen; Rücken und Schwanz ohne Kamm; Schwanz kurz, rund, an der Basis dick, an der Spitze schlank, mit kleinen Schuppen bedeckt, denen des Rückens ähnlich; Gaumenzähne; keine Femoralporen; Zehen 5,5, kurz, dick, subcylindrisch, unten mit einer Reihe glatter oder gekielter Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 2. — — — — — —

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

335. Gattung *Diplolaemus Bell.*

(*Diplolaemus Bell*; *Gray*, Cat. of Liz. p. 224.)

Kopf kurz, breit, subtriangulär, mit kleinen, runden nicht geschindelten Schuppen bedeckt; Ohröffnungen klein, oval, Vorderrand glatt, Augen mit einer grossen gebogenen Platte an ihrem unteren Rande; Nasenlöcher gross, rund; Nacken mit einer transversalen Falte; Körper etwas deprimirt; ohne Kamm, mit sehr kleinen, glatten, convexen, kaum geschindelten Schuppen; Bauch mit flachen, glatten Schuppen; Schwanz rund, kurz, glatt; Füsse stark; weder Femoral- noch Praanalporen; Gaumen ohne Zähne.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. — — — — — — — —

Von dieser Gattung sind bis jetzt nur 2 Arten bekannt.

336. Gattung *Tropidurus Wied.*

Reptilien.

1251

Occipitalschild auffallend gross, eine Reihe Submentalschilder an jeder Seite, welche von den ersten Infraalabialschildern durch eine oder zwei Reihen kleiner Schuppen getrennt sind; Nasenloch am hinteren Ende des Nasenschildes gelegen, Schuppen des vorderen Ohrrandes kammförmig vorspringend. Keine Scheu kelporen; Gaumenzähne fehlend oder vorhanden; Rücken und Nacken ohne Kamm, oder wenn einer vorhanden ist, nur rudimentär entwickelt, Schwanz ziemlich lang; Zehen 5,5, ungleich, gezähnt; Interparietalplatte mässig oder nur sehr klein.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 12 Arten bekannt, von diesen leben Tropidurus. (Craniopeltis) pacificus auf den Gallopagos-Inseln. Gray (Cat. of Liz.) betrachtet die Untergattung Microlophus Peters als eine eigene Gattung.

337. Gattung Uranocentron Kaup.

(Uranocentron Kaup; Gray, Cat. of Liz. p. 225. — Doryphorus Cuvier, Règne anim. Dumeril et Bibron, Érét. génér. T. IV p. 369.)

Kopf kurz, dreieckig, vorn platt, mit zahlreichen kleinen, polygonalen Schuppen und einem grossen Interparietale, Gaumen ohne Zähne; Nasenplatten fast lateral, dick; mit einer doppelten Falte; Ohröffnung nicht gezähnelt; Körper kurz, deprimirt, an den Seiten longitudinal gefaltet, mit kleinen geschindelten, glatten Schuppen und ohne Rückenkamm. Schwanz etwas verlängert, breit, platt, mit Bändern von grossen, gedornten Schuppen umgeben, keine Femoralporen.

79*
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaeartische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

338. Gattung *Phrymaturus* Gravenhorst.

Kopf kurz, dreieckig, bedeckt mit kleinen, runden, nicht geschindelten Schuppen; Ohröffnung gross, vorn mit einer Falte, schwach gezähnelt, zum Theil bedeckt; Nasenlöcher gross, rund; Augenbrauen mit kleinen Körnerschuppen bedeckt; Kehle mit einer schwachen Falte, Kamm des Rückens und Nacken sehr klein; Körper comprimirt, breit, mit sehr kleinen, runden, etwas convexen, glatten Schuppen bedeckt; Seiten mit einer longitudinalen Falte; Schwanz rund, etwas deprimirt an ihrer Basis mit Quirlen von gedrungenen Schuppen; keine Femoralporen, aber die Männchen mit einer Reihe von Poren in geringer Entfernung vom Bauche und mit 1 oder 2 auf dem Rande der Cloake; Gaumenzähne.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaeartische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Ph. Palluma* von Chili.

339. Gattung *Callisaurus* Blainville.

(*Callisaurus* Blainville; Duméril et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz. p. 226.)

Kopf kurz, deprimirt, vorn rund, mit ungleichen Platten, mit einem sehr grossen Interparietale und breiten, viereckigen Supraocularschildern; keine Gaumenzähne; Zähne einfach, conisch; Kehle mit einer longitudinalen und transversalen Falte; Nacken mit queren Falten jederseits; Ohröffnung einfach; Körper deprimirt, jederseits mit einer schwachen Hautfalte; Schuppen des Körpers klein, zahlreich, an einander geschlossen, geschindelt, glatt, ohne jede Spur eines Kammers weder auf dem Rücken, noch auf dem Schwanz; Schwanz verlängert, platt, an der Basis dick, mit kleinen, viereckigen, glatten Schuppen bedeckt; Gliedmassen stark; Zehen sehr lang, schlank, Krallen schlank, Femoralporen in einer langen Reihe.
Neotropische Subregionen	Nearktische Subregionen	Palaearktische Subregionen	Aethiopische Subregionen	Orientalische Subregionen	Australische Subregionen

Bis jetzt nur eine Art bekannt: *C. draconoides* aus Californien.

340. Gattung *Tropidogaster* Duméril et Bibron.

(*Tropidogaster* Duméril et Bibron, Erpét. génér. T. IV. p. 330. — Gray, Cat. of Liz.)

Kopf kurz, dreieckig, vorn stumpf, mit gekielten Schuppen bedeckt, mit einem mittelmässigen Interparietalschild und vielen kleinen, gekielten Supraocularscherben; Nasenlöcher lateral, keine Gaumenzähne; Kehle mit 2 oder 3 vollständigen, queren Falten; Nacken mit 1 oder 2 longitudinalen Falten jederseits; Vorderrand der Ohröffnung gezähnt; Körper etwas deprimirt, mit einer Hautfalte jederseits; Schuppen des Rückens klein, mit einem Kiele, die des Bauches mit 3 Kielen; Rücken mit einem schwach gezähnten Kamm; Schwanz lang; etwas conisch, an der Basis schwach deprimirt, mit gekielten Schuppen bedeckt und oben mit einem schwach entwickelten Kamm; Zehen und Krallen schlank, sehr klein; keine Femoralporen.

Bis jetzt nur eine Art bekannt: *T. Blainvillii*, Vaterland unbekannt.

341. Gattung *Phrynosoma* Wiegmann.

Kopf kurz, vorn rund, an den Seiten mit grossen Dornen und von gleichförmigen, polygonalen Kopfschildern bedeckt; Interparietalschild klein, rund; Gaumen ohne Zähne, Ohröffnung mit einem einfachen Rande, Kehle mit einer Falte; Körper kurz, sehr stark deprimirt, oval; Schuppen auf dem oberen Theil des Körpers gekielt; Seiten mit Körnerscherben; Rücken und Schwanz ohne Kamm; Schwanz kurz, spitz zulaufend, an der Basis deprimirt; Gliedmassen kurz; Zehen kurz, an den Rändern gezähnt; Schenkel mit einer Reihe von Poren.

Von dieser Gattung sind bis jetzt 12 Arten bekannt, aus dem tropischen Nordamerika und Mexico.
342. Gattung *Batrachosoma* Fitzinger.

(*Batrachosoma* Fitzinger, Syst. Rept. — Duméry et Bocourt, Mission scientif. au Mexique.)

Kopf verhältnismässig gross, mit ziemlich langen, durch deutliche Zwischenräume von einander getrennten, in Zahl wechselnden Dornen; Ohröffnungen sichtbar; unter dem Kopf mehrere longitudinale Reihen von gespitzten Schuppen, kleiner als die andern derselben Gegend; Unterkieferschilder winklig, grösser als die unteren Labialia; Schwanz nicht länger als der Körper; Bauchschuppen glatt oder gekielt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

343. Gattung *Anota* Hallowell.

Der Gattung *Phrynosoma* verwandt, von dieser besonders durch den Mangel äusserer Ohröffnungen unterschieden. Kopf klein, oben mit polygonalen Schildern bedeckt, hinten eine Reihe spitzer Dornen; Nasenlöcher innerhalb der Supraciliarleiste; Supraciliarleiste nur schwach entwickelt; endet hinten in einen kleinen, spitzen Dorn; Kinn mit glatten Granulationen von ungleicher Grösse bedeckt; eine Reihe spitziger Schuppen jederseits; zwei Kehlfalten; keine äussere Ohröffnung; Gliedmassen schlank, Oberfläche des Körpers glatt, indem die zahlreichen kleinen Stacheln der *Phrynosoma* nicht vorhanden sind, keine Fransen längs der Seitenränder des Bauches; Körper zusammengedrückt, oval, Schwanz fast so lang wie der Körper. Sehenkelporen sehr deutlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *A. McCallii* aus der grossen Steppe von Colorado.

344. Gattung *Saccodeira* Girard.

Nasenlöcher unmittelbar oberhalb des Supraciliarkammes, „Cephalic plates“ ziemlich klein, zahlreich gekielt. Temporalschuppen gekielt, Dorsalschuppen massig, deutlich gekielt; Abdominalschuppen glatt; weder Fe-
Reptilien.

oral- noch Praeanalporen; Schwanz an der Basis breit, comprimirt und hinten spitz zulaufend; Finger 5,5, schlank, ungleich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. ornatissima* von Obrajillo und Yanga (Peru).

345. **Gattung Cachryx Cope.**

(*Cachryx* Cope, Proc. Acad. Phil. p. 124, 1866.)

Finger kurz; Körper comprimirt; Nasenlöcher auf dem Canthus rostralis, lateral; Femoralporen, keine Praeanalporen; Schwanz kurz, platt, mit Reihen starker, hoher, stumpf gedornter Schuppen bedeckt; Kopf mit kleinen, gleichförmigen Schuppen bedeckt; kein Interparietalschild; eine starke, gular Hautfalte, kein Rückenkamm.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *C. defensor* von Yucatan.

346. **Gattung Euphryne Baird.**

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *E. obesus* aus Californien.

347. **Gattung Arpephorus Duméril.**

(*Arpephorus* Duméril, Cat. method. de la Collection des Reptiles. p. 92, 1850.)
Die Schnauze endet in einen häutigen, sichelförmigen Anhang, der länger ist als der Kopf und zwei Schneiden hat, eine obere concave, eine untere convex, und der an der breiteren Basis von einigen weichen Schuppen umgeben ist; Schwanz zusammengedrückt, in seiner ganzen Länge mit einem Kamm, der auf dem Rücken und Halse niedriger ist. Trommelfell klein, aber deutlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *A. tricinatus* von Java.

Zähne auf den Rändern der Kiefer; Zunge kurz, deprimirt, Spitze vollständig oder schwach eingeschnitten, Gangflüsse; Zehen alle frei, ungleich, der Daumen des Hinterfusses in gleicher Ebene mit den übrigen Zehen.

Unter Zugrundelegung der Gray’schen Eintheilung lassen sich die zahlreichen Gattungen der *Agamidae* folgenderweise gruppieren.

1. Körper comprimirt, leben auf Bäumen.
 A. Weder Femoral- noch Praeanalporen; Schindelschuppen; asiatische Formen.
 a. Rippen verlängert, mit fallschirmarteriger, über die verlängerten Rippen ausgespannter Seitenfalte

 b. Rippen einfach, Rücken mit einem Kamm.

 * Zehen 5,4; Ohröffnung sichtbar . . 3. Gatt. Dracunculus.

 ** Zehen 5,5; Schwanz unten mit verlängerten, gekielten Schuppen; Schuppen des Rückens klein, oft mit einzelnen zerstreuten grösseren.

 † Ohröffnung unter der Haut verborgen.

 Schnauze vorn mit einer runden Warze;

 Schuppen ungleich 4. Gatt. Sitania.

 Schuppen ungleich; keine Warze auf der Schnauze 5. Gatt. Lyriocephalus.

 Kopf viereckig; Schnauze mit einem verlängerten, hornähnlichen Fortsatz;

Reptilien.

Kopf viereckig, Schnauze fast platt, einfach.
Keine Rostralanhänge; Ventralanschuppen gekielt; Rückenkamm niedrig.
Kein Rückenkamm, obere Fläche des Kopfes mit kegelförmigen Warzen.

‡‡ Ohröffnung deutlich.

Schuppen des Bauches glatt, des Rückens ungleich, Augenlider verlängert.
Sämtliche Schuppen gekielt.
Schuppen des Bauches glatt, des Rückens gleichförmig, Augenbrauen rund.
Schuppen des Bauches gekielt, des Rückens ungleich.
Rücken und Seiten mit kleinen Schuppen bedeckt.
Schuppen des Bauches gekielt, des Rückens ungleich.

***Zehen 5,5; Schwanz unten mit breiten, rhombischen, gekielten Schuppen, Rückenschuppen gleichförmig.

Nackenkamm einfach.
Nackenkamm doppelt; Schuppen gross, in longitudinalen Reihen, ohne Kehlsack.
Mit einem Kehlsack.
Rücken mit einem Kamm, Kopf hinten geschwollen, mit 1 oder 2 Leisten von Stacheln.
Kopf stachellos, oval.
Ein Dorn hinter dem Superciliarrande.
Rückenkamm am Nacken unterbrochen.

**** Zehen 5,5; Schwanz unten mit abgestumpften gekielten Schuppen; Schuppen klein, gekielt, in queren Reihen.

Kehle schlaff; Nacken und Rücken mit einem niedrigen Kamm, Schwanz ziemlich comprimirt.
Nacken und Rücken mit einem niedrigen Kamm; Schwanz spitz zulaufend.
Nacken und Rücken ohne Kamm; Schwanz spitz zulaufend, rund.

Rücken mit sehr kleinen, viereckigen, gekielten, dachziegelförmigen Schuppen ...

B. Femoralporen deutlich.
a. Schuppen rhombisch, Zehen jederseits gefranst; Rücken mit einem Kamm, Kehle schlaff.
Rücken und Schwanz mit einem finnenähnlichen Kamm, durch Knochenstrahlen gestützt; Kopf viereckig.
Rücken und Schwanz mit einem Kamm von comprimirten Schuppen ...

b. Schuppen unregelmässig, geschindelt, leben in Australien.
* Nacken jederseits mit einer Falte.
Kopf rhombisch ...

** Nacken einfach.
Rücken mit einem Kamm; Kopf verlängert; Praeanalporen zahlreich, Schuppen klein ...
Rücken gekielt; Kopf kurz, Praeanalporen 1,1; Schuppen rhombisch, die des Bauches grösser ...
Rücken ohne Kamm, Femoralporen zahlreich ...
Trommelfell nicht sichtbar ...

II. Körper deprimirt; Rücken mit Schindelschuppen, Ohröffnung deutlich, Kehle mit einer queren Falte. Erdagamen.
a. Praeanalporen deutlich, keine Femoralporen, Ohröffnung deutlich.
* Praeanal- und Abdominalporen in mehreren Reihen.
Schwanz mit rhombischen, gekielten Schuppen ...
Schwanz mit Ringen von grossen Dornschuppen ...

** Praeanalporen in einer einzelnen Reihe; Abdomen ohne Poren.
Schuppen rhombisch gekielt ...
Schuppen klein ...
Kopf, Nacken und Hals mit grossen Schuppen ...

Reptilien.

b. Weder Praeanal- noch Femoralporen.
 * Ohröffnung deutlich
 ** Ohröffnung nicht sichtbar; Schuppen klein, granulirt; Rücken ohne Kamm.

 Zehen an den Rändern gezähnt . . .
An jeder Seite der Zehen eine Reihe von verlängerten, pfriemförmigen Schuppen

 Zehen an dem Rande sehr stark ge-
 zähnelt

 *** Ohröffnung offen liegend, gross, ein schwacher Rückenkamm

f. Femoralporen deutlich, keine Prae-

 analporen; Ohröffnung deutlich;
 Rücken ohne Kamm . .

 Schwanz breit, deprimirt, mit vollständi-
 gen Ringen von Dornschuppen . . .

 Schwanz sehr lang, ein niedriger Kiel auf dem Nacken

 Schwanz breit, deprimirt, oben mit Dorn-

 schuppen, unten unbewaffnet

 Schwanz rund, verlängert, spitz zulaufend .

 42. Gatt. *Phrynocephalus.*

 47. Gatt. *Chloroscartes.*

348. Gattung *Draco* Linn.

(*Draco* Linn; Duménil et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz.)

Kopf klein; Nasenloch in einer warzenförmigen Schuppe; Ohröffnung sichtbar, Körper deprimirt, Schwanz sehr lang; eine fallschirmartige, über die verlängerten Rippen ausgespannte Seitenfalte.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Nootropische Subregionen</th>
<th>Neartische Subregionen</th>
<th>Palaeartische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 11 Arten bekannt, die meisten von der malayischen Subregion.

349. Gattung *Dracocella* Gray.

(*Dracocella* Gray, Cat. of Liz. p. 234.)

Kopf klein, mit kleinen, ungleichen Schuppen bedeckt; Nasenloch rund, in einer hochaufstehenden Schuppe; Ohröffnung sichtbar.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

350. Gattung *Dracontulus* Wiegmann.

Kopf quadrangulär, mit kleinen, ungleichen Schuppen bedeckt; Nasenlöcher lateral; Ohröffnung durch Schuppen bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 5 Arten bekannt.

351. Gattung *Sitania* Cuvier.

Kopf pyramidenförmig, kurz, mit kleinen, fast gleichförmigen, gekielten Schuppen bedeckt; Ohröffnung klein, rund, oberflächlich; Männchen mit einem grossen, comprimirten Kehlsack; Nacken mit einem rudimentären Kamm; Körper subquadrangulär; Rücken rund; Schuppen rhombisch, gekielt, geschindelt, fast alle von gleicher Grösse, die der Seiten etwas kleiner; Schwanz lang, kegelförmig, ohne Kamm; Zehen 5,4; keine Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *S. ponticeriana* von Pondichery.

Kopf kurz, dreieckig, Augenbrauen hoch, nach hinten verlängert; Ende der Schnauze mit einem grossen, runden, schuppigen Fortsatz; Zunge dick, breit, vollständig; Ohröffnung unter der Haut verborgen; Kehlsack klein, comprimirt; Körper, Nacken und Schwanz comprimirt,
mit einem kleinen, gezähnelten Kamm; Schuppen klein, halb geschiedelt, mit queren Bändern von grösseren; weder Femoral- noch Pracanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Nootropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *L. margaritaceus* von Ostindien.

353. Gattung *Diploderma* Hallowell.

Kopf pyramidal, bedeckt mit polygonalen gekielten Schuppen von ungleicher Grösse; Nasenlöcher lateral, in einer grossen Platte in der Nähe ihres oberen Randes; ein kleiner Nuchalkamm; keine äussere Ohröffnung; Körper mit stark gekielten Schuppen bedeckt, von welchen einige ziemlich gross sind, die auf den vorderen und lateralen Theilen des Körpers viel kleiner; Schwanz lang, schlank, cyclo-tetragonal an der Basis, bedeckt mit gekielten Schuppen; Weder Femoral- noch Analporen; Körper schlank, comprimirt, Gliedmassen schlank; Finger und Zehen 5,5; Zunge schlank, adhärent, hinten eingeschnitten; 40 Zähne im Oberkiefer, 34 im Unterkiefer; Gaumenzähne fehlen. *Diploderma* unterscheidet sich von *Lyriocephalus* durch das Fehlen des Höckers auf der Schnauze, von *Ceratophorus* durch die hornartige Verlängerung der Schnauze, während der Zahnbaul bei *Otocnopus* und die Beschuppung bei *Phrynocephalus* ganz andere sind.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Nootropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *D. polygonatum* von den Loo-Choo-Inseln.

354. Gattung *Ceratophora* Gray.

(*Ceratophora* Gray, Cat. of Liz. — Duméril et Bibron, Erpét. génér. T. IV.)

Kopf quadrangulär, mit kleinen, etwas convexen Schuppen; Augenbrauen etwas verlängert; Schnauze in einen kegelförmigen, hornähnlichen Fortsatz verlängert; Nasenlöcher lateral; Hals mit schrägen Reihen von schwach verbreiterten rhombischen, schilderähnlichen Schuppen auf den Seiten, und zwei Reihen kleinerer Schuppen in der Mitte; Ohröffnung unter der Haut verborgen; Nacken mit einem Kamm von kegelförmigen Schuppen; Rücken schwach gekielt; Schuppen des Rückens rhombisch, ungleich, die des Bauches kleiner, gleich, glatt; keine Femoralporen,
Schwanz verlängert, spitzzulaufend, unten mit zwei Reihen von schmalen gekielten Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

355. Gattung Otocryptis Wiegmann.

Kopf kurz, pyramidal, 4seitig, Seiten vertical; Schnauze platt, stumpf, zwischen den Augen concav, hinten abgeplattet, Augenhöhlenrand mit geschindelten Schuppen bedeckt, aber nicht durch Knochen gestützt; Ohröffnung unter der Haut verborgen; Körper comprimirt; Glieder schlank, sehr lang; keine Femoralporen; Schwanz lang, schlank, Basis comprimirt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 4 Arten bekannt.

356. Gattung Japalura Günther.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 6 Arten bekannt.
357. Gattung *Copholis Peters.*

(*Copholis Peters*, Berl. Monatsb. p. 1103. 1861.)

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palacarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur zwei Arten bekannt.

358. Gattung *Phoxophrys Hubrecht.*

Ohröffnung nicht sichtbar; keine Femoralporen; Rücken und Seiten mit kleinen, glatten Schuppen bedeckt, dazwischen einzelne grössere, gekielte Schuppen und grosse conische Höcker; Rücken- und fehlend; über dem Auge eine Reihe von längeren, hohen Schuppen; obere Fläche des Kopfes mit kegelförmigen Warzen bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palacarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *Ph. tuberculata* von W. Sumatra.

359. Gattung *Goniocephalus Kuhl.*

Vorderkopf concav; Augenhöhlenrand hoch, hinten ohne Dorn; Seiten des Nackens mit zerstreuten Tuberkeln; Kehle mit einer grossen, comprimirten Tasche, vorn gekielt und gezähnelt, mit einer Falte vorn an
jeder Schulter; Nacken mit einem hohen, comprimirten, gezähnelten Kamm; Rücken gekielt, mit einem gezähnelten Kamm; Schuppen des Rückens klein, rhombisch, mit einer Reihe grösserer Schuppen jederseits; Schwanz verlängert, comprimirt, unten mit einer Reihe verlängerter gekielter Schuppen; keine Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopsische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 8 Arten bekannt, von welchen 6 zu den australischen Subregionen gehören.

360. Gattung Coryphophylax Fitz.

(Coryphophylax Fitz.; Steindachner, Reise der österr. Fregatte Novara. Zool. Theil.)

Der Gattung *Goniocephalus* verwandt, von dieser unterschieden durch das Vorkommen von Kielen auf sämmtlichen Schuppen des Körpers.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopsische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *C. Maximilianii* von den Nicobaren.

361. Gattung Dilophyrus Gray.

(Dilophyrus Gray, Cat. of Liz. p. 238.)

Kopf vierseitig; Vorderkopf etwas concav; Augenbrauen rund, Hinterkopf mit 3 oder 4 grossen Höckern jederseits; Nacken und Rücken mit einem hohen Kamm von comprimirten Schuppen, mit Reihen von kleineren an der Basis; Kehle schlaff, hinten mit einer queren Falte, sich bis nach dem vorderen Rande der Schulter ausdehnend; Schuppen des Rückens klein, rhombisch, gleichförmig, die des Bauches etwas grösser und glatt; Schwanz comprimirt, oben gekielt und gezähmelt, unten mit zwei Reihen verlängerter, gekielter Schuppen; weder Femoral- noch Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopsische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt zwei Arten bekannt.
362. Gattung *Tiaris* Duménil et Bibron.

(*Tiaris* Duménil et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz. p. 239.)

Kopf dreieckig, vorn gewölbt; Augenhöhlenrand unbewaffnet; Kehle mit einer grossen, comprimierten Tasche, vorn gezähnet und mit ungleichen Schuppen bedeckt, am vorderen Rande der Schulter eine quere Falte; Nacken und Rücken mit einem Kamm von sehr langen, comprimirten Schuppen; Schwanz comprimirt, oben gezähnt, unten mit zwei Reihen verlängerter, gekielter Schuppen; Schuppen des Rückens rhombisch, ziemlich geschindelt, mit einzelnen zerstreuten, grösseren, auf den Seiten des Nackens, die des Bauches ziemlich gross, gekielt, keine Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3. 4.</td>
</tr>
<tr>
<td>1.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 8 Arten bekannt, welche fast alle auf den Inseln des indischen Archipels leben.

363. Gattung *Otiotiaris* Günther.

(*Otiotiaris* Günther, The Reptiles of British India, Ray Society. 1864.)

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *O. Ellioti* von Sikkem, wo sie bis zu einer Höhe von 9200 Fuss über dem Meer auf dem Himalaya wohnt.

364. Gattung *Acanthosaura* Gray.

Kopf dreieckig, vorn gewölbt; Augenhöhlenrand in einen Dorn endigend; Ohröffnung oberflächlich, deutlich; Kehle mit einem schwach entwickelten, etwas comprimirten Saek, vorn nicht gezähnt, mit Schuppen, denen des Rückens ähnlich, bedeckt, vorn mit einer Falte; Nacken und

B r o n n , Klassen des Thier-Reichs. VI. 3.
Rücken mit einem Kamm von verlängerten Dornen; Rücken gekielt und gezähnelt; Schuppen des Rückens klein, rhombisch, halb geschindelt, mit zerstreuten größeren Schuppen, die des Bauches gekielt; Schwanz verlängert, oben schwach gezähnelt, unten mit zwei Reihen von verlängerten, gekielten Schuppen; keine Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

365. Gattung *Bromchodela* Kaup.

Kopf pyramidal, vierseitig, mit kleinen, gleichgrossten Schuppen bedeckt; Interparietalschuppen sehr klein; Schuppen des Rückens gleich, geschindelt, in queren Reihen gruppiert, mit dem freien Rande bauchwärts kehrt, die des Bauches und der unteren Seite des Schwanzes grösser, rhombisch, gekielt; Kehle unten mehr oder weniger schlaff, ohne eine Spur einer Querfalte; Nacken, Rücken und Schwanz mit einem Kamm von comprimirten Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 8 Arten bekannt.

366. Gattung *Salea* Gray.

(*Salea* Gray, Cat. of Liz. p. 242.)

Kopf subquadragangulär, mit platten, gekieltten, nicht geschindelten Schuppen bedeckt; Hinterkopf und Seiten des Nackens mit sparsam zerkreuzte Körnerschuppen; Ohröffnung deutlich, oberflächlich; Nacken mit einem Kamm von zwei divergirenden Reihen ziemlich comprimirter Schuppen; Schuppen des Rückens rhombisch, gekielt, in longitudinalen Reihen geordnet, die des Nackens und Bauches verlängert, rhombisch, gekielt, die des Schwanzes rhombisch, geschindelt; Rücken gekielt, ohne Kamm; Schwanz verlängert, spitz zulaufend, unten mit ziemlich grossen, geschindelten Schuppen, oben mit gekielten Schuppen; weder Femoral- noch Praeanalporen; Zehen 5,5, ungleich.
Von dieser Gattung sind bis jetzt 2 Arten bekannt.

367. Gattung *Lophosalea* Beddome.

Keine Schenkelporen, keine seitlichen Flughäute, Tympanum nackt. Kamm des Rückens und vorderer Teil des Schwanzes sehr hoch; Schuppen des Rückens und der Seiten gross, unregelmässig, dachziegelartig, fast gleich gross, aber mit einigen kleinen Schuppen untermischt, stark gekielt, die Spitzen nach hinten gerichtet; einige dreieckige oder dorsine Schuppen über dem Tympanum; ein grosser Kehlsack; Schwanz mässig lang, sehr zusammengedrückt; alle Schuppen gekielt, die unteren sehr vorspringend. Von der Gattung *Salea* durch den Kehlsack, von der Gattung *Cophotis* durch das nackte Trommelfell unterschieden.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

368. Gattung *Calotes* Cuvier.

(*Calotes* Cuvier, Règne animal. — Duméril et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz. p. 242.)

Kopf quadrangulär, mit kleinen, gleichgrossen Schuppen bedeckt; Interparietale sehr klein; Zunge dick, schwach eingeschnitten; Nasenlöcher lateral, in der Nähe des Schnauzenendes, in einem kleinen Schild; Kehle mehr oder wenig schlaff, zuweilen mit einer longitudinalen Falte jederseits; Schuppen des Rückens nach hinten gekielt, gleichförmig, geschindelt, in queren Reihen, die des Rückens gross, die des Scheitels glatt; Nacken, Rücken und Schwanz mit einem Kamm comprimirter Schuppen; keine Femoralporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 14 Arten bekannt, alle von den orientalischen Subregionen.

369. Gattung Calotella Steindachner.

(Calotella Steindachner, Reise der österreichischen Fregatte Novara um die Erde. Zool. Theil. 1869.)

Kopf oval, von geringer Länge, an der Oberseite gewölbt, stachellos, nicht auffallend stark abwärts geneigt, gleichförmig beschnuppt und ohne erhöhte Orbitalleiste; Nasenlöcher in einem ziemlich grossen Nasenschild an den Seiten der Schnauze; sämmtliche Körperschuppen von geringer Grösse, rhombenförmig; ziemlich stark gekielt, Rückenschuppen in horizontalen Reihen; Kehlsack, Schenkelporen und Analporen fehlend; eine V-förmige Falte an der Brust und an den Seiten des Nackens; Schwanz sehr lang, rundlich; kein Rückenkamm, ein sehr schwach angedeuteter Nackenkamm.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: C. australis von Australien.

370. Gattung Oriocalotes Günther.

(Oriocalotes Günther, The Reptiles of British India. Ray Soc. p. 146. 1864.)

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Paläarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt.

Der Gattung *Calotes* verwandt, von dieser durch den Bau des Rückenkammes verschieden, welcher am Nacken unterbrochen ist, und durch getrennte Dornen am Rücken gebildet wird.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *L. interruptus* von Borneo.

372. Gattung *Chelosania* Gray.

(*Chelosania* Gray, Cat. of Liz. p. 245.)

Kopf gross, mit kleinen, ungleichen, nicht geschindelten Schuppen bedeekt; Seiten des Gesichtes rund, Nasenlöcher lateral; Kehle schlaß, hinten mit einer schwachen queren Falte; Seiten des Nackens unbewaffnet; Nacken und Rücken mit einem Kamm von niedrigen Schuppen; Körper comprimirt, mit Ringen von ziemlich kleinen, rhombischen, gekielten Schuppen, in queren Reihen gelagert, die des Bauches ziemlich gross, gekielt, die der Gliedmassen noch grisser; Schwanz verlängert, spitz zulaufend, ziemlich comprimirt, mit gekielten Schuppen; Zehen 5,5, massig, ungleich; weder Femoral- noch Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Ch. brunnea* von Westaustralien.

373. Gattung *Charasia* Gray.

(*Charasia* Gray, Cat. of Liz. p. 246. -- *Agama* z. Th. Duménil et Bibron, Erpét. génér. T. IV.)

Kopf pyramidal, gross, verlängert, Scheitel mit kleinen Schuppen bedeekt; Ränder der Augenhöhlen mit Reihen von grossen, geschindelten Schuppen; Nasenlöcher am vorderen Ende der Seite des Gesichtes; Kehle ziemlich schlaß, hinten mit einer queren Falte; Nacken und Rücken mit einem sehr niedrigen, gezähneltten Kamm; Schuppen des Rückens klein, sechseitig, die der Gliedmassen grisser, gleich gekielt, die des Bauches rhombisch, glatt; Schwanz verlängert, conisch, spitz zulaufend, unten mit mehreren Reihen von ziemlich grossen, rhombischen Schuppen und mit
Klassification und geograph. Verbreitung.

einer Reihe von grossen, gekielten Schuppen längs der Mitte der oberen Fläche; weder Femoral noch Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

374. Gattung Gindalia Gray.

(Gindalia Gray, Cat. of Liz. p. 246.)
Kopf massig, mit regelmässigen, gekielten Schuppen bedeckt; die des Hinterkopfes viel kleiner; Nasenlöcher lateral; Kehle ziemlich schlafl, hinten mit einer queren Falte; Nacken und Rücken rund, ohne Kamm; Schuppen des Rückens gleichförmig, rhombisch, gekielt, in longitudinalen Reihen, die des Bauches ebenfalls in longitudinalen Reihen, die der Seiten kleiner; Schwanz rund, spitz zulaufend, mit geschindelten, rhombischen Schuppen, deren Kiele longitudinal Leisten bilden; weder Femoral- noch Praeanalporen; Zehen 5,5, ungleich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: G. Bennettii von der Nordwestküste von Australien.

375. Gattung Barycephalus Günther.

Kopf, Körper und Schwanz ziemlich deprimirt; Paukenfell rund; Kehle mit einer tiefen Querfalte; keine Schenkelporen; Kopf oben mit sehr kleinen Schildern bedeckt; Rücken mit sehr kleinen, viereckigen, gekielten, dachziegelförmigen Schuppen; Seiten körnig mit zerstreuten Dornen; Bauch mit kleinen, viereckigen Platten in Querreihen; Beine und Schwanz mit schiefen Querreihen stark gekielter Schuppen; Zähne comprimirt, dreieckig ohne Lappen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: B. Sykesii vom Himalaya bis zu 15250 Fuss über dem Meer in Ladak, Tibet.
376. Gattung Histius Cuvier.

(Histius Cuvier, Règne anim. — Duméril et Bibron, Erpét. génér. T. IV. — Lophyra Gray, Cat. of Liz. p. 247.)

Kopf pyramidal, mit kleinen, gleichförmigen, gekielten Schuppen bedeckt; Supereiliarrand gekielt; Nasenlöcher lateral; Ohröffnung oberflächlich, deutlich; Kehlsack klein, vorn mit einer Falte an dem Nacken; Nacken, Körper und Schwanz comprimirt, mit einem Kamm, welcher an der Basis des Schwanzes durch Knochenstrahlen gestützt wird; Femoralporen deutlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Von dieser Gattung sind bis jetzt 12 Arten bekannt.

(Physignathus Cuvier, Règne animal. — Gray, Cat. of Liz. p. 248. — Histius z. Th. Duméril et Bibron, Erpét. génér.)

Kopf pyramidal, hinten angeschwollen, mit kleinen, gleichförmigen, gekielten Schuppen bedeckt; Supereiliarrand gekielt; Nasenlöcher lateral; Ohröffnung oberflächlich; Kehlsack klein, vorn mit einer Falte am Nacken; Rücken und Schwanz mit einem Kamm von comprimirten Schuppen; Schwanz comprimirt, Femoralporen deutlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

378. Gattung Chlamydosaurus Gray.

(Chlamydosaurus Gray, Cat. of Liz. p. 248.)

Kopf pyramidal, viersichtig, mit kleinen, fast gleichförmigen, gekielten Schuppen bedeckt, Kehlsack fehlend; Ohröffnung Oberflächlich; Nacken mit einer breiten Falte jederseits, mit Schuppen bedeckt, und an den Rändern gezähnelt; Rücken ohne Kamm, Nacken mit einem schwach entwickelten Kamm; Schuppen geschindelt, gekielt, die der Seiten kleiner; Gliedmassen stark; Zehen 5,5, ungleich; Femoralporen deutlich; Schwanz verlängert, spitz zulaufend, ohne Kamm.
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt, *Ch. Kingii* von Australien.

379. Gattung *Lophognathus* Gray.

(*Lophognathus* Gray, Cat. of Liz. p. 250.)

Kopf verlängert, mit gekielten Schuppen bedeckt; Augenbrauen gekielt; Rücken mit gekielten, rhombischen Schuppen bedeckt; Gliedmassen Schwanz, Hals und Bauch mit grösseren Schuppen in longitudinalen Reihen; Nacken mit einem Kamm von kurzen, comprimirten Schuppen; Rückenkamm schwach; Schwanz verlängert, spitz zulaufend, 2—3 Femoralporen; Praeanalporen vorhanden.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *L. Gilbertii* von Nordaustralien.

380. Gattung *Diporophora* Gray.

(*Diporophora* Gray, Cat. of Liz. p. 250.)

Kopf kurz, mit kleinen, gekielten Schuppen bedeckt; Augenbrauen gekielt; Rücken mit gekielten, rhombischen Schuppen bedeckt; Gliedmassen, Schwanz, Hals und Bauch mit grösseren, gekielten, rhombischen Schuppen; alle in longitudinalen Reihen angeordnet; Rücken jederseits schwach gekielt; Nacken mit einem sehr schwachen Kamm; Schwanz verlängert, spitz zulaufend; keine Femoralporen, eine Praeanalpore jederseits.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *D. bilineata* von Nordaustralien.

381. Gattung *Grammatophora* Kaup.

Kopf dreieckig, abgeplattet, mit kleinen, ungleichen, gekielten Schuppen; Nasenlöcher lateral; Ohröfnung sichtbar; Kehle ohne Sack, aber
Reptilien.

mit einer queren Falte; Rücken ohne Kamm; Schuppen des Rückens geschindelt, ungleich, mit queren Bändern von grösseren Schuppen; Femoralporen deutlich; Schwanz lang, conisch, an der Basis deprimirt, mit gekielten, geschindelten Schuppen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt sind von dieser Gattung 16 Arten bekannt.

382. Gattung *Tympanocryptis* Peters.

Von der Gattung *Amphibolurus* nur durch den Mangel eines sichtbaren Trommelfells verschieden. Keine Schenkelporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(*Laudakia* Gray, Cat. of Liz. p. 254.)
Kopf mässig, mit kleinen Schuppen bedeckt; Nasenöffnungen lateral, hinten mit einer queren Falte; Nacken mit einem schwachen Kamm. Rücken ohne Kamm; Schuppen des Rückens mässig, rhombisch, die der Seiten kleiner, mit einzeln zerstreuten, grösseren, gekielten, die des Bauches klein und glatt, die der Gliedmassen grösser, gekielt; Analöffnung von verschiedenen Reihen mit Poren versehenen Schuppen umgeben; Schwanz verlängert, spitz zulaufend, mit geschindelten, gekielten, rhombischen Schuppen; Zehen 5,5, verlängert, ungleich, die mittlere hintere fast so lang als die vierte.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *L. tuberculata*.
384. **Gattung Stellio Linn.**

(Stellio Linn, Gray, Cat. of Liz. p. 254. — Duménil et Bibron, Erpét. génér. T. IV.)

Kopf dreieckig, ziemlich verlängert, mit ungleichen Schuppen bedeckt; Kehle schlaff, hinten mit einer querer Falte; Körper deprimirt, mit einer longitudinalen Falte jederseits; Schuppen des Rückens ungleich, die auf den Seiten kleiner, mit einzelnen zerstreuten grössern, die des Bauches mässig, glatt, die der Gliedmassen grösser, gedornt; Zehen 5,5, verlängert, 3. und 4. Hinterzehe von gleicher Länge; keine Femoralporen; Praeanalporen in mehreren Reihen; Schwanz conisch, rund.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.</td>
<td>3.</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 12 Arten bekannt. *St. agrorensis* lebt 6000 Fuss über dem Meer auf dem Sussel-Pass, am Eingang in das Agror-Thal. *St. vulgaris* lebt im nordöstlichen Afrika, westlichen Asien, der europäischen Türkei und auf einigen ägäischen Inseln und im Kaukasus. (Schreiber).

385. **Gattung Agama Cuvier.**

(Agama Cuvier, Règne anim. — Gray, Cat. of Liz. p. 255. — Duménil et Bibron, Erpét. génér. T. IV.)

Kopf mässig, dreieckig, deprimirt; Scheitel mit unregelmässigen Schuppen; Nasenlöcher lateral, in der Nähe des vorderen Endes der Schnauze; Ohroffnung deutlich; Kehle mit einer longitudinalen und 1 oder 2 queren Falten; Rücken mit einem schwachen Kamm versehen; Körper deprimirt, mit rhombischen, gekielten Schuppen und zuweilen mit einzelnen zerstreuten gedornten; Schwanz verlängert, spitz zulaufend, mit geschindelten, rhombischen Schuppen; keine Femoralporen; Praeanalporen vorhanden; Zehen 5,5; 3. und 4. fast von gleicher Länge.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.</td>
<td>1. 2.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 14 Arten bekannt, 4 aus den palaearktischen und 10 aus den aethiopischen Subregionen. *A. sanguinolenta* lebt in südöstlichen Europa.

386. **Gattung Trapelus Cuvier.**

(Trapelus Cuvier, Règne animal. — Duménil et Bibron, Erpét. génér. T. IV. — Gray, Cat. of Liz. p. 258.)
Kopf mässig, convex, mit ungleichen Schuppen bedeckt; Nacken
contrahirt; Augenlider mit einer Franse von kleinen Schuppen; Rücken-
kanum schwach oder fehlend, Schwanz schlank, mit Schindelschuppen;
Zehen 5,5, schlank; keine Femoral- wohl Praanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 6 Arten bekannt.

386. Centrotrachelus Strauch.

(Centrotrachelus Strauch, Bull. Acad. St. Petersbourg VI p. 477, 1865.)

Zwischen Stellio und Uromastix. Die Gattung umschreibt Strauch
folgenderweise: Caput subtriangularre, breve, crassum, convexum, rostro
rotundata, squamis tuberculosis, irregularibus, in fronte majoribus et con-
veoxioribus, contectum. Regis gularis subtilliter granulata. Orbitae simplices;
nares parvae, sub cantho rostrali posita, reteorum directae. Aures
magnae, verticales, oblongae, partim plicis collaribus occultae; membrana
tympani altius detrusa. Occiput, nucha, regio post auricularis et collum
scutis magnis, multangularibus, in spina valida elevatis, series transversas
fingentibus, ornantur. Truncus elongatus, depressus, squamae dorsi laeves,
imbricatae, inaequales, aliae parvae, aliae quadruplo majores, subsecti-
formes per series transversas dispositae. Membra valida, squamata, supra
nonnullis spinis dispersis; pedes pentadactyli, digitis inaequalibus, ungui-
culatis. Pori anales nulli, femorales utrinque undecim. Cauda longa,
lata, verticillata, grassa, subitus plana et inermis, supra tectiformis et
spinosa; verticilli singuli supra squamis plerumque octo magnis, multan-
gulis, in spina conica, plus minusve acuminata elevatis, apicem versus
diminuentibus instructi.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: C. Asmussii aus Persien.

388. Gattung Moloch Gray.

(Moloch Gray, Cat. of Liz. p. 263.)

Kopf klein, deprimirt, Hals schlaff, vorn mit einer queren Falte;
Körper deprimirt, oben und unten mit unregelmässigen, kleinen, ungleichen
Schuppen bedeckt; Kopf und Gliedmassen mit gleichmässigen Schuppen
und Dornen bedeckt; Schwanz mit unregelmässigen Ringen von grossen
Dornen; weder Femoral- noch Praeanalporen; Zehen 5,5, oben und unten mit gekielten Schuppen bedeckt; Krallen lang, scharf.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *M. horridus* von Australien.

389. Gattung *Phrynocephalus* Kaup.

Kopf fast rund; Lippen an den Rändern gezähnelt; Nasenlöcher nach vorn; Tympanum unter der Haut verborgen; Nacken contrabiert; Kehle schlaff, hinten mit einer queren Falte; Körper deprimirt, breit, ohne Kamm; Schwanz dünn, an der Basis abgeplattet; Zehen am Rande gezähnelt; weder Femoral- noch Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 14 Arten bekannt. *Ph. auritus* lebt in den Steppen des südöstlichen Europas.

390. Gattung *Ptenopus* Gray.

Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopsche Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Ph. maclellatus* von Damaraland (Südafrika).

Die in Rede stehende Gattung ist der Gattung *Phrynocephalus* verwandt.

391. Gattung *Megalochilus* Eichwald.

(*Megalochilus* Eichwald. Gray, Cat. of Liz. p. 261.)

Kopf deprimirt, rund, Zunge vollständig, dreieckig; Ohröffnung unter der Haut verborgen; Nacken contrahirt, unten mit einer queren Falte; Körper deprimirt, breit; Rücken ohne Kamm; Schwanz deprimirt, mit kleinen Schuppen bedeckt; Zehen verlängert, an dem Rande sehr stark gezähnelt; weder Femoral- noch Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopsche Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *M. auritus* aus Russland.

392. Gattung *Redtenbacheria* Steindachner.

(*Redtenbacheria* Steindachner, Reise der österreichischen Fregatte Novara um die Erde. Zool. Theil. 1869.)

Kopf dreieckig, verlängert, im Durchschnitt viereckig, stachellos mit gleich grossen, länglichen, gekielten Schuppen; Schnauzen und Augenrandkante schwach entwickelt, nicht erhöht; sämtliche Rumpf- und Schwanzschuppen gekielt, am hinteren Rande abgerundet; Nacken und Rücken mit einem schwach entwickelten Kamme, der durch die hohen, stark vorspringenden, steifen Kiele der Firstschuppen gebildet wird; Schwanz sehr lang, zart, wie der Rumpf comprimirt, ohne Kamm, keine Femoral- und Analporen; zarte Falten an den Seiten des Halses; Schuppenreihen des Rumpfes von verschiedener Grösse; die obersten, grösseren Schuppen laufen vollkommen horizontal, die mittleren kleineren Reihen nach hinten und oben, die unteren kleinsten endlich nach hinten und unten. Unterkiefer vorn mit zwei, Oberriefer mit sechs gleich grossen, starken Fangzähnen; übrige Zähne der Kiefer kegelförmig, etwas comprimirt; Tympanum offen liegend, gross.
Klassifikation und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *R. fasciata* aus Neu-Holland.

393. Gattung *Uromastix* Merrem.

Kopf platt, dreieckig; Schnauze kurz, gebogen; Nasenlöcher lateral; Ohröffnung oval, vertical, vorn gezähnelt; Hant der Kehle gefaltet, zum Theil die Ohröffnungen deckend; Körper oval, deprimirt, ohne Kamm, mit kleinen glatten Schuppen bedeckt; Schwanz ziemlich deprimirt, oben und unten mit grossen, gekielten Schuppen; Femoral- und Praanalporen deutlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 5 Arten bekannt.

394. Gattung *Chlorosarcites* Günther.

(*Chlorosarcites* Günther, Proc. Zool. Soc. p. 188. 1862.)

Kopf kurz, Körper und Schwanzbasis comprimirt; Schwanz sehr lang; Kopf von zahlreichen, glatten, kleinen Schildern bedeckt, alle Schuppen gekielt, klein, die des Bauches und Schwanzes grösser, an der Kehle conisch; Schenkelporen in einer langen Reihe, keine Analporen; ein niedriger Kiel auf dem Nacken; eine Reihe grösserer, scharfer Schuppen längs der Mittellinie des Rückens und Schwanzes; 5 Zehen an allen Füssen mit scharfen Krallen, die mittlere Zehe längs dem Basalgliede gefranst; ein kleiner Kehlsack mit einer Querfalte; keine vorspringenden Schuppen am Ohr.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Chl. fasciatus* von den Fidji-Inseln.
395. Gattung *Saara* Gray.

(*Saara* Gray, Cat. of Liz. p. 262. — *Uromastix* Duméri et Bibron, Erpt. génér. T. IV.)

Kopf sehr kurz und breit, Körper deprimirt, an jeder Seite des Rückens eine Falte; Schuppen klein, gleichförmig; Schwanz kurz, breit, deprimirt, oben mit queren Bändern comprimirter Schuppen, durch Bänder von glatten oder KörnerSchuppen getrennt, unten mit glatten, viereckigen Schindelschuppen bedeckt; Femoralporen deutlich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Von dieser Gattung ist bis jetzt nur eine Art bekannt: *S. Hardwickii* von Hindostan.

396. Gattung *Leiolepis* Cuvier.

(*Leiolepis* Cuvier, Règne animal. — Duméri et Bibron, Erpt. génér. T. IV. — Gray, Cat. of Liz. p. 262.)

Kopf dreieckig, mit glatten Schuppen bedeckt; Nasenlöcher lateral; Kehle schlaff, hinten mit einer queren Falte und mit einigen schwächeren Falten jederseits der Kehle; Schuppen des Rückens klein, gekörnt oder glatt; die des Bauches grösser; Schwanz rund, verlängert, spitz zulaufend, mit Ringen von glatten Schuppen; Femoralporen deutlich, in einer continuirlichen Reihe; Zehen 5,5, ungleich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt.

Tribus V. *Dendrosaura.*

Schuppen des Bauches, der Seiten und des Rückens granulirt; Zunge verlängert, subcylindrisch, wurmförmig, weit vorschnellbar. Quadratbein oben fest am Schädel verbunden; Augen gross, sehr beweglich. Das Auge wird von einem grossen und dehnbaren Augenlid bedeckt, in dessen Mitte eine nur kleine Öffnung für die einfallenden Lichtstrahlen der Pupille gegenüber frei bleibt; Körper comprimirt; Zehen 5,5, von denen je zwei und drei Zehen bis auf die Krallen mit einander verbunden sind und wie die Arme einer Zange wirken. Der lange, düne Schwanz dient als Rollschwanz. Trommelfell unter der Haut verborgen. Nur eine Familie.
27. Familie *Chamaeleonidae.*

Mit den Charakteren der Tribus.

A. Nase und Augenrand einfach; nicht gehörnt.

Rücken und Bauch mit einer Reihe comprimirter, verlängerter Schuppen . .

Rückenrand breit, mit 2 Reihen kleiner Schuppen, Bauch gezähnelt . . .

Rücken und Schwanz mit einer hohen Flosse durch Knochenstrahlen gestützt, glatttrandig

Rücken und Kinn mit Crista, Occiput gekielt, comprimirt, seitlich glatt, in zwei viereckige Scheiben getheilt .

Rücken rund, mit einer Reihe grosser mit Schuppen bedeckter Hörner . .

Kinn mit einer Reihe mit Schuppen bedeckter verlängerter Fortsätze . .

Augenrand mit grossen Lappen, hinten mit Schuppen bedeckt, Bauch und Kinn rund, nicht gezähnelt . . .

B. Nase einfach, Augenrand vorn winklig vorgezogen

C. Nase und Augenrand mit cylindrischen Hörnern, mit einer Scheide bedeckt .

D. Nase mit einem oder zwei knochigen Vorsprüngen mit Schuppen bedeckt.

Nase vorn comprimirt, mit einem biegsamen, comprimirten, mit Schuppen bedeckten Lappen, Rücken mit einer Reiheschlanker, verlängerter Schuppen

Ein Nasenhorn, knochig, central, oben scharfrandig; Occiput hinten gelappt, Rücken mit einer gelappten, aufrechten Flosse

Ein Nasenhorn, knochig, central, unten scharfrandig, oben gefurcht, Occiput hinten einfach, Rücken gezähnelt .

Zwei comprimirte Nasenhörner, Rücken comprimirt, Kinn und Bauch rund .

397. Gattung Chamaeleon.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>1. 2. 3. 4.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

398. Gattung Apola Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: A. lateralis von Madagascar.

399. Gattung Pterosaurus Gray.

Brown, Klassen des Thier-Reichs. VI. 3. 81
Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Pt. cristata* von Fernando Po.

400. Gattung *Microsaura* Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *M. melanoccephala* von Südafrika.

401. Gattung *Phumanola* Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Ph. namaguensis* von Südafrika.

402. Gattung *Lophosaura* Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 3 Arten bekannt, alle aus Süd-afrika und den Seychellen.

403. Gattung Calumma Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *C. cucullata* von Madagaskar.

404. Gattung Brookesia Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *B. supereiarius* von Westafrika.

405. Gattung Triceras Gray.

Klassifikation und geograph. Verbreitung.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Nur eine Art bekannt: *T. Owenii* von Fernando Po.

406. Gattung *Crassonota* Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Bis jetzt nur eine Art bekannt: *Cr. nasuta* von Port Natal.

407. Gattung *Ensirostris* Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

Bis jetzt nur eine Art bekannt: *E. Melleri* von Ostafrika.

408. Gattung *Sauroceras* Gray.

Nase mit einem einfachen, centralen, verlängerten, knochigen Horn, mit einer tiefen Furche auf der oberen und einem scharfen Rande auf der unteren Seite. Augenrand abgerundet; Rücken etwas comprimirt, mit einer Reihe von comprimirten, conischen Schuppen. Schwanz oben
etwas zusammengedrückt. Occiput gekielt, hinten stark hervorspringend

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *S. rhinoceratum* von Madagascar.

409. Gattung *Dicranosaura* Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 2 Arten bekannt, beide von Madagascar.

410. Gattung *Cyneosaura* Gray.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *C. pardalis* von Madagascar und Bourbon.

Tribus VI. *Amphisbaenoidae*.

Die scharf und natürlich umgrenzte Familie der *Amphisbaenoiden*, wird von Dumeril und Bibron (Erpét. génér.) als zweite Unterfamilie der *Chalcidides*, unter dem Namen „*Chalcidiens glyptodermes*“ aufgefasst

Zu diesen 15 Genera sind im Laufe der Jahre noch 6 hierhergehörige Gattungen bekannt, nämlich Phractogonus Hallowel, Rhineura Cope, Diphasis Cope, Ophioproctes Boulenger, Geocalamus Günther und Pachycalamus Günther.

Diese 21 Gattungen sind nun folgender Weise umschrieben.

1. Fam. Trogonophidae.

2. Fam. Chirotiidae.

3. Fam. Amphisbaenidae.

 2. Trib. Anopinina.

 1. Trib. Lepidosternina.

411. Gattung *Trogonophis* Kaup.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Tr. Wiegmanni* von Algier und Nord-Afrika.

29. Familie *Chiroídæ* Gray.

412. Gattung *Chirotes* Duméral et Bibron.

Mit den Charakteren der Familie.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palæarktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *Ch. caniculatus* aus Tropisch Amerika und Mexico.
30. Familie Amphisbaenidae.

1. Tribus Amphisbacinina.

Kopf zusammengedrückt, an den vorderen Seiten abgerundet, Nasenlöcher auf dem oberen Theil der Seiten des Kopfes.

413. Gattung Blanus Wiegmann.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

414. Gattung Amphisbaena Linn.

Kopf zusammengedrückt, breit, vorn abgerundet, Frontalplatten mit einem oder zwei Paaren etwas kleinerer sonst ähnlicher Platten hinter denselben. Acht Praeanalporen.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2. - 1.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Von der Gattung Amphisbaena sind bis jetzt 15 Arten bekannt, von diesen gehören 11 zu der neotropischen, 3 zu der aethiopischen Region und von einer Art ist das Vaterland unbekannt.

415. Gattung Cynisca Gray.

Kopf platt, schmal, Nase conisch; Rostrale triangulär, Nasalplatten sehr gross, mit einander verbunden, den vorderen Theil des Kopfes bedeckend; Vertex mit einem kleinen Frontal- und einem Paar Parietal-Schildern. Augen deutlich; Schläfe und Hinterhaupt mit grossen Schildern. Körper sehr schlank; Laterallinie deutlich; Schwanz cylindrisch, verlängert; Praeanalporen zahlreich.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur zwei Arten bekannt: C. leucura von Guinea und C. (Amphisbaena) Mülleri ebenfalls von West-Afrika (Goldküste, Sierra Leona.).

416. Gattung Ophioproctes Boulen ger.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: O. liberiensis von Liberia.

417. Gattung Bronia Gray.

Kopf oval, etwas convex; Rostralschild sehr gross, rund; Vertex convex, an den Seiten abgerundet, bedeckt mit zwei Paaren von Schildern, das vordere Paar viereckig, das hintere kleiner, dreieckig, mit einem kleinen dreieckigen Occipitalschild an seiner äusseren Seite; Augenschild
Klassifikation und geograph. Verbreitung.

dreieckig; Labialschilder $\frac{3-3}{2-2}$, Gularschild einfach, viereckig, mit einer kreuzförmigen Serie von Schildern hinter demselben. Körper cylindrisch; Laterallinie recht deutlich; die Dorsalschilder verlängert, schmal, die ventralen etwas breiter und glatt; vier Praeanalporen; sechs oder acht Praeanalschilder.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

- 2. - - - - - - - - - - - -

Bis jetzt nur eine Art bekannt: *B. brasiliiana* aus Tropisch-Amerika.

418. Gattung *Sarca* Gray.

Kopf conisch, Rostrale schmal, höher wie breit, vorn abgerundet, hinter dem triangulären Nasale gelegen; Vertex mit 2 Paaren von Schildern, das vorderste das grösste, verlängert, das hinterste dreieckig; Augenschilder dreieckig, Labialschilder $\frac{3-3}{3-3}$; das zweite obere und untere Labialschild sehr gross, die andern kleiner; eine grosse Gularplatte; Körper schlank; die dorsalen Scutella viereckig, eben so lang wie breit, zwei centrale, longitudinaline Reihen von ventralen Scutella breiter wie lang, glatt, weiss; Laterallinie sehr undeutlich, kaum sichtbar mit Ausnahme in dem hinteren Theil des Körpers; vier Praeanalporen; 6 viereckige Praeanalschilder. Die Augen sind durch die Schilder nur wenig sichtbar.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
</table>

- 4. - - - - - - - - - - - -

Bis jetzt nur eine Art bekannt: *S. caca* von St. Thomas (Westindien.)

419. Gattung *Cuiku* Gray.

Kopf conisch, Rostrale schmal, höher wie breit. Vertex mit zwei grossen triangularen Schildern, Frontale mit einem kleinen, lineären Schild auf jeder Seite; 2 Paare von viereckigen Occipitalschildern, das hintere Paar kleiner; Augenschild rhombisch; Augen verborgen; Labialschilder $\frac{3-3}{3-3}$, fast gleich, das mittlere in jeder Lippe das grösste; Schäfen bedeckt mit viereckigen Schildern; Gularplatte, einfach, verlängert. Körper cylindrisch, Laterallinie sehr undeutlich, kaum zu sehen, ausgenommen im hinteren Theil des Körpers; Schilder auf dem Rücken viereckig; 4 Praeanalporen, 6 Praeanalschilder.
Reptilien.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. punctata von Cuba.</td>
<td>121)1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *S. punctata* von Cuba.

2. Tribus *Anopinina*.

Kopf zusammengedrückt, vorn an den Seiten kielförmig; Nasenlöcher seitwärts, an der unteren Seite des Kieles.

420. Gattung *Anops* Bell.

Seitenfalten deutlich, aber tief gelegen; Praeanalporen „keine“ Bell; „vier“ Duméril et Bibron.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur 2 Arten bekannt: *A. Kingii* aus Südamerika (Buenos Ayres) und *A. (Amphisbaena) Steindachneri* von Brasilien.

421. Gattung *Baikia* Gray.

Kopf zusammengedrückt, verlängert; Rostralplatte sehr gross, zusammengedrückt, vom Munde bis zum Vorderkopf einen gebogenen Kamm bildend, mit einer Grube in dem hinteren Theil über den Nasenlöchern; Vertex mit 2 Paaren von bandförmigen Schildern hinter dem oberen Rande des Rostrale, das vordere Paar schmal; Augenschilder sehr klein; Augen nicht sichtbar; Schläfen mit zwei kleinen Schildern; obere Labialschilder 3—3, das zweite obere gross, an den Seiten gekielt; das hintere unter dem Temporalschild, gross, viereckig, Unterlippe mit einem einzigen grossen Schild jederseits bedeckt, von einander getrennt durch ein viereckiges unteres Rostralschild und durch zwei kleine Gularplatten, die hinter einander gelegen sind; Nasenlöcher gross, lateral, unter dem Rande des Kiels der Frontalia. Körper bedeckt mit Ringen von gleichförmigen Schildern; Praeanalporen 2—2; durch ein centrales Schild getrennt. Schwanz cylindrisch.
Klassifikation und geograph. Verbreitung

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Achtiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *B. africana* von Westafrika.

422. Gattung *Geocalamus* Günther.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Achtiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *G. modestus* von Mpwapwa (Süd-Ost-Afrika).

1. Tribus *Lepidosternina*.

Kopf conisch, bedeckt mit symmetrischen polygonalen Schildern; Pectoralscheibe mit zahlreichen, polygonalen, in queren Linien gelegenen Schildern bedeckt; Dorsal- und Lateralfalte deutlich entwickelt, breit, glatt.

Kopf conisch, bedeckt mit 3 Paaren von symmetrischen Schildern und einem Vertebralschild; Rostral- und Pectoralschild gebildet durch regelmässige, gleichförmige, symmetrisch rhombische oder sechsseitige Schilder, zuweilen zu langen Schildern ver- einigt, welche nicht symmetrisch sind.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 12 Arten bekannt, alle zu der zweiten neotropischen (brasilianischen) Subregion gehörig; von einer Art ist das Vaterland unbekannt.

424. Gattung Phractogonus Hallowell.

(Phractogonus Hallowell, Proc. Acad. Phil. VI. p. 62, 1852.)

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. 2.</td>
</tr>
</tbody>
</table>

Von dieser Gattung sind bis jetzt 5 Arten bekannt.

425. Gattung Rhinëura Cope.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.</td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: Rh. floridiana von Florida.

426. Gattung Diphalus Cope.

Bezahnung pleurodont; Schnauze conisch, spitz; Naslöcher seitlich, jedes in einem Schilde, das von dem der anderen Seite durch eine hintere
Klassification und geograph. Verbreitung.

Verlängerung des Schnauzenschildes getrennt ist; zwei längliche Rostrorfrontalschilder, vorn das Schnauzenschild berührend; Auge unter dem Ocularschildle sichtbar; Analporen vorhanden.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Neartische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt ist von dieser Gattung nur eine Art bekannt: *D. fenestratus* Cope von St. Thomas und Santa Cruz.

2. Tribus Cephalopeltina.

Kopf zusammengedrückt, oben bedeckt mit einem einzigen flachen, hornartigen, nageiförmigen Schild; Pectoralscheibe von verlängerten, symmetrischen Schildern gebildet. Dorsal- und Lateralfalte sehr schmal, undeutlich, ausgenommen in der Nähe des hinteren Theils des Körpers.

Kopf bedeckt mit 2 grossen Schildern, das vorderste das kleinste; Sternalscheibe durch 8 oder 10 grosse Schilder gebildet, die beiden mittleren Paare parallel, das eine Paar vor dem anderen gelegen, die lateralen Paare divergirend.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Neartische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *C. scutigera* aus Brasilien.

428. Gattung Dalophia Gray.

Kopf mit einem einzigen nagelförmigen Schild bedeckt; Rostralplatte klein, dreieckig, mit der Spitze nach oben zwischen den Nasalplatten; die Schilder der Sternalscheibe etwas unregelmässig, aber symmetrisch, jedes mit einem scharfen vorderen Rande; die Schilderringe vor der Sternalscheibe durch ungleiche, aber symmetrisch polygonale Schilder bedeckt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Neartische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *D. Welwitschii* aus Angola.
429. Gattung *Monotrophis* Smith.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur 2 Arten bekannt: *M. capensis* Gray von Südafrika und *M. sphenorrhynchus* Peters von Angola und Mozambique.

Nach Strauch (Bull. Acad. St. Petersb. 1880 p. 120 ist *Monopeltis capensis* Gray synonym mit *Dalophia Welwitschii* Gray.

430. Gattung *Pachycalamus* Günther.

Den Gattungen *Baikia* und *Geocalamus* verwandt; Kopf sehr kurz, mit deprimirter Schnauze; Rostrale gross; 2 grosse Frontalia, welche hinter dem Rostrale zusamment eine Naht bilden und auf welchen ein sehr grosses, einfaches Schild folgt, welches die Vertical- und Occipitalplatten repräsentirt; Nasale klein, oberhalb des ersten und zweiten Labiale, durch 2 Schildchen gebildet; Nasenlöcher tief; Praeoculare oberhalb des dritten und vierten Labiale; ein sehr kleines Oculare mit dem sehr undeutlichen Auge; ein Infraoculare zwischen dem Oculare und dem fünften Labiale; 5 obere Labialia; Temporalschilder klein, in 2 transversalen Reihen; Mentale viel länger als breit, 3 untere Labialia; Gularplatten klein; Praeanalschuppen sehr schmal, verlängert, in 4 Paaren; 2 Paare Praeanalporen; keine Seitenlinie; Ende des Schwanzes deprimirt.

Allgemeine Verbreitung.

<table>
<thead>
<tr>
<th>Neotropische Subregionen</th>
<th>Nearktische Subregionen</th>
<th>Palaearktische Subregionen</th>
<th>Aethiopische Subregionen</th>
<th>Orientalische Subregionen</th>
<th>Australische Subregionen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bis jetzt nur eine Art bekannt: *P. brevis* von der Insel Socotra.

A. *Acrodonites* . I. *Trogonophina*.
Klassification und geograph. Verbreitung.

B. Pleurodontes

- keine Gliedmassen.

a. ein „disque sternal“ . II. Lepidosternina.

b. kein „disque sternal“ . III. Amphisbaenina.

nur vordere Gliedmassen . IV. Chiroptera.

Die Amphisbaenina zerfallen nach ihm in 7 Gattungen.

A. Compartimente der äusseren Haut (Compartiments tégumentaires) unten am Körper von viereckiger Form; denen der oberen Fläche ähnlich oder kaum breiter.

a. Rostralplatte sich nach hinten nicht bis zum Niveau der Augen erstreckend.

α. klein, Nasenlöcher in grossen Platten gebohrt.

ωα. von einander durch ein grosses Schild getrennt, die Oberlippe einfassend.

† Lateralfalte sehr deutlich, Schwanz conisch

†† Lateralfalte nur im Hinterkörper deutlich, Schwanz cylindrisch, an der Spitze abgerundet

ββ. an einander grenzend, die Lippe nicht einfassend

β. gross, die Schnauzenspitze einschliessend, Nasenlöcher seitwärts

b. Rostralplatte sehr gross, sich nach hinten wenigstens bis zum Niveau der Augen erstreckend

B. Die zwei centralen Reihen der Hautcompartimente viel mehr dilatirt als die anderen.

a. Nasenplatten klein, von den Lippen durch Labialplatten getrennt, 4 Praeanalplatten

b. Nasenplatten sehr gross, die ganze Unterfläche und die Seitenflächen der Schnauze bis zum Niveau der Augen einnehmend, 2 Praeanalplatten 5. Gatt. Ophioproctes Boulg.

Strauch (Bull. Acad. St. Pétersbourg 1881. p. 45) adoptirt wieder die von Dumeril und Bibron vorgeschlagene Classification als die einfachste und natürlichste. Er fasst sie als eine selbstandige Familie auf und theilt sie folgenderweise ein.
A. *Aerodontia*.
Der Schwanz läuft in eine scharfe Spitze aus:

B. *Pleurodontia*.
Der Schwanz ist am Ende stets abgerundet.

Extremitäten
1. sind vorhanden und zwar bloss die vorderen
2. fehlen äusserlich durchaus.

Die Sternalgegend
a. ebenso mit viereckigen Segmenten bekleidet, wie die übrige Unterseite des Rumpfes

b. zeigt grosse, verschieden geformte Platten oder Schilder, die von den Segmenten der übrigen Unterseite des Rumpfes auffallend abweichen:

Zweifelhafte Gattung.
431. Gattung *Lamprosaurus* Hallowell.

Kopf conisch, spitz, Schnauzenschild vertical, die Supranasalschilder jederseits zusammenstossend; Internasalschild gross; Nasenlöcher zwischen 2 Nasenschildern; 2 Frontoparietalschilder, Trommelfell eingesenkt; einige kleine Schuppen vor dem Ohre; keine Kehlfalte; Körper und Gliedmassen schlank; Zehen 5,5; Schuppen glatt und glänzend; ähnlich am Rücken und Bauch, hinten abgerundet; Praeansalschuppen gross; keine Schenkelporen; keine Gaumenzähne.

Hallowell, der diese Gattung aufgestellt hat, giebt auch nicht die geringste Andeutung über ihre systematische Stellung, so dass es nicht möglich ist, dieselbe irgend unterzubringen.

Von dieser Gattung beschreibt Hallowell nur eine Art: *L. guttulatus* von Neu-Mexico.

Nachtrag zu der Familie der *Gymnophthalmidae*.

92a. Gattung *Phaneropis* Fischer,

Kopf kegelförmig; Rostrale breit, abgerundet; Schuppen klein; vier kleine Füsse; Zehen 3–3 ungleich, mit Krallen; keine Supranasalia; Frontoparietalia getrennt; Ohröffnung sehr klein; versteckt; Nasenloch in einfachen Nasenschildern, die sich dorsawärts berühren; Zunge flach, am Ende nicht eingeschnitten; zwei grössere Praeansalschuppen.
Bis jetzt nur eine Art bekannt, *Ph. Müller* von Westaustralien.

Aus dem Mitgetheilten ergiebt sich also, dass die Zahl der zu den Sauriern gehörenden Gattungen 434 und die der Arten 1925 beträgt. Eine Revision dieser zahlreichen Gattungen scheint aber sehr wünschenswerth.

<table>
<thead>
<tr>
<th>Fam.</th>
<th>Gattungen</th>
<th>Arten</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Monitoridae</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>II. Helodermidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>III. Lanthanotidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IV. Teiidae</td>
<td>14</td>
<td>98</td>
</tr>
<tr>
<td>V. Luerhinidae</td>
<td>20</td>
<td>130</td>
</tr>
<tr>
<td>VI. Holaspidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VII. Xantosininae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VIII. Zonuridae</td>
<td>19</td>
<td>70</td>
</tr>
<tr>
<td>IX. Chalciidae</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>X. Ceratosauridae</td>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>XI. Chamaesauridae</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>XII. Anadriidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>XIII. Chiroloidae</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>XIV. Gymnomphthalminidae</td>
<td>9</td>
<td>86</td>
</tr>
<tr>
<td>XV. Pygopidae</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>XVI. Aprasiidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>XVII. Lialisidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>XVIII. Scincidae</td>
<td>75</td>
<td>410</td>
</tr>
<tr>
<td>XIX. Ophionorididae</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>XX. Sepidae</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>XXI. Acantidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>XXII. Typhlinidae</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>XXIII. Geckolidae</td>
<td>71</td>
<td>307</td>
</tr>
<tr>
<td>XXIV. Xenosauridae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>XXV. Iguanidae</td>
<td>78</td>
<td>382</td>
</tr>
<tr>
<td>XXVI. Agamidae</td>
<td>49</td>
<td>189</td>
</tr>
<tr>
<td>XXVII. Chamaeleonidae</td>
<td>14</td>
<td>42</td>
</tr>
<tr>
<td>XXVIII. Trogonophidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>XXIX. Chiroidae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>XXX. Amphibolidae</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>XXXI. Lepidosternidae</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

434 1925
Paläontologischer Theil.

Während die jetzt lebenden Reptilien durch scharfe osteologische Merkmale deutlich von den jetzt lebenden Amphibien sich unterscheiden und es dadurch sofort möglich ist mit vollkommener Bestimmtheit anzu-geben, zu welchem Typus das eine oder andere Tier gehört, ist es dagegen bei den fossilen Ueberresten oft äusserst schwierig dies mit Bestimmtheit zu sagen. Das Carbon und Perm Nordamerikas, Britanniens, Böhmens und auch Deutschlands, die paläozoischen Formationen also, schliessen einen grossen Formenreichtum von Fossilen ein, welche man mit dem Namen Stegocephalen belegt, unter welchen Co pe die bis dahin als Labyrinthodonten bezeichnete Thiergruppe zusammenfasst. Dieselben bilden eine Abtheilung der geschwänzten Amphibien, welche sich von den lebenden Vertretern der letzteren durch folgende wesentliche Merkmale unterscheiden: 1) durch die Betheiligung gut ossificirter Supraoccipitalia, Postorbitalia, Supratemporalia und Epitheca; 2) durch den Besitz von Augerügen; 3) durch das Auftreten eines Foramen parietale; 4) durch das Vorhandensein einer oder mehrerer Kehlbrustplatten, sowie eines Bauchpanzers; 5) bei manchen Angehörigen dieser Gruppe durch radiäre oder labyrinthisch gefaltete Structur der Zahnsubstanz. (C r e d n e r, die Stegocephalen, in: Zeitschrift der deutschen Geol. Gesellschaft 1881). Den trefflichen Untersuchungen von H. v. M e y e r (Ueber die Reptilien der Steinkohlenformation Deutschlands 1857), A. F r i t s c h (Die Fauna der Gaskohle und der Kalksteine der Permformation Böhmens, 1879 bis 1881), H. C r e d n e r (l. c. 1881—1883), sowie den von G e i n i t z und D e i c h m ü l l e r (Palaeontographica Bd. XXIX) verdanken wir unsere Kenntniss dieser Thiere, welche, wenn auch zu den Amphibien gehörend, dennoch, wie es scheint, eine Art Uebergangsstufe zwischen Amphibien und Reptilien darstellen.

Lassen wir also die Stegocephalen ausser Betracht, so ist es besonders die mesozoische Periode, die überaus reich an fossilen Reptilienresten, besonders von Sauriern und Crocodilen ist, so dass die englischen Geologen diese Periode oft als den „Reptilien age“ bezeichnen. Die damals lebenden Saurier, von welchen die Ichthyosaurier, Plesiosaurier, Ptero- saurier und Dinosaurier die merkwürdigsten sind, unterscheiden sich durch das oft Gigantische ihrer Grösse und das Abentenerliche ihrer Form im hohen Grade von den jetzt lebenden. Die meisten der eben genannten Formen verschwinden schon am Schlusse der mesozoischen Aera, um in der känzoischen Periode für diejenigen Platz zu machen, welche mehr den jetzt lebenden ähnlich sind.

Wir werden also erst die fossilen Saurier und dann die fossilen Crocodile etwas ausführlicher zu betrachten haben.

Unter allen Reptilien sind die Proterosaurier die ältesten, indem ihre Reste schon in den thüringischen Kupferschiefern, welche zu der Permischen Formation gehören und in Schichten entsprechenden Alters ange-
troffen werden; jüngere Vertreter der wahren Reptilien sind uns bis jetzt nicht bekannt.

Die Dornfortsätze der Schwanzwirbel zeigen nahe bis zur Mitte des Schwanzes den gewöhnlichen Bau, aber über diesen Punkt hinaus erscheinen sie gegabelt, so dass jeder zwei Dornfortsätze zu haben scheint — eine Eigenthümlichkeit, welche von andern Lacertilien nicht bekannt ist.

Der Schädel, welcher bloss an einem Exemplar erhalten ist, ist so unvollständig, dass die Einzelheiten seines Baues nicht erkannt werden können. Nur so viel wissen wir, dass die Zähne fast gerade, kegelförmig und scharf zugespitzt sind; sie scheinen in besonderen Alveolen gesessen zu haben, obgleich das nicht vollkommen sicher ist.

Brust und Beckengürtel sind gross und stark. Die vorderen Gliedmaassen sind kürzer als die hinteren und jede trägt fünf Zehen. Die Hand enthält acht, möglicherweise auch neun Handwurzelnverknöcherungen, von welchen fünf den Metacarpalia entsprechen. Die Phalangenzahl ist vollkommen, wie bei den meisten lebenden Sauarien und zwar 2, 3, 4, 5, 3. Auch im Fusse ist die Phalangenzahl die für die Sauier bezeichnende 2, 3, 4, 5, 4; und ebenso die Form des fünften Metatarsale, aber die zwei proximalen Tarsalia scheinen weniger innig mit einander verbunden gewesen zu sein, als bei den lebenden Sauriern und die Metatarsalia geklebten mit wenigstens drei distalen Tarsalia, durch welche sie von den proximalen Tarsalia ganz gesondert sind.

Proterosaurus Speneri ist eine besonders aus den Untersuchungen von H. v. Meyer (Fauna der Vorwelt) bekannt und rührt aus dem bituminösen Kupferschiefer der Zechstein-Formation in Kurhessen, Thüringen und dem

Geinitz und Deichmüller (Palaeontographica Bd. XXIX) haben aus dem unteren Dyas, aus dem Planenschen Grunde bei Dresden, eine zweite der vorigen nahe verwandte Art beschrieben, welche sie die Namen Phanerosaurus pugnax gegeben haben. Der Bau des Schädels dieser in Rede stehenden Art weist durch die Beschaffenheit der Parietalia mit ihrem Foramen, der Frontalia, des Squamosum und Supraoccipitale, sowie durch das Vorhandensein dreier Kehlbrustplatten auf eine nahe Verwandtschaft mit den Stegocephalen hin, die Zähne entsprechen ihrer Form und Stellung nach anderen Stegocephalen-Gattungen; die vorderen Extremitäten, von welchen Humerus, Radius, Ulna, Metacarpus und Phalangen bekannt sind, lassen ausser ihrer bedeutenderen Grösse keinen wesentlichen Unterschied von kleineren Stegocephalen erkennen, so dass es wohl in sehr hohem Grade wahr scheinlich ist, dass die Gattung Phanerosaurus den Stegocephalen zugehört.

1) Polyosauria. Zwei oder drei Sacralwirbel. Die Mitte der Wirbelkör per durch Chorda eingenommen (Centra notochordal); Intercentra gewöhnlich vorhanden. Zähne gut entwickelt.

2) Anomodontia. Vier oder fünf Sacralwirbel, die Mitte der Wirbelkör per nicht mehr durch Chorda eingenommen (Centra notochordal);

Der Besitz eines einzelnen Condylus occipitalis, des vollständig verknoeherten basi cranialen Knorpels und eines einfachen Vomer weisen deutlich nach, dass die Pelycosaurier Reptilien sind, die aber in anderen Hinsichten sich sehr den Batraciern nähern.

Aus der mesozoischen Periode, aus der jurrassischen Formation haben wir zuerst der höchst eigen tümlichen Meeressaurier — der Enaliosauri zu gedenken. Wenn auch die ersten Glieder dieser merkwürdigen Gruppe bereits im unteren Muschelkalk gefunden werden, nämlich in den tiefsten Lagen des sogenannten Wellenkalkes oder Wellendolomites, so sind sie doch im Lias (schwarzem oder unterem Jura) am zahlreichsten. Obgleich sie schon im Solenhofer Schiefer sparsamer werden, so reichen die jüngsten Ueberreste doch bis in die weisse Kreide. Man kann unter den Enaliosauri zwei Abtheilungen unterscheiden:

1) die Ichthyosauri mit kurzerem Halse, und 2) die Plesiosauri mit langem Halse.

Reptilien.
1303

man nur zwei Abschnitte unterscheiden, einen präcaudalen oder Rumpfteil, und einen caudalen. Wie bei den Fischen ist die caudale Region durch das Auftreten von unternen Bogen bezeichnet. Ein Saerum fehlt, das Becken steckte frei im Fleisch. Durch die Bewegungswerkzeuge nähern sie sich ebenfalls den Fischen und scheinen dann auch auf ein ausschliessliches Wasserleben hingewiesen zu sein; sie athmeten indessen nicht durch Kiemen, sondern durch Lungen. Die vorderen Flossen waren unmittelbar hinter dem Kopfe angebracht und im Allgemeinen bedeutend grösser als die hinteren.

Von der Trias bis zur Kreide lebten ebenfalls die Plesiosaurier. Bei einigen misst der Kopf 1/12 bis 1/13 der Körperlänge und gleicht mehr

Sternalrippen scheinen, wie gesagt, nicht vorhanden zu sein, dagegen besteht ein vollständiges System von Bauchwandverknöcherungen.

Ein breiter Reifen von offenbar unvollkommen verknöcherter Masse liegt quer über die Mittellinie des Körpers, es entspricht dieselbe in Form und Lage den epicoracoidal en Verknöcherungen der Saurier in Verbindung mit den Claviculae und dem clavicularen Sternum (Interclavicula s. Epi sternum), obgleich Huxley, welchem diese Mittheilungen über den Bau der Plesiosaurier entnommen sind, je im Stande war, irgend ein gesondertes claviculares oder episternales Element in irgend einem Plesiosaurier zu entdecken, wiewohl sie in Notosaurus gut entwickelt gewesen zu sein scheinen.

Höchst merkwürdig ist die Gattung *Neusticosaurus Seeley* + *Sinosaurus Fraas* aus der Lettenkohle von Hoheneck bei Ludwigsburg in der Nähe von Stuttgart, einer Schicht zwischen dem oberen Muskelskalk und dem Keuper gelegen. Derselbe ist wahrscheinlich der kleinste bis jetzt bekannte Plesiosaurier und besitzt, was jedenfalls interessanter ist, hintere Gliedmaassen, welche alle Kennzeichen eines Landthieres haben, während die vorderen Gliedmaassen flossenartig geworden und denen der Plesiosaurier ähnlicher sind, als bei einem der triassischen Repräsentanten der Fall ist. Die Zahl der Halswirbel beträgt wahrscheinlich 17, die der Brust- und Lendenwirbel muthmaasslich 29, die der Schwanzwirbel 15; Wirbel, welche mit einander zu Bildung eines Sacrum verschmolzen sind, lassen sich nicht nachweisen. Die Bauchrippen articularn mit der Basis der Neutralbogen, welche durch eine Naht vom Wirbelkörper getrennt sind, sie sind wie bei *Plesiosaurus* einköpfig; Processus transversi haben sich an den Brustwirbeln nicht ausgebildet. Der Schultergurtel ist nur unvollständig erhalten, doch wissen wir, dass derselbe aus drei Knochenstücken, Seapula, Coracoideum und Clavícula bestand. Das Vorkommen einer Clavicula bei diesen triassischen Sauriern ist jedenfalls sehr merkwürdig, denn bei den wahren Plesiosauriern fehlen sie entweder vollständig, oder sind nur schwach entwickelt, und bei den jetzt lebenden Crocodilen fehlt die Clavicula ebenfalls, obgleich wir bei ihnen noch in
der Entwicklung ein höchst rudimentäres Schlüsselbein nachweisen können (s. pag. 520). Wo bei den Plesiosaurious eine Clavicula vorhanden ist, ist sie mit dem grossen Interclaviculare (dem clavicularen Sternum) verbunden.

Das Vorkommen eines clavicularen Sternum auch bei den Plesiosaurious, welchen die Claviculae fehlen, macht es höchst wahrscheinlich, dass auch bei diesen Thieren eine Clavicula in der Entwicklung vorhanden war, welche sich nachher wieder rückgebildet hat.

Die Dinosaurier unterscheiden sich nach Huxley durch folgende Merkmale: 1) Die Rückenwirbel haben amphikölische oder opisthocölische Centra. Sie sind mit capitulären und tuberculären Querfortsätzen versehen. 2) Die Zahl der Wirbel, welche sich an der Bildung des Sacrum
Palaontologischer Theil.

betheiligen, ist nicht weniger als zwei und nicht mehr als sechs. 3) Die unteren Bogen sind intervertebral angeheftet; die vertebalen Enden der Aeste dieser Bogen waren durch Knochen vereinigt. 4) Die vorderen Rippen haben deutliche Capitula und Tubercula. 5) Der Schädel zeigt den Sauvier-, nicht den Crocodilen-Typus; in der Sclerotica ist ein Knochenring vorhanden. 6) Die Zähne sind nicht mit den Kiefern verwachsen, sondern stehen in Alveolen, sie kommen nur in dem Prämaxillare, Maxillare und dem Unterkiefer vor. 7) Die Scapula ist in verticaler Richtung verlängert; das Coracoideum ist kurz, eine Claviula fehlt. 8) Der Kamm des Hüftbeins ist nach vorn und nach hinten vom Acetabulum verlängert und bietet diesem bloss ein weibogiges Dach. 9) Ischium und Pubis sind stark verlängert. 10) Das Femur besitzt einen starken inneren Trochanter und sein distales Ende wird durch die Entwicklung eines zwischen Tibia und Fibula spielenden starken Grates ganz besonders vogelähnlich. 11) Die Tibia ist kürzer als das Femur. 12) Der Astragalus ist dem der Vögel ähnlich und die Zehen der Hinterfüße endigen in starke und gebogene Nagelphalangen.

Huxley theilt die Dinosauroia in drei Gruppen: I. Megalosauridae, II. Scelidosauridae, III. Iguanodontidae.

I. Die Megalosauridae unterscheiden sich folgenderweise. 1) Die Kieferzähne sind scharfspitzig und die Krone hat eine longitudinal ge- zähnelte Furche. 2) Die nach vorn gekehrte Verlängerung des Ilium ist fast so gross oder grösser, als die nach hinten gerichtete. 3) Die Unterkieferäste sind tief und dick und treffen einander mit abgerundeten Enden in der Symphyse. 4) Der Oberschenkel ist crocodilenartig. 5) Eine Hautbewaffnung fehlt.

Hierzu gehören die folgenden Gattungen: Teratosaurus, Palaeosaurus, Megalosaurus (Poikilopleuron), Laelaps und wahrscheinlich Euskelosaurus.

II. Die Scelidosauridae unterscheiden sich durch folgende Merkmale: 1) Die Oberkiefer- und Unterkieferzähne haben scharfrandige dreieckige
Kronen mit gezähnelten Rändern. 2) Die nach vorn gekehrte Verlängerung des Ilium ist schlanker als die nach hinten gerichtete. 3) Die Unterkieferäste sind schlanker und laufen nach der Symphyse spitzer zu. 4) Das proximale Ende des Oberschenkels hat einen etwa kugelförmigen Gelenkkopf, der durch einen Hals getragen wird, welcher fast rechtwinklig auf die Axe des Schaftes steht. 5) Das Integument ist gewöhnlich mit einer Hautbewaffnung in der Gestalt von Knochenschuppen oder Stacheln versehen.

Ueberreste der Gattung Hypsilophodon sind uns zuerst durch Huxley bekannt geworden (Quart. Journal Geol. Soc. 1870) und zwar aus der Wealdenformation der Insel Wight. Hypsilophodon Foxii erreichte eine Länge von ungefähr 5 Fuss.

Von sehr grosser Bedeutung sind die Dinosaurier aus der jurassischen Formation der Rocky Mountains in Nordamerika, die uns besonders durch die zahlreichen Untersuchungen von Marsh (Amer. Journ. of Science and Arts T. XV—XXIII) bekannt geworden sind. Er betrachtet die Dinosaurier als eine Unterklasse der Reptilien, die er folgenderweise charakterisirt (T. XXIII):

Prämaxillare getrennt; obere und untere Schläfenbogen; die Aeste des Unterkiefers vorn nur durch Knoepel verbunden, keine Gaumenzähne; die oberen Bogen sind durch Nähte mit den Wirbelkörpem verbunden; Halswirbel zahlreich, Sacralwirbel verschmolzen; Halsrippen mit den Wirbeln durch Nähte verbunden oder verwachsen; Rippen des Thorax mit doppeltem Kopf. Beckenknochen von einander getrennt, ebenso vom Saerum; Ilium vorn am Acetabulum verlängert; Acetabulum zum Theil vom Schambein gebildet; die Sitzbeine treffen distal in der Mittellinie zusammen. Vordere und hintere Extremitäten vorhanden, die letzteren zum Gehen eingerichtet und stärker als die vorderen: Kopf des Ober-
schenkel mit zwei Condylen unter rechtem Winkel. Die erste Tarsusreihe nur aus Astragalus und Calcaneus bestehend, welche zusammen den oberen Theil des Fussgelenkes bilden.

1. Sauropoda. (Fuss eidechsenartig.) Herbivora.

1. Fam. Atlantosauridae. Vordere Wirbel opisthocöl; Sitzbeine nach unten gerichtet, die Enden berühren sich median.

2. Fam. Morosauridae. Vordere Wirbel opisthocöl; Sitzbeine nach hinten gerichtet, ihre Seiten begegnen sich in der Medianlinie.

II. Stegosauria (Herbivora).

Fuss plantigrad, „ungulate“ (hufförmig?); fünf Finger an Hand und Fuss; zweite Carpusreihe unverknöchert; Schambeine frei nach vorn ragend; „Postpubis“ vorhanden; vordere Extremitäten sehr klein; Bewegung hauptsächlich auf den hinteren Extremitäten; Wirbel und Extremitätenknochen solid; verknöcherte Hautstacheln.

1. Fam. Stegosauridae. Neuralkanal im Sacrum zu einer Kammer sich erweiternd; Sitzbeine nach hinten gerichtet; ihre Seiten begegnen sich in der Mittellinie; Astragalus mit der Tibia verwachsen; Metatarsalia sehr kurz.

2. Fam. Scelidosauridae.

Astragalus nicht mit der Tibia verschmolzen; Metatarsalia verlängert, vier functionirende Zehen am Fuss; keine amerikanische, nur europäische Gattungen: Scelidosaurus, Acanthopholis, Cyrtoceras, Ilyrosaurus, Polacanthus.

Bei den Stegosauriern war der Schädel klein, am meisten der neu-seeländischen Gattung Hatteria ähnlich. Das Quadratum war unbeweglich

Das charakteristische Merkmal der Stegosaurii liegt aber in einem monströsen Hautknochenpanzer, der, da er auch mit Stacheln ausgerüstet war, sowohl zum Schutz als zum Angriff gleich gute Dienste geleistet haben mag. Rechts und links von der Wirbelsäule sassen nämlich in einer oder mehreren Reihen, nach Grösse und Form sehr variirende Knochenschilde, deren grösste Ausdehnung selbst einen Meter betragen haben soll. Dazu kamen Knochenstacheln bis zu 63 cm Länge, die ihre Lage auf den extrem langen Processus spinosi der vorderen Caudalwirbel gehabt haben.

III. Ornithopoda (Fuss vogelartig), Herbivora.

Fuss digitigrad, fünf functionirende Finger an der Hand und drei am Fuss. Schambeine frei nach vorn ragend; Post-pubis vorhanden. Wirbel
solid, vordere Extremitäten klein; Extremitätenknochen hohl; Prämaxillaria vorn zahnlos.

2. Fam. *Iguanodontidae*. Claviculae vorhanden; Postpubis unvollständig; Prämaxillaria zahnlos. — Alle bekannte Formen europäisch. *Iguanodon*, *Vegitasurus*.

Bei der Gattung *Camptonotus* kommen 9 Halswirbel vor, die opisthocöl sind und alle kurze Rippen tragen. Die Sacralwirbel sind nicht mit einander verwachsen.

Bei *Camptonotus* waren die vorderen Extremitäten bedeutend kürzer als die hinteren. Die Hand bestand aus 9 Carpalia und 5 Fingern, die Zahl der Phalangen war 2, 3, 3, 3, 2. Das Femur war mit einem deutlichen dritten Trochanter versehen, die kräftige Tibia war etwas kürzer als das Femur. Die Zahl der Tarsalia beträgt 4; von den 5 Zehen war die erste rudimentär, die der anderen 2, 3, 4, 5. *Camptonotus amplus* war 30 Fuss lang (nach *Marsh*); *Hadrosaurus* etwa 28 Fuss (nach *Cope*).

IV. *Theropoda*, Fleischfresser.

Fuss digitigrad; Zehen mit Greifklauen; Schambeine nach unten vorspringend und distal verwachsen; Wirbel mehr oder weniger cavernös. Vordere Extremitäten sehr klein; Extremitätenknochen hohl, Prämaxillaria mit Zähnen.

1. Fam. *Megalosauridae*.

Wirbel amphicöl; Schambeine schlank und distal vereinigt, 5 Finger, 4 Zehen.

2. Fam. *Zanclodontidae*.

Wirbel bicöl; Schambeine breite, verlängerte Platten, mit den vorderen Grenzen vereinigt, 5 Zehen, 5 Finger.

Die bekannten Formen europäisch. *Zanclodon*, *?Teratosaurus*.

bein gleicht einer langen, breiten Knochentafel, an der vorn die Coracoidalknochen kräftig hervorsteht (Quenstedt).

 Vordere Wirbel stark opisthocöl und cavernös. Metatarsalien verlängert; Schambeine schlank, an den vorderen Grenzen vereinigt.

 Gatt. *Labrosaurus*.

Als Unterordnungen der *Theropoda* betrachtet Marsh die *Coeluria* und die *Compsognatha*.

5. Fam. *Coeluridae*.

 Knochen pneumatisch oder hohl; vordere Halswirbel opisthocöl, die übrigen biconcav. Metatarsalia sehr lang und schlank.

 Gatt. *Coelurus*.

Auf den höchsten eigentümlichen Bau des Beckens, welches nicht aus 3, sondern aus 4 Abschnitten besteht, indem das Os pubis, wie es scheint, doppelt ist, wurde schon früher hingewiesen.

V. *Hallopoda* — mit Springfüssen — *Carnivora*.

Fuss digitigrad, mit Klauen; 3 Zehen im Fuss; Metatarsalien bedeutend verlängert; Caleanens weit nach hinten gerückt. Vordere Extremitäten sehr kurz. Wirbel und Extremitätenknochen hohl; Wirbel biconcav. Es ist jedoch nicht sicher, ob die *Hallopoda* wahre Dinosaurier sind.

Bei der Gattung *Halopus* bestand das Becken nur aus 2 Wirbeln und ist das Femur kürzer als die Tibia, während die Metatarsalia die halbe Länge der Tibia erreichen. *Halopus victor* war ungefähr so gross wie ein Fuchs.

Reptilien.

 Gatt. Hadrosaurus Leidy.

II. Gonippoda Cope. Harpagmosauria Haeckel.

Gattungen Laclaps Cope, Poikilopleuron (Deslongchamps), Megalosaurus Buckland, Coelosaurus Leidy, vielleicht Bathynathus Leidy und Aublysodon Leidy.

Laclaps erreichte eine Grösse von 17 Fuss und bildet eine Zwischenstufe zwischen den pflanzenfressenden und den fleischfressenden Dinosauriern der Kreide, die hinteren Extremitäten sind bedeutend länger als die vorderen.

III. Symphypoda Cope.

Bei Cionodon sind die Rückenwirbel opisthocöö, Neuralbogen und Wirbelkörper sind durch eine Naht von einander getrennt.

Bei der Gattung Polynax Cope, ebenfalls aus der Kreide von Colorado, sind die Rückenwirbel amphicöö.

83*
Nicht weniger interessant als die Dinosaurier sind die Pterosaurier, deren Reste sich in den mesozoischen Schichten vom Lias bis zur Kreide finden. Über den Bau ihres Schädelns ist schon etwas mitgetheilt (s. S. 608) und es lässt sich noch folgendes darüber sagen.

Schulterblatt und Coracoid nähern sich ausserordentlich den entsprechenden Skeletstückchen der Vögel, nämlich dem Schultergürtel der Raticula; von einer Clavicula ist keine Spur vorhanden und ein claviculares Sternum (Crista sterni) fehlt ebenfalls.

Die hintere Extremität ist mit der vorderen verglichen klein. Eine Fibula scheint nicht entwickelt gewesen zu sein. Die Tarsalknochen sind sehr klein. Die Zahl der Metatarsalien beträgt 5, die der Phalangen resp. 1, 3, 3, 5, (1) 2. Bei Pterodactylus ist die fünfte Zehe auf einen winzigen, aus dem Mitte-

Man hat von mehr als 20 Arten Pterosauriern Reste gefunden, von denen einige in dem Solenhofener Schiefer, sowie in der Kreide von Nordamerika prächtig erhalten sind. Nach Huxley kann man folgende Gattungen unterscheiden:

A. Mit zwei Gelenken am ulnaren Finger
B. Mit vier Gelenken am ulnaren Finger.
 a. Die Kiefer sind kräftig zugespitzt und bis zu den Vorderenden behaftet, der Schwanz sehr kurz, die Mittelhand gewöhnlich länger als die halbe Länge des Vorderarms *Ornithopterus*.
 b. Die Vorderenden der Kiefer in zahnlose Schnäbel ausgezogen, die wahrscheinlich Hörnischeiten trugen, der Schwanz sehr lang, die Mittelhand kürzer als die halbe Länge des Vorderarms.
 a. Alle Unterkieferzähne unter einander ähnlich *Rhamphorhynchus*.
 6. Die Hinterzähne meist sehr kurz, die vorderen lang . *Dimorphodon*.

Huxley ist indessen sehr geneigt anzunehmen, dass jene fossilen Reste, auf welche man die Gattung *Ornithopterus* gegründet, einem wahren Vogel angehören.

Aus der Trias und zwar aus dem Sandstein von Elgin hat Huxley die fossilen Reste von Sauirn beschrieben, die er *Telerpeton* und *Hyperiadapodon* genannt hat und deren Stelle zweifelhaft ist. Die Wirbelsäule besteht bei *Telerpeton* aus 20—22 präsaerialen Wirbeln und sicher nicht mehr als aus 2 Sacralwirbeln; die Zahl der Schwanzwirbel ist nicht bekannt. Die Wirbelkörper sind schwach amphioöl, die Neuralhöhen kräftig entwickelt, die Rippen einköpft. Schulterblatt und Coracoideum sind bekannt, letzteres ist ein kräftiger Knöchel, eine Clavicula ist bis jetzt nicht bekannt, doch hat sie wahrscheinlich nicht gefehlt. Der Carpus
Paläontologischer Theil.

besteht aus vier in zwei Reihen gelagerten Knochen, die Zahl der Meta-
carpalia beträgt vier. Der Unterschenkel besteht aus Tibia und Fibula.
Astragalus und Calcaneus sind mit einander zu einem einzigen Knochen
v erwachsen, in der zweiten Reihe liegen drei Tarsalia, Metatarsalia sind
fünf vorhanden. Die grosse Zehe besteht wahrscheinlich aus zwei Pha-
langen und war mit einer Kralle versehen, die zweite Zehe hat drei Pha-
langen, die mittlere vier, vielleicht fünf, die vierte vier, während die
fünfte Zehe nur drei Phalangen zählt, von welchen die beiden proximalen
kräftig und lang sind; die Endphalangen sind Kral lenglieder. Wahr-
scheinlich zählte jede Oberkieferhöhle sechs und jede Unterkieferhöhle
sieben Zähne, sie sitzen nicht in Alveolen, sondern auf dem oberen freien
Kieferrande (Acrodontes). Nach Huxley gehört Telerpeton zu den wah-
Schei t en sind uns die Ueberreste der Gattung Hyperodapedon bekannt,
die nach Huxley eine sehr grosse Verwandtschaft mit der neuseeländi-
schen Hatteria (Sphenodon) besitzt; beide haben nämlich amphicôle Wirbel
— obgleich sie bei Hyperodapedon mehr fischähnlich sind, beide haben
sehr ähnliche (beak-like) Prämaxillaria, nach demselben Typus gebil-
dete Unterkiefer, dieselben eigentümlich angeordneten Gaumenzähne
(VERgl. Hatteria, p. 585) u. s. w. (Huxley, Quart. Journ. Geol. Soc.
XXV. 1869). Die Ueberreste dieser Gattung sind nicht allein in Nord-
schottland und Centralengland, sondern auch in Britisch Indien gefunden;
in den beiden erstgenannten Ländern wurden in denselben Schei t en auch
die Reste von wahren Crocodilen (Stegosaurus) angetroffen.

Aus der Trias und zwar aus dem Muschelkalk der Pflastersteinbrüche
von Baireuth sind Ueberreste von Sauriern gefunden, welche H. v. Meyer
as eine eigene Familie „Placodontes“ betrachtet (Palaeontogr. XI). Man
kann dieselben nach ihren folgenden Weise eintheilen: A. Macrocephali.
Schädel länger als breit; durch Einschnürung abgesetzte Schneausc
mit 6 meisselför migen Schneidezähnen im paarigen Zwischenkiefer; oben
6 Schneidezähne, 8 oder 10 Backenzähne, 6 Gaumenzähne = 20—22,
unten 4 Schneidezähne, 6 Backenzähne = 10, zusammen 30—32 Zähne.
Gatt. Placodus Meyer. B. Platycopthali. Schädel nicht länger als breit;
kurze, nicht abgesetzte Schneause mit 4 bogenförmigen Schneidezähnen
im unpaarigen Zwischenkiefer; oben 4 Schneidezähne, 4 oder 6 Backen-
In wirklich Alveolen stecken eigentlich nur die Schneidezähne mit gut
ausgebildeten Wurzeln, der Wurzeltheil der übrigen Zähne ist mehr mit
dem Knochen, dem die Zähne angehören, verbunden; er lässt sich an
einer mehr vertical streifen Beschaffenheit, der eigentliche Knochen an
dem zellen Bau erkennen. Es besteht nur ein Alveolarrand, durch
dessen Schärfe man wohl veranlasst werden konnte, auf wirklich Al-
veolen zu schliessen, in denen die Zähne wie Zapfen in einem Loche
stecken. Der neue Zahn bildet sich unter dem alten, an dessen Stelle er
allmählich vorrückte, oder in seiner Nähe. Zum Theil erinnern die Placo-
dienten an die Pterosauriergattungen Simosaurus und Pistasaurus aus dem Muschelkalk, zum Theil auch an die nicht weniger eigenthümlichen Dicyodonten der südafrikanischen Trias, von denen sie aber durch die Be schaffenheit und Bezeichnung des Unterkiefers abweichen. Die Placodonten wurden lange zu den pyenodonten Fischen gestellt, bis Owen (Phil. Transact. 1858) auf die grosse Aehnlichkeit der Schädeldecke mit den bekannten Sauirien (Simosaurus) hinwies.

Mosasaurus Maximiliani stammt aus der Kreide von Big Bend am oberen Missouri. Das Kopfstück misst nahezu $2'$ (= ungefähr 2 Fuss).

Den Zähnen und Kieferstücken nach zu urtheilen, hat die Kreideformation noch eine ganze Reihe von Riesensauriern aufzuweisen, welche der Gattung Mosasaurus mehr oder weniger verwandt sind; so z. B. die Gattung Leiodon (Owen, Palaeontologica) aus dem Kalk von Norfolk, wie Mosasaurus acrodont. Die Gattung Raphiosaurus (Owen, Geol. Transact. 2. Ser. T. VI) aus der Kreide von Cambridge gehört zu den Pleurodonten, u. s. w.

Bei der letztgenannten Gattung waren die Wirbel bis zum Becken mit Rippen versehen; das Becken war mit zwei Sacralwirbeln verbunden, ähnlich wie bei *Dolichosaurus*. Eine Verschmelzung der beiden Becken-wirbel scheint nicht zu bestehen; die unteren Bogen beginnen bei dem vierten Schwanzwirbel. Die Rippen sind fast alle von gleicher Länge und sämtlich einköpfig.

Die schmale, lange, walzenförmige Gestalt dieser Saurier erinnert an die den Uebergang zu den Schlangen bildenden, nur mit unvollkommen entwickelten Gliedmaassen versehenen Lacertilien (Pseudopus, Bipes, Ophiosaurus u. A.), doch gleicht die Gattung *Adcosaurus* in den Gliedmaassen, die besser bekannt sind, als diejenigen von *Dolichosaurus*, und selbst in der Zahl der Wirbel mehr den eigentlichen Sauriern, gegen die hauptsächlich die geringe Entwicklung der gleichwohl völlig ausgebildeten vorderen Gliedmaassen auffällt.

Aus dem lithographischen Schiefer von Solenhofen ist nun weiter eine Saurier-Gattung bekannt, welche ihr Entdecker Graf Münster

In seinen berühmten Untersuchungen „zur Fauna der Vorwelt“ hat H. v. Meyer (Reptilien aus dem lithographischen Schiefer des Jura in Deutschland und Frankreich) noch zahlreiche andere fossile Sauirier-Gattungen beschrieben, wie: Acrosaurus, Aloposaurus, Sapheosaurus, Ardeosaurus u. A., die zum Theil prächtig erhalten geblieben sind, deren Charaktere jedoch hier nicht alle näher mitgetheilt werden können.

Aus Tertiär-Gebilden sind von Sauirien eigentlich nur vereinzelte Skelettermale, meist Wirbel, Kieferfragmente und Zähne bekannt.

wirbel mit denen von Varanus überein. Einzelne Arten dieser Gattung sind größer als einer der jetzt lebenden Saurier.

Thinosaurus war ein grosser carnivorser Saurier, einem Varanus oder Monitor nicht unähnlich. Der Schädel zeigt keine knöcherne Hautbewaffnung, wohl dagegen der übrige Theil des Körpers. Peltosaurus Coppe (Palaeontol. Bull. 15) aus dem Miocen von Colorado war pleurodont, der Körper war mit Knochenschildern bedeckt, welche durch Naht vereinigt sind, die in Rede stehende Gattung ist mit der lebenden Gattung Gephyromorus nahe verwandt u. s. w.

Crocodylie.

Reptilien.

In den Wirbeln sind Körper und obere Bogen durch eine Naht getrennt; der Körper ist amphioel. Der Epistrophus war nach Art der Lacertae gebildet, die Gegenwart von deutlichen Halsrippen erinnert wieder an die Crocodile, ebenso die Scapula und das Coracoideum. Die Lage des Trochanters am Oberschenkel ist dieselbe wie beim Crocodil. In den Händen und Füssen scheinen Aehnlichkeiten mit den Crocodilen und den Lacertae zugleich zu liegen.

Nach Huxley (l. c.) kann man drei Unterordnungen von fossilen Crocodilen unterscheiden, welche er Parasuchia, Mesosuchia und Eusuchia nennt. Dieselben unterscheiden sich in folgender Weise.

ZweiGattungen: Belodon und Stegonolepis aus der Trias-Sandsteinformation.

Gattungen: *Steneosaurus* (*Mystriosaurus*), *Pelagosaurus*, *Teleosaurus*, *Metriorhynchus*, jurassische Formen aus dem Lias und dem Oolith; *Goniopholis*, *Macrotrhynchus*, *Pholidosaurus*, ebenfalls jurassische Formen aus der Wealdenperiode; endlich die Gattung *Hyposaurus* aus der oberen Kreide.

Thoracosaurus ist uns bekannt aus der Kreideformation von Nordamerika (Leidy), der fast vollständig erhaltene Schädel stimmt sehr nahe uberein mit Gavialis macrorhynchus aus dem Tertiärgebirge (s. unten).

Gaviale mit proöiden Wirbeln sind uns ferner aus dem Tertiärgebirge bekannt, so z. B. G. macrorhynchus von Blainville aus dem Calcaire pisolitique des Mont aîné bei Epernay an der Marne (Gervais); weiter G. Divont Owen (Palaeont. Soc. 1849) von der englischen Küste u. A. Breitschlanzige Crocodile, den lebenden durchaus ähnlich, treten mehr in der Tertiärzeit auf. Sie gehören Stüsswasserformationen an und

IV. Biologischer Theil.

Die Hauptschrift für die Biologie der Reptilien ist das über alles Lob erhabene Buch von Brehm (Brehm's Thierleben. 3. Abth. Kriechthiere, Lutche und Fische. 2. Aufl. 1883).

Crocodile.

Nach Brehm ist das Crocodil fähig, dumpfbrullende Lante auszustossen, lässt seine Stimme aber nur bei grösster Aufrégung vernehmen. Gewöhnlich entsteigt es gegen Mittag dem Strome, um sich zu sonnen und tief zu schlafen. Letzteres kann im Wasser aus dem Grunde wohl nicht geschehen, weil es bei nicht geregelter oder überwachter Athmung

B r e h m, Klassen des Thier-Reichs. VI. 3.

Nach Marno (Das Nilcrocodil, in: Zool. Garten 1874. p. 31) hält es schwier, das schlaufende Nilcrocodil zu beschließen; der Gehöriss desseben verrath dem am Boden liegenden Thiere die leiseste Annäherung, denn nur auf diese Art ist es nach ihm erklärlich, dass es in Lagen, wo es nicht möglich ist, den Jäger zu sehen oder zu riechen, meist noch bei guter Zeit flieht. Ihre Lage kommt ihnen hierbei vortrefflich zu, da sie, wenn sie ausser dem Wasser sich zum Ruhen niederlegen,
immer mit dem Kopfe diesem zugewendet liegen, sich also gar nicht umzuwenden brauchen, was sie übrigens auch ganz flink zu Stande bringen, soviel immer dagegen gefabelt wurde. Von Angriffen auf Menschen am Lande selbst kann nach den erwähnten Umständen nicht die Rede sein und selbst Thiere dürften nach Marno, wenn im Wasser selbst bis an das Ufer verfolgt, auf dem Trockenen als so ziemlich gesichert betrachtet werden, wenn das Crocodil auch in Gier und Hitze die Verfolgung noch eine kleine Strecke ausserhalb desselben fortsetzt. Auch Marno gibt an, dass die Eier am Ufer verscharrt werden und die ungefähre Grösse von Gänseciern haben, nur gleichmässiger oval und emailartig sind. Die Jungen sollen beinahe fortwährend einen nicht lauten quakenden Ton von sich geben; 1—2 Fuss grosse Thiere werden von den Eingeborenen oft als Leckerbissen genossen.

Crocodilus biporcatus, welcher eine sehr grosse geographische Verbreitung hat (vergl. S. 1063), besucht öfter als jede andere Art von den
Mündungen der Ströme aus die See und wird nicht selten mehrere See-
meilen entfernt von der Küste gesehen oder bei Ebbe auf trocken ge-
legenen Sandbänken mässig breiter Strassen zwischen den Inseln beob-
achtet. Nach S. Müller gehört diese Crocoid-Art zu den gefährlichsten
und fürchterlichsten Raubthieren des indischen Inselmeeres. Sie ver-
schlingt alles, was von thierischen Stoffen in ihr Bereich kommt, es sei
frisch oder verfault. Meist überfällt sie ihr Opfer aus einem Hinterhalte,
die Hirsche, Schweine, Hunde, Ziegen, Affen u. s. w., wenn sie sich dem
Wasser nähern, um ihren Durst zu löschen (S. Müller en C. J. Tem-
míneck, Verhandelingen over de natuurlyke geschiedenis de Nederl.
Overseesche Bezittingen 1840—1844).

Wenn dieses raubgierige Thier, so führt S. Müller fort, unter dem
Wasser auf Beute lautet, steekt es gemeiniglich bloss die Nasenlöcher
aus demselben hervor und verbleibt in dieser Lage nicht selten stunden-
lang unbeweglich auf einer und derselben Stelle. Die Schärfe seines
Gehörs, welches bei allen Crocodilen der am meisten bevorzugte Sinn zu
sein scheint, setzt es in den Stand, selbst auf grössere Entfernung unter
dem Wasser zu vernehmen, was ausserhalb desselben vorgeht. Es nähert
sich bei einem Geräusche gewöhnlich sogleich, jedoch in grösser Stille
dem Ufer. Sind es Menschen, welche das letztere betreten, so kommt es
alnmässig herbei und hält sich so lange unter der Oberfläche des Wassers
verborgen, bis sich eine passende Gelegenheit darbietet, einen Anfall zu
wagen. Ein solcher missglückt selten, da es meistentheils nicht eher auf
den belauerten Gegenstand loschüsset, als bis sich derselbe hinlänglich
sicher in seiner Gewalt befindet. Beim Ueberfälle, beim Anbeissen und
Fortschleppen des Raubes sind die Bewegungen des Crocodils pfeilschnell,
und zwar in solchem Grade, dass man von Menschen, welche durch sie
einen gewaltsamen Tod erleiden, nur selten einen Schrei vernimmt. Immer
zieht es seine Beute sogleich unter das Wasser, erscheint aber kurze Zeit
dauf mit ihr wieder an der Oberfläche. Ist die Beute klein, so ver-
schlingt es dieselbe sofort im Schwimmen, wobei es den Kopf über das
Wasser hält; grössere Thiere oder Menschen verzehrt es gewöhnlich ruhig
gegen Abend oder in der Nacht, für welchen Zweck es seinen Raub an
eine einsame Stelle des Ufers bringt. Durch starkes Hin- und Herschleu-
dern und dadurch, dass es die Beute gegen den Boden schlägt, scheint
es dieselbe theilweise zu zermahlen und mit Hilfe der Vorderfüsse in
Stücke zu zerreissen. Nach Mohniké (Banka und Palembang 1874)
werden jährlich in der Residentschaft Palembang gegen 1000 Menschen
von der in Rede stehenden Art getödtet, anderseits gibts es gutmütige,
sehr zahme Exemplare, mit denen die Kinder spielen. Sie wird bis
25 Fuss lang.

So unerlehnmend und stark die Crocoidile unter Wasser sind, so
furchtsam und scheu zeigen sie sich ausserhalb desselben. Beim Anblicke
eines Menschen, welcher sich ihnen zu Lande oder in einem Nachen
nähert, flüchten sie eiligst nach dem Strone, stürzen sich mit Geräusch

Nach Schomburgk (Reisen in Britisch-Guiana in den Jahren 1840—1844) sind die Kaimans die raubgierigsten und gefährlichsten Thiere, sie verschlucken sogar Steine und Holzstücken, die sie in ihrer Gier für geniessbar halten; häufig fand er bei der Section, selbst bei den kleineren Arten, solche Gegenstände im Magen. Um zu sehen, wie sie ihre Beute ergriffen, band er oft Vögel oder grössere Fische auf ein Stück Holz und liess dies dann schwimmen. Kaum war der Köder von einem der Thiere bemerkt worden, als dieses auch langsam, ohne dass sich die Oberfläche des Wassers bewegte, auf die Beute zuschwamm. Hatte er sich derselben

dann zog sie sich momentan unter das Wasser zurück, tauchte aber schnell wieder auf und erneuerte ihre Angriffe mit doppelter Furie. Der bisher ruhige Wasserspiegel war zur ausgeregten Wogenmasse geworden, da er ununterbrochen von dem gekrämmten Schwanz gepeitscht wurde.

Am Lande — fährt Schomburgk weiter fort — sind sie zu furcht- sam um gefährlich zu sein, und das Thier scheint selbst die Wehrlosig- keit, in der es sich auf festem Boden befindet, zu kennen, da es auf dem Lande jedesmal die schleunigste Flucht ergreift, um in das Element zu springen, in welchem es der gefährlichste Bewohner ist.¹⁴

Auf ihrer Reise nach dem Wasser stellen ihnen aber nicht nur die grösseren Raubvögel und die Jabirus, sondern auch die Männchen des Kaimans nach, die die Brut besonders gern zu fressen scheinen. Würde dadurch nicht der grösste Theil der Brut vernichtet, so müssten sie sich auf eine furchtbar Weise vermehren. Auf Sandbänken sollen die Weib- chen die Eier nie verseharren.

1 Fuss Höhe befindet. Die Jungen laufen sogleich flink umher, wenn sie aus dem Ei geschlüpft sind; eines biss ihn in den Finger, bevor er Zeit hatte, die Schale von seinem Körper zu entfernen (Anderson l.c.).

Nach Schomburgk (l.c.) wird der getrocknete Penis des Kaimans von den Brasilianern als sicheres und allgemein angewandtes Fieberrmittel benutzt, indem sie ihn zu diesem Zwecke auf der reibeplassenartigen Zunge von Sulis gigas zu Pulver reiben und mit Wasser einnehmen.

Das Crocodil wird von manchen Eingeborenen in Abyssinien gegessen.

Saurier.

Monitor niloticus hält sich im Wasser meist verborgen und auf dem Lande liegt er gewöhnlich regungslos in der Sonne. Nur im Not falle wählt er sich zum Ausruhen und Schlafen flache Sandbänke, überall hingegen, wo er es haben kann, einen wagerechten Vorsprung des steil abfallenden Ufers und besonders gern ein Fels gesims in ähnlicher Lage, mitunter trifft man ihn auch im Ufergebüsche an, selten in bedeutender Entfernung von seinem Wohnwasser (Brehm). Auch Tennent (Ceylon, an account of the island T. I. p. 182) gibt an, dass die auf Ceylon wohnenden Monitoren in einer Höhle am Boden oder in einem verlassenen Termieten nest leben. Sie halten sich auch hier vorzugsweise in der Nähe des Wassers auf; beim Austrocknen der Wohngewässer aber sehen sie sich zuweilen genöthigt, Wanderungen über Land zu unternehmen.

dass diese Thiere hauptsächlich auf kleinere Eidechsen und Schlangen jagen, aber auch Springmäuse und Vögel zu berücksigen wissen und insbesondere die Nester der letzteren arg gefährden.

Der am Cap lebende *Varanus albogularis* soll sich an Steinen oder an der Felsenwand so fest anklammern können, dass ein erwachsenes Thier von einem einzelnen Manne selbst dann nicht abgerissen werden kann, wenn man vorher eine starke Schnur um die hinteren Füsse bindet.

Die Eier des Teju fand Schomburgk häufig in den grossen kegel-
formigen Nestern einer Termité, welche diese nicht nur in den
Wäldern, sondern auch an den stumpf abgehauenen Bäumen in den
Pflanzungen bis zu einem Meter tief in den Erdboden anbaut. Die
Eidechse höhlt solche Termitennester aus, verzehrt die eigenen
Inwohner und legt dann ihre Eier, fünfzig bis sechzig an der Zahl,
hinein; die runden Eingänge bricht sie durch, so dass sie, wenn sie am
Baumstumpfe emporkriecht, bequem in denselben einschlüpfen kann. Die
weissen, sehr hartschaligen Eier erreichen nach Hensel bei grossen
alten Weibchen fast die Länge von Taubeneiern; sind aber schmäler
und an beiden Enden abgestumpft.

Das Fleisch gleicht, zugerichtet, dem Hühnerfleische, ist weiss und
wohlschmeckend und steht deshalb in hohem Rufe. Uebrigens gebraucht
man es nicht allein zur Speise, sondern auch als Heilmittel gegen
Schlangenbiss; insbesondere das Fett soll hiergegen vorzügliches leisten
(Prinz von Wied T. II). Nach Schomburgk sucht der Teju in be-
bauten Gegenden hauptsächlich die Zuckerpflanzungen und die an die-
selben grenzenden Waldungen auf; in Brasilien lebt er nach dem Prinz
von Wied in trocknen, sandigen oder thonigen Gegenden und hier in
Gebäuchen, Vorwäldern oder selbst in den innern grossen Urwäldern.
Er erreicht eine Länge von 1.5—2 Meter, wovon indessen fast zwei Drittel
auf den Schwanz gerechnet werden müssen. In Guyana wird er Salom-
penter genannt.

Die Lacertidae wählen die Abhänge sonniger Hügel, Manern, Stein-
haufen, Gewurzel von Baumstümen u. s. w. zum Aufenthalte, graben
sich hier, wie Brehm mittheilt, eine Höhlung oder benutzen eine vorge-
fundene und entfernen sich selten weit von diesem Mittelpunkte ihres
Gebietes. Eine Sitte, sagt Leydig (Die in Deutschland lebenden Arten
der Sauier. 1872), welche die Eidechsen mit sehr vielen nieder und
höheren Thieren gemein haben, ist ihr zähes Festhalten an dem Flecke
Erde, wo sie zur Welt kamen. Man wird in Gegenden, welche uns durch
viele Streifereien genau bekannt sind, bemerken, dass sich die Eidechsen
jahraus, jahrein an gewisse Bezirke halten, ohne sich über andere Oert-
lichkeiten, die, soviel sich beurtheilen lässt, gleich passend wären, auszu-
breiten. Das Wandern scheint also auch hier erst dann und als Noth-
wendigkeit einzutreten, wenn der Platz überfüllt ist.

Bei warmem Wetter liegen die Eidechsen im Freien, am liebsten im
Sonnenscheine auf der Lauer und spähen mit funkelnhen Augen auf aller-
lei Beute, insbesondere auf Insecten; an kühlen oder regnerischen Tagen
halten sie sich in ihren Höhlen verborgen. Sie sind im eigentlichen Sinne
des Wortes abhängig von der Sonne, lassen sich nur dann sehen, wenn
diese vom Himmel lacht und verschwinden, sobald sie sich verbirgt
(Brehm). Die Stunden, in welchen unsere Eidechsen mit Vorliebe sich
sonnen, sind nach Leydig die des Vormittags von neun bis zwölf Uhr,
um elf Uhr kommen sie im Käfige selbst an trüben Tagen zum Vorschein.
Kündigt sich Südwind an, so sind sie schon in frühester Morgenstunde
munter, wenn Regen droht, halten sie sich versteckt. Wirkliche kalte Witterung scheint ihnen sehr nachtheilig werden zu können, so beobachtete schon Pallais, dass in Chersones nach drei hinter einander folgenden kalten Sommern die früher äusserst zahlreiche taurische Eidechse fast verschwunden war. Die Zeit ihres winterlichen Rückzuges ist nicht allein je nach der Gegend, sondern auch bezüglich der betreffenden Arten, nach Leydigh's Vermuthung sogar nach Geschlecht und Alter verschieden; alte Männchen verschwinden im Herbst früher als alte Weibchen und beide eher als die Jungen. Umgekehrt erscheinen im Frühjahr letzten zuerst, ihnen aber folgen dann die Männchen und erst diesen die Weibchen. Im Winterlager, welches sie meist gemeinschaftlich beziehen, liegen sie regungslos, mit geschlossenen Augen, aber geöffnetem Munde, abgestorbenen vergleichbar, lassen sich jedoch, sobald man sie erwärmt, bald ins Leben zurückrufen, beginnen sich zu regen, zu athmen, öffnen die Augen und werden allmählich munter.

sondern schon ziemlich herangewachsene Junge ihrer eigenen Art auf-
frass. Die Lieblingsnahrung der Eidechsen scheinen jedoch weiche In-
ssecten, z. B. Heuschrecken und Schmetterlinge zu bilden.

Die Lebenszähigkeit der Eidechsen ist bei weitem nicht so gross als
die anderer Kriechthiere. Die schwächsten tierischen Gifte tödtet bald
sicher die stärksten Eidechsen; schon die milchige Flüssigkeit der
Schleimdrüse einer Kröte genügt, sie umzubringen. Nicht allein von der
Kälte, sondern auch von einer namhaften Anzahl Feinde haben die harm-
losen Eidechsen zu leiden. Sühnbethörende Fürcht scheinen ihnen nach
Brehm die Schlangen einzufüllen, beim Anblicke derselben fliehen sie
so eilig als möglich und wenn sie es nicht können, bleiben sie unbeweg-
lieh mit geschlossenen Augen auf einer und derselben Stelle sitzen, schein-
bar starr vor Entsetzen. Uebrigens haben sie nach ihm auch alle Ursache,
vor ihren Klassenverwandten sich zu fürchten, da einzelne Schlangenarten
fast ausschliesslich Eidechsen erjagen und diese dem Giftzahne der Viper
und Verwandten fast ebenso schnell als ein warmblütiges Thier erliegen.
Sie unterscheiden die verschiedenen Schlangen sehr genau. Nach Leydig
geberdeten gefangene Eidechsen sich angesichts einer Jachschlange wie
angegeben, liessen sich jedoch durch eine Würfelnatter nicht im geringsten
beheligen.

Wie nützlich sich die Eidechsen durch Wegfangen zahlreicher In-
secten dem Landwirth machen können, geht schlagend aus den Erfah-
rungen Erber's in Wien hervor. Eine Lacerta viridis — diese Art
scheint besonders gefräßig zu sein — verzehre von Februar bis November
nicht weniger als 2010 Mehlwärmer, 112 grosse Heuschrecken, 58 Cetonia
aurata, über 200 Regenwürmer und 408 grosse Fliegen, wozu noch zwei
Separatmahlzeiten mit 18—20 Stück Mantis religiosa und mehrere hundert
kleinere Käfer zu rechnen sind, so dass dieses Thier, ein mittelgrosses
Männchen, während dieser Zeit mehr als 3000 Stück Insecten sämtlich
grösster Gattung verzehrte. Es ist aber wohl anzunehmen, dass das
Thier im Freien noch ganz anders aufräumen mag (Leydig).

Wenn die Eidechsen die Winterquartiere beziehen, so ist ihnen nach
Leydig daran gelegen, sich in Gesellschaft, wenigstens zu zweien zu-
sammenzutun. In allen den ihm zur Kenntniss gekommenen Fällen, wo
man gelegentlich von Erdarbeiten auf Winterschlaf haltende Eidechsen
stieß, waren sie immer, wohl der Erwärzung halber, zu mehreren be-
sammen. Selbst im Zwinger, der in einem geheizten Zimmer stand,
legten sich zwei grüne Eidechsen, als im December die Temperatur
trassen auf — 8 und 9° R. stand, hübsch dicht der Länge nach anein-
der, während sie sonst sich aus dem Wege gehen. Thiere, welche im
ungeheizten Raum in Winterschlaf fielen, lagen mit geschlossenen Augen
da und ohne Athmungsbewegungen, manche aber mit geöffnetem Mund.
Sie waren wie todt, aber nicht starr; in die Hand genommen zeigten sie
bald einige Regung der Gliedmaassen, öffneten die Augen und die Athem-
bewegungen stellten sich ein. Auffallend könnte es scheinen, dass die
eben hervorgekrochenen Thiere keineswegs ein abgezehrtes Aussehen haben, vielmehr ein wohlgenährtes. Doch wäre es nach Le y d i g irrig, annehmen zu wollen, als ob sich erst während des Winterschlafes der Fettkörner in der Beeken- und Hinterleibsgegend entwickelt habe. Es geschieht solches nach ihm vor dem Winterschlaf, wie die Zergliederung von Thieren, die dieser Zeit entgegengehen, beweist.

Nach J. von Bed r i o g a (Beobachtungen an Reptilien und Amphibien in der Gefangenschaft; in: Zool. Garten 1875, p. 82) ist die Jagd auf Lacerta ocellata höchst schwierig und nicht ohne Gefahr. Ihr Schlupfwinkel ist gewöhnlich ein hoher Baumstamm. Sobald sie die geringsste Gefahr ahnt, flüchtet sie in ihr Versteck. Das Aufsuchen ist nach ihm leicht, schwieriger ist das Herausholen dieses boshäftigen und starken Sauriers. Die mit dem Fang der Perleidechse vertrauten Leute bedienen sich zu diesem Zwecke abgerichteter Hunde, die auf diesem Wege gefangenen Exemplare sind jedoch selten unbeschädigt.

Wenn man Eidechsen bei guter Nahrung in Gefangenschaft hält, so lässt sich — nach Le y d i g — beobachten, dass jeder Excrementballon aus zwei sehbar geschiedenen Theilen besteht: aus einer grösseren ländlichen, in frischem Zustande dunkelkaffeebraunen Masse, oder dem eigentlichen Kothballon, welcher die nicht einverleibbaren Speisereste, namentlich das Chitinskelett von Insecten enthält, und zweitens aus einer daran hängenden Partie von Aussehen eines krekidewissem Kalkbreies; dieser stellt den Harn vor. Alle Arten der deutschen Eidechsen verhalten sich darin im Wesentlichen gleich, nur dass in der Form und Grösse der beiden Massen theilweise noch die Speciesverschiedenheit sich kundgibt. Bei L. muradal ist z. B. nach Le y d i g der Kothballon von einfach ländlicher Gestalt und der Harn von halbkugeliger, broslaibarter Form; bei L. agilis hingegen ziehen beide Theile mehr ins Längliche und sind gekrümmt, bei den ganz grossen dalmatinischen Thieren ist es ein zolllanger schwach birnförniger Körper. Dieser Harnstein, wie man denselben nennen kann, ist nach hinten, da wo er an den Excrementballen anstückst, etwas gelblich gefärbt, während er im übrigen lebhaft weiss aussieht. Es nähern
Biologischer Theil.

sich bekanntlich auch in diesem Punkte die Reptilien den Vögeln, nur dass bei letzteren das Produkt eine etwas andere Form als bei den Eidechsen hat.

Anguis fragilis — die Blindschleiche — zeigt nach *Leydig* dem Beobachter ein in vielen Punkten anderes Temperament, als dasjenige der wahren Eidechsen ist. Vor allen ist die Blindschleiche um vieles ruhiger und nachdenklicher in ihrem ganzen Wesen und es mag deshalb daran erinnert werden, dass die Lappen des grossen Gehirns bei diesem Thier, in Anbetracht des Mittelhirns, entschieden grösser sind als bei den Eidechsen. Auch die Blindschleichenden sind, obwohl sie sich gern sonnen, doch der Feuchtigkeit recht bedürftig und die meisten der Exemplare, welche *Leydig* unter die Augen kamen, hat er unter etwas feucht liegenden Steinen angetroffen; auch hat er beim Durchsuchen trockener Gegenden wiederholt bemerkt, dass in solchen *Anguis fragilis* selten war.

Selbst an Thieren in Gefangenschaft lässt sich nach ihn beobachten, dass sie keineswegs, wenn die Sonne ihren Behälter bescheint, hervorkommen, wie dies die Eidechsen thun, sondern sie bleiben verborgen; hingegen an Tagen, die die Eidechsen zum sich zurückziehen bestimmen, so z. B. wenn Regenwetter im Anzuge ist, kriechen die Blindschleichen aus ihrem Versteck an die Oberfläche. Wenn unsere Thiere schon in aller Frühe — sagt *Leydig* — herumkriechen, deutet es entschieden auf eine Veränderung der Atmosphäre zum Regen.

Die Bewegungen der Blindschleiche, obschon wegen Mangels der Gliedmaassen im Allgemeinen scharlachfarbig, weichen nach *Leydig* doch nicht wenig von jenen der Schlangen ab. Da nämlich ihre Haut durch wirkliche Kalktafeln gepanzert ist, so geschehen ihre Krämmungen nicht in kurzen Wellenlinien, wie solches bei den Schlangen in hohem Maass eintreten kann, sondern, unter gewöhnlichen Umständen auf ebenem
Boden, in grösseren Curven. Nur wenn sie sich im Steingeröll und Pflanzengewirr durchzudrücken haben, vermögen sie auch engere Krümmungen anzunehmen, die jedoch wie alle sonstigen Bewegungen des Thieres, wegen der verkalkten Lederhaut, etwas starres an sich haben, recht im Gegensatz zu den höchst geschmeidigen Windungen der echten Schlangen, die durch keine Verkalkung der Lederhaut behindert sind.

Noch heutigen Tages gilt die Blindschleiche in den Augen der ungebildeten Menschen als ein höchst giftiges Thier und wird deshalb rück-sichtslos verfolgt und unbarmerzigt todtgeschlagen, wo immer sie sich sehen lässt, während man sie im Gegenteil schonen, insbesondere in Gärten hegen und pflegen sollte.

Ueber die Lebensweise von Pseudopus Pallasi in Gefangenschaft verdanken wir Günther (Skizzen aus dem zool. Garten in London; in: Archiv für Naturgeschichte 1860, p. 29) einige interessante Mittheilungen. Die Thiere erreichen eine Länge von zwei bis drei Fuss und sind sehr gefräßig; um sie aus dem Kiese oder unter dem Teppiche, unter dem sie gewöhnlich verborgen liegen, hervorzulocken, ist nach ihm nur das geringste Geräusch am Käfig nützlig; sofort strecken sie ihre Köpfe her vor und bewegen ihre lebhaften Augen nach allen Seiten, um zu sehen, ob die Stunde der Fütterung da ist. Zeigt man ihnen nur irgend einen kleinen weissen Gegenstand, den sie aus der Ferne für eine weisse Maus, ihr gewöhnliches Futter, halten können, so gerathen sie schon in eine grösse Aufregung, indem sie theilweise hervorkommen und sich gegen seitigwegzudrängen suchen, wenn sie einander im Wege sind. Der Genuss der Fütterung wurde ihnen jedoch nur einmal wöchentlich zu Theil, was ganz genug ist, da sie jedesmal Unglaubliches leisten, obgleich er sie nie gesättigt sah. Sie stürzen sich auf die Hand des Wärters, die ein Dutzend junger Mäuse oder Vögel hält und entreissem sie ihm, bevor er Zeit hat, sie fallen zu lassen. Dabei ereignet es sich, dass eine Maus von zwei Pseudopen ergriffen wird: keiner lässt los, der eine reisst nach rechts, der andere nach links, der eine erhebt sich, um dann mit dem Gewicht seines Körpers dem anderen das Stück zu entreissen; vergebens, sie zerren und zerren, bis die Maus in zwei Theile zerreisst und jeder das eine mit der grössten Eile verschlingt. Beide sind jedoch bei diesem Theile zu kurz gekommen, da unterdessen die anderen rasch aufgeräumt haben; hat aber eines seine Bente noch nicht ganz verschlungen und ragt ein Theil derselben aus dem Manle hervor, so wird er von den übrigen verfolgt und jener Kampf kann noch einmal beginnen, ja sogar
zwischen drei geführt werden. Lange nachdem alles verschlucken ist, suchen sie noch im Käfige herum, ob nicht noch etwas übrig geblieben ist. Sie ergreifen ihre Nahrung wie eine Eidechse, unterwerfen sie einem hastigen kräftigen Beissen, um die Knochen zu zerbrechen und verschlucken sie ganz. Sperlinge, die schon eine Woche alt sind, sind das grösste Thier, das sie verschlucken können (Günther l. c.).

Ueber die grosse Familie der Scincoiden ist uns, was die Lebensweise der verschiedenen Arten betrifft, nur sehr wenig bekannt. Nach Brehm darf man im Allgemeinen wohl annehmen, dass alle Wühl- und Abhöhnen mehr oder weniger an den Boden gebannt sind und nur ausnahmsweise und auch dann bloss in beschränktem Grade klettern. Dafür besitzen sie eine Fertigkeit, welche den meisten übrigen Eidechsen abgeht, denn sie sind im Stande, wenn auch nicht mit der Kraft, so doch mit der Gewandtheit des Maulwurfes unter der Oberfläche der Erde sich zu bewegen. Fast alle bekannten Arten nehmen ihren Aufenthalt auf trockenen Stellen und schönen oder meiden das Wasser, obschon es vorkommen mag, dass sie noch unmittelbar über der Hochfluthmarke am Seegestade gefunden werden. Am liebsten hausen sie da, wo feiner Sand auf weithin den Boden deckt, ausserdem zwischen Geröll, dem Gestein zerbröckelter Felskugel, an oder in weiffigen Gemüner und ähnlichen Orten; aber nur die wenigsten suchen in den hier sich findenden Ritzen
Reptilien.

Brenn, Klassen des Thier-Reichs. VI. 3.

85

Ihr Kriechen ist sehr schwerfällig und wird mit grossem Geräusche ausgeführt, indem der schwere hartschuppige Schwanz, sowie die raub-schuppigen Seiten beim Kriechen überall anstreichen und dadurch ein ziemlich vernehmbares Geräusche verursachen. Sie vergraben sich nie im Sande, wohl verkriechen sie sich zwischen Steinen, unter Moos u. s. w., kommen aber, sobald die Sonne zu scheinen beginnt, heraus, um sich auf den beschienenen Plätzen im Halbmond gekrönt zu lagern.

Ist der Boden oder die Luft durch die Sonne gehörig durchwärmt, so heben sie ihre Köpfe aus dem Sande hervor und verlassen ihren Aufenthaltsort, um im Behälter umherzukriechen und der Nahrung nachzugehen, gierig jeden Sonnenstrahl ansuchend. Oft ersteigen sie die Aeste und Zweige, um sich auf denselben zu sonnen. Als echte Tagoder richtiger Sonnenthiere verkriechen sich sie mit dem Untergang der Sonne in ihre früheren Schlupfwinkel, wobei sie mit grosser Vorliebe die
alten Stellen, als Aeste, Steine u. A. wieder aufsuchen. Feuchtigkeit lieBen sie nicht, obschon sie hier und da einmal, namentlich bei oder kurz vor der Häutung, in den Wasserbehälter kriechen. Ihre Nahrung besteht aus allerlei Kerbthieren; sie trinken viel Wasser, können aber auch lange ohne dasselbe leben.

Die zu der Familie der Sepidae gehörige Seps chalcides soll besonders in Sardinien überaus zahlreich sein, wo sie vornehmlich die feuchten Wiesen bewohnt. In ihrem Wesen ähnelt sie der gemeinen Blindschleiche ganz ausserordentlich, in ihren Bewegungen gleicht sie der Natter, wenn sie still sitzt, wickelt sie sich ebenso wie letztere zusammen. Die Kälte scheint sie mehr als ihre übrigen Verwandten, sie verbirgt sich noch eher als die Schildkröten, daher bekommt man sie auch von Anfang October an nicht mehr zu Gesicht, sondern findet sie höchstens bei geschicktem Nachgraben tief im Boden. Erst wenn der Frühling wirklich eingetreten ist, erscheint sie wieder, um nunmehr ihr Sommerleben zu beginnen.

Den Sardiniern erscheint noch heutigen Tages das harmlose Geschöpf als ein äusserst giftiges Thier, welches sie mit allen Mitteln bekämpfen zu müssen glauben (Brehm).

Dasselbe gilt von der Gattung Histarius, welche aber auch Beeren, Wasserpflanzen, Würmer und dergleichen fressen soll. Wird das Thier erschreckt, so stürzt es sich ins Wasser und verbirgt sich hier unter Steinen, lässt sich aber leicht fangen, da es sehr dumm, furchtsam und gar nicht böse ist (Breihm).

Der Hardun (Stellio vulgaris) läuft mit grosser Schnelligkeit, seine Bewegungen zeigen eine verhältnissmässig sehr bedeutende Kraft und Energie, auch versteht er trefflich zu klettern. Sein Biss ist so kräftig,

Die Dorneidechse (Uromastix spinipes) gehört, wie es scheint, zu denjenigen Eidechsen, welche nur in der Dämmerung hervorkommen. Ueber Tags sieht man sie zuweilen frei an Felsblöcken sitzen, um sich zu sonnen, häufiger aber in breiten Rissen an den Felswänden kleben. Besonders günstige Oertlichkeiten, also namentlich solche, welche ihr unzugängliche Verstekte gewähren, beherbergen sie oft in namhafter Anzahl; Brehm begegnete Dutzenden in einer und derselben Felsritze. In Ermangelung derartiger Zufluchtsorte gräbt sie sich selbst Höhlen im Sande, welche sie über Tages nur um sich zu sonnen verlässt, in den heissen Mittagsstunden jedoch wieder aufsucht. Die hauptsächlichste Waffe der Dorneidechse ist ihr Schwanz, mit welchem sie kräftige und empfindliche Schläge auszuführen vermag. Zum Beissen entschliesst sie sich nach Brehm nur selten, wenn sie es aber thut, lässt sie das Erfasste so leicht nicht wieder los.

Die zahlreichen Arten der Gattung Anolis sind in Südamerika sehr allgemein vertreten; es sind sehr bewegliche, dreiste und streitsüchtige Thiere, die fast alle geeigneten Oertlichkeiten, wie Bäume, Gartenzäune, die Aussenseite der Wohnhäuser, nicht selten auch das Innere derselben bewohnen. Auf dem Boden ist ihr Lauf ausserordentlich schnell, ebenso bewegen sie sich auf den Bäumen mit bewunderungswürdiger Schnellig- keit und Gewandthaltigkeit und springen in Sätzen, welche ihre Leibeslänge um das zwölffache übertreffen, von einem Zweig oder einem Baum zum anderen und wissen sich festzuhalten, wenn sie auch nur ein einziges Blatt berühren, und sind wie die Gecko’s im Stande, an der Decke der Zimmer hinzulaufen. Im Allgemeinen benachmen sie sich wie die einhei- mischen Echsen, übertreffen die meisten von ihnen an Behendigkeit und entsprechend ihrer Ausrüstung in der Fertigkeit zu klettern. Ihre Nah- rung besteht in kleineren Thieren, doch fangen sie auch Wespen und sollen sogar Scorpione nicht fürchten (Schomburgk, l. c., Holbrook, North American Herpetology 1836).

Die Leguane (Iguana) leben auf Bäumen, besonders auf solchen, welche an den Ufern von Gewässern stehen, sind aber in dem Wasser selbst ebenso gut als auf ihrem gewöhnlichen Wohnorte zu Hause. Gegen Abend steigen sie gewöhnlich zum Boden herab, um auch hier ihre Nah- rung zu suchen, die sowohl aus Pflanzenstoffen als aus Insecten, ja sogar aus kleinen Eidechsen besteht. Sie sollen anders als alle übrigen Eide- chsen schwimmen, insofern sie ihre vier Beine dicht an die Seite des Leibes legen und ausschliesslich den Schwanz benutzen.

in dem Maasse, wie die Sonne rückt. Mit Dämmerungsanfang klettert der Leguan auf den höchsten Punkt, senkt den Kopf und legt denselben auf den Stamm oder Ast mit dem Kinn nieder, die Augen schliessend, während er im wachen Zustande den Kopf stolz erhoben trägt. Wenn er frisst, so fasst er die Blätter mit den Kiefern und reisst sie unter heftigem Schütteln des Kopfes von den Pflanzen los; er kaut die Blattspitzen nur wenig. Am lüsternsten ist er auf Mehlwürmer, lebende oder todte, er liest sie mit der Zunge leckend vom Boden auf. Er trinkt je nach der Nahrung, die er einnimmt, oft oder selten, indem er sich auf die Vorderfüsse herablässt und die Maulspitze ins Wasser taucht, wobei er halb saugend, halb lappend trinkt. Der Leguan ist verträglich und man kann ihn mit jedem anderen Thier halten.

Auch Steinachner (Die Saurier und Schlangen der Galopagos-Inseln) fand den *Oreocophalus* sehr häufig auf den Galopagos-Inseln; er bestätigt die Angabe Darwin's, dass Magen und Gedärme ausnahmslos mit breitblättrigen, kleinen und röthlichen Algen vollgestopft sind. Nach ihm gleichen ihre Bewegungen im Wasser denen einer Schlange und beim Schwimmen ragt nur der Kopf über die Meeresfläche empor, während die Beine angezogen sind (Die Schlangen und Eidechsen der Galopagos-Inseln 1876).

Eine zweite die Galopagos-Inseln bewohnende und zu den Iguanidae gehörende Eidechse, *Trachycophalus subcristatus*, von welcher Darwin (l. c.) uns folgendes mittheilt. In ihren Bewegungen ist sie trägere und schlaffriger. Wenn sie nicht in Furcht gesetzt wird, kriecht sie langsam dahin, Bauch und Schwanz auf dem Boden nachziehend, schliesst die Augen minutenlang, als ob sie schlummere und legt dabei ihre Hinter-
Reptilien.

1351

beine ausgebreitet auf den Boden. Sie wohnt in Löchern, welche sie zuweilen zwischen Lavatrümmern, häufiger auf ebenen Stellen des weichen vulkanischen Gesteins aushöhlt. Diese Löcher scheinen nicht sehr tief zu sein und führen in einem kleinen Winkel in die Tiefe, so dass der Boden über ihnen stets nachgiebt und eine derartig durchlöcherte Strecke den Fussgänger ungemein ermüdet. Wenn das Thier sich in seine Höhle gräbt, arbeitet es abwechselnd mit den entgegengesetzten Seiten seines Leibes; ein Vorderbein kratzt eine Zeitlang den Boden auf und wirft die Erde nach dem Hinterfusses, welcher so gestellt ist, dass er sie aus der Öffnung der Höhle schlendert. Wenn die eine Seite des Körpers erwärmt, beginnt die andere zu arbeiten, und so abwechselnd. Ich beobachtete eines dieser Thiere eine Zeitlang, bis sein ganzer Körper sich eingewöhlt hatte, dann trat ich näher und zog es am Schwanz; es schien sehr erstaunt zu sein, grub sich heraus, um nach der Ursache zu sehen.

Die Thiere fressen bei Tage und wandern dabei nicht weit von ihrer Höhle weg. Werden sie in Furcht gesetzt, so stürzen sie sich auf eine sehr linkische Weise nach den Zufluchtsorten hin. Wegen der Stellung ihrer Beine können sie sich nicht sehr schnell bewegen, es sei denn, dass sie bergab laufen. Vor den Menschen forchten sie sich nicht. Wenn man genau auf sie Acht giebt, rollen sie ihren Schwanz, erhöben sich auf ihre Vorderbeine, nicken mit dem Kopfe in einer schnellen, senkrechten Bewegung und geben sich ein sehr böses Aussehen, welches der Thatsächlichkeit jedoch keineswegs entspricht. Werden sie festgehalten und mit einem Stock gereizt, so beissen sie heftig; ich fing jedoch manchen beim Schwanz und keiner von diesen machte einen Versuch, mich zu beissen. Dagegen kämpfen zwei von ihnen, wenn man sie auf die Erde setzt und zusammenhält, sofort mit einander und beissen sich, bis Blut fliesst.

Alle diejenigen, welche das niedere Land bewohnen, können während des ganzen Jahres kaum einen Tropfen Wasser kosten; aber sie verzehren viel von dem saftigen Cactus, dessen Aeste zufällig vom Winde abgebrochen werden. Alle kleineren Vögel wissen, wie harmlos sie sind. In dem Magen derer, welche ich innerlich untersuchte, fand ich stets nur Pflanzenfasern und Blätter verschiedener Bäume, besonders einer Akazienart. In dem oberen Gürtel der Insel leben diese Eidechsen hauptsächlich von den sauren und zusammenziehenden Beeren der Gerayativa, unter denen ich sie und die Riesenschildkröten zusammen habe fressen sehen. Um die Akazienblätter zu erhalten, suchen sie die niederen, zwerghaften Bäume auf und es ist nichts ungewöhnliches, dass man eine oder ein Paar meterhoch über dem Boden auf Aesten sitzen und ruhig fressen sieht. Die Einwohner sagen, dass die in Rede stehenden Thiere, welche die feuchte Gegend bewohnen, Wasser trinken, dass aber die anderen des Trinkens halber nicht von ihren unfruchtbaren Tiefen zur wasserreichen Höhe empordanmern, wie die Schildkröten es thun (Darwin l. c.).
Die Gattung *Tropidurus* lebt in trockenen, sandigen Gegenenden, besonders in Steintrümmern, Steinhaufen, Felsenritzen, auf alten Mauern, Gebäuden, in deren Wandlöchern oder auf den Dächern und ist sehr häufig in Brasilien, läuft ausserordentlich schnell und klettert an den steilsten Wänden auf und nieder. Bei der Annäherung eines Menschen ergreifen die Thiere, welche auf dem Wege sich sonnen, sogleich die Flucht oder eilen mit unbegreiflicher Schnelligkeit an den senkrechten Felswänden hinauf (Prinz von Wied, l. e., Hensel, l. c.).

Aehnliches theilt auch schon Hernández mit. Das Phänomen ist vollkommen rätselhaft und mit vollem Rechte bemerkt Brehm wohl, „ich begreife nicht, durch welche Kraft Flüssigkeit aus dem Auge eines Thieres geschleudert werden kann."

Wie die Dornen der Kopfseiten, so sind auch die Nasenöffnungen vortrefflich zu diesem für die Thiere unentbehrlichen Sandschlafe eingerichtet. In einer fünfeckigen Nasenplatte liegt nämlich jederseits ein nach unten sich öffnendes, quer spaltförmiges Nasenloch, das von einer runden häutigen, oben beweglich befestigten und vorhangartig nach unten hängenden Platte vollkommen geschlossen werden kann und beim Ein graben nach Böttger auch stets geschlossen wird.

Aus dem starren Aufrichten der für gewöhnlich sehr leicht umlegbaren grösseren und kleineren Hornstacheln des Phrynosoma orbicularre erkennt man nach Wiedersheim, dass dieselben nicht allein als passive Schutzorgane, sondern auch als Schreckmittel aufzufassen sind.

Den grösssten Einfluss auf die Thiere hat nach ihm die Temperatur. An kühlern Tagen, bei bewölktem Himmel liegen sie starr, regungslos und ganz apathisch mit dunkler, gefalteter Haut auf dem Boden ihres Käfigs, ganz so, als wären sie gestorben oder doch nahe daran. Kaum dringt aber ein Sonnenstrahl zu ihnen, so blasst ihre Haut ab und nimmt einen silbergrauen Ton an, welcher die Augenflecken und das auf der Wirbelsäule liegende helle Längsband nur noch schwach hervortreten lässt. Wasser sah er die Thiere nie zu sich nehmen, am wohlsten scheinen sie sich im trocknen, beissen Sande zu fühlen. Sie sind äusserst harmlos und machen nie Anstalt zum Beissen.

Die Ringelagame (Oplurus torquatus) vergräbt sich nach J. v. Fischer niemals, sondern ist ein echtes, oberirdisch lebendes Tagthier, wie der Hardun. Ihre gewöhnliche Bewegungsart ist ein stossweises Dahinschiessen und die Thiere ändern durch Kreuz- und Querwendungen ihre Richtung mit erstaunlicher Schnelligkeit. Gewöhnlich sitzen sie regungslos auf einem Baumstamm, einer Pflanze, einem Stein u. s. w., bis irgend ein Insect in ihre verderbliche Nähe kommt. Sofort stürzen sie blitzschnell auf dasselbe los und verzehren es mit grosser Hast, um im nächsten Moment nach einem anderen Opfer zu spähen. Werden sie verfolgt, so schiessen sie in wilder Eile dahin, jeden Augenblick ihre ursprünglich eingeschlagene Richtung ändernd, bis sie auf irgend einem erhabenen Punkt angelangt sind, wo sie Halt machen und zu „nicken“ beginnen.

Dieses „Nicken“ geschieht nach J. v. Fischer nur beim Sitzen, d. h. immer im ruhigen Zustande, indem sie den Kopf um seine wagenrechte Querachse (im Nacken) und durch rasches Heben und Senken des Halses von oben nach unten bewegen, ihm meist wagerecht haltend, manchmal jedoch auch leicht nach links oder rechts neigend.

Das Nicken dient ihnen, um sich besser zu orientiren und zu prüfen, ob nichts Verdächtigles im Anzuge steht. Die Bewegungen des Kopfes sind dabei sehr kurz und werden öfter wiederholt. Gegen Kälte sind die Thiere ungemein empfindlich und erstarrten schon bei +16° R.

Nässe scheuen sie und halten sich stets nur auf den trockensten oder doch mässig feuchten Stellen auf. Zahn werden sie wohl nie, eben- sowenig wie der Hardun. Sie verlieren wohl ihre Schen, so dass sie in

Die zahlreichen Arten der Familie der Geckolidae haben ungefähr alle denselben Aufenthalt und führen mehr oder weniger dieselbe Lebensweise. Sie bewohnen Felswände und Bäume, Steingeröll, Gemäuer und sehr gern die menschlichen Behausungen; vom Keller bis zum Dach. Einzelne Arten scheinen nur auf Bäumen Herberge zu nehmen, andere ebensowohl hier als auch an Mauern und in Häusern sich aufzuhalten. Über Tages machen sie sich weniger bemerklich, denn sie sind Nachthiere und suchen meist schon bei Sonnenaufgang einen sie möglichst bergenden Versteckplatz auf, verkriechen sie sich unter Steine oder losgelöste Baumrinde, in Spalten und Rissen und bleiben dann — wie Brehm angiebt — an einer Wand und einem Baumstamme kleben, wenn die Färbung der Umgebung ihrer eigenen gleich oder ähnelt, beziehentlich, wenn sie erfahrungsmässig von der Gutmithigkeit der Hausbewohner, in deren Räumen sie Herberge genommen, sich überzeugt haben; doch sieht man auch sie ebenso behaglich wie andere Kriechthiere im Strahle der Mittagsonne sich wärmen und an solchen Mauern, welche nur zeitweilig beschiene werden, mit dem fortschreitenden Schatten weiter bewegen (Brehm).

Phylloactylus europaeus schleicht nach Wiedersheim (Morphol. Jahrb. 1876, Bd. I. p. 495) den Raub an, wie eine Katze und er sah ihn in letzten Sprung auf ihre Beute diese nie verfehlen. Bekommt er ein Thier zwischen die Zähne, welches zu gross ist, um auf einmal ganz verschlungen werden zu können, so beobachten diese Eidechsen dasselbe Verhalten wie die Lacertac. d. h. sie machen angestrengte Kaubewegungen und schütteln lebhaft mit dem Kopfe. Wenn auch ein nächstliches Thier, so zieht er sich nicht vor dem Sonnenschein zurück. Im Gegenteil, kann tritt die Sonne hinter den Wolken hervor, so verlässt der Gecko sein Versteck und läuert, wie an der Mauer angeklebt, auf seine Beute, liebt also keineswegs, wie mehrfach erwähnt wird, feuchte und regnerische Witterung.
Was die geistigen Fähigkeiten des *Phyllodactylus* betrifft, so bleiben diese nach Wiedersheim weit hinter jenen von *Lacerta* zurück. Das Thier macht oft geradezu einen stupiden Eindruck, wozu auch der Umstand viel beitragen wird, dass es offenbar bei Tag nichts, oder doch nur sehr wenig sieht. Stundenlang kann es regungslos auf demselben Flecke liegen bleiben und hängt sich auch wohl hin und wieder mit seinem Greifschwanz an einem Aesthen auf. Wird es erschreckt, so beginnt es rasch sich fortzubewegen, was unter immerwährenden Schlangenwindungen des ganzen Körpers geschieht. Es kommt auch vor, dass es sich in der Eile auf eine ziemliche Entfernung fortschnellt, wobei dann der Schwanz wie ein Steuerruder fungirt. Es zeigt eine sehr grosse Geschicklichkeit im Schwimmen und hält lange im Wasser aus.

Die *Chamaeleon* leben nach Brehm's Schilderung nur in solchen Gegenden, in denen es zeitweilig regnet oder allmählich so starker Thau fällt, dass sie eines ihrer zwingendsten Bedürfnisse, Wasser zum Trinken, jederzeit befriedigen können. Ein anderweitiges Bedürfniss von ihnen bilden höhere Gewächse, Bäume oder Sträucher, mindestens Buschwerk oder Gestüpp; denn sie sind vollendete Baumthiere, welche nur ausnahmsweise zum Boden hinabsteigen. Da, wo sie vorkommen, pflegen sie häufig aufzutreten, man sieht sie gewöhnlich in kleinen Gesellschaften von drei bis sechs Stück, auf einem Busche oder einer Baumkrone sitzen, unbeweglich, als wären sie ein dem Aste angewachsener Holzknoten, mit den vier Klammerfüsschen und dem Schwanz an einem oder mehreren Zweigen befestigt. Tage lang beschränkt sich ihre Bewegung darauf, sich bald auf dem Aste, welchen sie sich zum Ruheplatz erwählten, niederzudrücken und wieder zu erheben, und erst, wenn besondere Umstände eintreten, verändern sie nicht bloss ihre Stellung, sondern auch ihre Plätze; nur die Augen sind in beständig Thätigkeit und die Zange wird so oft, als sich Bente findet, hervorgeschnellt. Nur wenn sie lange gefastet haben, verfolgen sie wirklich ihre Bente, ohne jedoch den Busch, auf welchem sie sich gerade befinden, zu verlassen.

Biologischer Theil.

Mit dem Aufgang der Sonne erwachend, suchen sie allabendlich bei Sonnenuntergang die einmal gewohnten Schlafplätze auf. Auf einem wagerechten Zweig lassen sie sich von ihren verhältnissmässig langen Beinen herunter, indem sie den Bauch auf den Zweig niederlegen, den Kopf senken und sich mit dem Kehlsack auf den Zweig zum Ruhen stützen, wobei der Schwanz schneckenhaussähnlich spiralig umgerollt herunterhängt. Während des Schlafes haben sie alle dieselbe Färbung, ein sehr helles Sandgelb, das beinahe wie weiss erscheint, mit weissen oder hellgelben, seltener ziegelrothen Lateralflecken.

Werden die Thiere gereizt, so blähen sie sich sehr stark auf, indem sie im Gegensatze zu andern Thieren in die Höhe zunehmen und von beiden Seiten abgeplattet erscheinen; nicht dicker als ein Messerrücken. Sie können sich so aufblähen, dass die Langengegends im Körper als ein durchscheinender Fleck sichtbar wird. In der höchsten Erregung des Zornes sperren sie das Maul weit auf und dem Feinde ihre Breitseite bietend zischen sie laut vernehmbar und pressen die angesammelte Luft mit Vehemenz zur engen Stirnmütze heraus.

So apathisch und verträglich einige Stücke sind, so unverträglich und bissig gegen alles Lebende sind andere. Während der Paarungszeit vertragen sich alle Chamaeleon unter einander nicht sonderlich gut, jedoch sind die Liebeskämpfe nur vorübergehend, während bei den erwähnten Individuen diese Unverträglichkeit das ganze Leben dauert und man solche Stücke, die lebhaft an sog. „Einsiedler-Hirsche“ erinnern sofort abtrennen muss. Die Bissigkeit geht so weit dass diese Individuen nicht einmal
fressen wollen, sondern alles Lebende zerfetzen und die fettsten Bissen in ihrer blinden Wuth nicht beachten.

Was ihre Intelligenz angeht, so stehen sie nach Joh. von Fischer (l. e.) auf der niedersten Stufe aller Reptilien. Der Geruch ist wohl null, der Geschmack aber sehr entwickelt und die Thiere sind in Betreff ihrer Nahrung ungemein wählerisch. Die Art und Weise, den Chamaeleoncens die Nahrung zu reichen, ist einer der wichtigsten Factoren, um sie an das Futter zu gewöhnen. Die Hauptbedingung ist, dass die gereichten Thiere lebend sind, sich bewegen müssen, und dass das Gefäss, in dem sich das Futter befindet, so stehen muss, dass die in denselben umherkriechenden Insecten von der Sonne beleuchtet werden, da das Chamaeleon wegen seiner winzigen Lidspalte nur hellbeleuchtete Gegenstände wahrnimmt.

Wie alle Eidechsen ziehen auch die Chamaeleoncens das Trinken der Wassertropfen von Blättern, Zweigen u. s. w. dem Trinken aus Gefässen vor.

Ueber die Lebensweise der Amphibolusen ist uns nur noch sehr wenig bekannt. Ihre gewöhnlichen Aufenthaltsorte sind die Haufen der Termiten oder Ameisen, deren Larven sie verzechen. „Es ist, sagt Tschiudi (Reise nach Peru), in dem Haushalte der Wanderameisen eine auffallende Erscheinung, dass diese mitten in ihren unterirdischen Wohnungen ein Thier von der beträchtlichen Grösse der Blindschleiche ganz ungestört dulden, um so mehr, als sie sonst die erbittertesten Feinde aller lebenden Wesen sind, jedes, welches unvorsichtigerweise ihren Siedelungen sich nähert, überfallen und durch ihre Anzahl und Kraft selbst Schlangen von mehr als Meterlänge und Säugethiere von der Grösse eines Eichhörnchens bewältigen und tödten. Uebrigens enthält weder jeder Wanderameisenhaufen eine Blindschleiche, noch lebt jede Blindschleiche in einer Ameisensiedlung; ich habe dieselben wiederholt auch aus seichten, wie mir scheint selbstgegrabenen Löchern und Kaffeebergen erhalten."

Ihre Bewegungen sind sonderbarer Art. "Diejenigen von ihnen, welche ich faud — sagt der Prinz von Wied — bewegten sich kaum, bevor man sie anstieß, und dann wie ein Regenwurm, was auch ein Beweis für ihr schwaches Gesicht zu sein scheint."

Anpassung.

Dass auch bei den Reptilien Schutzfärbungen allgemein ausgeprägt zu Tage treten, wird von manchen Naturforschern auch für Saurier durch zahlreiche Beispiele nachgewiesen.

„Im Allgemeinen schon finden wir, sagt Knauer (Zool. Anzeiger T. II. 1879. p. 84), dass alle zwischen Gräsern, grünem Laub, Gebüsch, Wasserpflanzen u. dergl. sich aufhaltenden Saurier ganz oder theilweise grün gefärbt sind, so z. B. L. stiripium, L. viridis. Dagegen wird L. vivipara, Anguis fragilis, welche sich zwischen und auf dürrem Laub auf-
halten, mehr oder weniger braun gefärbt; *Pseudopus serpeninus* imitirt in seiner Oberkörperfärbung den Moosboden des Waldes. *Lacerta muralis* und *Hemidactylus verruculatus* wiederholen in ihrem düsteren Grau oder Braun die Färbung des Erdbodens, Gemäuers, der Baumrinde u. s. w.

Wie mächtig die Wirkung der Farbe der Umgebung auf die Farbe der Eidechsen ist, lehren nach demselben Forscher die Maueridechsen auf dem Actna ganz zweifellos. Dort wo der Lavaboden mit üppigem Grün bedeckt ist, sind die Maueridechsen schön grün; kommt man dagegen in vegetationsärmeres Gebiet, so ändert sich die Farbe dieser Thiere, es erscheinen zuerst einzelne, dann mehr und mehr zahlreiche solche, bei welchen ein Theil der Körperoberfläche die Farbe des Gesteins angenommen hat, so dass sie, auf diesem sitzend, weniger leicht sichtbar werden. Und zwar sind es Kopf, vorderer und hinterer Theil des Rückens und Schwanz, welche zuerst die braune Farbe annehmen, während der mittlere Theil des Rückens noch grün bleibt.

„Es war nun — wie er sagt — im höchsten Grad interessant zu sehen, wie Schritt für Schritt, je weiter man in vegetationsärmere Gegend gelangte, die Eidechsen dunkler wurden, in der Weise, dass das grüne Gebiet ihres Rückens immer geringer an Ausdehnung ward, bis er nur noch als kleiner, nach vorn und nach hinten in Braun übergehender Sattel sich zeigte und bis es endlich ganz geschwunden war. Noch war

Die Mauereidechsen von den Filfola-Felsen bei Malta sind pechschwarz, die Felsen selbst rüsselschwarz von einem Ueberzug mikroskopischer Flechten.

„Nirgends — bemerkt Eimer (l. e.) weiter — wird das Bedürfniss einer Farbenauspassung größer sein müssen, als bei den Reptilien und unter diesen bei den Eidechsen, deren wahres Lebenselement das Sonnenlicht ist, dessen voller Einwirkung sich auszusetzen sie im höchsten Grade bedürftig sind. Und so finden wir denn auch, dass die Abänderungen unserer Lacerta muralis, so verschiedenartig sie sein mögen, doch immer nur beruhen auf Farben oder auf Mischungen von Farben, welche am Erd boden, an Steinen und Mauern die gewöhnlichen sind, insbesondere von Braun, Grau und Grün. Die verschiedenen nach Farbe und Zeichnung aufgestellten Varietäten der Mauereidechsen sind den Oertlichkeiten, an welchen sie leben, zuweilen in auffallender Weise angepasst. Die grüne elegans fand er überwiegend da, wo weite, grün angebaute Flächen (Getreidefelder, Gras) sich ausbreiten; die olivenbraune modesta da, wo kahle Erd- und Sandflächen, etwa abwechselnd mit Grün, vor herrschen; die Eigenschaften der gezeichneten, besonders der gescheckten endlich vorzugsweise in der Nähe von Gebüsche ausgeprägt oder da, wo sie sonst durch ihre Zeichnung auf dem Untergrunde geschützt sind — was nicht ausschliesst, dass alle Varietäten neben einander vorkommen können, jede in ihrer Art angepasst, bestimmten Verhältnissen der Umgebung, durch welche der nötige Schutz für jede einzelne gegeben sein kann.

Die süditalienischen Mauereidechsen verlieren im Spätsommer auf ausgedörrtem Boden die hervorragend grüne Farbe, welche die Mehrzahl ihrer Individuen im Frühling auszeichnet. Die Mauereidechsen, welchen man auf der in Folge der Hitze fast von allem Schmuck des Pflanzen grüns entblösten Insel Capri begegnet, fallen auf durch die Glanzlosigkeit und Düsterheit ihrer Farben, besonders durch das Zurücktreten von Grün bedingt.

Wie schliesslich Eimer durch die zahlreichen auf den capresischen Felsen gesammelten Mauereidechsen nachgewiesen hat, ist bei ihnen Blau das erste Stadium der Farbenänderung und diese Farbe muss erst secundär

Bei ganzen Gruppen ausländischer Saurier ändert bekanntlich das lebende Thier in der Erregung die Farbe. Auch bei den einheimischen Eidechsen lassen sich nach Leydиг (l. c.) hiervon wenigstens Spuren beobachten: ein und dasselbe Individuum kann nach Umständen etwas heller oder dunkler sein.

Am meisten fiel diese Erscheinung Leydиг auf an der Lacerta muralis (var. campestris de Bettá), welche den Lido von Venedig bewohnt. Die Thiere boten im Freien auf dem heissen Sande ein sehr helles Aussehen dar, einige Wochen im Dunkel gehalten waren sie, obschon frisch und lebendig, doch merklich dunkler geworden; dem Tageslicht andauernd wieder ausgesetzt hielten sie sich zu dem früheren Farbenton auf. Geringer, aber an manchen Individuen für den, der darauf achten gelernt hat, unverkennbar, ist die Veränderung des Grüns bei L. agilis. Wenn im Mai die Temperatur plötzlich rasch herabgeht oder auch bei Regenwetter nimmt nach Leydиг das schöne Grün der Seite an Thieren in Gefangenschaft einen etwas gelbblichen Ton an. Auch bei L. viridis scheint der Farbenwechsel durch starke Aufrégung des Thieres in ungleich grelilerer Weise erfolgen zu können.

Unter allen Eidechsen ist wohl der Farbenwechsel bei den Chamæleœnon am ausgeprägtesten und auch am meisten und am allgemeinsten bekannt. Bei einzelnen Arten, so z. B. bei Ch. supercilias, Owenii, cristatus und montbana, welche sämtlich im tropischen Afrika leben, giebt es nach Buchholz (Ueber den Farbenwechsel der Chamaeleone, in: Monatsbl. Berl. Akademie 1874, p. 298) neben dem dem allgemeinen Farbenwechsel unterworfenen Partien des Körpers einzelne bestimmte begrenzte Stellen, welche an dieser Veränderlichkeit entweder gar nicht
oder doch nur in sehr geringem Grade theilnehmen, und mehr oder minder vollständig constante Färbungen darbieten. Hierher gehören unter anderen die Furchen der Kehlhäut, welche bei einer jeden derselben eine verschiedenartige und durchaus unveränderliche Färbung besitzen, sowie gewisse Schuppenregionen am Kopfe, welche bei dem so überaus energischen und raschen Wechsel der Färbung bei den genannten Arten unveränderlich bleibt. Im Uebrigen ist im Allgemeinen zu bemerken, dass trotz der oftmaß sehr grossen Veränderlichkeit der Wechsel der Färbung doch überall zwischen zwei äussersten Extremen sich bewegt, innerhalb deren das System der Färbung bei einer jeden Art ein constantes und durchaus charakteristisches ist. Die dunkelste Färbung tritt nach ihm gewöhnlich in voller Intensität auf, wenn die Thiere beunruhigt und zum Zorn gereizt werden, während ein völliges Erblassen und das hellste Extrem der Färbung mehr einem Erlöschen der Lebensfähigkeit zu entsprechen und bei erschöpften oder im Absterben begriffenen Thieren hervorzutreten pflegt.

Zwischen beiden Extremen, welche der Wechsel der Färbung darbietet, liegen in der Regel eine grosse Reihe von Abstufungen, innerhalb deren mitunter ganz abweichende Farbentöne hervortreten. Es erheilt hieraus, wie Buchholz hervorhebt, dass trotz der sehr grossen Veränderlichkeit doch die Färbung sehr constante und charakteristische Merkmale für die einzelnen Arten darbietet. Auch bei anderen Eidechsen kommt, wenn auch in beschränkterem Grade, Farbenwechsel vor.

Häutung.

Nach Knauer (Zool. Anzeiger T. II. 1879, p. 496) sollen sich die Saurier, wie alle übrigen Amphibien und Reptilien periodisch häuten. Lassen die Lebensbedingungen, so sagt er, unter welchen man sie ihr Gefangenenleben fristen lässt, Manches zu wünschen übrig, ohne dass aber von einem Verhungern oder völligm Wasserentzug die Rede wäre, so geht der Häutungsakt in weit längeren Pausen etwa alle 2—3 Monate einmal vor sich, die Haut streit sich weniger leicht ab und das neue Kleid zeigt stellenweise flechtenartige Makel. Entzieht man an Feuchtigkeit gewölbten Reptilien das Wasser ganz, so unterbleibt die Häutung. Bietet man gern sich sonnenden Reptilien gar keine Gelegenheit hierzu, so geht die Häutung, auch wenn den übrigen Lebensbedingungen vollkommen Rechnung getragen wird, gar nicht oder nur unvollkommen vor sich. Bei gesunden und regelmäßig sich häutenden Individuen geht das untäglich gewordene Kleid im Zusammenhange ab, bei kränkelnden, nicht gesättigten oder sonstwie ungünstig beeinflussten mühsam und in kleinen Fetzen. Bei L. agilis dauert nach diesem Forscher die Häutung eine Woche, bei L. muralis 5—7 Tage.

Stimme.

Auch die Geckonen haben eine Stimme. So sagt Schönburgk: „Kaum hatten wir am Abend unsere düstere Lampe angezündet, so erschienen die Geckonen unter nicht seltenem Ausstossen ihrer unangenehmen lauten Töne, um die Jagd auf Mosquitos und andere Insecten zu beginnen.“ Und von diesen Thieren sprechend sagt Brehm: „Da wo sie vorkommen, treten sie in der Regel sehr häufig auf und sie verstehen es auch, die Aufmerksamkeit der Menschen auf sich zu ziehen, sind sie doch die ein-
zigen Schuppenechsen, welche wirkliche Kehlkopflaute ausstossen können, oder, was dasselbe, eine Stimme haben. Den Anfang ihrer Jagd zeigen sie gewöhnlich durch ein lautes oder doch wohl vernehmliches, kurzes Geschrei an, welches durch die Silben „Gek“ oder „Toke“ ungefähr wiedergegeben werden kann, gelegentlich auch in höhere oder tiefere Laute übergeht. Nach Tennent klingt das kurze Geschrei der in Ceylon lebenden Geckonen mehr als „chic, chic, ehit.“

Nutzen und Schädlichkeit für den Menschen.

Auch das Fleisch der Dorneidechse soll vortrefflich schmecken und an das junger Hühner erinnern; deshalb werden sie auch von den Beduinen gejagt.

In Westindien ist die Ansicht, dass das Fleisch der Leguan unge- sund sei, in gewissen Krankheiten insbesondere die Zufälle vermehre, ziemlich allgemein verbreitet, gleichwohl kehrt sich nach Brehm Niemand an diese Meinung, sucht vielmehr ein so leckeres Gericht für die Küche sich zu verschaffen. Das Fleisch gilt für leicht verdaulich, während und schmackhaft und wird gebraten, häufiger aber noch gekocht gegessen. Die Eier, in denen sich fast kein Eiweiss findet, und welche beim Kochen nicht erhärten, werden gewöhnlich zur Herstellung der Brühen benutzt. In ihren Eingeweiden findet man zuweilen Bezoare von der Gestalt eines halben Eies.

Die Haut von Psammosaurus und Stellio dient hier und da zu Verzierungen von Säbelscheiden, Schilden u. s. w.

Biologischer Theil.

Aus dem Mitgetheilen dürfte wohl hervorgehen, dass dem Heloderma mit Recht von den Eingeborenen giftige Eigenschaften zugeschrieben werden. Dagegen scheint Brehm sich mehr der Meinung hinzunehmen, dass der Biss von Heloderma wohl sehr schmerzhaft ist, aber doch ohne alle Zwischenfälle heißt.

Wohl ganz mit Unrecht dagegen werden die Geckonen (Woodsflave der Colonisten) von den Indianern und Farbigen in Britisch Guiana für giftig gehalten. „Wenn“, so erzählten sie uns, wie Schomburgk mittheilt, „ein solches Thier auf die blosse Haut eines Menschen fällt, so lösen sich die Zehenscheiben, welche das Gift enthalten (die klebrige Fenchtigkeit, welche sich zwischen diesen absondert?) ab und dringen in das Fleisch ein, wodurch eine Geschwulst hervorgerufen wird, die den schnellen Tod im Gefolge hat.“ Der Glaube, dass der Biss der Geckonen giftig sei, herrscht nach Tschudi auch in Peru (I. c.).

Auch Brehm gibt an: „Unzählige Male habe ich Geckos gefangen, sie in der Hand gehabt und sie und ihre Blatterscheiben betrachtet, niemals aber auch nur den geringsten Nachtheil von der Berührung und Handhabung der als giftig verschriebenen Geschöpfe verspürt.“
Auch die vollkommen harmlosen Blindschleichen gelten in den Augen der Südafrikaner für äusserst giftig. Der bis zu 1,7 Meter an Länge gross werdende Varanus alboocularis wird von den holländischen Bauern in Südafrika überaus gefürchtet, und zwar nicht blos dess Zornes und der beachtenswerthen Zähne halber, sondern weil man fest überzeugt ist, dass er giftig sei, was unzweifelhaft wohl nicht der Fall ist.

Fortpflanzung.

Der reife Embryo von L. vivipara wird noch von der Eihaut umgeben geboren. Der Vorgang des Gebärens, welcher immer, sowie das Eierlegen der anderen Arten, zur Nachtzeit stattzufinden scheint, ist mehrfach beobachtet worden. So gibt z. B. Leydig an, dass die Jungen keine Spur eines äusseren Dottersacks mehr haben, aber am Bauche eine deutliche kleine Längsfalte der Haut, welche etwa der Länge von drei Querreihen der Bauchplatte entspricht; aus dem Grunde der Spalte schimmert das Grau der Bauchmuskeln, die Spalte bleibt einige Tage offen. Die Eihaut kann aber schon innerhalb des Uterus gesprengt und abgestreift werden, dann stellt sich natürlich ein reines Lebendiggeborenwerden ein (Leydig).

L. vivipara gebiert Ende Juli; Anguis fragilis erst Ende August oder in den Anfang des September, obgleich die Begattung schon im Mai oder Juni stattfindet.

Wenn z. B. bei L. agilis die Fortpflanzungszeit vorüber ist, so scheinen sich die Thiere in Verstecke zurückzuziehen oder zu vergraben, um
vielleicht in ähnlicher Weise, wie es bei den Wassermolchen vorkommt, eine Art Sommerschlaf zu halten. Es ist — sagt Leydig — eine That-
sache, die jeder leicht bemerken wird, dass im Frühjahr an einem be-
stimmten Orte die Eidechsen sehr häufig sein können und später, etwa
gegen Ende Juli hin, geradezu selten geworden sind, namentlich wenn
starke Hitze sich eingestellt hat. In den sandigen Dünen von Holland
z. B., wo L. agilis von Mai bis Mitte Juni gar nicht selten ist, begegnet
man im Juli fast keiner mehr.

Nach Leydig geht die Entwicklung und Reife der Samenelemente
bei L. agilis gleichen Schritt mit der Ausbildung der Farbe des Hoch-
zeitskleides. Thiere, welche schon mit dem „freudig Grün“ geschmückt
sind, zeigen den Nebenoden und den Samengang prall erfüllt mit leb-
haft sich bewegenden Zoospermien. Männchen dagegen aus der ersten
Hälfte des Mai, deren Seiten erst einen grünlchen Ton angenommen
haben, bieten auch innerlich noch jüngere Zustände dar. Im Hoden hat
zwar die Samenbildung begonnen, aber die Masse der Spermatozoa liegt
noch zusammengekrümmt in den Zellen und wenn sie frei geworden, ist
sie ohne Bewegung. Einzelne Spermatozoa sind bereits in den Neben-
oden gelangt und diese bewegen sich. Die Canäle des Nebenoden sind
um die angegebene Zeit mit einer Masse erfüllt, welche sich als Secret
der Epithelwand wahrscheinlich dem Samen beizumischen hat. Sie be-
steht aus Körnchen, welche nahezu die Beschattung von Fett haben, aber
doch wohl aus Eiweiss bestehen. Die Epithelzellen, bei Thieren aus noch
früherer Zeit ziemlich niedrig, haben sich jetzt zu hohen Cylinderzellen
daucoupeln, welche im hinteren Theil hell, im vorderen trübkörnig sind.
Dieser Abschnitt der Zelle verwandelt sich nach Leydig (l. c.) in das
erwähnte Secret.

Nach Glückselig's Beobachtungen nähert sich das paarungslustige
Männchen dem Weibchen in hochaufgerichteter Stellung mit an der Wur-
zeln bogenförmig gekrümmten Schwanz, umgeht dasselbe und wird zu
weiterem Vorgehen ermuntht, wenn das Weibchen sich schlängelnd und
zappelnd bewegt und damit seine Willfähigkeit bekundet. Es ergreift
hierauf mit dem Kiefer das Weibchen oberhalb der Hinterfüße und presst
so den Leib desselben ziemlich stark zusammen, hebt und dreht ihn halb
gegen sich um, stülpert durch Druck und Verdrehung des Körpers die Kloake
hinaus, setzt einen Fuss über den Rücken weg und drückt seine Ge-
schlechtstheile fest gegen die des Weibchens. Beide bleiben etwa drei
Minuten unbeweglich verbunden, das Männchen öffnet dann die Kiefer
und lässt das Weibchen frei, welches letztere sich schnell entfernt. Die
Begattung wird mehrmals im Laufe des Tages vollzogen. Eine feuchte
Umgebung ist Bedingung zum Gedeihen der abgelegten Eier, an der Luft
tröcknen sie sehr schnell ein. Nach den Mittheilungen von F. Meyer
(Zool. Garten 1874, p. 318) ist die Begattung der Blindschleichen der-
jenigen der Eidechsen ähnlich. Das Männchen packt das Weibchen derb
mit den Zähnen am Hinterkopfe und nähert sich hierauf mit dem Hinter-
Reptilien.

theil der Kloake des Weibchens; in dieser Lage bleibt es mehrere Stunden neben dem Weibchen liegen. Es ist also keine Verschlingung nach Art der Schlangen. Das Erfassen und Festhalten des Hinterhauipes erfolgt durch das Männchen so stark, dass hierdurch eine Verletzung der Schuppen stattfindet, und es wird im Anfang Mai in den meisten Fällen bei Auffindung eines Weibchens möglich, zu wissen, ob es schon begattet ist. In den Ameisenhaufen, in welchem sie wohnen, legen die Blindschleichen auch ihre Eier.

Der entwickelungsgeschichtliche Theil wird am Schluss der Reptilien gemeinschaftlich mit dem der anderen Reptilien-Abtheilungen behandelt werden.
Register.

Sachnamen.

(C bedeutet Crocodile, Ch Chamaeleone, f S füsslose Saurier, H Hatteria und wenn nichts angegeben ist, beziehen sich die Angaben auf die Saurier.)

Acetabulum siehe Beckengürtel.
Acrodonutes 898
Acromial tuberosity, siehe Schultergürtel.
Acusticus-epithel siehe Gehörorgan.
Ala magna siehe Schädel.
Ala orbitalis - -
Ala temporis - -
Ala temporis anterior ossis sphenoidi, siehe Schädel.
Ala temporis posterior ossis sphenoidi siehe Schädel.
Alisphenoid siehe Schädel.
Alveolus siehe Verdauungsorgane.
Ambos siehe Gehörorgan.
Archipterygium siehe Handwurzel.
Archus Aortae siehe Herz.
Aorta acromialis 997
 - anastomotica genu superioris c. Art.
 - anastomotica genu inferioris 997
 - anastomotica temporalis c. Art.
 - mammaria interna 992G
 - anonyma 998C
 - aorta descendens 983 1003C
 - aorta dextra 973 983 1003C
 - aorta sacralis 1003
 - aorta sinistra 973 983 1003C
 - articularis genu inferioris
terna 1002
 - articularis genu inferioris
 - interna 1002
 - articularis genu media 1002
 - genu superioris commu-
inis 1002
 - genu superioris ex-
terna 1002
 - genu superioris in-
terna 1002
 - genu superioris
 - media 1002
 - auditiva interna 988 994C
 - axillaris 997 998C
 - basilaris 988 994C
 - carotis 978 984
 - carotis cerebralis 981 987 993C
 - communis 984 991C
Apertura recessus cavi tympani siehe Gehörorgan.
Apertura carotica, siehe Gehörorgan.
Apertura externa canalis Fallopiae siehe Gehörorgan.
Apertura interna canalis Fallopiae siehe Gehörorgan.
Apertura aquaeductus vestibuli siehe Gehörorgan.
Apertura aquaeductus sylvii siehe Zentralnervensystem.
Aquaeductus vestibuli siehe Gehörorgan.
Aquaeductus membranaceus siehe Gehörorgan.
Arteria carotis externa
- - interna
- - primaria
- - subvertebralis
- caudalis
- cervicalis
- cervicalis inferior
- superior
- ciliaris
- circumflexa femoris externa
- - interna
- - humeri
- - ischi
- -\n- cloacalis
- coeliaca
- collateralis colli
- - dextra
- - sinistra
- coronaria cordis
- cruralis s. femoralis
- cutanea lateralis
- digitalis digitii media
- digitalis dorsalis
- dentalis inferior
- - superior
- duodeno-hepatica
- epigastrica
- ethmoidalis communis
- facialis
- fibularis hallucis
- - indicis
- gastrica (superior)
- gastro-hepatica (gastrica inferior)
- - haemorrhoidalis posterior
- - propria
- - hyoidea
- - hyoidea-lingualis
- - iliaca externa
- - interna
- - ilio-lumbalis
- - infra-maxillaris
- - infra-orbitalis
- - intercostalis
- - ischiadica
- - jejunalis
- - lingualis
- - lumbalis
- - malleolaris anterior interna
- - posterior externa
- - - interna
- - mammaria externa
- - interna

Arteria maxillaris interna
- - muscularis carotidis communis
- - metatarsa
- - musculo-articularis inferior
- - superior
- - nasalis externa
- - nasalis interna
- - obturatoria
- - oesophagea
- - ophthalmica
- - orbitalis
- - inferior
- - superior
- - palato-nasalis
- - pectoralis
- - poa-peronea
- - tibialis
- - poplitea
- - profunda brachii
- - femoris inferior
- - superior
- - pudenda communis
- - externa
- - muscularis
- - pulmonalis
- - radialis
- - recurrens peronea
- - tibialis
- - renalis
- - sacralis
- - sacralis lateralis
- - prima sinistra
- - secunda dextra
- - teria sinistra
- - scapularis
- - spermatica externa
- - anterior
- - dextra
- - anterior
- - sinistra
- - posterior
- - dextra
- - posterior
- - sinistra
- - subclavia
- - dextra
- - sinistra
- - subscapularis
- - suralis
- - superficialis
Arteria tarsae profunda 1003
- temporalis 992c
- thoracica 997 998C
- thoracico-abdominalis 997
- tibialis antica 1002
- - indicis 1003
- - postica 1002
- thymica 981 985
- umaris communis 999
- vertebraleis 994 999
- - anterius s. profunda 998C
- - communis 998C
- - posterioris 998C
Articulare s. Schädel.
Astragalus s. Fuss.
Astragalo-calcaneus s. Fuss.
- fibulare s. Fuss.
- scaphoideum s. Fuss.
Atlas s. Schädel.
Atrio-ventricularklappen s. Herz.
Atrium s. Herz.
- dextrum s. Herz.
- sinistrum s. Herz.
Auge 788—825
Augenlid (oberes) 783, 800C (unteres) 789, 800C: Augenlider 789, 799C; Canaliculi lacrymales 798, 803C; Chorioidea 807, 808C; Ciliärschleimhaut 508; Cornea 806; Cornea-Basalmembran (vordere, hintere) 806; Cornea-Endothel 806; Cornea-Epithel 806; Cornea-Gewebe 806; Cutsplatte der Augenlider 789; Doppelzapfen 819; Ductus naso-lacrimalis 798; Foramen lacrymale 798; Fovea centralis 819C; Fulcrum 822, (generale) 822, (speciale) 822; Ganglion optici 824; Ganglion retinae 823; Ganglienzellschicht 812; Glandulae conjunctivales 802C; Glandulae Harderi 796, 802C; Glandula lacrymale 796, 802C; Granulirte Schicht (äussere) 812, (innere) 812; Iris 807; Irismusculatur 808; Kolben 811; Körnerschicht äussere 812, innere 812; Lamina superciliaris 793; Lidmuskul (glatte) 791, 797; Limbus 810; Margin ciliaris 807; Membrana nictitans 795, 801C; Musc. adductor maxillae superioris 791, 800C; M. bursalis 795; M. crampom- nianus 809; M. depressor palpebrae inferioris 791, 801C; M. tensorchorioidea 809; Nervenansätze 822; Netz haut 811; Neurospoonium 823; ora serrata 808; Pars ciliaris retinae 808; Pecten 819; Processus ciliares 808; Puncta lacrymalia 797, 802C; Retinapigment 824; Sacculus naso-lacrimalis 803; Sclera, Sclerotica 805, 806C; (Knochenring der) 806; Schleimhautplatte der Augenlider 789, 790; Schmerzensnäser 811; Schwellen 812; Sinnesepithel der Netz haut 812; Spongionblasten 823; Stäbchenschicht 812; Stäbchen 819C; Supereiliarknochen 783; Tapetum 825; Tarsus 790, 791; Tunica vascularis 807; Zapfen, 813, 819; Zapfen- schicht 812.
Augenlid (oberes) s. Auge.
- (unteres) -
Basi-byal s. Schädel.
Basi-occipital s. Schädel.
Basi-sphenoid s. Schädel.
Beckengurtel 537—546
Beckengurtel bei Crocodilden 546—549, Comp- sognathus 550, Hatteria 546, Ichthyostega 550, Ornithosuchidae 550, Placostega 549, Plesiosauria 551, Sauropoda 537—546; Entwick- lung des Beckengurtels 542; Acetabulum 537, 547C; Epipubis 543; Foramen conditorm 537; obturatorium 537; Hypo-ischium 543; Ileo-pectineum 539; Ilium 538, 547C; Ischium 538, 549C; Ligamentum ileo-ischia- dicum 546; Ligamentum ischiadicum 539; Os coxae 543; Pubis 537, 541C; Pubo-ischium 539; Sympysis ileo-pectinea 540, ossium ischi 538, ossium pubis 537; Tuber ischi 540. Bildungsblatter, s. Uro-genitalorgane.
Bindegeewebe der Leder haut, s. Integument des Rückenmarks. Centrahrnervensystem.
Biologischer Theil 1329
Blinddarm s. Organe der Ernährung.
Blut 1010
Blutkörperehen 1012
Bogen (oberen) s. Wirbelsäule.
- (unteren) -
Bogengänge, s. Gehörorgan.
Bogennnissur, s. Gehörorgan.
Brustbein 502—508
Brustbein bei Anguis 503, bei Cuimodo- cophoraus 503, bei Crocodilen 507, bei Hatteria 506, bei Mosasauria 503, bei Sauropoda 505; Entwicklung des Brustbeins bei Sauropoda 505, bei Crocodilen 507, Xiphisternum 505.
Balbus arteriosus s. Herz.
- ofactorius s. Centrahrnervensystem.
Bursae s. Gehörorgan.
Calcaneum s. Fusswurzel.
Canaliculi lacrymales s. Auge.
Canalis ossis quadrati s. Gehörorgan.
Canalis petro-mandibularis s. Auge.
Caput femoris s. Oberschenkel.
Carpalia d. zweiten Reihe s. Handwurzel.
Register.

Dottermasse (Chemische Bestandtheile der) s. Urogenitalorgane.

Ductus Botalli s. Herz.
- caroticus 994C
- choledochus s. Organe der Ernährung.
- naso-lacrimalis s. Schädel u. Auge.
- thoraticus 1016

Dura mater medullae spinalis s. Zentralnervensystem.

Eichel s. Urogenitalorgane.

Ei -

Eiörgang s.

Eileiter -

Eileiterdrüse s. Urogenitalorgane.

Eischale -

Eischalenhaut -

Eizahn s. Organe der Ernährung.

Epapterygoid s. Schädel.

Eminenlia acustica s. Gehörorgan.

Enddarm s. Organ der Ernährung.

Epicondylus s. Oberarm.

- ulnaris s. Oberarm.

Epiconooid s. Schultergürtel.

Epidermis s. Hautscelet.

Epiglottis s. Respirationsorgane.

Epithelium s. Schädel.

Epipubis s. Beckengürtel.

Epistemum s. Schultergürtel.

Epistropheus s. Wirbelsäule.

Epitrichialschicht s. Integument.

Epitrochleus s. Oberarm.

Epophoron s. Urogenitalorgane.

Ernährung (Organe der) SS0—924.

Aerodontes SS9; Alveolen 910; Becherförmige Körperehen SS1; Blinddarm 914; Brevelingua SS2; Cement SS9, 911C; Cloake 912; Crassilinguia SS2, SS3; Dentin SS9, 911C; Dentinkeln 902; Ductus choledochus 924C; Ductus hepaticus 924; Eizahn SS7; Enddarm SS1, 914, 920C; Ersatzehe 901, 902, 912C; Ersatzzähne (Entwicklung der) 901, Fissilligua SS3; Gallenblase 923; Gaumensiegel 915C; Geschmackswärzchen 891C; Leber 923; Lippenrücken SS9; Magen 913; Magendrüsen 913, 917, 920C; Mesenterium 913; Membrana glauclusa SS6; Mitteldarm SS4, 914, 919C; Munddarm SS0; Musc. accelerator SS6; M. genio-glossus SS4, SS8, 995C; M. hyo-glossus SS4, SS5, SS8, 995C;
M. lateralis linguae SS7; M. subnuco sus SS7; Odontoblasten 903; Oesophagus 913, 916C; Pancreas 922, Pharynx 913, 916C; Pleurodontes SS8; Pulvinar SS7; Pulsationsöhle 900, 911C; Reservezähne (Entwicklung der) 903; Schmelz SS9, 910C; Schmelzkeim 910C; Speicheldrüsen SS9, S90; Tuberulum palatinum SS1; Untergangendrüse 909; Venticuli SS2, SS8; Zähne bei Acrothorax 908, bei Anguis SS7, bei Crocodylien 910, bei Gephyranthus 908, bei Heloderma 908, bei Hydracodon 907, bei Ichthyosaurus 909, bei Iguana 907, bei Iguanodon 907, bei Lacerta SS6, bei Leidolodon 908, bei Megalosaurus 908, bei Pterosauriern 910, bei Sauropteryx 906, bei schlangenähnlichen Sauropsiden 906, bei Theriodontosaurus 908; Zähne (Bau der) SS8; Zahnkrone S90; Zahnleiste 910, Zahnsockel S99; Zunge bei Anguis SS4, bei Chamaeleon SS5, bei Crocodylien 982, bei Hemidactylus SS7; bei Lacerta SS3, bei Phylodactylus SS5; Zungengründsen SS3C.

Ersatzzähne s. Organe der Ernährung.
Ersatzzähne - - -
Ethmoidale laterale s. Schädel.
Ex-occipital - - -
Fasciculi teretes s. Centralnervensystem.
Fastigium - - -
Felsenbein s. Schädel.
Fenestra coracoidae anterior s. Schultergürtel.
Fenestra coracoidae posterior s. Schultergürtel.
Fenestra coraco-scapularis s. Schultergürtel.
Fenestra ovalis s. Schädel.
Fenestra scapularis s. Schultergürtel.
Pettörper s. Urogenitalorgane.
Fibula s. Unterschenkel.
Fidum terminale s. Centralnervensystem.
Fissura mediana inferior s. Centralnervensystem.
Fissura pallii s. Centralnervensystem.
Flägelbein s. Schädel.
Foramen caroticum internum s. Gehirnorg.
Foramen cochlearia s. Gehirnorg.
- cordiforme s. Beckengürtel.
- lacrymale s. Auge.
- Monroi s. Centralnervensystem.
- obturatorium s. Beckengürtel.
970; Ductus Botalli 974; Gubernaculum cordis 965; Herzens (Form 968. Function 978, Lage des 967), Kiemenbogen 975; Semilunarklappe 974; Septum atrium 972, ventriculorum 971; Truncus arteriosus siehe Bulbus arteriosus; Valvula Eustachii 972; Ventriculus 966, 969. (dexter 970, sinister 971); Visceralbogen 975, Schlundbogen siehe Visceralbogen.

Hinterhauptsbein (Körper des) s. Schädel.

- (Seitentheil des) s. Schädel,
Hinterhirn s. Centralnervensystem.
Höcker (hinterer) s. Oberarm.
- (unterer oder vorderer) s. Oberarm.
Holmen s. Uro-genitalorgane.
Hodenanälichen s. Uro-genitalorgane.
Hornschiene s. Integument.
Hornschuppen -
Hörner (Oberhörner, Unterhörner) s. Centralnervensystem.
Hornplatte s. Integument.
Humor s. Oberarm.
Hyaloideum s. Schädel.
Hypopophyse s. Wirbelsäule.
Hypo-ischium s. Beckengürtel.
Hypophysen s. Centralnervensystem.
Ischiun s. Beckengürtel.
Ileon -
Ileo-pectineum s. Beckengürtel.
Incisura semilunaris s. Vorderarm.
Infundibulum s. Centralnervensystem.
Integument 445; 457 C;
Bindegewebe der Lederhaut 441; Chromatophoren 448, Cuticula 446; Cuticularhaare 449; Cuticularhaare der Sinnesorgane 451; Cutis 445, 449; Entwicklung der Cutis 456; Cyllindrolage (äußere) 447; Cylinderzellen (innere) 448; Drusen der Haut 454; Epidermis 445; Epithrichalschicht 446; Granulenschicht (obere) 460 C; (untere) 460 C; (obere) 449; untere 449; Grundmasse der Lederhaut 449, 460 C; Haftflappen der Geokristatae 449; Hautknochen 451; Hautossificationen 451; Hautskelett 445; Hautung 457, Häutungszellen (innere) 448; Hornplatten 457 C; 448; Hornschielen 445, 457 C; Hornschicht 447; Knochenschilder 457 C; Körner 450; Körnerschicht 447; Lymphdrüsen der Haut 453; 87
Larynx (Kehlkopf) s. Respirationsoorgan.
Leber s. Organe der Ernährung.
Lendenwirbel s. Wirbelsäule.
Lidmuskeln (glatte) s. Auge.
Ligamentum flexo-ischiadicum s. Beckengürtel.
- ischiadicum s. Beckengürtel.
- s. Gehörorgan.
Linsen s. Auge.
Lippendrüsen s. Organe der Ernährung.
Lymphdrüsen der Haut s. Integument.
Lymphgefässsystem s. 1017
Lymphherzen s. 1017
Macula acustica s. Gehörorgan.
- neglecta s. Gehörorgan.
Magens s. Organe der Ernährung.
Magendrüsen s. Organe der Ernährung.
Magen s. Schädel.
Malleus s. Gehörorgan.
Margo ciliaris s. Auge.
Mastoideus s. Schädel.
Maxilla, Maxillare s. Schädel.
Meatus auditortius externus s. Gehörorgan.
- internus s. Gehörorgan.
Meckel'sche Knorpe s. Schädel.
Medulla oblongata s. Zentralnervensystem.
Medulla spinalis s. Zentralnervensystem.
Membrana basilaris s. Gehörorgan.
- Cori s. -
- glandulosa s. Organe der Ernährung.
- nictitans s. Auge.
- Reissneri s. Gehörorgan.
Mesenterium s. Organe der Ernährung.
Mesoanrium - Urogenitalorgan.
Mesometrium s. -
Mesoscaapula s. Schultergürtel.
Metacarapalia s. Handwurzel.
Milz s. 1019
Mitteldarm s. Organe der Ernährung.
Mittelfussknochen s. Mittelfussknochen.
Mittelhirn s. Zentralnervensystem.
Moscusdrüse s. Urogenitalorgan.
Mundbarm s. Organe der Ernährung.
Musculus abductor digitii minimi 637 689 C
- femoralis 642
- fibularis 696 C
- hallucis 659
- politis 696 C
- politis longus 633 634 635 676 C
- quinti digitis 637 689 C
- acromio-humeralis 623
- adductor (cruris) 644
- 696 C
- fibularis 644
- flexor tibialis 606 C
- ichtadicus 644
- magnus 644
- maxillae superioris s. Auge.
- tibialis 645
- ambiens 695 C
- anconaeus 630 660 C 683 C
- (caput coraco-scapulare) 630 683 C
- (caput humeraler laterale) 630 660 C 684 C
- (caput humeraler medium) 659 660 C 684 C
- (caput humeraler posterior) 684 C
- (caput scapulare laterale) 630 660 C 683 C
- acpsor oris 673 C
- atlanti-mastoideus 677 C
- basio-occipito-cervicalis 616
- biceps brachii 629 660 C 684 C
- cruris s. femoris 641 646
- 666 C 696 C
- biventer cervicis 676
- brachialis anticus 630 661 C 684 C
- externus 683 C
- inferior 661 C
- internus 630 661 C
- bursalis s. Auge.
- capiti-cervicalis 617
- inferior 633 C
- superior 653 C
- capitii-clavalo-episternalis 626
- capitii-dorsico-clavicularis 616 626
<table>
<thead>
<tr>
<th>Musculus capiti-mandibularis</th>
<th>614</th>
</tr>
</thead>
<tbody>
<tr>
<td>- capiti-ternoralis</td>
<td>614 65Sc Ch 677C</td>
</tr>
<tr>
<td>- carpo-digitalis I</td>
<td>646Ch</td>
</tr>
<tr>
<td>- carpo-digitalis IV</td>
<td>664Ch</td>
</tr>
<tr>
<td>- carpo-digitalis V</td>
<td>664Ch</td>
</tr>
<tr>
<td>- carpo-digitalis dorsalis communis</td>
<td>633</td>
</tr>
<tr>
<td>- carpo-digitalis ulnaris</td>
<td>637</td>
</tr>
<tr>
<td>- carpo-digitalis ventralis brevis</td>
<td>636</td>
</tr>
<tr>
<td>- carpo-digitalis ventralis communis</td>
<td>636</td>
</tr>
<tr>
<td>- carpo-metacarpalis I</td>
<td>689C</td>
</tr>
<tr>
<td>- carpo-metacarpalis IV</td>
<td>665Ch</td>
</tr>
<tr>
<td>- carpo-metacarpalis V</td>
<td>637665Ch 689C</td>
</tr>
<tr>
<td>- carpo-phasangeni (manus)</td>
<td>657C 685C</td>
</tr>
<tr>
<td>- carpo-phasangeni primus digiti V</td>
<td>689C</td>
</tr>
<tr>
<td>- caudali-femoralis</td>
<td>697C 704H</td>
</tr>
<tr>
<td>- caudali-ileo-femoralis</td>
<td>697C 704H</td>
</tr>
<tr>
<td>- caudali-ileo-ischiatricus</td>
<td>666C</td>
</tr>
<tr>
<td>- cerato-hyoideus</td>
<td>615 675C</td>
</tr>
<tr>
<td>- cerato-mandibularis</td>
<td>615 952C</td>
</tr>
<tr>
<td>- cervicalis adscendens</td>
<td>617 665C 677C</td>
</tr>
<tr>
<td>- claviculumberialis</td>
<td>623</td>
</tr>
<tr>
<td>- claviculumberialis</td>
<td>623</td>
</tr>
<tr>
<td>- cleido-humeralis</td>
<td>623</td>
</tr>
<tr>
<td>- cleido-mastoidens</td>
<td>623</td>
</tr>
<tr>
<td>- coccygeus</td>
<td>643</td>
</tr>
<tr>
<td>- coccygeus externus</td>
<td>643</td>
</tr>
<tr>
<td>- coccyge-femoralis brevis</td>
<td>642</td>
</tr>
<tr>
<td>- coccyge-femoralis longus</td>
<td>642</td>
</tr>
<tr>
<td>- coccygeus inferior</td>
<td>642 643</td>
</tr>
<tr>
<td>- collo-captitius</td>
<td>675C</td>
</tr>
<tr>
<td>- collo-occipitius</td>
<td>676C</td>
</tr>
<tr>
<td>- collo-scapularis</td>
<td>628C</td>
</tr>
<tr>
<td>- collo-scapularis superficialis</td>
<td>628</td>
</tr>
<tr>
<td>- collo-scapularis superficialis</td>
<td>675C</td>
</tr>
<tr>
<td>- collo-scapularis medialis</td>
<td>675C</td>
</tr>
<tr>
<td>- collo-thoracis-suprasecualaris profundus</td>
<td>621 665Ch 679C</td>
</tr>
<tr>
<td>- complexus</td>
<td>617 676C</td>
</tr>
<tr>
<td>- complexus cervicis</td>
<td>676C</td>
</tr>
<tr>
<td>- complexus major</td>
<td>617 653Ch</td>
</tr>
<tr>
<td>- complexus minor</td>
<td>617 653Ch</td>
</tr>
<tr>
<td>- coraco-antebrachialis</td>
<td>629661Ch 681C</td>
</tr>
<tr>
<td>- coraco-brachialis</td>
<td>659C</td>
</tr>
<tr>
<td>- coraco-brachialis anterior</td>
<td>628</td>
</tr>
<tr>
<td>- coraco-brachialis brevis</td>
<td>628 639Ch</td>
</tr>
<tr>
<td>- coraco-brachialis longus posterior</td>
<td>659C</td>
</tr>
<tr>
<td>- coraco-brachialis longus posterior</td>
<td>659C</td>
</tr>
<tr>
<td>- coraco-brachialis proprius</td>
<td>614</td>
</tr>
</tbody>
</table>

Musculus coraco-brachialis proprius anterior	624 659Ch
- coraco-humeralis	624
- coraco-humeralis anterior	657Ch
- coraco-humeralis internus	629
- coraco-hyoideus	674C
- coraco-radialis	629 651C
- coracoideus	681C
- costo-cervicalis	618
- costo-coracoideus	675C 679C
- costo-epistero-humeralis	629
- costo-scalapularis	622 675
- costo-sterno-scalapularis	621
- costo-vertebralis lateralis	675
- costo-vertebralis medialis	675
- cromptonianus s. Auge.	632
- cruraeus	616 667C 696C
- cruralis	696
- cuccularis	616 626 665Ch 677C
- deltoideus	622 680C
- deltoideus clavicularis	623
- deltoideus costo-ternoralis inferius	657Ch
- deltoideus scapularis	622 657Ch
- deltoideus scapularis inferior	682C
- deltoideus scapularis superior	682C
- deltoideus superior	682C
- depressor laryngis s. Respirationorgane.	632
- depressor mandibularae	614 651Ch
- depressor palpebro inferioris s. Auge und	501C
- diaphragmaticus	693C
- digastricus	614 651C 673C
- dilator laryngis s. Respirationorgane.	614
- dorsalis scapulae	652C
- dorso-humeralis	616 655Ch 652C
- dorso-mandibularis	615
- dorso-scalapularis	622 656Ch 677C
- ekopterygoideus	614
- ekopterygoideus	614
- epicondylo-carpalis radialis	632
- epicondylo-fibulito-tarso-digitals ventralis proprius	650
- epicondylo-metatarsalis digitals ventralis sublimis	649
- epicondylo-metatarsalis dorsalis medialis	647
- epicondylo-metatarsalis ulnaris	634
- epicondylo-radialis	632
- epicondylo-humeralis	659Ch
- epicocaco-humeralis	681C
- epistero-hyoideus	674 f. S
Musculus episterno-celeido-hyoidens superficialis
- episterno-hyoidens profundus 615
- episterno-hyoidens sublimis 615
- epistrophleo-vertebralis 676C
- epistrophleo-carpalis-radialis 636
- epistrophleo-carpalis-ulnaris 636
- epistrophleo-metacarpalis ventralis fibularis 648
- epistrophleo-radialis 635
- epistrophleo-tibio-metatarsalis ventralis 648
- epistrophleo-ulno-digitalis 636
- extensor I-V 6700C
- extensor III IV V VI VII 6700C
- extensor brevis digitorum 648
- extensor carpi radialis 633 661C
- extensor carpi radialis brevis 661C
- extensor carpi radialis longus 661C
- extensor carpi ulnaris 634 661C
- extensor digitorum brevis 633 687C
- extensor digitorum longus 633 687C
- extensor femori-caudalis accessorius 697C
- extensor hallucis brevis 688C
- extensor hallucis proprius 701C 706H
- extensor ileo-tibialis 695C 696C 703H
- extensor longus digitorum 647 669C
- 700C 706H
- extensor musculi III IV V VI VII VIII IX 664—665C
- extensor ossis metacarpi pollicis 634 637 664C
- extensor phalangorum 662C 6700C
- extensor pollicis longus 648
- extensor quarti digiti 648
- extensor radialis longus 687C
- extensor tarsi 648
- femoro-caudalis 682 686C
- femoro-coxagoenus 642
- femoro-fibulo-digitalis IV V 608
- femoro-fibularis digitii V 608C
- femoro-metatarsalis dorsalis 648
- femoro-peronaeo-coxagoenus 697C
- femoro-tibio-metatarsalis plantaris 648
- femoro-tibialis 690C 704H
- femoro-tibialis externus 646 667C
- femoro-tibialis internus 646 667C
- femoro-tibialis medius 667C
- femoro-tibio-metatarsalis III 669C
- fibulo-digitalis I II 668C

Musculus fibulo-metatarsalis II 6700C
- fibulo-metatarsalis V 6700C
- fibulo-metatarsalis dorsalis 648
- fibulo-tarsalis 668C
- fibulo-tarsalis inferior 647
- fibulo-tarsalis superior 647 669C
- fibulo-tarsalium metatars. V 647 669C
- fibulo-tibialis inferior 647
- fibulo-tibialis superior 647
- fibulo-tibio-metatarsalis V 669C
- flexor abductor cruris 696C
- flexor accessorius digit. pedis 650
- flexor brevis digitii minimi 669C
- flexor brevis digitorum 663C
- flexor brevis hallucis 650 669C
- flexor brevis digitii minimi 646C
- flexor brevis perforatus 702C
- flexor carpi radialis 635 662C 688C
- flexor carpi ulnaris 636 662C 689C
- flexor digitii minimi brevis 636 689C
- flexor digitorum brevis 669C 702C
- flexor digitorum communis profundus 636 689C
- flexor digitorum communis sublimis 636 663C 688C
- flexor digitorum profundus 689C
- flexor digitorum sublimis 689C
- flexor longus accessorius 702C
- flexor longus digitorum pedis 650
- 668C 701C 706H
- flexor perforans 649 650
- flexor perforatus 649
- flexor perforatus digitorum 636
- flexor profundus digitorum 663C
- flexor profundus femoris 644
- flexor pollicis brevis 661C
- flexor pollicis longus 663C
- flexor sublimis a profundo perforatus 688C
- flexor tibialis externus 697C 705H
- flexor tibialis internus 698C 705H
- gastrocemius 648 701C 706H
- gastrocneniueus externus 668C
- gastrocnemius internus 667C
- gemellus 700C
- gemellus internus 648
- genio-ceratoideus 652
- genio-glossus s. Organe der Ernährung.
- genio-hyoidens 652
- gluteus maximus 646 696C
- gluteus medius 642
- gluteus minimus 695C
- gluteus primus 666C
Musculus glutaeus secundus 666Ch
- glutaeus tertius 666Ch
- gracilis . 645 665Ch 695C 689C
- humero-antebrachialis inferior . . . 630
- humero-antebrachialis superior . . . 681C
- humero-carpalis 662Ch
- humero-carpali-radialis 632 686C
- humero-carpali-ulnaris 687C
- humero-metacarpalis I, III, IV, V 661—
humero-metacarpalis III—V . . . 687C
humero-metacarpalis radialis 633
humero-radialis 661Ch 684C
humero-radialis brevis 686C
humero-radialis carpalis 634
humero-radialis internus 686C
humero-radialis lateralis 688C
humero-radialis longus 686C
humero-radialis medialis 662Ch 688C
humero-radialis superior 682
humero-ulno-digitalis I, II, III 663Ch
humero-ulno-digitalis IV, V 663Ch
humero-ulno-digitalis ventralis 636
humero-ulno-metacarpalis 664Ch
humero-ulno-phalangei 688C
humero-ulno-radialis 663 662Ch
hyo-glossus s. Organe der
Ernährung.
hyo-mandibularis 613 657Ch 657C
iliacus 642 666Ch 699C
iliacus externus 642
iliacus internus 641 699C
ileo-caudalis 655Ch
ileo-coccycgeus 643
ileo-costalis 616
ileo-femoralis . . . 642 696C 704H
ileo-femoralis major 666Ch
ileo-femoralis minor 667C
ileo-tibialis 644 696C 704H
ileo-ischio-pubefemoralis 666Ch
ileo-ischial-tarsalis 666Ch
ileo-ischial-tibialis 666Ch
ileo-ischial-tibialis profundus 645
ileo-peronealis 644 666Ch
ileo-tibialis 646
ileo-tibialis 667C
ileo-trochantericus major 666Ch
ileo-trochantericus minor 666Ch
infra-caudalis 655
infraspinatus 622 682C
intercostalis 619 654Ch 692C
intermaxillaris 651Ch 675C
interoseus . 650 665Ch 670Ch 702C
Musculus interosseus cruris 702 707H
- interosseus dorsalis 638
- interosseus volaris 638
- ischio-caudalis 655
- ischio-coccycgeus . . . 643 671H 708C
- ischio-femoralis 667 696C 705H
- ischio-pubefemoralis 641
- ischio-tibialis 665Ch
- ischio-tibialis profundus 646
- ischio-tibialis sublimis posterior . 645
- ischio-trochantericus 667Ch
- ischio-trochantericus longus 644
- lateralis linguae s. Organe der
Ernährung.
latisinus colli 673C
latisimus colli accessorius 673C
latisimus dorsi 616 626 656Ch 682Ch
latisimus dorsi scapulo-costalis 675C
levator anguli scapulae . 621 628
655Ch 675C
levator claviculae 628 638Ch
levator scapulae 628 655Ch 675C
levator scapulae superficialis . . . 675C
levator scapulae et serratus
profundus 621 679C
longissimus dorsi 616 653Ch
longus colli 618 675C
lumbricales . 637 663Ch 688C
marsupialis externus 699C
marsupialis internus 699C
masseter 672C
maxillo-coracoideus 674C
maxillo-hyoideus 675C
metacarpo-digitalis I—V 665Ch
metatarso-digitii I—V 670Ch
metatarso-digitii II 664Ch
metatarso-digitii III 664Ch 670Ch
metatarso-digitii IV 664Ch
metatarso-digitii III, IV, V 670Ch
metatarso-palangenues I 680C
metatarso-phalangeus I digitii V 690C
mylo-ceratoideus 615
mylo-hyoideus 613 673C
mylo-hyoideus anterior 651 674C
mylo-hyoideus posterior 651 675C
neuro-mandibularis 615
obliques abdominis externus . 639
655Ch 671f 690C
obliques abdominis inferior 613
obliques abdominis internus 639
654Ch 690C
obliques abdominis profundus . 671f 689C
obliques abdominis sublimis 671f
Nervus accessorius-Willisi . . . 749 763C
- accessorio-vagus 751
- acusticus 743 759C
- alveolaris anterior 756C
- alveolaris inferior 739 755C
- alveolaris posterior 757C
- alveolaris superior 736 737
- anconaeus 773C 775C 778C
- axillaris 775C 780C
- brachialis longus inferior 774 775 780C
- brachialis longus superior 773 775
- brachialis superior 775 778C 780C
- cardiacus vagi 749 763C
- chorda tympani 742 759C
- ciliaris 731 732 753C 755C
- collo-thoracis-suprascapulare-profundus 778C
- communicans n. glossopharyngei 740
- communicans anterior r. palatini c. maxillare superiori 741 756C 759C
- communicans externus c. glossopharyngeo 735
- communicans n. infraorbitalis 740
- communicans externus n. facialis 741 743
- communicans externus r. palatini c. glossopharyngeo 759C
- communicans internus r. palatini 743
- communicans-posterior r. palatini cum maxillare superiori 740 758C
- 759C
- conjunctivalis 756C
- coraco-brachialis 775 777C 780C
- cutaneus alveolaris 739
- cutaneus alveolaris superior 736
- cutaneus brachii et antibrachii medialis 775 779C
- cutaneus brachii medialis 779C
- cutaneus brachii superior lateralis 778
- cutaneus pectoralis 780
- dentalis 737
- dentalis n. alveolaris superior 736
- descendens glosso-pharyngei 761C
- descendens hypoglossi 752
- descendens larynge-pharyngei 761C
dorsalis scapulae 772 777C 779C
dorsalis n. spinalis 733 771
- externus n. accessorii 750 760C 763C
- facialis 730 735C
- frontalis 731 735 755C
- furcalis 782

Nervus glosso-pharyngeus 743 759C
- humero-radialis 780C
- hyoideus 739
- hypoglossus 751 763C
- inframaxillaris 734 737 755C 757C
- infraorbitalis 736 757C
- ischiadicus 784
- latissimus dorsi 773 775 778C 779C
- 781C
- laryngeus glossopharyngei 745
- laryngeus-superior 745 760C
- laryngo-pharyngeus 748 760C 762C
- lingualis 739 745
- muscularis n. facialis 743
- muscularis n. glosso-pharyngeus 745
- muscularis n. inframaxillaris 758C
- (pro) musculo depr. palp. infer. 734
- (pro) muscula obliqua inferiori 731
- 753C
- (pro) muscula recto externo 731 753C
- (pro) muscula recto inferiori 731 753C
- (pro) musculo recto interno 731
- (pro) musculo recto superiori 731
- nasalis 784 758C
- nasalis gangl. ciliaris 753C
- obturatorius 782
- oculomotorius 730 753C
- oesophageus n. vagi 749
- olastorius 730 782C
- ophthalmicus 734 755C
- opticus 730 752C
- palatini 748 758C
- palatini n. facialis 737 742 758C
- pectoralis 775 775C 780C
- peroneus profundus 784
- peroneus superficialis 784
- pharyngeus n. glossopharyngeus 745
- 760C
- pterygoideus externus 738
- pharygoideus internus 738
- recurvens cutaneus maxillae inferioris 737 758C
- recurvens (ad) n. faciale 733 756C
- recurvens gangl. trigeminorum 759C
- recurvus n. opthalmicus 755C
- recurvus n. vagi 749 761C 762C
- scapulo-humeralis 775C 779C
- scapulo-humeralis profundus 775C 779C
- 780C
- subcutaneus malae 738
- subcapularis 777 778C 779C 780C
- supracoracoides 777C 779C
- supracoracoscapularis 775 779C
Nervus supramaxillaris . . . 735 755C
- supraorbitalis 736
- sterno-coracoideus . . . 774
- sympathicus 765
- sympathicus impar . . . 765C
- sympathicus superficialis . 761C
- temporalis 738
- teres major 779C 781C
- trigeminus 733 753C
- trochlearis 732 753C
- thoracicus anterior III . . 777C
- thoracicus anterior IV . . 778C
- thoracicus anterior V . . 778C
- thoracicus anterior VII . . 779C
- thoracicus inferior . . . 777 750C
- thoracicus inferior X . . 779C
- thoracicus superior . . . 772 777C
- thoracicus superior IV . . 778C
- thoracicus superior V . . 778C
- thoracicus superior VI . . 778C
- thoracicus superior VII . . 779C
- thoracicus superior VIII . . 779C
- vagus 747 761C
- ventralis n. spinalis . . . 771
- vidianus 735

Netzhaut s. Auge.
Neuroepithelium der Ampullen s. Gehörorgan.
- Membrana basis- laris s. Gehörorgan.
- Sacculus s. Gehörorgan.

Neurospongium s. Auge.
Nickhaut s. Auge.
Nieren s. Uro-genitalorgane.
Nutzen für den Menschen . . . 1364
Oberarmknochen 522—524
Condylus extensorius 523, externus 523, flexorius 523, radialis s. lateralis 523, ulnaris s. medialis 523; Crête delboideale 522; Crest (radial) 523; Crista epicondyloidea lateralis 523; Epicondyly 523; Epicondyly radialis 523, ulnaris 523; Höcker (hinterer) 523; Processus lateralis 522, medialis 523; Tuberculum externum s. majus 523, internum s. minus 523, (lateralen unteren) 523, Tuberosité postérieure 523; Tuberosity (greater)523, (radial) 523, (ulnar) 523.
Oberschenkel 551
Caput femoris 551; Condylus exter-

nus, internus 551; Epicondyly 551:
Epitrochleus 551; Patella 551; Tro- chanter major, minor 551.
Obex s. Centralnervensystem.
Occipitale externum s. Schädel.
- inferior -
- laterale -
- superior -
Odontoblasten s. Organe der Ernährung.
Oesophageus s. Organe der Ernährung.
Olecranon s. Vorderarmknochen.
Ora serrat a s. Auge.
Orbitale anterius s. Schädel.
- postierius -
Orbito-sphenoidale -
Organe eines sechsten Sinnes . . . 579
Operculare s. Schädel.
Opisthotica -
Os clocae s. Beckengürtel.
Ossa suprapetalia s. Gurnichorgan.
Ostium pharyngeum tubae s. Gehörorgan.
Otolithen s. Gehörorgan.
Ovarium s. Uro-genitalorgane.
Palatinum s. Schädel.
Paucares s. Organe der Ernährung.
Papilla acustica s. Gehörorgan.
- Retzii -
- ure-genitalis s. Uro-genitalorgane.
Papillen s. Integument.
Parasphenoidea s. Schädel.
Parietale -
- laterale s. Schädel.
Pars basilaris occipitis s. Schädel.
- caudalis medullae spinalis s. Centralnervensystem.
- ciliaris retinae s. Auge.
- commissurals s. Centralnervensystem.
- dentalis maxillae inferioris siehe Schädel.
- dorsalis medullae spinalis s. Centralnervensystem.
- lateralis occipitis s. Schädel.
- lumbalis medullae spinalis s. Centralnervensystem.
- palato-orbitalis ossis palatini s. Schädel.
- peduncularis s. Centralnervensystem.
- sacralis medullae spinalis s. Centralnervensystem.
Patella ulnae s. Vorderarm.
- s. Oberschenkel.
Paukenhöhle s. Gehörorgan.
Register.

Pecten s. Auge.
Petrosum s. Schädel.
Phalangen 530 567
Pharynx s. Organe der Ernährung.
Pholidosis 1038
Pia mater s. Centr alnervensystem.
Pigmentzellen s. Integument.
Pileus 1040
Pisiforme s. Handwurzel.
Planum semilunatum s. Gehörorgan.
Platten s. Integument.
Plica axillaris 1041
- gularis 1041
Plexus brachialis 772
- chorioides s. Centralnervens.
- cruralis 782
- ischiadicus 782
- lumbo-sacralis 781
- pudendus 781
- spheno-palatinus 785
Pneumacität s. Integument.
Porus acusticus s. Gehörorgan.
Post-frontale s. Schädel.
Postorbitale s. Schädel.
Postsacralwirbel s. Wirbelsäule,
Praefrontale s. Schädel.
Praemaxillare s. Schädel.
Praesacralwirbel s. Wirbelsäule.
Praesphenoid s. Schädel.
Primordialschädel s. Schädel.
Proatlas s. Wirbelsäule.
Processus acromialis s. Schultergürtel,
- articulares s. Wirbelsäule,
- articularis ossis temporis s. Schädel.
- arytaenoides s. Respiration-
 organsae.
- ciliaris s. Auge.
- entoglossus s. Schädel.
- epiglotticus s. Respirations-
 organsae.
- lateralis s. Oberarm.
- lateralis cerebelli s. Central-
 nervensystem.
- longus mallei s. Gehörorgan.
- mediais s. Oberarmknochen.
- parotici s. Schädel.
- spinosi s. Wirbelsäule.
- styloideus s. Unterrarm.
- s. Schädel.
- transversi s. Schultergürtel.
- zygomaticus ossis temporis s. Schädel.
Procoracoid s. Schultergürtel.
Rippen (Vertebral-) 496
- (Entwicklung der) . . . 489, 493 C
- Morphologie der) . . . 500
Rocher s. Schädel.
Rückenmark s. Centralnervensystem.
Rückenmarkshänder s. Centralnervensystem.
Rückenwirbel s. Wirbelsäule.
Sacralwirbel -
Sacculus s. Gehörorgan.
Saccus naso-lacrimalis s. Geruchsorgan.
Scala cocholearis s. Gehörorgan.
- media
- tympani
- Scapula s. Schultergurtel.
Schädel p. 565—610:
bei den Crocodilien 585—599, bei
Hatteria 583—585, bei Ichthyosauriern
605, bei Ornithosceliden 608, Pteras- 609,
sauriern 586 C, Pterosauriern 609,
Sauriern 586-583: Ala magna 570, 586 C: Ala orbitalis 586 C, Alisphen- 570, 586 C, 591 C: Ala tempora- noid 570, 586 C, 591 C: Ala temporali- lis anterior ossis sphenoidi 586 C,
Ala temporalis posterior ossis sphen- noi dei 556: Ambos 599: Angulare 572, 588 C: Articulare 572, 588 C: Basihyal 605: Basi-occipital 569, 586 C: Basi-sphenoidaleum 569, 586 C:
Cartilago ethmoidalis 576: Cerato- 570, 577 H, 585 C, 601: Complementare 572, 588: Copula 605: Coronoi- deum 572, 588 C: Corpus ossis occipi- titis 569, 586 C: Dentale 570, 588 C: Ducesus naso-lacrimalis 559: Ektoph- eygoid 571, 588 C: Epti cium 573:
Ethenoidale laterale 571, 588 C: Eta-
occipital 569, 586 C: Felsenbein 570:
Frontale posterius 570, 587 C: Grund- bein (Gelenktheil des) 569, 586 C:
(Körper des) 569, 586 C: Hinterhau- ptheins (Grundstück des) 569, (Körper des) 586 C: (Schuppe des) 569, (Sei- tentheile des) 569, 586 C: Hyoideum 572, 588 C: Internaxillare 571, 588 C: Jugale 571, 585 H, 588 C, 597 C: Keil- bein (Deichsel des Körpers vom hinte- renen) 570: Keilbeinflügel 586, (hin- terer) 586, 588 C: (Körper des) 569, 588 C: Lacrymaile 571, 584 H, 587 C, 594 C: Malare 571, 588 C: Malicus 599: Mastoides 570, 577, 587 C: Maxillare, Maxilla, Max- illary, Maxilla superior 571, 579, 585 H, 588, 594 C: Mekelscher knor- pel 599 C: Nasale 570, 588 C, Occipi- tale basilare 569, 572, 584 H, 596, 598 C: Occipitale externum 573: Occipi- tale inferius 569, 573 C: Occipitalia lateralia 569, 572, 584 H, 586 C, 589 C:
Occipitale superius 569, 586 C, 590 C: Operculare 572, 589 C: Opisthohicum 573, 584 H: Orbital anterius 571, 587 C: Orbital posterus 587 C: Orbito- sphenoidaleum 574, 586 C, 591 C: Palati- nium 571, 579, 585 H, 587 C, 597 C:
terorbitale 573; Spleniale 572, 589 C; Sphenoides 569, 586 C; Sphenoi-
denum basilarum 569, 573, 584 H, 586 C, 590 C; Sphenoides basilaris anterius 570; Sphenoides basilaris posterior 569; Sphenos-basilaris 586; Squama 589 C; Squama occipititis 569, 586 C; Squama temporalis 570, 586 C; Squamosum 570, 578, 584 H, 595 C; Stapes 601; Supra-angulare 572, 589 C; Suprana-
xyllare 571, 579, 584 H, 589 C; Supra-occipital 569, 586 C; Supra-
orbitale 580, 594 C; Supra-temporale 570, 577, 584 H, 594 C; Surangular 572, 589 C; Sutura sagittalis 577; Temporal cecalixen 589 C; Temporale 570, 589 C; Thêénenbein 571, 597 C; Transpalatinum 587 C; Transversum 571, 579, 584 H, 587 C; Tym-
panicum 570, 587 C; Unterkiefer 571, 583, 584 H, 595 C; Vomer 571, 584 H, 597 C; Zwischenkiefer 571, 589 C; Zygomatum 571, 589 C; Zygotes-
temorale 589 C; Zungenbein 609; Zungenbeinhörner 609.

Schädlichkeit für den Menschen . 1361

Schultergürtel 509—522. Amphi-
chisacraiden 519, Crocodile 520; Ena-
losaurier 521, Hattieria 517, Ich-
thyosaurier 521, Sauier 509, fass-
löse Sauier 518; Entwickelung des
Schultergürtels bei Anguis 512, bei
Crocodilophos 509, bei Crocodile 520;
Acromial tuberosity 513; Acromion
513; Clavicula 513, bei Anguis 512,
bei Crocodile 509; Coracoid
513, bei Anguis 512, bei Croc-
colephos 509, bei Crocodile 521; Ep-
coracoid 513, 516, Episternum (cla-
 viculares Sternum) 511, bei Croc-
dilien 521; Fenestra coracoidea an-
terior 515, coraco-scapularis 515,
scapularis 515; Mesoscapula 517;
Procoracoid 516; Processus acro-
nialis 513; Scapula 509, bei Anguis
512, bei Crocodile 509; bei
Crocodile 520; Suprascapular 513.

Schmelzkeim s. Organe der Ernährung.
Schenkeldrüsen s. Integument.

Schicht (intermediaire) s. Integument.
Schlafbeins (Felsenbein) s. Schädel.
- (Schuppe des) -
- (Zitzenbein des) -
Schlafengrube s. Schädel.

Schleinhautplatte (der Augenlider) s. Auge.
Schuppen s. Integument.
Schuppentasche s. Integument.
Schwanzwirbel s. Wirbelsäule.
Sclera, Sclerotica s. Auge.
Sentella superciliara . 1039
Seutum frenale . 1040
- freno-oculare . 1040
- frontale . 1039
- fronto-nasale . 1039
- fronto-parietale . 1040
- intermaxillare . 1039
- internasale . 1039
- interparietale . 1040
- massetericum . 1040
- mentale . 1040
- nasale . 1040
- naso-frenale . 1040
- occipitale . 1039
- paritale . 1040
- postoculare . 1040
- præoculare . 1040
- rostrale . 1039
- sublabiale . 1040
- submaxillare . 1040
- supratubale . 1040
- supranasale . 1039
- supraculare . 1039
- temporale . 1040
- tympanicum . 1040

Segmentalblasen s. Uro-genitalorgane.
Segmentalstränge -
Schleifen (lange) s. Auge.
- (kurze) -
Schnervenfaserschicht s. Auge.
Semilunarkappe s. Herz.
Septum atriorum s. Herz.
Sinnesepithel der Netzhaute s. Auge.
Sinnesorgane der Haut s. Integument.
Sinus utriculi s. Gehörorgan.
Speicheldrüse s. Organe der Ernährung.
Sphenoides basilaris s. Schädel.
Sphenoides basilaris s. Schädel.
Spermatozoa s. Uro-genitalorgane.
Spongioblasten s. Auge.
Spleniale s. Schädel.
Squama occipitis s. Schädel.
- carinata . 1038
- granulata . 1038
- imbricata . 1038
- laeris . 1038
- macronata . 1038

Register.
Squama temporis s. Schädel und ... 1040
verticillata 1038
Squamosum s. Schädel.
Stäbchen s. Auge.
Stäbzelzellen s. Integument.
Stapes s. Schädel.
Sternum claviculare s. Schultergürtel.
Sternum s. Brustbein.
Stimmblätter s. Respirationso rgane.
Stratum corneum s. Integument.
- granulosum s. Integument.
- limitans inferior s. Integument.
- limitans superior -
- lucidum s. Integument.
Sulcus centralis s. Centralnervensystem.
- longitudinalis inferior s. Cent ralnervensystem.
- superior s. Centralnervensystem.
- recessus scalaris s. Gehörorgan.
- spiralis -
Superciliarischnecken s. Auge.
Supra-angulare s. Schädel.
Supra-maxillare s. Schädel.
Supra-occipitale -
Supra-orbitale -
Suprascapulare s. Schultergurtel.
Supratemporal s. Schädel.
Surangulare s. Schädel.
Sutura sagittalis s. Schädel.
Symphyses ilio-pectinea s. Beckengürtel.
- ossium ischi s. Beckengürtel.
- ossium pubis s. Beckengürtel.
Tenaen medullaris ventriculi tertii s. Centralnervensystem.
Talgdrüse s. Organe der Ernährung.
Tapetum s. Auge.
Tarsalia der zweiten Reihe s. Tarsus (Fusswurzel).
Tarsus s. Auge.
Tarsus (Fusswurzel) 552–567
Astragalus 554; Astragalo-calcanenus 557; Astragalo-fibulare 556; A stragalo-scaphoideum 365C; Calcaneum 554, 564C; Centrale 556; Cuboideum 555, 564C; Tarsalia der zweiten Reihe 555; Tarsus von Compsognathus 567, der Crocodile 563–565, von Homoo saurus 563, Laossaurus 567, Ornitho sledae 567, Proterosaurus 566, Sa phaeosaurus 568, bei den Sauriern 552–563.
Tectum loborum bigemin. s. Centralnervensystem.
Tela chorioidea s. Centralnervensystem.
Entwicklung der Uro-genitalorgane
930—936, 938—939C; Epophoron 935; Fettkörper 949; Granulosas 937; Harmlaspe 929, 960C; Harmlötter 925, 962C; Hoden 930, 960C; Hodencanälen 930; Keimbläschen 936; Keimflocke 936; Keimsäcke 936; Keimstätte 935; Mesoorium 943; Mesometrium 943; Moschusdrüse 962C; Nahrungsdotter 938; Nebenhoden 931, 960C; Nebeneierstock 955; Nieren 924, 960C; Ovarium 933, 961C; Papilla uro-genitalis 946; Prostata 946; Segmentalblase 951; Segmentalstrange 953; Spermatozoa 931; Talgdrüse 946; Trichter 942; Tubendrüse 945; Ureter 930; Ureiferlager 933; Unerne 932, 950; Unterknochen 932; Uterus 942; Uterusdrüsen 941; Vas deferens 931, 961; Wolff'scher Gang 932, 955; Wolff'scher Körper 934, 958C; Zona radiata 941; Zonaoidchicht 957.

Uterus s. Uro-genitalorgane.

Uterusdrüsen s. Urogenitalorgane.

Uriculus s. Gehörorgan.

Valvula Eustachii s. Herz.

Vas deferens s. Uro-genitalorgane.

Volum medullae anterius s. Centrainerven-system.

Vena abdominalis
- abdominalis dextra 1010C
- abdominalis sinistra 1010C
- axillaris 1007C
- caudalis 1007C 1010
- cava inferior 1005C 1010
- cava superior 1005C 1010
- cephalica 1006C
- cloacae 1010
- cruralis 1006C 1010
- dentalis inferior 1006C
- dentalis superior 1006C
- diploica 1010C
- epigastrica interna 1006C
- facialis 1006C
- haemorrhoidalis 1007C 1010
- hepatica 1006C 1010
- hypogastrica 1010
- iliaca communis 1010
- iliaca communis dextra 1010
- iliaca communis sinistra 1010
- iliaca externa 1010
- iliaca interna 1010
- interco-talis 1007C
- intervertebralis 1010C 1011
articulares 468, C480; Processus spinosi 466, 467, C480; Processus transversi 468, 480; Wirbel (Dorso-lumbal.) 461, 466 — (Hals-) 461, C480 — (Lenden-) C480 — (post-sacrale) 461, C480 — (praesacrale) 461, C480 — (Rücken-) C480 — (Sacral-) 461, 466, C480 — (Schwanz) 461, 466, C480; Wirbelassimilation 472; Wirbelsäule bei Geckonen 464, bei Hatteria 475, bei Ichthyosauri 485, bei Ornithoscelidae 486, bei Plesiosauri 484; bei Plherosauri 486, bei Streptospondylus 486; Zyganthrum 468; Zygosphen 468. — Wirbel s. Wirbelsäule.

Wolff‘scbe Gang s. Uro-genitalorgane.
-Körper- Wurzel (obere) s. Centralnervensystem.
- (untere) -
Zähne s. Organe der Ernährung.
Zahnkrone s. Organe der Ernährung.
Zahnleiste - - -
Zahnscheckel - - -
Zapfen s. Auge.
Zona radiata s. Uro-genitalorgane.
Zonoidschicht -
Zunge s. Organe der Ernährung.
Zungenbein s. Schädel.
Zungendrüsen s. Organe der Ernährung.
Zwischenhirn s. Centralnerven-system.
Zwischenkiefer s. Schädel.
Zyganthrum s. Wirbelsäule.
Zygomaticum s. Schädel.
Zygosphen s. Wirbelsäule.
Zygo-temporale s. Schädel.
Namenregister.

Ablepharus 1121 1122 1170.
- Bottonii 1122.

Abronia 1097 1103.

Acanthodactylus 1080 1081 1089 1358.
- Acanthodactylus Boskiaaus 1359.

Acanthodactylus lineomaculatus 1089 1359.

Acanthodactylus Savignyi 1089.

Acanthodactylus vulgaris 1089.

Acantholis 1229 1236.

Acanthopholis 1311.

Acanthopyca 1073 1077.

Acantosaurus 1257 1265.

Acontiadae 1175.

Acontias 1179.
- elegans 1180.

Acranthus 1073 1077.

Acrosaurus 1322.

Acteosaurus 1323.

Ada 1071.
- guianensis 1079.

Angothannus 1313.

Agama 1258 1274.
- sanguinolenta 1274.

Agamidae 1256.

Agamura 1157 1212.
- cruralis 1212.

Agathannas 1315.

Algira 1080 1088.

Alligator 1050 1060 1063.
- latirostris 1335.
- mississippiensis 1061.
- niger 1061 1333.
- trogonatus 1061.

Aloaechylus 1107 1110.
- de l'Islei 1110.

Allosaurus 1313 1314.
- fragilis 1314.

Aloponotus 1218 1226.
- Ricardi 1226.

Aloposaurus 1329.

Amblyrhynchus 1227.

Aneola 1073 1075.

Amphibolurus 1272.

Amphicoelias 1311.

Amphiglossus 1172 1175.
- Astrolabi 1175.

Amphibisaurus 1314.

Amphibisauridae 1314.

Amphibiscula 1286 1288 1296.

Amphibiaenidae 1288.

Amphibiscina 1288 1296.

Amphibiaenidae 1286.

Amphixestus 1157.

Amphiesaurus 1155 1201.
- lugubris 1202.
- neuraleonicus 1202.

Amistes 1093.

Anadiadae 1065 1118.

Anadias 1118.
- ecellata 1118.

Anaspisiscinus 1170.

Anelytrops 1179 1180.

Anheporus 1229 1238.
- occipitalis 1238.

Anguis 1133 1155.
- fragilis 1335 1342 1357 1367.
- orientalis 1155.

Anquissaurus 1323.

Anisotherma 135 1169.
- sphenopsiforme 1169.

Anniella 1131 1147 1171.
- pulchra 1147.

Anolis 1220 1236 1349.

Anolis 1236.

Anomodontia 1301.

Anopina 1291.

Anops 1286 1291 1296.
- Kingii 1291.
- Steindachneri 1291.

Anota 1223 1254.
- M'Callii 1254.

Anotes 1141.

Apatosaurus 1311.

Apola 1280 1281.
- lateralis 1281.

Aporomeria 1075.

Aprasia 1128.
- pulchella 1128.

Aprasiae 1129 1128.

Apterygodon 1132 1149.
- - vittatus 1149.

Aromosuchus 1060.

Asteosaurus 1323.

Argalia 1115.

Aristelliger 1155.

Arpephorus 1229 1255.
- trincustr 1255 1256.

Arus 1264.

Ascalabotes 1294.

Aspidolaemus 1115.

Aspidoliscinus 1170.

Aspitis 1090.

Ateuchosaurus 1134 1162 1169.
- - chinesis 1162.

Aubly-sodon 1315.

Bachia 1107 1110.
- d'Orbigni 1110.

Balica 1286 1291.
- africana 1292.

Barissia 1098 1101 1105.

Barycephalus 1258 1270.
- Sykezzii 1270.

Basileus 1219 1229.

Batracosoma 1223 1254.

Biana 1262.

Bipes 1154 1171.

Blanus 1286 1288 1296.
- cinereus 1288.

Blepharactis 1121 1123.
- speciosus 1123.

Blepharosteres 1130 1139.

Bolitath 1197.
- sublaevis 1198.

Bombifrons 1059.

Brachydactylus 1187 1212 1213.
Brachydactylus nutratus 1213.
Brachylophus 1218226.
- fasciatus 1226.
Brachymeles 1182 1153.
Brachypus 1257.
Brachysaurus 1221 1242.
- crythrogaster 1243.
Brachystopus 1143 1158.
Brouchoela 1257 1266.
Bronia 1256 1289 1296.
- brasiliana 1289.
Brookesia 1250 1283.
- supercilialis 1283.
Bunopus 1185 1215.
- tuberculus 1215.
Cabrita 1092.
- Leschenaultii 1092.
Cachryx 1223 1255.
- defensor 1255.
Cadea 1286 1290 1296.
- punctata 1291.
Caiman 1060.
Caitia 1097 1102.
- africana 1102.
Callisaurus 1222 1252 1253.
- draconoides 1253.
Callosaura 1092.
Calotella 1257 1265.
- australis 1265.
Calotes 1257 1267.
- versicolor 1317.
Calumna 1280 1283.
- cucullata 1283.
Camella 1135 1167.
- jamaicensis 1167.
Camptotidae 1213.
Camptotus 1213.
Canidivertebra 1184 1193.
- peruviana 1194.
Celestus 1135 1167 1170.
Centrochelus 1225 1275.
- Asmusii 1275.
Cephalodiptena 1294.
Cephalodiptec 1286 1295.
- scutigera 1296.
Ceramodactylus 1185 1215.
- Doriae 1215.
Ceratolophus 1185 1188.
- hexaceros 1188.
Ceratophora 1256 1261.
Cercosaura 1112.
Cercosauridae 1108.
Ceto-saurus 1809.
Chalarodon 1219 1233.
Chalarodon madagascariensis 1233.
Chalicades 1108.
Chalicodopsis 1117.
- metallicus 1117.
Chalicidae 1065 1106.
Chalicidides 1128.
Chalcosaurus 1107 1108.
Camaeleon 1280 1281 1355 1361 1367.
- cristatus 1361.
- Owenii 1361.
- vulgaris 1381 1355.
Chamaeleonidae 1280.
Chamaeleonurus 1185 1199.
- chaboa 1199.
Chamaeleopsis 1219 1232.
- Hernandesii 1232.
Chamaessaur 1108 1117 1257.
- anguinea 1117.
- microlepis 1117.
Chamaessauridae 1065 1111 1117.
Chamasa 1059.
Champtosaurus 1061.
Chasmosaurus 1257 1269.
Chelosia 1257 1269.
- brunnea 1269.
Chionella 1132 1152.
- lineata 1152.
Chiromleps 1119.
Chirolochidion 1065 1119.
Chirotes 1286 1287 1296 1297.
- caniculatus 1287.
Chirolochidion 1286 1287.
Chirolochidion 1296.
Chlamydosaurus 1258 1271.
- Klugi 1272.
Chondrochelys 1188 1215.
- angulifer 1216.
Coclosaurus 1313 1315.
Coeluria 1314.
Coelurus 1314.
Collossaurus 1311 1146.
- truncatus 1146.
Colopus 1186 1206.
- Waldbergii 1206.
Compsodactylus 1152.
Compsognathidae 1314.
Compsognathus 1309 1314 1315.
Compsognathus longipes 1310.
Comptonotus 1313.
Coniosaurus 1322.
Cophosaurus 1243.
Cophoscincus 1130 1141.
Cophotis 1257 1263.
Corylosaurus 1097 1101.
- tririrgatus 1101.
Cordyla 1096 1098.
Correlophus 1157 1210.
- ciliatus 1210.
Corucia 1134 1163.
- zebrata 1163.
Coryphophylax 1257 1264.
- Maximilianii 1264.
Corythacolus 1219 1231.
- vittatus 1231.
Corythophanes 1219 1232.
Croanipeltis 1251.
Crassonota 1280 1284.
- nasuta 1284.
Cratoonias 1311.
Crocousaurus 1313 1314.
Cricosaurus 1071 1115.
- typica 1116.
Cricosaurus 1114.
Cristasauridae 1219 1230.
Crocodilidae 1059.
Crocodilina 1059.
Crocodilurus 1073 1078.
- lacertinus 1079.
Crocodilurus 1055 1060 1061.
- acutus 1311.
- biporcatus 1062 1331.
- cantabrigiensis 1328.
- communis 1329.
- frontatus 1062.
- tolimiensis 1329.
- vulgaris 1062.
Register.

Diporophora 1258 1272.
- bilineata 1272.
Diplosaurus 1221 1241.
- dorsalis 1245.
Diracodon 1311.
Doli-hosaurus 1322.
Dopasia 1098 1105 1106.
- gracilis 1105 1106.
Doryphorus 1251.
Doryura 1184 1196.
Dracaena 1079.
Draco 1256 1259 1317.
Dracocella 1255 1329.
Dracouina 1220 1237.
Dracunculus 1256 1269.
Dryaposaurus 1313.
Dumerilia 1131 1146.
- Bayonii 1146.
Dystrophaeus 1321.
Ebernaia 1187 1213.
- inunquis 1213.
Echymomites 1215 1224.
Ecleopus 1114.
Edestosaurus 1321.
- dispar 1322.
Egernia 1134 1160.
Elania 1130 1135.
- Mulleri 1138.
Elastosaurus 1305.
- serpentinus 1305.
Elgeria 1098 1104.
Embryopus 1131 1143.
Emmiana 1112.
Emoa 1132 1151.
- nigrata 1151.
Empagusta 1068 1069.
- fauces 1069.
Empedoleus 1302.
Emphrassotis 1116.
- simoterus 1116.
Enoplosaurus 1133 1156.
- insignis 1157.
Ensioristris 1250 1284.
- Melleri 1284.
Enyalosaurus 1218 1229.
- quinquecarinatus 1229.
Enyalus 1218 1233.
Epaphelus 1121 1170.
- Sumichrasti 1122.
Eremias 1087 1091.
Eublepharis 1187 1208.
Eucamerotus 1311.
Euchiroaurus 1302.
Register.

Laemopholis 1251.
Laemopsaurus 1297.
- gutulatus 1297.
Lantana 1301.
Lanthanotus 1072.
- borreensis 1072.
Laosaurus 1313.
Laubadia 1258 1273.
- tuberculata 1273.
Leiocephalus 1221 1241.
- Grayi 1241.
Leiocosa 1220 1238.
Leiolophus 1220 1239.
Leiopelis 1259 1279.
Leiopelma 1130 1339.
- Bellii 1140.
Leiosaurus 1222 1250.
Leiurus 1185 1197.
- ornatus 1197.
Lepidodaphnia 1071 1107.
Lepido-steridae 1292.
Lepidosternidae 1292.
Lepidosteus 1292 1296 1297.
Leposoma 1113.
Lepoglossus 1064 1067.
- cyclo-saura 1064.
Lerista 1211 1225.
- lineata 1125.
Lialis 1129.
Lialisidae 1120 1129.
Lioscapheus 1134 1162.
- Steinachneri 1162.
Lipinia 1130 1140.
Lissolophus 1134 1160.
- luctuosa 1160.
Lophocahetes 1257 1267.
- interruptus 1267.
Lophognathus 1258 1272.
- Gilbertii 1272.
Lophosolca 1257 1267.
- anamalayana 1267.
Lophosaura 1218 1230 1280.
- Goodrichii 1230.
Lophyurus 1163.
Loxopholis 1116.
- rugiceps 1116.
Luperusauras 1156 1203.
- Cumingii 1203.
Lycosaurus 1320.
Lycodactylus 1118 1189.
- strigatus 1189.
Lygosaurus 1311 1111.
- pellopleurus 1142.
88*
Register.

Phaneropsis 1297.
Phanerosaurus 1301.
- Naumanni 1301.
- pugnax 1301.
Phelsuma 1186 1205.
- andamanensis 1205.
Phlias 1060.
Pholidobolus 1115.
Pholidosaurus 1327.
Phoxophrys 1257 1263.
- tuberculata 1263.
Phractogonus 1293.
Phrymaturus 1222 1252.
Palluma 1252.
Phrynocephalus 1259 1311.
- auritus 1276.
Phrynosoma 1223 1363.
- orbiculare 1353.
Phyllodactylus 1184 1192.
- anomalus 1192.
- europaeus 1192 1354.
- galapagensis 1192.
Phyllopus 1186 1202.
- goyazensis 1202.
Phyllurus 1187 1214.
Phynalepisis 1221 1245.
Physsinathus 1258 1271.
Phytosaurus 1324.
Pistrosaurus 1305 1318.
Placodonte 1318.
- macrocephali 1318.
- platycephali 1318.
Placodus 1318.
Placopsis 1221 1246.
- ocellata 1247.
Placosauma 1113.
Platydactylus 1185 1199.
- facetanus 1199.
- mauritianus 1355 1363.
Platyopus 1315.
Platysaurus 1097 1099.
- capensis 1100.
Plesiosaurus 1302.
Plesiosaurus 1303.
- dolicholeirus 1305.
Plesiosaurus macrocephalus 1305.
Plestiodon 1132 1145.
- Aldrovandi 1346.
- lanceolatus 1145.
- longirostris 1115.
Plestiodon marginatus 1145.
- quinquelineatus 1145.
Pletholax 1126.
- gracilis 1126.
Pleurostichus 1097 1101.
Plica 1222 1249.
Podarcis 1081 1090.
- variabilis 1092.
- velox 1092.
Podophis 1131 1145.
Pletholochus 1184 1192.
Ptychozoon 1186 1202.
Propus 1107.
- vermiciformis 1109.
Proterosaurus 1316.
Proterosaurus Huxleyi 1301.
- Speneri 1300.
Psammodromus 1068 1081.
- griseus 1081.
- hispanicus 1090.
Pseudameiva 1077.
Pseudocordylus 1097 1099.
- microepidotus 1099.
Psilodactylus 1186 1208.
- caudicinctus 1209.
Pseudodelma 1125 1127.
- impar 1127.
Register.

Monodactylus 1251.
- aequaalis 1145.

Siderea tridactylus 1150.
- cuneangrammus 1150.

Sirtusaurus 1164 1165.
- pusillus 1158.

Spondiasaurus 1126 1260.
- ponticeriana 1260.

Soridia 1131 1147 1169.
- lineata 1147.

Spathodactylus 1186 1204.
- mutilatus 1204.

Spatulata 1187 1213.
- Carteri 1213.

Sphenosaurus 1172 1173.
- anomalus 1224.

Sphenoscelis 1172 1173.
- tridactylus 1173.

Steganolepis 1318.
- Carteri 1325.

Stegosaurus 1311.
- Stenodactylus 1250.

Stellio 1258.
- vulgaris 1347.

Stenocercus 1172 1173.
- rosetentris 1212.

Stenodactylopsis 1185 1186.
- subcristatus 1327.

Stegosaurus 1313.
- Trachydosaurus 1327.

Sphenodon 1306.
- torquatus 1248.

Strophurus 1183 1190.
- spinigera 1190.

Synaphydus 1315.
- anglyphodontes 1071.

Tachydrorus 1097 1102.
- glyphodontes 1071.

Tachysaurus 1097 1102.
- glyphodontes 1071.

Teledactylus 1327.
- Chapmani 1327.

Teleonastes 1327.
- Chapmani 1337.

Telenasus 1327.
- Chapmani 1327.

Teleosaurus 1327.
- Chapmani 1327.

Teledactylus 1318 1142.
- decresiensis 1143.

Tetradactylus 1131 1328.
- bilineatus 1232.

Thyranosaurus 1328.
- Rogeri 1176.

Thylogalea 1329.
- Rogeri 1176.

Thyacosaurus 1329.
- Rogeri 1176.

Toxotes 1073 1075.
- tenuis 1337.

Tetradactylus 1318 1142.
- decresiensis 1143.

Tetraodon 1327.
- Chapmani 1327.

Tetradactylus 1327.
- Chapmani 1327.

Tetradactylus 1327.
- Chapmani 1327.
Register.

Trachydosaurus asper 1345.
- rugosus 1158.
Trachylopychus 1081.
Trapelus 1280 1283.
Tretoescincus 1134 1164.
Tribolonotus 1133 1156.
- Novae Guincae 1156.
Triceras 1280 1283.
- Owenii 1284.
Trogonophidae 1287.
Trogonophina 1287.
Trogonophis 1286 1297.
- Wiegmanni 1287.
Tropidocephalus 1220 1239.
- azureus 1239.
Tropidogaster 1223 1253.
- Blainvillii 1253.
Tropidolesphina 1134 1161.
Tropidophorus 1133 1157.
Tropidosaura 1080 1088.
- algira 1364.
- montana 1088.
Tropidoscincus 1134 1161.
- aubrianus 1162.
Tropidurus 1222 1250 1352.
- pacificus 1251.
Tropidurus pacificus 1251.
- alboventralis 1366.
Tropidurus pacificus 1251.
- tripolitanus 1201.
Tupinambis 1070.
Tympanocryptis 1258 1273.
- lineata 1273.
Typhlacantias 1172.
- punctatissimus 1173.
Typhline 1181.
Typhlinidae 1120 1181.
Typhlocercus 1181.
- Martensii 1182.
- nicobaricus 1182.
Uranus 1070.
Uma 1221 1246.
- notata 1246.
Uperanodon 1245 1251.
Uranocentron 1124 1148.
Uromastix 1259 1275.
- capensis 1348.
- spinipes 1348.
Uroplatus 1184.
Urosaura 1112.
Urosaurus 1221 1245.
- ornatus 1246.
Urothrophus 1217 1229.
- Vautieri 1224.
Uta 1221 1245.
Varanus 1068.
- alboventralis 1366.
- arenarius 1337.
Veticalsa 1313.
Velernesia 1184 1195.
- Richardsonii 1195.
Verticaria 1076.
Xantusidae 1065 1096.
Xantusia 1096.
- vigilis 1096.
Xenosauridae 1216.
Xenosaurus 1216.
- fasciatus 1217.
Xestosaurus 1115.
Xiphosaurus 1219 1235.
Zanclodon 1313.
Zanclotidae 1313.
Zeroumias 1080 1087.
- Blandi 1085.
Zonuridae 1065 1096.
Zonurus 1097 1098.
Zygnopsis 1171.
- brevipes 1171.
Erklärung von Tafel XLIX.
Fig. 1. Epithrichialschicht von Platydactylus guttatus. (a) Epithrichialschicht. b. Hornschicht.
2. Epithrichialschicht von Chamaeleon vulgaris. (a) b. wie in Fig. 1.
3. Epithrichialschicht von Anguis fragilis. (c) b. wie Fig. 1. c'. Neu gebildete Epithrichialschicht.
5. Ein abgelöster Haarbüscheol von Thecodactylus laevis. 275/1.
11. Querschnitt durch die Epidermis von Chamaeleon vulgaris. (c). Bezeichnung wie in Fig. 10.
12. Querschnitt durch die Epidermis von Pseudopus Pallasii. (c) b. s. c'. wie Fig. 11. c''. Epithrichialschicht der sich bildenden dritten Epidermis. b'. Neue Epidermis.

Literatur: Figur 1. 2. 3. 10. 11. 12. nach Kerbert (43); Figur 4. 5. nach Cartier (40); Figur 6. 9. 10. nach Leydig (37) und Figur 7. nach Leydig (31).
Reptilien (Eidechsen u. Wasserschlangen).

Taf. XLIX.

Erklärung von Tafel L.
5. Epitrichialschicht desselben Thieres. 280/1.
7. Epitrichialschicht desselben Embryos als Fig. 5. 280/1. *x.* Siehe die Beschreibung.
8. Zwei Zellen aus der Hornschicht eines jungen Alligator. 470/1.

Reptilien (Eidechsen u. Wafferechsen).

Taf. L.
Erklärung von Tafel LI.
1. Halswirbel der Lacerta agilis von unten. \(a \). Untere Bogen (Hypopophysen). \(b \). Halsrippen.

2. Schwanzwirbel von Gonioccephalus dilophus. \(1 \). \(g \). \(p \). Gelenkpfanne. \(a \). \(b \). Oberer Bogen. \(pr \). \(a \). \(p \). Processus articulares posteriores. \(g \). \(k \). Gelenkkopf. \(a \). \(b \). Unterer Bogen.

3. Querschnitt durch Wirbelkörper und untere Bogen eines Gecko. \(40 \). \(w \). \(k \). Wirbelkörper. \(a \). \(b \). Unterer Bogen.

4. Querschnitt durch den Atlas eines Monitor-Embryo. \(30 \). \(a \). Hyaliner Knorpel zwischen \(c \). und \(a \). \(b \). \(c \). Unteres Stück des Atlas. \(b \). Dens Epistrophei. \(l \). \(t \). Ligamentum transversum. \(a \). \(b \). Oberer Bogen. \(f \). \(s \). Foramen pro medulla spinali.

4a. Horizontaler Querschnitt durch den Halswirbel von einem jungen Alligator. \(4 \). Intervertebralscheibe. \(ch \). Chorda. \(a \). Faserring.

5. Atlas und Pro-Atlas eines Alligator, von vorn gesehen. \(a \). Vorderes Stück des Atlaskörpers. \(b \). Medulla spinalis. \(c \). Oberer Bogen des Atlas. \(d \). Bandmasse, welche die oberen Bogen dorsalwärts schliesst. \(e \). Pro-Atlas. \(f \). Bandmasse, welche den Pro-Atlas mit dem oberen Atlasbogen verbindet.

7. Querschnitt durch eine Rippe eines Gecko. \(40 \). 1. Vertebrales Rippenstück. 3. Sternales Rippenstück. 2. Verbindungstück. \(a \). Markraum. \(b \). Knochen. \(c \). Faserknorpel. \(d \). Verkalkter Knorpel.

8. Senkrechter Längsschnitt durch Brustbein und Rippe eines jungen Embryo von Monitor, \(30 \). \(b r \). Brustbein. \(c \). Rippe.

Reptilien (Eidechsen u. Wasserechsen).

Taf. LI.

Lith Anf v Aug Kürth, Leipzig.
Erklärung von Tafel LII.
2. Horizontaler Längsschnitt durch einen Theil der Rumpfwirbelsäule eines Embryo von Crocodilus.
3. Horizontaler Querschnitt durch einen Theil der Halswirbelsäule eines Alligator-Embryo.
 a. Faserring.
 a. Atlasrippe. b. Vorderer Theil des Atlaskörpers. c. Knorpel zwischen diesem und dem
5. Senkrechter Längsschnitt durch Occipitale basilare, vorderen Theil des Atlaskörpers,
 hinteren Theil des Atlaskörpers und Epistropheus. a. b. c. d. e. f. g. Siehe die Be-
 schreibung S. 482.
6. Senkrechter Querschnitt durch die Rumpfwirbelsäule eines sehr jungen Embryo von
 Foramen spinale.
7. Senkrechter Querschnitt durch einen Schwanzwirbel eines Embryo von Monitor. r. ch.
 wie Fig. 6. a. b. Oberer Bogen.
8. Senkrechter Querschnitt durch einen Sacralwirbel eines Embryo von Monitor. ch.
 Chorda. ob. Oberer Bogen.
9. Senkrechter Längsschnitt durch den vorderen Theil des Atlaskörpers (ct) und die erste
 Rippe (r.) 5/1.
10. Senkrechter Längsschnitt durch Brustbein und Rippen eines älteren Embryo von Monitor.
 r. Rippe. br. Brustbein.

Alle Figuren Original.
Reptilien (Eidechsen u. Waferrechsen).

Taf. III.
Erklärung von Tafel LIII.
5. Senkrechter Querschnitt durch Wirbel und Rippe eines *Alligator*.
6. Senkrechter Querschnitt durch den Sacralwirbel eines sehr jungen Embryo von *Crocodilus*.
7. Senkrechter Querschnitt durch den Sacralwirbel eines älteren Embryo von *Crocodilus*.
8. Senkrechter Querschnitt durch den Sacralwirbel eines 50 Centim. langen *Alligator*.
9. Senkrechter Querschnitt durch den vierten Schwanzwirbel eines Embryo von *Crocodilus*.
10. Senkrechter Querschnitt durch den achten Schwanzwirbel eines 30 Centim. langen *Alligator*.

Gültige Bezeichnung für Fig. 5—10:
ch. *f.sp.* *r.* *f.i.* wie oben.
a. Knochenpartie zwischen Wirbelkörper und Bogen.
h. Hypapophyse.
a. b. Oberer \{ Bogen.
\(a. b \) Unterer \}
p. t. Querfortsatz.

11. Senkrechter Querschnitt durch Sternum und Rippe eines Embryo von *Crocodilus*.
12. Ein ähnlicher Schnitt durch Sternum und Rippe eines 150 Millim. langen *Alligator*.

Bezeichnung für Fig. 11, 12:

13. Senkrechter Längsschnitt durch die Wirbelsäule von *Hemidactylus*.

Alle Figuren Original.
Reptilien (Eidechsen u. Wasserechsen).

Taf. LIII.
Erklärung von Tafel LIV.
1—10 von Hatteria (Sphenodon).

2. Vorderfläche des Epistropheus.

3. Hinterfläche des Epistropheus.

6. Verticalschnitt durch drei Dorsalwirbel.

7. Verticalschnitt durch vier Caudalwirbel (vom 7.—10.).

Fig. 1.—10. nach Günther (26).
Erklärung von Tafel LV.
Fig.

1—4. Verschiedene embryonale Entwicklungsstufen des Schultergürtels und Brustbeins von *Cnemidophorus* sp.

2. Dasselbe von einem älteren Embryo. *cl. st.* wie in Fig. 1. *e. e'. e'', e'''.* Costae, die drei letzteren mit dem Brustbein zusammenhängend.

3. Beide Hälften des Schultergürtels und des Brustbeins, weiter entwickelt. *cl. st.* wie in Fig. 1. *eps.* Episternum. 1. Scapulares Fenster. 2. 3. Haupt- und Nebenfenster des Coracoideum.

5. Linke Schultergürtelhälfte von *Ameiva* sp. juv. *cl. sc. cor.* wie Fig. 1. 1. 2. wie Fig. 3. *a.* Anheftungsstelle des Schlüsselbeins. *b.* Schultergelenkgrube. *psc.* Praeseapulare nach Parker. *pr.* Procoracoideum nach Gegenbaur. *epc.* Epicoracoideum. *ssc.* Suprascapulare.

7. Schultergurtel und Brustbeinanlage aus der linken Seite eines Embryo von *Anguis fragilis*.

Alle Figuren nach Götte.
Reptilien (Eidechsen u. Wasserechsen).

Taf. IV.
Erklärung von Tafel LVI.
Fig.

2. Schultergürtel und Sternum von Lacerta agilis juv.
4. Sternum und Schultergürtel von Hemidactylus Oualensis.
5. Sternum und Schultergürtel von Iguana.
7. Schultergürtel von Pseudopus Pallasi.
10. Schulterknochen der linken Seite von Iguana.
15. Schultergürtel und Sternum von Monitor dracaena.

Für alle Figuren gültige Bezeichnung:

s. Scapula.
ss. Suprascapulare.
ch. Knorpel zwischen beiden, der sich bei * in einen die Clavicula tragenden Fortsatz auszieht
q. Gelenkpflanne der Schulter.
co. Coracoid:
 a. vorderer Schenkel desselben — Procoracoid.
 p. hinterer Schenkel desselben.
ec. Epicoracoid.
cl. Clavicula.
ep. Episternum interclaviculare nach Parker.
st. Sternum.
cl5. Sternale Enden der Rippen.
pec. Praescapulare nach Parker.
ucf. Upper coracoid fenestra nach Parker.
lcf. Lower coracoid fenestra nach Parker.

Fig. 7. nach Fürbringer. Fig. 13. nach Götze. Fig. 14. nach Günther. Fig. 15. nach Parker. Alle anderen nach Gegenbaur.
Reptilien (Eidechsen u. Wasserechsen).

Taf. LVI.
Erklärung von Tafel LVII.
1. Senkrechter Längsschnitt durch Scapula und Clavicula eines jungen Embryo von Monitor. \(^9/10\).
2. Senkrechter Längsschnitt durch Clavicula und Scapula von Gonioccephalus dilopus. \(^9/10\).
3. Schultergürtel eines jungen Alligator lucius. \(^1/10\).
4. Senkrechter Querschnitt durch Coracoid und Scapula eines Embryo von Crocodilus. \(^1/80\).
5. Schultergürtel eines Embryo von Crocodilus. \(^3/1\).
6. Senkrechter Querschnitt durch Coracoid und Episternum eines Embryo von Alligator. \(^1/80\).
7. Senkrechter Querschnitt durch das Episternum eines sehr jungen Embryo von Alligator. \(^9/10\).
8. Senkrechter Querschnitt durch das Episternum eines älteren Embryo von Alligator. \(^8/10\).

Für alle Figuren gültige Bezeichnung:

- *c. gl.* Cavitas glenoidalis.
- *epic.* Epicoracoid.
- *cor.* Coracoid.
- *epist.* Episternum (Interclaviculare: Parker).
- *st.* Sternum.
- *sc.* Scapula.
- *ssc.* Suprascapulare.
- *r.* Rippe.

Fig. 9. nach Parker. Alle anderen Original.
Reptilien (Eidechsen u. Wasserechsen).

Taf. LVII.
Erklärung von Tafel LVIII.
Fig.

2. " " Lygosoma.
3. " " Draco viridis.
4. " " Zonurus griseus.
5. " " Seps chalcides.
7. " " Phyllodactylus Lesueri.

Für alle Figuren gültige Bezeichnung:

R. Radius.
U. Ulna.
r. Radiale.
i. Intermedium.
u. Ulnare.
I. II. III. IV. V. Metacarpalia.
c. Centrale.
I. Erstes
2. Zweites
3. Drittes Carpale der zweiten Reihe.
4. Viertes
5. Fünftes
s. Sesambein (Accessorium).

Alle Figuren nach Gegenbaur.
Erklärung von Tafel LIX.
1. und 2. Längsschnitte durch den Carpus eines Embryo von Monitor.
3. Längsschnitt durch den Carpus eines ausgewachsenen Chamaeleon.
4. Längsschnitt durch den Carpus eines jüngeren Chamaeleon.
7. Längsschnitt durch den Carpus eines sehr jungen Embryo von Alligator.
8. Ähnlicher Schnitt eines älteren Thieres.
10. Längsschnitt durch einen Theil des Carpus eines Crocodilus juvenis.
11. Längsschnitt durch einen Theil des Carpus eines größeren Crocodilus.
12. Ähnlicher Schnitt durch den Carpus eines halben Meter langen Crocodilus.
13. Längsschnitt durch einen Theil des Carpus eines Gavialis juvenis.

Für alle Figuren gültige Bezeichnung:

R. Radius.
U. Ulna.
r. Radiale.
i. Intermedium.
a. Ulnare.
I. II. III. IV. V. Metacarpalia.
c. Centrale.
1. Erstes
2. Zweites
3. Drittes Carpale der zweiten Reihe.
4. Viertes
5. Fünftes
s. Sesambein (Accessoryum).

Fig. 5. nach Born (51). Fig. 6. nach Born (63). Fig. 14. nach Gegenbaur (21).
Alle andern Original.
Reptilien (Eidechsen u. Wasserechsen).

Taf. LIX.
Erklärung von Tafel LX.
Fig. 1. Brustschultergürtel von Euprepes carinatus.
2. " " Gongylus ocellatus, vergr.
3. " " Sepsi tridactylus, vergr.
4. " " Ophiodes striatus, vergr.
5. " " Pygopus lepidopus, vergr.
6. " " Lialis Burtonii, vergr.
7. " " Pseudopus Pallasi, vergr.
8. " " Ophiosaurus ventralis, vergr.
12. " " Typhlosaurus aurantiacus, vergr.

Gültige Bezeichnung für Fig. 1—14:
st. Sternum.
ep. Episternum.
stc. Sternocostalleiste.
sc. Scapula.
ss. Suprascapulare.
cor. Pars coracoidea.
pr. Procoracoid nach Gegenbaur und Fürbringer.
cl. Clavicula.
lig. ep. cl. Ligamentum episterno-claviculare.
lig. ep. st. Ligamentum episterno-sternale.
lig. st. cl. Ligamentum sterno-claviculare.

I.—V. Metacarpale 1—5.

Fig. 1.—14. nach Fürbringer (35). Fig. 16. nach Stecker (53). Fig. 15. Original.
Erklärung von Tafel LXI.
Fig.
2. Von Ichthyosaurus, zum Theil nach der von Cuvier in den Oss. foss. 4. Ed. Taf. 258 Fig. 4 gegebenen Abbildung.
5. Von Ichthyosaurus, dieselbe Fig. wie 2, nur ist hier die Axe durch die Ulna (resp. Fibula) gezogen.

Bezeichnung der Skelet-Theile:
H. Humerus.
R. Radius.
U. Ulna.
r. Radiale (Scaphoides).
i. Intermedium (Lunatum).
u. Ulnare (Triquetrum, Cuneiforme).
c1-5. Carpale 1—5.
m1-V. Metacarpale 1—V.
p1-3. Accessore Knochenstücke.

Sämtliche Figuren nach Gegenbaur (34). (Mehr oder weniger schematische Darstellungen der vorderen Extremität und zur Erläuterung der Homologien der Gliedmaassen.)
Reptilien. (Eidechsen u. Waßerreptilien.)

Kürth, Leipzig
Erklärung von Tafel LXII.
Fig.
2. Becken von Monitor bivittatus. 2/1.
 cp' in Fig. 5 und 6. Siehe die Beschreibung.
7. Symphysis ossium pubis und Epipubis eines jungen Gecko. 30/1.
11. Dasselbe von der inneren Fläche gesehen. 1/1.

Für alle Figuren gültige Bezeichnung:

p. Pubis.
Is. Ischium.
il. Ilium.
f.o. Foramen obturatorium.
f.c. Foramen cardiforme.
cp. Epipubis.
sc. Sacralwirbel.
cs. Sacralrippen.
pt. Processus transversus.
sp. Symphysis ossium pubis.
sis. Symphysis ossium ischii.
hy. Hypo-ischium (Os cloacae).
ac. Acetabulum.

Alle Figuren Original.
Reptilien (Eidechsen u. Wasserechsen). Taf. LXII.
Erklärung von Tafel LXIII.
Fig.

5. Linke Beckenhälfte von *Crocodilus*.

7. Längsschnitt durch den Tarsus eines jungen *Crocodilus*.

Erklärung der Buchstaben von Fig. 1—3:

Erklärung der Buchstaben von Fig. 4:

Erklärung der Buchstaben von Fig. 5:

Erklärung der Buchstaben von Fig. 6 und 7:

1—5. Metatarsale 1—IV.

Fig. 1. 2. 3. nach Bunge (66), 4. nach Marsh, 5. nach Huxley (64), 6. 7. Original.
Reptilien (Eidechsen u. Wasserreptilien).

Taf. LXIII

Erklärung von Tafel LXIV.
Fig.

2. Schnitt durch den Querfortsatz des ersten Sacralwirbels (I.\textsubscript{s}), Ilium (iL.) und die knorpelige Partie (a.), welche continuirlich von dem Ilium auf das Ischium übergeht. Von einem Embryo von Crocodilus. 20/11.

4. Längsschnitt durch den Tarsus eines Monitor-Foetus.

5. Längsschnitt durch den Tarsus eines älteren Monitor-Foetus.

6. Längsschnitt durch den Tarsus eines Hemidactylus juvenis

7. Längsschnitt durch den Tarsus von Chamaeleon juvenis.

8. Längsschnitt durch den Tarsus eines ausgewachsenen Hemidactylus.

Gültige Bezeichnung für Fig. 4—8:

T. Tibiale. F. Fibulare. 1+1+f+e. Tibiale, Intermedium, Fibulare und Centrale. 1. 2. 3. 4. 5. Tarsale 1.—5. 1.—V. Metatarsale 1.—V.

Fig. 2.—S. Original.
Reptilien (Eidechsen u. Waflerechsen).

Taf. LXIV.
Erklärung von Tafel LXV.
1. Tarsus von Lacerta muralis juvenis.
4. Tarsus von Hemidactylus juvenis.
5. Tarsus von Phyllodactylus Lesueri.
6. Tarsus von Alligator lucius.
7. Becken und linke Hinterextremität von Laosaurns Atlas. Marsh. \(\ddot{A} \). Ilium. \(\ddot{i} \). Ischiun. \(p \). Processus pubicus (Pubis: Marsh). \(p' \). Pubis (Postpubis: Marsh). \(t \). Tibia. \(I \). Metatarsale I. \(f' \). Fibula. \(f \). Femur. \(IVmt \). Metatarsale IV. \(a \). Astragalus. c. Calcaneus.
8. Längsschnitt durch den Tarsus eines dem Ausschlüpfen nahe Embryo von Crocodilus.

Gültige Bezeichnung für Fig. 1. 2. 3. 4. 5. 6. und 8.:

- T. Tibia.
- F. Fibula.
- F. Fibulare.
- A. Astragalus.
- Fibulo-Astragalo-Calcaneus.
- C. Calcaneus.
- C. Cuboid.
- 1. 2. 3. 4. Tarsale 1—4.
- I—V. Metatarsale I—V.

Fig. 1. 2. 3. 4. 5. 6. nach Gegenbaur (21); Fig. 7. nach Marsh; Fig. 8. Original.
Erklärung von Tafel LXVI.

3. Flächenschnitt durch den Tarsus eines jungen Individuums von *Chamaeleon senegalensis*. *I*—*V.* *As.*—*Cu.* *m.* *t*—*V.* Wie Fig. 2. *t*—*V.* Tarsale. *t*—*V.* Tarsale.

6. Senkrechter Querschnitt durch den hinteren Teil und Fig. 7 durch den vorderen Theil der Augenhöhle eines jungen Alligator. *s.t.* Septum interorbitale. *v.* Vomer. *pt.* Pterygoideum.

Fig. 1. und 4. nach *Born* (63); Fig. 3. nach *Stecker* (33); Fig. 2. nach *Born* (51); Fig. 5. 6. 7. Original.
Reptilien (Eidechsen u. Wafferechsen). Taf. LXVI.
Erklärung von Tafel LXVII.
Fig.
2. Derselbe von oben gesehen.
3. Derselbe von unten gesehen.
4. Unterkiefer desselben Thieres von innen gesehen.
5. Unterkiefer desselben Thieres von aussen gesehen.
7. Unterkiefer eines Gecko.

Erklärung der Buchstaben:

ar. Articulare.
on. Angulare.
col. Columella.
com. Complementare.
cor. Coronoides.
d. Dentale.
fr. Frontale.
j. Jugale.
lac. Lacrymale.
m. Maxillare.
n. Nasale.
ob. Occipitale basilare.
ol. Occipitale laterale.
op. Operculare.
os. Occipitale superius.
par. Parietale.
parsp. Parasphenoid.
pfr. Postfrontale.
pl. Palatinum.
pvfr. Praefrontale.
prm. Praemaxillare.
pro. Prooticum.
pt. Pterygoideum.
q. Quadratum.
s. Sphenoides basilare.
s'. Septum orbitale.
sy. Squamosum.
st. Supratemporale.
tr. Transversum.
v. Vomer.
x. Concha.
y. Supraorbitale s. Supraciliar.

Alle Figuren nach Cuvier (1).
Reptilien (Eidechsen u. Wafferechsen).

Taf. LXVII.
Erklärung von Tafel LXVIII.
Fig.

2. Unterkiefer desselben Thieres.
4. Unterkiefer desselben Thieres.
5. Schädel von *Lacerta scincoides* Shaw.
6. Unterkiefer desselben Thieres.
7. Schädel von *Iguana*.
8. Unterkiefer desselben Thieres.
9. Unterkiefer von *Uromastix*.

Erklärung der Buchstaben:

- *ar.* Articulare.
- *an.* Angulare.
- *col.* Columella.
- *com.* Complementare.
- *cor.* Coronoideum.
- *d.* Dentale.
- *fr.* Frontale.
- *f.* Jugale.
- *lac.* Lacrymale.
- *m.* Maxillare.
- *n.* Nasale.
- *ob.* Occipitale basilare.
- *ol.* Occipitale laterale.
- *op.* Operculare.
- *os.* Occipitale superius.
- *par.* Parietale.
- *parsp.* Parasphenoid.
- *pfr.* Postfrontale.
- *pl.* Palatinum.
- *prfr.* Praefrontale.
- *prom.* Praemaxillare.
- *pro.* Prooticum.
- *pt.* Pterygoideum.
- *q.* Quadratum.
- *s.* Sphenoides basilare.
- *s'* Septum orbitale.
- *sq.* Squamosum.
- *st.* Supratemporale.
- *tr.* Transversum.
- *v.* Vomer.
- *x.* Concha.
- *y.* Supraorbitale s. Supraciliare.

Alle Figuren nach Cuvier (1).
Reptilien (Eidechsen u. Wafferechsen).

Taf. LXVIII.
Erklärung von Tafel LXIX.
Fig.

7. - Schädel von *Anguis fragilis* von unten. Das Farbige bezieht sich auf das Primordialcranium.

10. Schädel von *Lacerta vivipara* von unten

Alle Figuren nach Leydig (37).
Erklärung von Tafel LXX.

m. Maxillare.

j. Jugale.

f. Praefrontale.

l. Lacrymale.

p. Palatinum.

II. N. opticus.

III. N. oculomotorius.

IV. Trochlearis.

V. R. ophthalmicus n. trig.

VI. N. abducens.

a. i. Musc. obliquus inferior.

a. s. - - superior.

r. i. - rectus internus.

m. b. M. bursalis.

f. Frontale.

f. p. Postfrontale.

pt. Pterygoïd.

c. Columella.

a. sp.1 Als Orbitosphenoid zu deutender Knorpelstab.

a. sp.2 Knorpelstab. an das Orbitosphenoid sich anlehnd, der zur Columella läuft.

r. inf. M. rectus inferior.

r. e1 Stärkere Portion des M. rectus externus.

r. e2 Schwächere Portion des M. rectus externus.

r. s. M. rectus superior.

m. r. M. retractor oculi.

2. — S. Schädel von *Hatteria*. In Fig. 4 ist der Arcus temporalis und zygomaticus entfernt um die Seiten der Schädelbasis zu zeigen.

a. Occip. laterale (Exoccipital: Günther).

b. Prooticum (Alisphenoid: Günther).

c. Stapes.

d. Paroccipital: Günther.

e. Posterior hypapophysis of basisphenoid: Günther.

f. Anterior hypapophysis of basisphenoid: Günther.

g. Parietale.

i. Squamosum (Mastoid: Günther).

k. Lacrymale.

l. Postfrontale.

a. b. Occipitale basilare.

a. l. Occipitale laterale.

s. Sphenoidenum basilare.

tr. Transversum.

m. Quadrato-jugale.

n. Zygomaticum (Jugale).

o. Quadratum.

p. Columella.

q. Vomer.

r. Pterygoïd.

s. Palatinum.

u. Dentale (Dentary: Günther).

r. Operculare (Splenial: Günther).

n. Articulare.

x. Coronéideum.

pt. Pterygoïd.

pl. Palatinum.

parsp. Parasphenoid.

Fig. 1. nach M. Weber; Fig. 2.—S. nach Günther (26); Fig. 9. Original.
Erklärung von Tafel LXXI.

2. Schädel eines Gavialis von oben gesehen.

4. Schädel eines Crocodils (Crocodile à losange: Cuvier) von unten gesehen.

5. Schädel eines Crocodils von oben gesehen.

Gültige Bezeichnung für Fig. 2.—6.:

- au. Angulare.
- ar. Articulare.
- d. Dentale.
- fr. Frontale.
- lac. Lacrymale.
- m. Maxillare.
- n. Nasale.
- ob. Occipitale basilar.
- ol. Occipitale laterale.
- os. Occipitale superius.
- par. Parietale.

px. Die sogenannten Alisphenoide der Autoren. (Siehe p. 591.)

Fig. 2.—6. nach Cuvier (1); Fig. 1. Original.
Erklärung von Tafel LXXII.

- *r.s.* M. rectus superior.
- *o.s.* M. obliquus superior.
- *r.e.* M. rectus externus.
- *r.inf.* M. rectus inferior.
- *o.i.* M. obliquus inferior.

- *r.i.* M. rectus internus.
- *m.b.* M. bursalis.
- *m.r.* M. retractor oculi.
- *b.r.* Portio retrahens des M. bursalis.

4. Zungenbein eines Gecko.

5. Zungenbein von Iguana.

Gültige Bezeichnung für Fig. 2.—8.:

- *a, a* Zungenbeinkörper.
- *b, b’* vorderes {Zungenbeinhorn.
- *c, c’* hinteres}

Fig. 1. nach Weber; Fig. 5. 6. 7. 8. nach Cuvier; Fig. 2. 3. 4. Original.
Reptilien (Eidechsen u. Wasserechsen).

Taf. LXXII.
Erklärung von Tafel LXXIII.

2. **Hydrosaurus marmoratus**. Innenansicht der Seitenrumpfmuskeln der rechten Seite nach Fortnahme der Schicht der Mm. retrahentes costarum und des M. transversus.

3. **Cyclodus Boddartii**. Innenansicht der Bauchmuskeln der rechten Seite in Höhe des XXV—XXXVII Wirbels.

4. **Chamaeleon africanus**. Ein Theil der Rumpfmuskulatur der rechten Seite, von innen.

6. **Cyclodus**. Schematischer Querschnitt in Höhe des XX Wirbels.

7. **Cyclodus**. Schematischer Querschnitt in Höhe des XXXIV Wirbels. Rechte Seite.

8. **Ptyodactylus sp.**. Ventralansicht; rechte Seite nach Fortnahme der Haut.

Alle Figuren nach Gadow (95).
Reptilien (Eidechsen u. Wasserechsen). Taf. LXXIII.
Erklärung von Tafel LXXIV.
Fig.

Schultermuskeln von Uromastix spinipes.

1. Schultermuskeln nach Wegnahme der Haut.
2. Schultermuskeln nach Wegnahme der Mm. omo-cleido-episterno-hyoidens (oclehy) und latissimus dorsi (dh).
5. Schultermuskeln nach Wegnahme der Mm. coraco-brachialis brevis (cb) und longus (cb).

a. M. anconaeus.
 ab, anconaeus humeralis lateralis. ast. anconaeus scapularis lateralis.
b. b, b' M. coraco-antebrachialis (biceps).
cb. (cbb, cbl) M. coraco-brachialis.
cce. M. sternocosto-scapularis.
ccelest. M. capiti-cleido-episternalis.
cssp. M. colo-scapularis superficialis.
cethsp. (cethsp, cethsp') M. colo-thoraci-scapularis profundus.
cv. M. cucullaris.
dct. M. cleido-humeralis.
dh. M. dorso-humeralis.
dsc. M. dorsalis scapulae.
hai. M. humero-antebrachialis inferior.
p. M. pectoralis.
sbsc. (sbc, sbsc) M. subcoracoscapularis.
sbc. M. sphincter collii.
sbpr. M. scapulo-humeralis profundus.
spe. M. supracoracoidens.

thecep. M. thoraco-scapularis superficialis.
tmaj. M. teres major.

Alle Figuren nach Fürbringer (93).
Erklärung von Tafel LXXV.
Schultermuskeln von Crocodilus acutus.

1. Schultermuskeln nach Wegnahme des M. sphincter colli (sphr).
2. Schultermuskeln nach Wegnahme des M. sphincter colli (sphc).
3. Tiefe Schicht der tiefen (inneren) Schultermuskeln nach Wegnahme des Humerus und seiner Muskulatur, sowie der Mm. collo-scapularis superficialis (cssp) und thoraci-scapularis superficialis (thesp).
4. Schultermuskeln nach Wegnahme der Pars scapularis des M. supra-coraco-scapularis (spe) und des M. biceps (b).
5. Schultermuskeln nach Wegnahme der Pars scapularis des M. supra-coraco-scapularis (spe) und des M. biceps (b).

Für sämtliche Figuren gültige Bezeichnungen.

S. Scapula.
SS. Suprascapulare.
SpS. Spina scapulae.
C. Coracoid.
Ex. Epicoracoid.
St. Sternum.
Stu. Vorderer Theil des Sternum.
Stp. Hinterer Theil des Sternum.
cu. M. dorso-scapularis (cuncularis).
est. M. capiti-ster nal is (sterno-mastoideus).
cssp. M. collo-scapularis superficialis (levator scapulae superficialis).
thesp. M. thoraci-scapularis superficialis (serratus superficialis).
cethsp. M. collo-thoraci-scapularis profundus (levator scapulae et serratus profundus).
ch. M. rhomboideus.
p. M. pectoralis.
spec. M. supra-coraco-scapularis.
chb. M. coraco-brachialis.
b. M. coraco-antebrachialis (biceps).

Cl. Clavicula.
Est. Episternum.
H. Humerus.
P.L. Processus lateralis humeri.
P.M. Processus medialis humeri.
R. Radius.
U. Ulna.
1° 1° Wirbel 3, 6.

hui. M. humero-antebrachialis inferior (brachialis inferior).
dhu. dorso-humeralis (latissimus dorsi).
dss. M. dorsalis scapulae (deltoides scapularis superior).
dai. M. deltoides scapularis inferior.
sphr. M. scapulo-humeralis profundus.
lmaj. M. teres major.
sbsc. M. subscapularis.
a. M. anconeus.
br. M. humero-radialis.
sphc. M. sphincter colli.
esthy. M. episterno-hyoideus.

Alle Figuren nach Fürbringer (93).
Erklärung von Tafel LXXYI.
Figur 1. 2. 3. 4. Muskeln des Vorderarmes von Alligator.

Reptilien (Eidechsen u. Wafferechsen).

Taf. LXXVI.
Erklärung von Tafel LXXVII.

Für alle Figuren gültige Bezeichnung.

amb. M. ambiens.
cd. fm. M. caudali-femoralis.
cd. il. fem. M. caudi-ilio-femoralis.
fl. tb. ext. M. flexor tibialis externus.
fl. tb. int. M. flexor tibialis internus.
ex. il. tb. M. extensor ilio-tibialis.
il. cost. M. ilio-costalis.
il. cd. M. ilio-caudalis.
il. fmn. (il. f.) M. ilio-femoralis.
il. jib. M. ilio-fibularis.
il. s. cd. M. ilio-sacro-caudalis.
is. cd. M. ischio-caudalis.
is. fmn. M. ischio-femoralis.
ob. ext. M. obliquus externus.
pb. is. fem. ext. M. pubi-ischio-femoralis externus.

pb. is. fem. int. M. pubi-ischio-femoralis internus.
qudr. lb. M. quadratus lumborum.
rect. M. rectus abdominis.
tib. ant. M. tibialis anterior.
trans. M. transversus abdominis.
tr. per. M. transversus perinei.
m. post. il. Margo posterior ossis ilei.
ob. Loch im Pubis für den N. obturatorius.
o. il. Os ilei.
o. is. Os ischi.
o. pb. Os pubis.
o. cl. Os cloacae.
pr. l. pb. Processus lateralis ossis pubis.
pr. tr. Processus transversus.
sp. ant. il. Spina anterior ossis ilei.
Sy. p. Symphysis ossium pubis.
Sy. is. Symphysis ossium ischiium.
tb is. Tuber ossis ischiui.

Alle Figuren nach Gadow.
Reptilien (Eidechsen u. Wafferechsen).

Taf. LXXXVII.
Erklärung von Tafel LXXVIII.
1. *Alligator mississ* $^{1/3}$. Innenansicht der Beckenregion, linke Seite. Die Ossa pubis und ischii und die Wirbelsäule ist in der Medianlinie durchschnitten XXVIII. 28 Wirbel.

Für alle Figuren gültige Bezeichnung wie auf Taf. LXXVII.

Alle Figuren nach Gadow.
Reptilien (Eidechsen u. Wasserechsen).

Taf. LXXVIII.
Erklärung von Tafel LXXIX.
Fig.

Für alle Figuren gültige Bezeichnung wie auf Taf. LXXVII.

Alle Figuren nach Gadew.
Erklärung von Tafel LXXX.
Fig. 1.—11. Querschnitte durch das Rückenmark von *Lacerta agilis.*

2. Schnitt durch die Intumescentia cervicalis.
3. Schnitt durch die Pars dorsalis.
4. Schnitt durch die Pars lumbalis.
5. Schnitt durch die Pars sacralis.
7. Schnitt durch den mittleren Teil des Schwanzes.
9. Schnitte durch die Schwanzspitze.
10. Siehe weiter S. 708.

s. c. l. Sulcus longitudinalis superior.

s. c. i. Sulcus longitudinalis inferior.

c. v. Canalis centralis.

Fig. 1.—10. vergr. \(\frac{55}{1} \). Fig. 11. vergr. \(\frac{450}{1} \).

Alle Figuren Original.
Erklärung von Tafel LXXXI.
1. Querschnitt durch den vorderen Teil der Medulla oblongata von Lacerta agilis 30/1.

2. Querschnitt durch das Hinterhirn desselben Thieres 30/1.
\textit{v.q. v.e.} wie in Fig. 1. \textit{b.} Basaler Abschnitt des Hinterhirus. \textit{k.g.g'}. Vergl. die Beschreibung S. 714.

3. Querschnitt durch den mittleren Teil des Mittelhirn desselben Thieres 30/1.

4. Querschnitt durch das Zwischenhirn und den hinteren Teil des Vorderhirus desselben Thieres 30/1.

5. Querschnitt durch den hinteren Teil des Lobus olfactorius desselben Thieres 30/1.

6. Querschnitt durch den vorderen Teil des Lobus hemisphaericus desselben Thieres 30/1.

7. Querschnitt durch den Theil des Vorderhirus, wo dasselbe mit dem Zwischenhirn zusammenhängt, ebenfalls von Lacerta agilis 30/1.

Alle Figuren Original.
Reptilien (Eidechsen u. Wafferechsen).

Taf. LXXXI.
Erklärung von Tafel LXXXII.
Fig.

1a. 1b. Das Gehirn von Alligator von der Seite gesehen (Lateralansicht).

2. Senkrechter Querschnitt durch das Dach des dritten Ventrikel von Alligator.

Fig. 1 u. 2 nach Rabl-Ruckhard (98). Fig. 4 nach Weber (94a). Fig. 7, 8, 9 nach Leydig (37). Fig. 3, 5, 6 Original.
Erklärung von Tafel LXXXIII.
Fig.

1a. 1b. Das Gehirn des Alligator von oben gesehen (Dorsalansicht).
2a. 2b. Das Gehirn des Alligator von unten gesehen (Ventralansicht).
3a. 3b. Senkrechter Längsschnitt durch die Medianebene eines Alligator-Gehirns.

I. N. olfactorius.
II. N. opticus.
III. N. oculomotorius.
IV. N. trochlearis.
V. N. trigeminus.
VI. N. abducens.
VII. N. facialis.
VIII. N. acusticus.
IX. X. vagus und accessorius.
XII. N. hypoglossus.
A.D. Aquaeductus Sylvii.
B.o. Bulbus olfactorius.
C.a. Commissura anterior
Cth. Cerebellum.
C.c. Crura cerebri ad medullam oblong.
Ccb. Corpora bigemina.
Cct. Canalis centralis.
Ch. Chiasma.
C.h. Colliculi loborum bigeminorum.
Clav. Clavae.
C.med. Commissura media.
C.st. Corpus striatum.
C.p. Commissura posterior.
E.ac. Eminentia acustica.
E.v. Eminentia vaginalis.
F.l. Fissura lateralis.
F.m.d. Fissura mediana dorsalis.
F.m.v. Fissura mediana ventralis.
F.M. Foramen Monroi.
Hm. Große Hemisphären.
Hyp. Hypophysis cerebri.
Inf. Infundibulum.
L.t. Lamina terminalis.
Ob. Obex.
Pd.c. Pedunculus cerebri.
Pl. Pallium.
Pm. Pyramides.
R.l. Recessus lateralis.
S.l. Sulcus lateralis.
S.l.v. Sulcus longitudinalis ventriculi IV.
T.ac. Tuber nervi acustici.
Th.o. Thalamus opticus.
T.l.b. Tectum loborum bigeminorum.
Tr.o. Tractus opticus.
V.l. Ventriculus lateralis.

Alle Figuren nach RABL-RUCKHARD (98).
Reptilien (Eidechsen u. Wasserechsen). Taf. LXXXIII.
Erklärung von Tafel LXXXIV.

2. Gehirn und Ursprünge der Gehirnnerven von **Iguana tuberculata**.

3. Gehirn und Ursprünge der Gehirnnerven von **Chamaeleon vulgaris**.

Gültige Bezeichnung für Fig. 2 und 3.

2. m'. m''. Muskelzweige aus dem dritten Aste des Trigeminus. k'. k''. Erste und zweite Hirnwurzel des Hypoglossus, den vorderen Theil, h, dieses Nerven zusammensetzend 13. 14. Erster und zweiter Halsnerv, durch ihre Zweige k' und k'' den zweiten Theil, f, des Hypoglossus bildend - h und k verschmelzen zu dem Stamm des Hypoglossus hk. s'. Erster Hauptstamm des oberflächlichen sympathischen Halstheils, aus dem Ganglion petrosum D. entspringend. s''. Zweiter Hauptstamm desselben mit a und y aus dem Ganglion petrosum, mit b aus dem Vagus, mit c aus dem Hypoglossus entstehend. s''''. Dritter Hauptstamm desselben, mit s aus dem Hirnwurzelstamm (h), mit z aus dem Halsnervenstamm (b) des Hypoglossus hervorgehend. s', s'', s''', verschmelzen zu dem einfachen oberflächlichen Halstamm s des Sympathicus.

Alle Figuren nach Fischer (105).
Erklärung von Tafel LXXXV.

1. Hauptzüge der Gehirnnerven von *Crocodile biporcatus*.

a Ast für den M. rectus inferior.
a' Ast für den M. rectus internus.
a'' Ast für den M. obliquus inferior.
5. Wurzel des Trigeminus.
5'. Erster Ast des Trigeminus.
A. Ganglion des ersten Astes.
5'''. Zweiter Ast des letztener.
5''''. Zweiter Ast des letzteren an den Plexus sphenopalatinus.
7. Wurzel des N. facialis.
C. Ganglion desselben.
7'. Zweige desselben zum Plexus sphenopalatinus.
7''. Zweige desselben an den Plexus sphenopalatinus.
7'''. Zweige desselben an den Plexus sphenopalatinus.
E. Zwei feine Nerven, aus dem letztener nach innen umbiegend, und mit g. dem Ramus communicans posterior rami palatini, verschmelzend.
d. Rami dentales n. alveolaris posterior.
7'''' Dritter Ast des N. trigeminus.
7''''' Nerv für den M. depressor palpebrar inferioris (M. adductor maxillae superioris).
7'''''' Nerven für die Hauptschädel.
7'''''''' Verbindungsanzah aus dem letztener an das Ganglion der hinteren Hirnnerven.
13. Der erste Halsnerv.

9. N. glossopharyngeus. 10. N. vagus. h. Hirnzwetsel des N. hypoglossus. i. Verstärkungsast des Vagans an den Glossopharyngeus. D. Ganglion petrosum. i. R. communi-
cans internus r. palatini c. nervo glossopharyngeo. e. R. communicans externus n. facialis cum glossopharyngeo. bg. Vereinigter Stammb von Glossopharyngeus und Hypoglossus. v. Stamm des N. vagus. s. Oberflächlicher Halstheil des Sympathicus. g'. Erster Bust-
ganglion desselben. β. Verbindungsschlinge mit dem N. vagus. z'. Tiefier Halstheil des Sympathicus, aus einem Zweige (z) des ersten Halsnerven (I3) und einem Zweige (v) des zweiten Halsnerven (I4) gebildet. Derselbe entlässt zwei Zweige (m) an den ersten Stamm (l') des Armgelechts und sendet sich in die Mitte des ersten Brustgangliens (g') ein. s'. Fortsetzung des Sympathicus zwischen dem ersten (g') und dem zweiten Brust-
ganglion (g''). γ. Verbindungszweig aus dem zweiten Brustganglion an den auf das Arm-
gelecht folgenden Spinalnerven c. s''. Fortsetzung des Grenzstranges jenseits des Arm-
gelechts. d. d'. Verbindungszweige an die folgenden Spinalnerven.

3. 5. 5'. 5''. 7. 9. 10. 13. A. B. D. wie Fig. 2. C. Ganglion n. facialis. D. Ganglion petrosum. M. Medulla oblongata. n. Ramus nasalis n. ophthalmici. p. Ramus
frontalis n. ophthalmici. p. Ramus palatinus. i. Ramus communicans internus rami palatini cum Glossopharyngeo. f. Hinterer Hauptstamm des N. facialis. t. Chorda tympani. c. Ramus communicans externus n. facialis c. Glossopharyngeo. m. Musikast des N. facialis. m'. Vereinigter Stammb des Musikastes (m.) und des Ramus communicans ex-
ternus (c.) des N. facialis. k. Dritte Hirnzwetsel des N. hypoglossus, die beiden ersten h' und l''. bilden den Stamm (k.), die dritte (h'') und ein beträchtlicher Zweig des ersten Halsnerven (l3) den Stamm k.; h. und k. bilden zusammen den Hypoglossus k. h'. Ramus
des N. vagus. gl. Stammb des N. glossopharyngeus. v. Verstärkungsast des Vagans an den
Glossopharyngeus, dem N. laryngeus superior entsprechend. g. Ramus externus n. acces-
orii. s. Oberflächlicher Halstheil des Sympathicus.

Alle Figuren nach Fischer (105).
Erklärung von Tafel LXXXVI.
Bezeichnung für Fig. 1.—6. (inclus.).

Gültige Bezeichnung für Fig. 7. und S.

Fig. 1.—6. nach Fürbringer (99). Fig. 7. S. nach Gadow (96a).
Erklärung von Tafel LXXXVII.
Fig.

Gültige Bezeichnung für alle Figuren.

Alle Figuren nach Gadow (96°).
Erklärung von Tafel LXXXVIII.
Fig. 1. Querschnitt durch die Augenhöhle von *Lacerta agilis*, der den Bulbus in der Mittellinie trifft, zur Demonstration des topographischen Verhaltens der in derselben gelegenen Weichtheile.

2. Ansicht der Tränenröhrenchen bei *Lacerta viridis*.

cp. Epidermis. e. schl. Epithel der Schleimhautplatte. m. l. p. s. M. levator palpebrarum superioris.

5a und b. Isolierte Knochenplättchen.

Fig. 1. 2. 8. 9. nach Weber (122). — Fig. 4. 5a. 5b. nach Leydig (37). — Fig. 6. 7. nach Henle (124). — Fig. 3. Original.
Reptilien (Eidechsen u. Wafferechsen).

Taf. LXXXVIII.
Erklärung von Tafel LXXXIX.
1. 2. 3. Zapfen \(\text{vom} \) Lacerta muralis.
4. 5. Zapfenkörner \(\text{vom} \) Lacerta muralis.
7a. Zapfen aus der Mitte der Fovea von Chamaeleon.
7b. Zapfen aus der Fovea von Chamaeleon.
8. Drei Stäbchen
9. Stäbchen und einfacher Zapfen \(\text{vom} \) Crocodilus vulgaris.
10. 11. Zapfen aus der Fovea centralis \(\text{vom} \) Crocodilus vulgaris.
12. Doppelzapfen
13. Durchschnitt des Auges von Chamaeleon durch die Eintrittstelle und die Fovea centralis gelegt, beiläufig horizontal. \(\text{n} \)
 \(a. \) Aussenglied. \(b. \) Linseuf. Körper. \(c. \) Innenglied. \(d. \) Korn der äusseren Körnerschicht.
 \(e. \) Limitans externa. \(f. \) Stäbchenfaser. \(g. \) Äussere granulirte Schicht. \(h. \) Korn der inneren Körnerschicht.
 \(a. \) Cartilago triangularis. \(b. \) Anheftungswinkel der Membrana basilaris. \(c. \) Epithelialbekleidung der Cartilago triangularis. \(d. \) Membrana Reissneri.
15. Fragment einer horizontalen Ampulle von Lacerta agilis.
 \(a. \) Knorpelwand. \(b. \) Gehörzellen der Crista. \(c. \) Kernschicht der Crista. \(d. \) Nervenfasern, welche sich in dem Neuro-Epithelium verlieren. \(e. \) Planum semilunatum.
Fig. 7. 7a. 7b. 13 nach H. Müller (117). — Fig. 14. 15. nach Paul Meyer (135) — Fig. 1.—6. 8.—12. Original.
Reptilien (Eidechsen u. Wafferechsen).

Taf. LXXXIX.
Erklärung von Tafel XC.

Die Buchstaben des grossen Alphabets haben für sämtliche Figuren gleiche Bedeutung.

Fig. 1. Hinterer Theil des Schädel's mit rechts herauspräparirtem Labyrinth, von hinten und ein wenig von unten gesehen. 6/1.

2. Vorderer Theil eines in frontaler Richtung durchschnittenen Labyrinthes von hinten gesehen. 6/1.

3. Hinterer Theil eines in derselben Richtung durchschnittenen Labyrinthes von vorn gesehen. 6/1.

5. Das Innere des knöchernen Labyrinthes von innen gesehen. 6/1.

Gültige Bezeichnung für Fig. 2.—5.

Das gesamte, vom perilymphatischen Sacke umschlossene, häutige Gehörorgan von aussen von *Lacerta ocellata.* 56/1.

8. Das ganze häutige Labyrinth von innen. 6/1.

Gültige Bezeichnung für Fig. 6.—10.

rand des dickeren Epithels an der inneren Wand des Sacculus. t. Canal zwischen Ut-
riculus und Sacculus.

11. Die Schnecke mit dem untern Theil des Sacculus, von innen und ein wenig von hinten gesehen. 56/1. (*Lacerta agilis.*)

12. Die isolirte Schnecke von aussen und ein wenig von unten gesehen. 56/1. (*L. agilis.*)

13. Querschnitt durch die obere Vereinigung des Knorpelrahmens. 56/1. (*L. agilis.*)

Gültige Bezeichnung für Fig. 11.—13.

a. Sacculus, a''. innere. a''', äussere Wand derselben. b. Rinne am vorderen Rande des Sacculus. c. Öffnung zwischen Sacculus und Schnecke. d. Die Knorpellamelle. d'. ihr vorderer Rand, d''. ihr Wulst. e. Membrana Reissneri. e'. Falte bei ihrer Umbiegung zur Dach der Schnecke. e''. Falte des Daches. f. Die Zellmasse am hinteren Rande der Schnecke. g. Der vordere Schenkel des Nervenknorpels. g'. Sein Wulst. h. Der hintere Schenkel des Nervenknorpels. h'. Seine innere scharfe Kante. i. Die Brücke des Nerven-

Alle Figuren nach Clason (133).
Erklärung von Tafel XCI.
1. Utriculus mit den in denselben einmündenden Ampullen und Bogengängen sammelt einem Theil der inneren Wand des Sacculus, von innen und unten gesehen. \(4^a\), *Lacerta agilis*.

2. Der grösste Theil der inneren Wand des Sacculus mit dem Utriculus und den in denselben einmündenden Bogengängen, von aussen gesehen. \(4^b\), *Lacerta agilis*.

Gültige Bezeichnung für Fig. 1 und 2.

Dieselbe wie bei Fig. 5.—10. Tafel XC.)

3. Querschnitt durch den oberen Theil des Kegels der Lagena. \(6^a\), *Lacerta agilis*.

 - d. Knorpellamelle. \(d^c\), ihr vorderer Rand. \(d^d\), der vor derselben in der Lagena gebildete Wulst. \(f\), Zellenmasse am hinteren Rande der Schnecke. \(o\), Aeussere Wand des Sacculus perilymphaticus. \(p^f\), Otolith der Lagena. \(q^f\), Ramus lagaeae u. acustici. \(r^a\), Epithel der Lagena.

 An der medianen Wand der Verbindungsröhre breitet sich die Papilla Retzii aus.

5. Querschnitt durch den Nervenknorpe und die Pars basilaris der Schnecke von *Lacerta agilis*.

 - a. Knorpellamelle der Lagena. \(a^c\), Nervenknorpel mit seinem Wulst. \(a^d\), Dreieckiger Knorpe. \(b\), Membrana basilaris. \(d\), Membrana tectoria. \(e^c\), Nervenzweige. \(f^e\), Plattenelepithel.

6. Flächenbild des Trommelfells von *Lacerta striatum* von der Paukenhöhle aus. \(6^f\).

 - b. Hauptast der Columella. \(b^c\), hinteres Ende desselben. \(u^u\), Nebenäste der Columella. \(u^a\), Schnittfläche des Schaftes der Columella.

7. Schädelansicht des *Phyllochelys* von oben.

 - Se. Die anhängenden Kalksäcke. \(C\), Der zum Dach der Mundhöhle gehende Gang. \(Aqua\), Der zwischen Parietale und Opisthoticum zur Schädelhöhle gehangende Gang. \(B\), Dessen Lage und Anschwellung im Cavum cranii unterhalb der Parietalia.

Fig. 1. 2. 3. nach Classen (133). — Fig. 4. nach Kuhn (136). — Fig. 5. nach Paul Meyer (135). — Fig. 6. nach Moldenhauer (157). — Fig. 7 nach Wiedersheiner (157).
Erklärung von Tafel XCII.

6. Das häuföige Gehörorgan, von aussen gesehen.

7. Die vorderen zusammenliegenden Ampullen isolirt. 4/3.

8. Stück eines Bogenganges, von der Fläche gesehen.

a. Raphé.

10. Isolirte häuföige Schnecke, von der Seite gesehen. 4/3.

Alle Figuren nach Hasse (134).
Reptilien (Eidechsen u. Walferechsen)

Taf. LXXXII.
Erklärung von Tafel XCIIt.
1. Querschnitt durch den peripheren Theil des Planum semilunatum eines Crocodils.
 a'. Basalmembran.

2. Querschnitt durch die Crista einer verticalen Ampulle.
 a. Kernreihe der Gehörgänge.
 b. Kernreihe der Isolationszellen.
 c. Nervenbündel.
 d. Zellen der Seitenwände der Gehörgänge.

 a. Durch eine dunklere Zelle schimmernde helle Pflasterzelle.

4. Querschnitt durch den peripheren Theil der Macula acustica utriculi.
 a. Gehörhaar.
 b. Stäbchen oder Gehörzellen.
 c. Zellen aus der Umgebung des Nervenepithels.

 a. Verbindungsröhre der hinteren Ampulle.
 b. Innenwand des Endes des horizontalen Bogenganges.
 c. Unteres Ende der Commisur.
 d. Einmündung des horizontalen Ganges.
 e. Communication zwischen Saccus und Utriculus.
 f. Apertura aqueductus vestibuli.
 g. Utriculus mit der Grenzleiste gegen den recessus.

 a. Vorhöhle.
 b. in diese einmündender Drüsegang.
 c. Innere oder eigentliche Nasenhöhle.
 d. Choane.
 e. Muschel nach Leydig.
 f. Nasendrüse.

7. Senkrechter Längsschnitt durch die Schnauze von Lacerta viridis.
 a. Nasenvorhöhle.
 b. Eigentliche Nasenhöhle.
 c. Choane.
 d. Muschel.
 e. Jacobsson'sches Organ.

 a. wie in Fig. 7.
 c. Muschel nach Leydig.
 d. Jacobson'sches Organ.

9. Schnitt im ersten Drittel der Choanaen (Lacerta).
 T. Thränenkanal nach dem Choanen ausmündend.
 Ch. Choane.
 M. Maxillare superius.
 C. Muschel.
 N. Canalis supra-maxillaris.
 Z. Zahn.
 ch. Siehe Fig. 9.

10. Schnitt kurz hinter dem Eintritt des Thränenkanals T. in das Phonre lacrymale (Lacerta).
 P. Frontale anterius.
 L. Lacrymale.
 M. Maxillare superius.
 K. Knorpel mit dem Höcker a., dem Anfang der Nasenmuschel und dem Fortsatz b.
 — Der Pfeil zeigt die Öffnung zu den Choanen (eh) hin an.

Fig. 1.—6. nach Hasse (131).
Fig. 7. 8. nach Leydig (37).
Fig. 9, 10. nach Weber (122).
Reptilien (Eidechsen u. Wafferechsen).

Taf. LXXXIII.
Erklärung von Tafel XCIV.
Fig. 1. 2. 3. Die in Zwischenräumen hinter einander folgenden Schonite durch die Hälfte des Kopfs einer *Lacerta agilis*; der erste liegt dicht hinter dem Jacobson'schen Organ, der letzte dicht vor der Choane.

1. 5. Zwei Querschnitte durch die Nasenhöhle eines eben geborenen *Crocodilus porosus*.

6. Frontalschnitt durch den Kopf von *Hemidactylus caudasis*.

Bezeichnung für Fig. 1. 2. 3. 6.

Bezeichnung für Fig. 1. 5.

Fig. 1. 2. 3. 6. nach Born (141). Fig. 1. 3. Original.

Blau: Knorpel.

Dunkel pointirt: Knochen und Zähne.

Hell pointirt: Bindegewebe.
Reptilien (Eidechsen u. Wasserechsen).

Taf. LXXXIV.
Erklärung von Tafel XCV.

3. Senkrechter Querschnitt durch dasselbe Präparat in der Richtung der in Fig. 2. von C. ausgehenden Führungslinie. D. du, wie in Fig. 2. C. Einfache Lamelle der Muschel, die sich in C' und C'' spaltet. E. Aus dem Rinnenraum der Pseudoconcha führender Canal. F. Sinus der Pseudoconcha.

Fig. 1. nach Weber (122). Fig. 2. 3. nach Gegenbaur (138). Fig. 4. 5. Original.
Reptilien (Eidechsen u. Waflerechsen).

Taf. LXXXV.
Erklärung von Tafel XCVI.

Fig. 2. nach Wiedersheim (157). Fig. 3. 4. nach Brücke (119). Fig. 1. 5. Original.
Erklärung von Tafel XCVII.
Fig. 1. Kopf von *Heloderma horridum*. Ventralseite. Die oberflächlichen Muskeln der rechten Seite sind entfernt.

2. Unterkieferdrüse desselben Thieres. Die Längslappen etwas auseinandergezogen, um die Querlappen zu zeigen. *M. d*. wie Fig. 1.

Fig. 1. und 2. nach J. G. Fischer. — Fig. 3., 4., 5. nach Leydig.
Erklärung von Tafel XCVIII.
1. Querschnitt durch die Anlage eines Ersatzzahnes eines Gecko. Vergr. $\frac{320}{1}$.
 a. Dentinkeim.
 a'. Dentinschicht.
 s. Schmelzepithel.
 s'. Schleimschicht { des Mundepithels.
 b. Hornschicht

2. Querschnitt durch einen Theil der Anlage eines Ersatzzahnes aus einem sehr jungen Stadium der Entwicklung (Gecko). Sehr stark vergr.
 a. Obere Schicht des Dentinkeims. a', wie Fig. 1.

3. Querschnitt durch den Kiefer und die Anlage zweier Ersatzzähne eines Gecko. Vergr. $\frac{49}{1}$.
 d, d', s', s, h, wie in Fig. 1.
 c, l. Ersatzleiste.
 j, z. jüngste { Zahnanlage.
 u, z. ältere { Zahnanlage.
 k, k. Oberkieferknochen.
 m, l. Meckelscher Knorpel.

4. Querschnitt durch die Zahnleiste (Schmelzkeim) eines Embryo von Crocodilus porosus. Vergr. $\frac{290}{1}$.

Alle Figuren Original.
Reptilien (Eidechsen u. Wasserechsen).

Taf. LXXXVIII.

Erklärung von Tafel XCIX.
1. Querschnitt durch die Zahnleiste oder Schmelzkeim eines Monitor. Embryo. Vergr. 520\(\frac{1}{4}\).
 - r. Rete Malpighi.
 - h. Hornschicht.

2. Querschnitt durch Kiefer und Zahn eines Crocodils. 60\(\frac{3}{4}\).
 - e. Epidermis.
 - e. Schmelzschicht
 - d. Dentin des fungirenden Zahnnes.
 - p. Pulpa
 - c. Cement
 - e. Schmelzschicht
 - d'. Dentin des Ersatzzahnnes.
 - p'. Pulpa
 - k. Knochen des Kiefer.

3. Anfangstheil des Mitteldarmes (Zwölffingeriger Darm) mit anliegenden Theilen von *Lacerta agilis*.
 - b. Milz.
 - c. Pancreas.
 - d. Gallenblase.
 - a. Die Papille in dem geöffneten Darm.

4. Querschnitt durch den Magen einer *Lacerta muralis* um die Zeit des Winterschlafes. 49\(\frac{1}{4}\).
 - b. Schicht der Drüsenhälse.

5. Mannliches Glied eines *Alligator lucius*. 1\(\frac{1}{4}\).
 - a. Das rechte Crus penis.
 - c. Schaft des Gliedes.
 - d. Eichelblatt.
 - e. Eichelzeppe

6. Querschnitt durch einen Drüenschlauch des Eileiters von *Lacerta agilis*.

Fig. 3. nach Leydig. — Fig. 5. nach Rathke. — 1. 2. 4. 6. Original.
Reptilien (Eidechsen u. Wasserechsen).

Tafl. L. 9.
Erklärung von Tafel C.
1. Querschnitt durch den ersten Zahn und den ersten Ersatzzahn eines Embryo von *Croco-
dilus porosus*. Vergr. \(\frac{33}{4}\).
 - a. Anlage des ersten Zahnes.
 - b. Anlage des ersten Ersatzzahnes.
 - c. Dentinkeim.
 - d. Dentin.
 - f. Schmelzkeim.
 - g. Letzter Rest der Schmelzleiter.
 - h. Schleimhautgewebe.
 - i. Anlage des knöchernen Unterkiefers.

2. Querschnitt durch die Anlage eines Ersatzzahnes aus einem späteren Stadium der Ent-
wickelung eines Gecko. Sehr stark vergr.
 - d. Dentinkeim.
 - d'. Dentinschicht.
 - s. Schmelzepithel.

3. Die Gallenblase und Gallengänge eines *Alligator cymbopedos*. \(\frac{1}{2}\).

4. Dieselben Theile von *Alligator lucius*. \(\frac{1}{4}\).

5. Dieselben Theile von *Crocodilus rhombifer*. \(\frac{1}{4}\).
 - a. Gallenblase.
 - b. Ductus hepaticus.
 - c. Ductus choledochus.
 - d. Accessorischer Ductus hepaticus.
 - e. Der vom linken Leberlappen kommende Ductus hepaticus.

Fig. 1. 2. Original. — Fig. 3., 4., 5. nach Rathke.
Erklärung von Tafel CT.
Fig.
1. Männlicher Harn- und Geschlechtsapparat von *Alligator lacius*.

2. Harnmasse von *Pseudopus Pallasii*; veranschaulicht die Ähnlichkeit mit den Koprolithen der Saurier.

 a., b., c. wie Fig. 3. d. Eierstock. e. Parovarium: Leydig, Nebenniere: Braun. f. Nebeneierstock. g. Trichter. h. Eileiter. i. Uterus. k. Cloake.

Fig. 2. 3. 4. nach Leydig (37), Fig. 1. Original.
Reptilien (Eidechsen u. Wafferechsen).

Taf. Cl.
Erklärung von Tafel CII.
Fig. 1. Sagittalschnitt eines Embryo von *Lacerta agilis*, a. d. Eileiter aus dem vorderen Theil des Embryo. Vergr. 72/1.

2. Querschnitt durch einen Embryo von *Lacerta agilis*, dem Eileiter entnommen; 6—8 mm lang. Vergr. 280/1.

4. Ovarium mit Follikelbildung von *Anguis fragilis*, gleich-altes Stadium wie Fig. 3.

6. Querschnitt durch den vorderen Theil eines Embryo von *Lacerta agilis*.

7. Schnitt durch die Tubafalte.

Für Fig. 1—7 gültige Bezeichnung.

11. Stück des Schwellkörpers im Querschnitt von *Lacerta vivipara*.

Fig. 1—7 nach Braun (180). Fig. 8—12 nach Leydig (37).
Erklärung von Tafel CIII.
Fig.
1. Querschnitt durch den mittleren Theil der Vorhöfe von *Alligator lucius*, gegen den Ventrikel hin gesehen. (Bauchseite oben).
2. Querschnitt durch den dicksten Theil des Ventrikels ungefähr zwischen erstem und zweitem Drittel nach der Basis zu gesehen. *Alligator lucius*.
3. Querschnitt durch den dicksten Theil des Ventrikels von *Psammosaurus griseus*.
5. Querschnitt durch den dicksten Theil des Ventrikels von *Pseudopus Pallasii*.
6. Querschnitt durch den dicksten Theil des Ventrikels von *Psammosaurus griseus*.
11. Dasselbe von hinten.

Für alle Figuren gültige Bezeichnung.

V. c. d., V. c. s., V. c. i. Vena cava dextra, sinistra, inferior.
V. h. Vena hepatica.
V. p. d. Vena pulmonalis dextra.
V. p. s. Vena pulmonalis sinistra.
I. c. Vena coronaria cordis.
V. s. Valvula semilunaris.
V. E. Valvula Eustachii.
V. at. d. Valvula atrioventricularis dextra.
V. at. s. Valvula atrioventricularis sinistra.
F. P. Foramen Panizzae.
O. p. Ostium venarum pulmon.
T. p. Truncus Arteriae pulmonalis.
p. Canalis pulmonalis.
a. Conus arteriosus pulmonalis.
y. Rudimentäre Scheidewand der Ventrikel.
v. rechts, *l.* links, *vorn.* h. hinten.

Alle Figuren nach Fritsch (1896).
Fig.

Gültige Bezeichnung für Fig. 1—4. Dieselbe wie für Taf. CHH.

Fig. 1—4 nach Fritsch (189). Fig. 5 u. 6 nach Leydig (37).
Reptilien (Eidechsen u. Wasserechsen).

Taf. CIV.
Erklärung von Tafel CV.
Fig.

 a. Truncus arteriosus, b. die beiden Aeste desselben. c. e. die beiden einfachen Endstücke
 der Aortenwurzeln. d. vorderster Theil des Stammes der Aorta. 1—5. die fünf Paare
 Gefäßbogen der Aortenwurzeln.

2—6. sind schematische Abbildungen von solchen Arterien verschiedener Wirbeltiere, welche
 sich aus dem Truncus arteriosus und den primitiven Aortenwurzeln entwickeln. Diejenigen
 Theile der Aortenwurzeln, welche allmählich vergehen, sind in den Abbildungen nicht
 illustriert (Rathke).

1. Arterien der Schlangen.
 a o. innere Carotiden, b. aussere Carotiden, c c. gemeinschaftliche Carotiden, d d d. rechte
 secundäre Aortenwurzel, e. hinterer Theil der A. vertebrais, f f f. linke secundäre Aorten-
 wurzeln. g. Stamm der Aorta, h. Lungenarterie, i. Ductus Botalli.

3. Arterien der Eidechsen.
 a a., b b., c c., g. wie in Fig. 2. d d. Anastomosen zwischen a a. und secundären Aorten-
 wurzel, e e. rechte secundäre Aortenwurzel, f f. Art. subclavia. h h. linke secundäre Aorten-
 wurzeln, i i. Art. pulmonalis, k k. Ductus Botalli.

 a a., b b., c c., g. wie oben. a. Aorta descendens. c. Arcus Aortae, f. A. subclavia dextra.
 h. A. subclavia sinistra, i. A. pulmonalis, k l. Ductus Botalli.

5. Arterien der Säugethiere.
 a a., b b., c c. wie in Fig. 2. d. Aorta descendens. e. Arcus Aortae, f. Stamm der Aorta,
 g h. Art. subclavia sinistra mit ihrer Vertebralarterie, i l. Art. subclavia dextra mit ihrer
 als k. bezeichneten Art. vertebralis, m. Art. pulmonalis, n. Ductus Botalli.

 a. vorderster Theil des Aortastammes. b. ein kleiner Theil der linken Aortenwurzel, c. rechte
 Aortenwurzel, d. ein kleiner Theil des linken Carotidenbogens, e. aufsteigender Schenkel
 des rechten Carotidenbogens, f. Kehl-Zungenast, g. Kopf und h. absteigender Schenkel
 des rechten Carotidenbogens, i. A. vertebralis, k. kleiner Ast der rechten Aortenwurzel.

 a—g. wie in Fig. 6. h. Muskelast des rechten Carotidenbogens, i. absteigender Schenkel
 dieses Bogens, k. A. vertebralis, l m. A. subclavia.

 a. Stamm der Aorta, b. linke Aortenwurzel, c. rechte Aortenwurzel, d. rechter Carotiden-
 bogen, e. A. thymlaca, f. Kehl-Zungenast, g. Kopf, h. Muskelast des rechten Carotiden-
 bogens, i. A. oesophagen, k l. A. subclavia.

 a b. rechte Aortenwurzel, c. rechter Carotidenbogen, d. Kehl-Zungenast, e. Kopf,

 a. aufsteigender Schenkel des rechten Carotidenbogens, b. Kehl-Zungenast, c. ein Ast
 desselben, d. Kopf, e. Muskelast des Carotidenbogens, f. sehr dünner absteigender
 Schenkel dieses Bogens.

 a. der vordere Theil des Aortenstammes, b. linke, c c. rechte Aortawurzel, d. linke,
 e. rechte gemeinschaftliche Carotis, f. Ast für den Kopf, g. Ast für die Zunge, h. Ast
 für die Kaumuskeln, i. Ast für Zunge, Zungenbein und Kehlkopf, k. A. oesophagen,
 l. A. thymlaca, m n. Muskelnzweige, o. rechte, p. linke A. subclavia. q. Ast der linken
 A. subclavia für die Speiseröhre.

Alle Figuren nach Rathke (188).
Erklärung von Tafel CVI.
1. Der Darmkanal mit einigen Arterien von Varanus niloticus. \(\frac{1}{2}\).

2. Schnitt durch die Nebenniere einer ausgewachsenen Lacerta agilis. \(\frac{75}{1}\).

3. Stück eines Querschnittes von einem Embryo von Anguis fragilis mit der Anlage der Nebenniere. \(\frac{190}{1}\).

4. Stück eines Querschnittes eines 15 Tage alten Embryo von Lacerta agilis. \(\frac{190}{1}\).

Gültige Bezeichnung für Fig. 2, 3, 4.

9. Kehlkopfknorpel von einem S" langen Ophisaurus centralis, hinten geöffnet und ausgebreitet \(\frac{2}{1}\).

Gültige Bezeichnung für Fig. 5—12.

Fig. 1 nach Rathke. Fig. 2—5 nach Braun. Fig. 6—12 nach Henle.
Reptilien (Eidechsen u. Wafferechsen).

Taf. CVI.
Erklärung von Tafel CVII.
Fig.
2. Kehlkopfknorpel des Rhamphostoma tatractris.
4. Präparierte Knorpel mit dem Kehlsack (K) von vorn.
5. Dasselbe von hinten, wie Fig. 4, von Chamaeleo africanus.
6. Der Kehlsack an desselben Präparat ist geöffnet, die rechte Hälfte bis auf einen kleinen, zurückgeschlagenen Rest am oberen Rande wegenommen, um das unvollkommene Septum des Kehlsackes zu zeigen (K“K”).
15. Derselben im Profil (die linke Fläche).
17. Rand des Eingangs zum Kehlkopf.
21. longitudinaler Vorsprung derselben nach innen. b”, schlüsselförmiger Fortsatz.
22. Linke Hälfte des Kehlkopfes von Alligator lucius.
23. Rand des Kehlkopfes, m. Stimmband, s. Ventrikel unter denselben, s. u. Durchschnittsfäche des Compressor.
27. Kehlkopfknorpel von Alligator palpebratus.
31. gi. das longitudinale Frenulum.
32. Kehlkopfknorpel desselben von vorn 1/8
33. a’. Fortsatz des Giessbeckenknorpels, an welchem sich der M. dilatator inserirt.
34. Giessbeckenknorpel von Rhamphostoma tatractris.
36. Der obere Theil der Luftrohre von hinten, um eine eigenthümliche, wahrscheinlich individuelle Bildung der oberen Luftrohrrenringe zu zeigen, von denselben Their.

Gültige Bezeichnung für Fig. 1—33.
36. Acusser oder Längemuskel, b. Quermuskel.

Fig. 1—33 nach Henle. Fig. 34. 55. nach Leydig.